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Abstract. There is a scientific consensus that the Mediter-
ranean region (MedR) is warming and as the tempera-
ture continues to rise, droughts and heat waves are be-
coming more frequent, severe, and widespread. Given the
detrimental effects of droughts, it is crucial to acceler-
ate the development of forecasting and early warning sys-
tems to minimize their negative impact. This paper reviews
the current state of drought modeling and prediction ap-
plied in the MedR, including statistical, dynamical, and hy-
brid statistical–dynamical models. By considering the mul-
tifaceted nature of droughts, the study encompasses meteo-
rological, agricultural, and hydrological drought forms and
spans a variety of forecast scales, from weekly to annual
timelines. Our objective is to pinpoint the knowledge gaps
in literature and to propose potential research trajectories to
improve the prediction of droughts in this region. The re-
view finds that while each method has its unique strengths
and limitations, hybrid statistical–dynamical models appear
to hold the most promising potential for skillful prediction
with seasonal to annual lead times. However, the application
of these methods is still challenging due to the lack of high-
quality observational data and the limited computational re-
sources. Finally, the paper concludes by discussing the im-
portance of using a combination of sophisticated methods
such as data assimilation techniques, machine learning mod-
els, and copula models and of integrating data from different
sources (e.g., remote sensing data, in situ measurements, and
reanalysis) to improve the accuracy and efficiency of drought
forecasting.

1 Introduction

Drought is a recurrent phenomenon in the Mediterranean re-
gion (MedR). Throughout time, adaptation to this kind of
climate event has been an important issue for the develop-
ment of many countries in the region. Yet, with the disrup-
tive accelerated impact of global warming, already reflected
in more regular and intense droughts around the Mediter-
ranean in the last few decades, building resilience to ex-
treme weather conditions remains a true challenge (Satour
et al., 2021). For these reasons among others, the region
is often described as a hotspot for climate change (Tuel
and Eltahir, 2020). The Intergovernmental Panel on Climate
Change (IPCC) pointed out in the Sixth Assessment Re-
port (AR6) that global warming has been more rapid in the
Mediterranean than in the rest of the world (IPCC, 2021).
This report projected an increase in the frequency and/or
severity of agricultural and ecological droughts across the
Mediterranean and western Africa (IPCC, 2021). A global
increase of 2 ◦C is thought to correspond to a 3 ◦C increase
in the daily maximum temperature in the MedR (Seneviratne
et al., 2016; Vogel et al., 2021). If this increase in temperature
continues at the same pace, the MedR is susceptible to expe-
riencing fearful desertification by the end of the 21st century,
driving an increase in aridity (Carvalho et al., 2022).

This will surely lead to irreversible biodiversity loss and
diminish the capability of semi-arid Mediterranean ecosys-
tems to function as effective carbon sinks in the future
(Valentini et al., 2000; Briassoulis, 2017; Zeng et al.,
2021). These conditions exacerbate water stress, which, in
turn, enhances the probability of wildfire (Turco et al.,
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Figure 1. Topography of the Mediterranean Region (30–46◦ N in latitude and 10◦W–40◦ E in longitude).

2017a), a phenomenon already witnessed in two recent sum-
mers (2021 and 2022) in several Mediterranean countries
(Türkiye, Greece, Italy, Algeria, and Morocco) that displaced
thousands, killed hundreds, and caused irreparable damage
(Rodrigues et al., 2023; Yilmaz et al., 2023; Eberle and
Higuera Roa, 2022).

The Mediterranean Sea (MEDS), lying between Africa,
Europe, and Asia, serves as a substantial source of moisture
and heat, affecting atmospheric circulation and weather pat-
terns (Mariotti et al., 2008). Its narrow connection to the At-
lantic Ocean via the 14 km wide Strait of Gibraltar and the
surrounding varied topography (Fig. 1), with vegetated areas
to the north and desert areas to the south and east, contribute
to the region’s complex climate dynamics (Michaelides et al.,
2018).

The MedR is characterized by a mid-latitude temperate
climate with mild, rainy winters and hot, dry summers (Li-
onello et al., 2023). Notably, this area is positioned in a tran-
sitional band between the mid-latitude and subtropical re-
gions, which makes climate modeling for this region quite
challenging (Planton et al., 2012). The Mediterranean cli-
mate exhibits a strong spatial gradient in precipitation, with
generally decreasing precipitation values towards the south
and hardly any precipitation during the summer (Lionello,
2012). Such conditions pose challenges in climate modeling
and can lead to severe impacts on water supply and agri-
culture, especially in regions relying on rain-fed agriculture
(Tramblay et al., 2020).

Water availability is unevenly distributed among the
Mediterranean countries with 72 % in the temperate coun-
tries of the north against 5 % in the south and 23 % in the east
(Milano et al., 2013). Accordingly, several countries such as
Algeria, Morocco, Egypt, Libya, and Malta and some coun-

tries of southern Europe such as Portugal and Spain are expe-
riencing a structural water shortage that is likely to increase
with the expected population growth (Sanchis-Ibor et al.,
2020). This situation is further aggravated when multi-annual
droughts hit the region. In this challenging context, drought
forecasting that provides seasonal to annual lead times be-
comes critically important for proactive agricultural and wa-
ter resource management.

Growing concern about the drought phenomenon in the
last few decades has spurred the development of improved
systems that predict the full cycle of drought (onset, dura-
tion, severity, and recovery) via a large number of indices
and models. Common approaches to predicting drought can
be subdivided into two categories of models: statistical mod-
els and dynamical models. Statistical models, also named
data-driven models, rely on the estimated correlations be-
tween several predictors (large-scale climate variables) and
predictands (local climate variables represented by historical
observations). The climatology-based or persistence-based
models, like the ensemble streamflow prediction (ESP) sys-
tem, form an essential tool in this category, leveraging both
historical and near-real-time data to generate a probabilis-
tic forecast of future drought events (AghaKouchak et al.,
2014; Turco et al., 2017b; Torres-Vázquez et al., 2023).
Meanwhile, dynamical drought prediction relies on the use
of global climate models (GCMs) to simulate the dynami-
cal processes that govern hydroclimatic variability. Neverthe-
less, despite the usefulness of these models in drought pre-
diction and early warning systems, their forecast accuracy
remains limited for longer lead times (exceeding 1 month)
(Wood et al., 2015). Post-processing and multi-model ensem-
ble techniques are usually used to improve prediction skills
by avoiding systematic bias related to the coarse resolution
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of GCMs (Han and Singh, 2020). Recently, drought predic-
tion has also been tackled by hybrid statistical–dynamical
models which combine the two approaches mentioned above.
These models constitute a promising tool for long-lead-time
drought forecasting (Ribeiro and Pires, 2016).

Despite the efforts made to predict drought phenomena,
they remain largely little understood due to drought’s multi-
ple causative mechanisms and contributing factors (Kiem et
al., 2016; Hao et al., 2018). The complexity and variability
depicted by many physical mechanisms such as sea surface
temperature (SST), the North Atlantic Oscillation (NAO), the
El Niño–Southern Oscillation (ENSO), the Mediterranean
Oscillation (MO), and land–atmosphere feedback are also re-
sponsible for the low performance of drought monitoring and
forecasting (Ayugi et al., 2022). Understanding the synoptic
conditions leading to drought phenomena becomes increas-
ingly important given the upward trend in temperature in the
MedR. Further investigations to assimilate how large-scale
teleconnections affect local weather and climate anomalies,
as well as how these later feed back into the larger context,
are much needed in this context.

To address these questions, numerous review papers have
sought to consolidate the scientific advances in drought pre-
diction from different regions of the world (e.g., Mishra and
Singh, 2011; Hao et al., 2018; Fung et al., 2019; Han and
Singh, 2020). While these studies provided a comprehensive
overview of drought prediction at a global scale, our paper
offers an in-depth analysis of drought prediction method-
ologies specifically applied to the Mediterranean context.
This is achieved through an examination of the applicability,
strengths, and limitations of statistical, dynamical, and hy-
brid statistical–dynamical models, in line with the regional
specifics of the MedR. This specificity is vital given that
drought, as a phenomenon, is highly region dependent. The
unique meteorological conditions of the MedR necessitate
dedicated studies, as solutions developed for other regions
may not be applicable or effective here.

Tramblay et al. (2020) emphasized the urgent need for
drought modeling and forecasting methods designed for the
Mediterranean context, particularly as climate change con-
tinues to exacerbate drought conditions in this region. Build-
ing on this, our work not only emphasizes the complexities
of drought assessment but also conducts a critical review
of recent drought forecasting methodologies applied specifi-
cally to the MedR. In addition to shedding light on the merits
and limitations of these methods, our investigation also helps
identify underexplored areas that warrant further research.
Detecting these gaps is a crucial aspect of our work, as it
directs future research towards these relatively unexplored
realms of drought prediction.

The structure of this paper is as follows: Sect. 2 highlights
the difficulty related to the definition of drought from dif-
ferent perspectives. The causes of drought in the MedR are
provided in Sect. 3. Sections 4, 5, and 6 present the recent ad-
vances in drought prediction with statistical, dynamical, and

hybrid statistical–dynamical models, respectively. Section 7
discusses the results found in this review, providing insights
into the current state of drought forecasting in the MedR
and highlighting potential areas for improvement. The chal-
lenges in drought prediction are reviewed with its prospects
in Sect. 8. Finally, Sect. 9 presents the conclusions of the
whole paper.

2 Drought definitions, classification, and indices

Drought is a compound phenomenon of a creeping nature.
Establishing accurate predictions that describe its starting
date and duration well is extremely hard. The multidisci-
plinary and multiscale nature of drought renders the un-
derstanding of this phenomenon very challenging (AghaK-
ouchak et al., 2021). As a matter of fact, the literature gives
numerous definitions for drought.

In the 1980s, Wilhite and Glantz (1985) found more than
150 published definitions of drought that can be categorized
into four broad groups: meteorological, agricultural, hydro-
logical, and socioeconomical. This classification based on
both physical and socioeconomic factors is still adopted to-
day. As this classification is human-centered, some recent
works emphasized the need to consider ecological drought as
well, which creates multiple stresses in natural ecosystems;
see for example Crausbay et al. (2017), Vicente-Serrano et
al. (2020), Bradford et al. (2020), and Zhang et al. (2022).
Since the aim of this study is to review forecasting drought
methods, we will focus only on the first three categories,
which provide direct methods to quantify drought as a phys-
ical phenomenon.

In an attempt to associate a mathematical definition with
each drought type, several drought indices have emerged.
These indices are typically based upon some hydroclimatic
variables or parameters (indicators) such as temperature, pre-
cipitation, soil moisture, streamflow, and snowpack to de-
scribe three major characteristics of the drought event: sever-
ity, duration, and frequency. However, the lack of a univer-
sal definition of drought is also apparent in the huge va-
riety of indices (more than 100) that have been developed
for drought prediction (Lloyd-Hughes, 2014). Unfortunately,
this plethora of indices creates more confusion than clarity
(Lloyd-Hughes, 2014) and makes the choice of the most suit-
able indices a difficult task.

2.1 Meteorological drought

The World Meteorological Organization (WMO) character-
izes meteorological drought as “a prolonged absence or
marked deficiency of precipitation”. Similarly, the IPCC de-
fines meteorological drought as “a period of abnormally dry
weather in a region over an extended period”. The threshold
to distinguish between a dry or wet period often depends on
the average rainfall typical of the specific area under study.
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This gives rise to a variety of meteorological definitions, each
tailored to the distinct conditions of diverse regions or coun-
tries (Isendahl, 2006). Regarding the MedR, creating a single
encompassing definition of meteorological drought is partic-
ularly challenging. This complexity stems from the diverse
climate conditions across the region, particularly the pro-
nounced variability between eastern and western meteoro-
logical conditions that contribute to drought.

The Standardized Precipitation Index (SPI) (McKee et
al., 1993) and the standardized precipitation evapotranspira-
tion index (SPEI) (Vicente-Serrano et al., 2010a) are two of
the most prevalent indicators used to describe meteorolog-
ical drought. They owe their popularity to the recommen-
dation of the WMO (Svoboda et al., 2012). SPI has been
extensively used in previous studies for its ease of com-
putation, its probabilistic nature, and its ability to detect
drought on multiple timescales (Madadgar and Moradkhani,
2013; Chen et al., 2013; Li et al., 2020; Mesbahzadeh et al.,
2020; Das et al., 2020). By fitting a probability distribution
to observed precipitation data, SPI is calculated and subse-
quently transformed into a standard normal distribution with
a mean of 0 and a standard deviation of 1 (Livada and As-
simakopoulos, 2007). Consequently, SPI values can be com-
pared across various regions and time frames (e.g., 1, 3, 6,
12, or 24 months). This multiscale nature of SPI enables it to
capture diverse aspects of drought depending on the selected
timescale. The shorter timescales (1–3 months) are suitable
for monitoring agricultural drought, while longer timescales
(6–12 months or more) are better suited for evaluating hydro-
logical drought. However, it should be noted that SPI con-
siders only precipitation data and neglects the variability in
temperature and potential evapotranspiration (PET), ignor-
ing the effect of warming on droughts. Indeed, in relatively
wet regions, the precipitation deficit can constitute an im-
portant indicator for drought (Gamelin et al., 2022). Yet, in
mid-latitude (or extratropical) regions such as the Mediter-
ranean where the climatological precipitation is modest or
low, the precipitation deficit may not be sufficient to measure
extreme droughts. Furthermore, knowing the upward trend
in temperature and the influence of high atmospheric evap-
orative demand (AED) on the increasing severity of recent
drought events in the MedR (Tramblay et al., 2020; Mathbout
et al., 2021; Bouabdelli et al., 2022), the choice of drought
indices needs to prioritize those including these variables in
their formulation, such as SPEI, the Palmer drought severity
index (PDSI) (Palmer, 1965), or the Reconnaissance Drought
Index (RDI) (Tsakiris and Vangelis, 2005) to mention but a
few.

SPEI was developed by Vicente-Serrano et al. (2010a) us-
ing the climatic water balance concept of climatic water sup-
ply and AED. It is based on precipitation and PET and has
the advantage of combining the multiscalar character of SPI
with the ability to include the effects of temperature variabil-
ity (Vicente-Serrano et al., 2010a).

A global assessment of drought indices conducted by
Vicente-Serrano et al. (2012) found that SPEI provided a su-
perior capability in capturing drought impacts, particularly
during the crucial summer season. Bouabdelli et al. (2022)
used SPI and SPEI and copula theory to study the impact
of temperature on agricultural-drought characteristics under
future climate scenarios over seven vast Algerian plains lo-
cated in the MedR. The results of this study confirmed that
the frequency of drought events is much higher using SPI,
while their duration and severity are more intense using
SPEI. Russo et al. (2019) performed drought characterization
in the MedR using both SPEI and SPI, considering the pe-
riod 1980–2014. Their findings indicated that SPEI exhibits a
stronger correlation with drought conditions over a 3-month
timescale, while SPI shows a better correlation for a 9-month
duration. This result highlights the ability of SPEI to capture
the early shifts in the balance between evapotranspiration and
precipitation more efficiently than SPI (Russo et al., 2019).

Despite the utility of SPEI in drought characterization, it
does have a noteworthy limitation. The effectiveness of SPEI
significantly relies on the method used for estimating PET
such as the Penman–Monteith equation, the Thornthwaite
method, the Hargreaves method, and the Priestley–Taylor
method. These estimation methods can yield varying results,
leading to inconsistencies in SPEI values. In essence, the sen-
sitivity of SPEI to the PET estimation method used could po-
tentially affect the accuracy and reliability of the index in rep-
resenting drought conditions (Vicente-Serrano et al., 2010b;
Stagge et al., 2014).

PDSI has also been widely used to quantify the drought
characteristics for a given location and time. It includes pre-
cipitation, temperature, and soil moisture data to estimate
water supply and demand and to reflect long-term drought.
But it has shown some inconsistencies when used at vari-
ous locations (Wells et al., 2004). A self-calibrating variant
of this index (sc-PDSI) was proposed by Wells et al. (2004)
to automatically calibrate the behavior of the index by re-
placing empirical constants in its computation with dynam-
ically estimated values to account for the variability in pre-
cipitation and the climate characteristics between locations
(Wells et al., 2004). Ionita and Nagavciuc (2021) evaluated
the drought characteristics at the European level over the pe-
riod 1901–2019 using SPI, SPEI, and sc-PDSI. The results
based on SPEI and sc-PDSI show that the increase in mean
air temperature and PET are making central Europe and the
MedR drier, whereas northern Europe is getting wetter. In
contrast, results based on SPI using only precipitation data
did not reveal this drought variability. This underscores the
findings of Vicente-Serrano et al. (2012), who emphasized
the benefits of using more integrative indices like SPEI to
understand and predict drought variability more effectively.

MedPDSI, which is an update of the PDSI formulation in
terms of its soil water balance to consider real evapotranspi-
ration (based on reanalysis data instead of PET) in the MedR,
has allowed an earlier identification of longer and more se-
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vere droughts (Paulo et al., 2012). Paulo et al. (2012) com-
pared SPI, SPEI, PDSI, and MedPDSI in detecting drought
characteristics in Portugal for the period 1941 to 2006. They
concluded that PDSI and MedPDSI are likely to better iden-
tify the supply–demand dynamics and that they may be of
great interest for drought warning applications aimed primar-
ily at agriculture (Paulo et al., 2012).

2.2 Agricultural drought

Agriculture is very sensitive to climate variation, especially
extreme weather. Due to its dependency on water availabil-
ity, this sector is strongly impacted by drought events. In the
Mediterranean Basin, agricultural practices span both rain-
fed and irrigated systems. Rain-fed agriculture is prevalent,
particularly for crops such as wheat and barley, while crops
like olives and citrus fruits such as oranges often utilize con-
trolled irrigation systems to supplement natural precipitation
(Rodrigo-Comino et al., 2021). Regardless of the system em-
ployed, if meteorological drought lasts for a prolonged pe-
riod, it can lead to a reduction in soil moisture to such a level
that it harmfully affects crop production, especially during
the active plant growth season (Wilhite and Glantz, 1985;
Mishra and Singh, 2010). At this stage agricultural drought
sets in.

Therefore, in addition to meteorological factors, the
agricultural-drought definition is also related to the reten-
tion capacity of soil in the crop growth season (Kuśmierek-
Tomaszewska and Żarski, 2021), which depends on crop
types, soil characteristics, and soil management. All these
indicators can be employed to develop relevant agricul-
tural drought indices. Among them, we cite the crop mois-
ture index (CMI) (Palmer, 1968), soil moisture deficit
index (SMDI), evapotranspiration deficit index (ETDI)
(Narasimhan and Srinivasan, 2005), normalized soil mois-
ture index (NSMI) (Dutra et al., 2008), and Empirical Stan-
dardized Soil Moisture Index (ESSMI) (Carrão et al., 2016).

The formulation of these indices integrates soil moisture
data, leveraging a variety of assessment techniques, each
with unique advantages. These include in situ soil moisture
probes, cosmic-ray neutron probes, and physically driven
models such as the ISBA land surface model (Tramblay et
al., 2019). Each of these techniques has distinct advantages
and is suitable for different application contexts (Miralles et
al., 2010; Martens et al., 2017). However, when faced with
the scarcity of observed soil moisture data, remote sens-
ing comes to the forefront. It furnishes extensive and fre-
quent measurements of soil moisture characteristics, effec-
tively supplementing areas where observed data fall short.
Yet, it is crucial to be aware of the limitations of remote
sensing tools. Despite its indispensable role, remote sensing
is constrained by factors such as coarse temporal and spatial
resolutions, limited penetration depth, and incompatible gov-
erning hydrologic principles (Mohanty et al., 2017; Gruber
and Peng, 2022). As an alternative, hydrological models have

been commonly used to simulate and calibrate this variable
in the context of agricultural-drought forecasts (Hao et al.,
2018). Mimeau et al. (2021) used a modeling framework to
estimate soil moisture sensitivity to changes in precipitation
and temperature at 10 plots located in southern France. They
concluded that the current climate change scenarios may in-
duce longer periods of depleted soil moisture content, corre-
sponding to agricultural-drought conditions.

In general, when soil moisture in the root zone reaches
a critical level, farmers resort to irrigation to save crops
(Kang et al., 2000). However, nowadays agriculture con-
sumes approximately 85 % of global fresh water for irriga-
tion (D’Odorico et al., 2019; Tatlhego et al., 2022), which is
expected to increase in the years to come because of grow-
ing populations, increasing food consumption, and rising
temperatures that accelerate PET and promote hydrological
stress.

2.3 Hydrological drought

Unlike agricultural drought, which is mainly affected by the
depletion of soil moisture after a dry period, a lack of pre-
cipitation impacts many components of the hydrological sys-
tem in a river basin or watershed (streams, reservoirs, and
lakes). These define the availability of water that can be
used for commercial navigation, generation of hydroelectric
power, irrigation of farmlands, industry, and domestic activ-
ities for several months after the deficiency in precipitation.
Consequently, hydrological drought lags behind the occur-
rence of meteorological and agricultural droughts. This lag
time is a characteristic of the watershed, which is defined
based on many physical drivers such as evapotranspiration
capacity, soil properties, vegetation types, snow accumula-
tion and melt, local water management such as dams’ con-
struction and control, water supply operation rules, and irri-
gation strategy (Van Loon and Laaha, 2015).

A hydrological drought is generally proclaimed when the
water levels in streamflow, reservoirs, lakes, aquifers, and
other water storage systems fall below a specific threshold.
Therefore, hydrological-drought prediction necessitates the
analysis of climate variables such as precipitation and tem-
perature and of initial catchment conditions (e.g., snow cover
and soil moisture) (Hao et al., 2018).

In the Mediterranean Basin, a common tendency for wa-
ter levels to drop in shallow lakes and aquifers has motivated
many researchers to study the hydrological drought in this re-
gion: Greece (Myronidis et al., 2012), Türkiye (Akyuz et al.,
2012), Tunisia (Hamdi et al., 2016), Lebanon (Al Sayah et
al., 2021), Italy (Di Nunno et al., 2021), Portugal (Mendes
et al., 2022), Algeria (Bouabdelli et al., 2022), and Syria
(Mohammed et al., 2022). The most common hydrologi-
cal drought indices include the Palmer hydrological drought
index (PHDI) (Palmer, 1965), the streamflow drought in-
dex (SDI) (Nalbantis, 2008), and the standardized runoff in-
dex (SRI) (Shukla and Wood, 2008).
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As part of the effort made by Wayne Palmer in the 1960s,
PHDI has been developed using the same two-layer soil
model as PDSI, but it applies a stricter criterion for deter-
mining the ends of drought to account for long-term drought
events that reduce surface and groundwater supply. Vasil-
iades and Loukas (2009) tested the Palmer indices in a
Mediterranean Basin (in Greece), and they concluded that
these indices were successful in the identification of the
drought severity of historical events but were unable to iden-
tify drought duration.

SRI is an index that uses the same computational prin-
ciples as SPI but uses monthly mean streamflow rather
than precipitation only to account for the hydrological pro-
cess that determines seasonal lags in the influence of cli-
mate on streamflow (Shukla and Wood, 2008). Shukla and
Wood (2008) compared the SRI and the SPI results during
drought events in a snowmelt region. They concluded that
SRI can be used as a complement to SPI for depicting hydro-
logic aspects of drought.

SDI is also a simple index that uses the cumulative
monthly streamflow volumes for a given hydrological year
to predict wet and dry periods and identify the severity
of a hydrological drought (Nalbantis, 2008). Bouabdelli et
al. (2020) conducted a comparison study of SPI and SDI, fo-
cusing on the indices’ characteristics across three watersheds
in northwestern Algeria. Their analysis revealed a substantial
similarity between meteorological-drought events (as repre-
sented by SPI-12) and hydrological-drought events (as indi-
cated by SDI-6). This correlation emphasizes the sensitive
and responsive nature of these basins to dry conditions, fur-
ther illustrated by the swift transition from meteorological-
drought to hydrological-drought events in the studied basins
(Bouabdelli et al., 2020).

The application of hydrological drought indices appears to
be very valuable. However, the main challenge in applying
these indices lies in the requirement for a long-term series of
climatic data. According to the WMO, up to 30 years of con-
tinuous rainfall data may be necessary for accurate drought
index calculations (WMO, 1994). This condition is not al-
ways fulfilled, which makes the rainfall–runoff transforma-
tion a difficult task (De Luca et al., 2022). Modern hydro-
logical models can offer a valuable counterpart to existing
climate-based drought indices by simulating hydrologic vari-
ables such as land surface runoff (Shukla and Wood, 2008).

3 Overview of the physical mechanisms causing
drought in the Mediterranean region

It is difficult to determine the physical mechanisms causing
droughts in the Mediterranean Basin, since the region cov-
ers a complex landscape with high topographic and climatic
heterogeneity, strong land–sea contrasts, and high anthropic
pressure (De Luca et al., 2022).

Considering the various forms of drought, meteorological
droughts, characterized by a deficit in precipitation, are com-
monly recognized as marking the onset of drought condi-
tions. This initial stage is intrinsically linked to precipitation
predictability, which is driven by large-scale atmospheric
motions such as Walker circulations and Rossby waves, in-
fluenced by factors like SST anomalies, radiative forcing
changes (both natural and anthropogenic), and land surface
interactions (Hao et al., 2018; Wood et al., 2015). However,
due to the inherently chaotic nature of atmospheric circula-
tion, predictability, particularly for meteorological droughts,
tends to diminish beyond a 1-month lead time. It is cru-
cial to note that the reliability of these predictions can differ
when considering other drought types (such as agricultural
or hydrological droughts) or altering the forecast scale, with
seasonal forecasts often displaying more reliability months
in advance, while daily forecasts may face limitations from
around 2 weeks.

The discovery of teleconnections between SST anomalies
and hydroclimatic phenomena constitutes a major advance
in drought forecasting and early warning (Wood et al., 2015).
Notably, it is widely established within the scientific commu-
nity that certain ocean–atmospheric teleconnections, such as
ENSO, can profoundly influence the onset of drought condi-
tions in various regions worldwide, particularly in the tropics
(Ropelewski and Halpert, 1987; Shabbar and Skinner, 2004;
Hoell et al., 2014; Vicente-Serrano et al., 2017). For instance,
during the peak phase of El Niño or La Niña in the tropi-
cal Pacific, a corresponding change in precipitation patterns
can be observed several months later in the North American
winter climate (Livezey and Smith, 1999; Hoerling and Ku-
mar, 2003). This delayed impact provides a crucial window
for predicting potential drought conditions with a long lead
time exceeding 1 month (Johnson and Xie, 2010). Moreover,
this lagged correlation allows for proactive drought manage-
ment strategies, with the ability to anticipate and prepare for
drought conditions based on forecasted ENSO conditions.
Nevertheless, drought predictability is seasonally and spa-
tially variable. Typically, the accuracy of seasonal drought
prediction is superior in the tropics, while it is still challeng-
ing in the extratropics (Doblas-Reyes et al., 2013).

In the MedR, the response of climate to ENSO is complex.
It varies over time and depends on the maturity of the ENSO
state and the co-occurrence with NAO (Kim and Raible,
2021; Brönnimann et al., 2007; Mariotti et al., 2002). Al-
though many authors have found a non-negligible correlation
between ENSO and precipitation anomalies in the MedR, it
remains insignificant compared to in the tropics (Mariotti et
al., 2002).

In contrast, the NAO is commonly identified as a promi-
nent factor influencing Mediterranean climate variability
during the winter season (Ulbrich and Christoph, 1999;
Vicente-Serrano et al., 2011; Kahya, 2011; Santos et al.,
2014; Cook et al., 2016). It is important to note, however, that
while acknowledging the profound impact of the NAO on the
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climate dynamics of the MedR, its predictability, especially
on seasonal scales, continues to be a considerable challenge
in the field of climate science (Czaja and Frankignoul, 1999;
Saunders and Qian, 2002; Scaife et al., 2014; Dunstone et al.,
2016).

During the positive phase of the NAO, below-average pre-
cipitation rates are observed over large parts of the north-
ern and western MedR. While in the negative phase of the
NAO, the climate is wetter and warmer (Lionello, 2012).
Kim and Raible (2021) analyzed the dynamics of multi-
year droughts over the western and central Mediterranean for
the period of 850–2099 CE. This analysis suggests Mediter-
ranean droughts from 850–1849 CE were mainly driven by
the internal variability in the climate system, including ele-
ments like barotropic high-pressure systems, positive NAO
phases, and La Niña-like conditions. Conversely, external
forcing such as volcanic eruptions was found to be associated
with wetter Mediterranean conditions. In the period 1850–
2099 CE, however, anthropogenic influences amplified land–
atmosphere feedback, leading to persistent dry conditions in
the Mediterranean (Kim and Raible, 2021).

Paz et al. (2003) analyzed monthly mean sea level pres-
sure (SLP) anomalies from the 1958–1997 record over the
Mediterranean Basin. They identified a significant anoma-
lous SLP oscillation between north Africa and west Asia and
concluded that the regional trend of the north Africa–west
Asia (NAWA) index could explain increased drought pro-
cesses in the eastern Mediterranean after the late 1970s, in
relation to northern hemispheric circulation.

The climate heterogeneity in the Mediterranean area may
also be explained by the regional Mediterranean Oscilla-
tion (MO), characterized by opposite precipitation patterns
between the eastern and western regions (Dünkeloh and Ja-
cobeit, 2003). More recently, Redolat et al. (2019) proposed
a new version of MO that uses areas instead of observato-
ries or isolated points. The new index, which is referred to as
the Upper-Level Mediterranean Oscillation index (ULMOi),
is based on the differences in geopotential height at 500 hPa
to improve the predictability of seasonal anomalies in the
Mediterranean climate (Redolat et al., 2019). According to
this study, ULMOi has reported higher confidence than the
MO index for rainfall predictability (Redolat et al., 2019).
Other teleconnections influencing the climate of the MedR
can be found in the reviews done by Paz et al. (2003) and Li-
onello (2012). Recent works have also shed light on the im-
pact of the Madden–Julian Oscillation (MJO) on water avail-
ability in the region, especially during heavy-rain episodes;
see for example Chaqdid et al. (2023).

In conclusion, several complex factors that influence the
predictability of drought are not yet fully understood, espe-
cially those related to climate change. Therefore, more re-
search on the physical mechanisms causing drought in the
MedR is needed to improve the predictability of drought
forecasts.

Expanding our grasp of the physical factors causing
drought in the MedR, we will now delve into drought fore-
casting models. By leveraging insights from these mech-
anisms, scientists have developed numerous approaches
and techniques including statistical, dynamical, and hybrid
statistical–dynamical models to boost the accuracy and trust-
worthiness of drought predictions.

4 Statistical drought prediction methods

Once the major sources of predictability are identified, the
task of the statistical models is to uncover the spatial and/or
temporal relationship between a set of these potential predic-
tors and the predictand. When a large number of predictors
are identified within the same region, dimension reduction
techniques like principal component analysis (PCA) or lin-
ear discriminant analysis (LDA) can improve model accu-
racy and efficiency by reducing the number of dimensions
while preserving essential information. On the other hand,
feature selection methods such as decision trees or random
forests can help eliminate irrelevant predictors. These ap-
proaches can prevent overfitting, leading to enhanced model
performance and interpretability (Hao et al., 2018; Ribeiro
and Pires, 2016).

The next sections will present the frequently used data-
driven models and how they have been employed to predict
different types of drought at different spatiotemporal resolu-
tions in the MedR.

4.1 Time-series models

During the last few decades, several methods have been de-
veloped to analyze the stochastic characteristics of hydro-
logic time series (Morid et al., 2007; Rafiei-Sardooi et al.,
2018; Band et al., 2022; Zarei and Mahmoudi, 2020). The
moving average (MA), autoregressive (AR), and autoregres-
sive integrated moving average (ARIMA) models are all lin-
ear models that analyze past observations of the same vari-
able to predict its future values. Normality and stationarity
of observations are two of the basic assumptions of these
time-series models. Therefore, if some trends or seasonality
is detected in observations, it should be removed before the
modeling to avoid any drift in the concepts to be captured.

ARIMA is the most frequently used time-series model
(Zhang, 2003). The popularity of this model is related to
its ability to search systematically for an adequate model at
each step of the model building (identification, parameter ap-
proximation, and diagnostic check). This method is based on
the concept that nonstationary data could be made station-
ary by “differencing” the series (Box et al., 2015). The ap-
proach involved considering a value Y at time point t and
adding/subtracting based on the Y values at previous time
points and adding/subtracting error terms from previous time
points. The formula can be written as

https://doi.org/10.5194/nhess-23-3543-2023 Nat. Hazards Earth Syst. Sci., 23, 3543–3583, 2023



3550 B. Zellou et al.: Review article: Towards improved drought prediction in the Mediterranean region

Yt = c+ϕ1Yt−1+ . . . +ϕpYt−p + θ1et−1+ . . . + θqet−q + et , (1)

where Yt is the value of the variable at time t ; c is a con-
stant term; p and q are the orders of AR and MA models, re-
spectively; ϕi and θi are model parameters; and et−1, . . . , et
denotes the error terms.

The AR component captures the impact of past values on
the current value, the I component handles any nonstation-
arity in the data (i.e., changes in the mean or variance over
time) by differencing the time series, and the MA component
captures the impact of random shocks or errors in the data.

The ARIMA model is generally expressed with the three
terms p, d, and q. The order of differencing in the I compo-
nent is denoted by the value of (d) in the ARIMA (p,d,q)
notation. It represents the number of times that the data must
be differenced to produce a stationary signal. The lag or-
der (p) represents the number of prior observations that have
a strong correlation with the current observation, while q is
the size of the moving window and is identified by determin-
ing the number of lag errors that have a significant impact on
the current observation.

SARIMA is a more specific version of ARIMA that in-
cludes a seasonal component, which takes into account the
repeating patterns that occur at regular intervals (e.g., daily,
weekly, monthly) in the data. This makes it more appropriate
for forecasting seasonal time-series data.

Bouznad et al. (2021) conducted a comparative analysis of
ARIMA and SARIMA models using precipitation, tempera-
ture, and evapotranspiration data to assess seasonal drought
conditions in the Algerian highlands. These models were
compared based on their ability to replicate and forecast the
data series accurately. The SARIMA model emerged as the
better choice as it exhibited significant p values for all vari-
ables under study. This implies that the model was statis-
tically significant in predicting the variables and thus out-
performed the ARIMA model in this specific context. In the
same country, Achite et al. (2022) investigated meteorolog-
ical and hydrological drought in the Wadi Ouahrane Basin
using ARIMA and SARIMA models applied to SPI and SRI.
A validation based on R2 revealed high accuracy for SPI and
SRI of 0.96 and 0.97, respectively, at a 1-month lag. Addi-
tional examples of the use of the time-series model in drought
forecasting in the MedR can be found in Table 1.

Although time-series models have shown good pre-
dictability of drought characteristics, these methods present
certain limitations as they are based solely on the persistence
of some drought indicators (trend, seasonality) without wor-
rying about their interactions.

4.2 Regression analysis

Regression models are commonly applied in drought fore-
casting due to their straightforwardness, interpretability, and
proficiency in revealing potential connections between hy-

droclimatic variables. These models use various predic-
tors (independent variables), including precipitation, tem-
perature, and other relevant climate indices, to approximate
drought indices or related target variables (dependent vari-
ables).

Simple and multivariate linear regression (MLR) models
have been broadly applied for projecting extreme hydrologi-
cal phenomena such as droughts (Sharma et al., 2018). These
models shed light on the linear connections between various
predictors and predictands, offering a valuable method to un-
derstand the primary factors of drought conditions and their
interactions (Mishra and Singh, 2011).

An MLR model that predicts drought from multiple
drought predictors X1, X2, . . . ,Xn can be formulated as

Y = β0+β1X1+β2X2+ . . . +βnXn+ ε, (2)

where β0 is the y intercept or the constant term,
βi(i=1,2, ..., n) denotes the regression coefficient for each in-
dependent variable Xi(i=1,2, ..., n), and ε is the model’s error
term.

On the other hand, when drought forecasts have a binary or
dichotomous nature, such as drought vs. no drought, logistic
regression models can be particularly useful. In these cases,
the dependent variable (drought) is expressed as a probability
or likelihood of occurrence. The main goal of logistic regres-
sion is to estimate the relationship between a set of predictors
and the probability of the binary outcome (Rahali et al., 2021;
Hosmer et al., 2013).

Some of the applications of regression analysis for drought
forecasting in the MedR are discussed below and are summa-
rized in Table 2.

Sousa et al. (2011) analyzed the spatiotemporal evolution
of drought conditions across the MedR during the 20th cen-
tury using monthly precipitation, the NAO, and SST as in-
dependent variables and sc-PDSI as a dependent variable.
Their study successfully developed a robust stepwise regres-
sion model capable of predicting summer drought conditions
6 months in advance with a high correlation of 0.79 between
simulated and observed sc-PDSI time series, thus demon-
strating its utility in forecasting future drought conditions in
the region. Tigkas and Tsakiris (2015) used the MLR model
with variables that include the minimum temperature and
RDI as the main independent variable for the assessment of
drought effects on wheat yield in two rural areas of Greece.
The results of this analysis showed a high correlation be-
tween RDI and the wheat yield during the winter months,
which proves that satisfactory prediction of the drought im-
pacts on wheat yields 2 to 3 months before the harvest can
be achieved using the MLR model. Martínez-Fernández et
al. (2016) conducted a study in the REMEDHUS (Soil Mois-
ture Stations Network) area in Spain, aiming to monitor agri-
cultural drought on a weekly timescale and provide early
warning to farmers for adapting irrigation strategies. They
computed a specific agricultural drought index (SWDI) us-
ing data from the SMOS satellite. Within this study, vari-
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Table 1. Main studies using the time-series model to forecast drought in the MedR. For all tables, refer to the Appendix for abbreviations
not defined in the main text.

Reference Inputs Outputs Methods Timescale Study Drought type Study
area period

Bouznad et Precipitation, Aridity ARIMA, Monthly, Algeria Meteorological Baseline
al. (2021) temperature, index, SARIMA annual 1985–2014,

PET SPI, future
NDVI 2015–2024

Achite et Monthly SPI-12, ARIMA, Annual Algeria Meteorological, 1972–2018
al. (2022) precipitation SRI12 SARIMA hydrological

Al Sayah et Landsat MFI, ARIMA, Annual Lebanon Meteorological, 1990–2018
al. (2021) imageries at a BGI, SARIMA hydrological,

3-year interval, VHI, agricultural
meteorological VCI,
indicators TCI,

NDWI,
NDVI

Tatli (2015) IPCC observed PDSI Hurst Monthly Türkiye Meteorological 1966–2010
precipitation exponent,

Mann–
Kendall
test

Pablos et LST, NDVI SWDI, POD, Weekly Spain Agricultural 2010–2016
al. (2017) satellite SM SMADI, POFD,

data (SMOS SMDI, FAR, FB
BEC L4 and SWetDI,
MODIS SR), AWD,
in situ CMI
SM data

Hadri et al. NDVI, SPI, Mann– Seasonal Morocco Meteorological, 2008–2017
(2021) rainfall SWI Kendall test, agricultural

Sen’s slope

Ben Monthly SPI, Mann– Annual Tunisia Meteorological, 1973–2016
Abdelmalek rainfall series RDI, Kendall agricultural
and Nouiri at 16 main annual test,
(2020) meteorological PET weighted

stations inverse
distance
interpolation

Karabulut Precipitation SPI Cumulative Monthly, Türkiye Meteorological 1975–2010
(2015) deviation seasonal,

curve annual

Jiménez- Rainfall, soil SPI, Combined Monthly, Spain Agricultural 2003–2013
Donaire et moisture, NDVIA, drought seasonal,
al. (2020) vegetation SMAI indicator annual

(NDVI)

Ben SM (SOTER), SPI, Lag- Seasonal, Tunisia Meteorological, 1982–2011
Mhenni et Med-CORDEX SPEI, correlation annual agricultural
al. (2021) daily gridded PDSI, analysis

reanalysis of Wp
meteorological
data, NOAA
weekly NDVI
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Table 1. Continued.

Reference Inputs Outputs Methods Timescale Study Drought type Study
area period

Derdous et Rainfall SPI Mann– Monthly, Algeria Meteorological 1936–2008
al. (2021) Kendall, seasonal,

Sen’s slope annual
estimator,
the
Pettitt test

Mendes et Precipitation, SPI-14 BFAST Seasonal Portugal Hydrological 1978–2020
al. (2022) water level in

reservoirs

Table 2. Main studies using regression analysis to forecast drought in the MedR.

Reference Inputs Outputs Methods Timescale Study Drought type Study
area period

Sousa et al. Monthly PDSI, Calibrated Monthly, MedR Meteorological 1901–2000
(2011) rainfall, stepwise regression seasonal,

SST, NAO sc-PDSI annual

Papadopoulos Monthly SPI, Fuzzy Monthly, Greece Meteorological 1996–2016
et al. (2021) precipitation RDI linear seasonal,

regression annual
analysis

Martínez- In situ hourly SWDI PTF, linear Weekly, Spain Agricultural 2010–2014
Fernández SM, daily regression seasonal
et al. (2016) rainfall,

daily PET,
SMOS
data

Tigkas and Monthly PET, Multiple Monthly, Greece Agricultural 47–50 years
Tsakiris rainfall; RDI regression seasonal,
(2015) average models annual

monthly
mean, max,
and min
temperature

ous computation approaches were analyzed, and the ones that
yielded the most promising results were those directly based
on soil attributes or parameters extracted from pedotransfer
functions (PTFs). These approaches utilized a multiple re-
gression analysis, with soil water parameters as dependent
variables, and incorporated other relevant soil characteristics
such as texture, bulk density, and porosity.

Although regression models have been valuable in drought
forecasting, they exhibit certain limitations such as the linear-
ity assumption, limited interactions between variables, sensi-
tivity to overfitting, and multicollinearity (Rafiei-Sardooi et
al., 2018). Consequently, their ability to accurately represent
complex real-world phenomena is often insufficient (Zhang,

2003). To address these shortcomings, more advanced mod-
els capable of capturing nonlinear relationships and interac-
tions are required, ultimately improving the forecasting of
complex hydroclimatic events such as droughts.

4.3 Machine learning and hybrid models

One of the big challenges in drought prediction is the random
and nonlinear nature of the hydroclimatic variables (Agana
and Homaifar, 2017). Over the last 2 decades, intelligent
techniques such as artificial neural networks (ANNs), sup-
port vector machines (SVMs), and fuzzy logic (FL) have
proven to be very promising tools for modeling nonlinear and
dynamic time series (Mokhtarzad et al., 2017; Dikshit et al.,
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Figure 2. Drought forecasting based on a simple ANN architecture.

2022; Prodhan et al., 2022). These algorithms have thus gar-
nered significant interest in the realms of drought modeling
and forecasting (Prodhan et al., 2022). In the context of mod-
eling, they are used to develop mathematical representations
of complex drought systems, capturing the interplay of var-
ious atmospheric, hydrological, and land surface processes
that lead to these phenomena. In forecasting, the models de-
rived from these algorithms are employed to anticipate future
drought conditions, assisting in risk assessment and mitiga-
tion strategies. Table 3 highlights key studies that utilize ma-
chine learning models for drought prediction in the MedR.

Prodhan et al. (2022) stated in their review of machine
learning methods for drought hazard monitoring and fore-
casting on a global scale that the ANN model was the most
popular model in peer-reviewed literature, and they sug-
gested that higher use of the ANN model is anticipated be-
cause it has nonlinear properties that make it more robust for
identifying all possible interactions between predictors.

The ANN model is a mathematical model inspired by bio-
logical brain neural networks. It consists of an interconnected
group of nodes (artificial neurons) and processes informa-
tion using a connectionist computation (Fig. 2). In the case
of drought forecasting, ANN architecture is usually made of
three layers: an input layer which consists of the drought pre-
dictors, a hidden layer or layers which comprise a function
that applies weights to the input variables and passes them
using a non-linear activation function, and an output layer
which consists of the drought target variable or drought in-
dex (Han and Singh, 2020).

For the proper functioning of a neural network, the opti-
mization of network weights (known as the learning or train-
ing process) is an essential step (Dikshit et al., 2022). Back
propagation, feed forward, gradient descent, stochastic gra-
dient descent, Adam, and Levenberg–Marquardt algorithms

are among the common training algorithms (Bergou et al.,
2020). The role of these algorithms is to minimize the differ-
ence between predicted and observed values by adjusting the
network weights and biases of the model.

Di Nunno et al. (2021) used a nonlinear autoregressive
with exogenous inputs (NARX) neural network (a partic-
ular type of recurrent dynamic ANN) to predict spring
flows in the Umbria region (Italy). The results of this study
show a good performance of the NARX model in predict-
ing spring discharges for both a short lag time (1 month:
R2
= 0.90 to 0.98, RAE= 0.09 to 0.25) and a long-term lag

time (12 months: R2
= 0.90 to 0.98, RAE= 0.09 to 0.24).

Achour et al. (2020) also confirmed the performance of the
ANN model with multilayer perceptron networks architec-
ture and a Levenberg–Marquardt calibration algorithm in
predicting drought in seven plains located in northwestern
Algeria with a 2-month lead time (R2

= 0.81, RMSE< 0.41,
and MAE< 0.23).

SVM models are also robust supervised learning models
that investigate data for classification and regression analy-
sis. It designates the best separating line to classify the data
with more safety margins. Besides its good performance in
solving linear problems, SVM could also transfer a nonlinear
classification to a linear one using the kernel function and be
able to solve high-dimensional problems (El Aissaoui et al.,
2021).

In the context of drought studies, SVMs are particularly
beneficial due to their ability to handle many inputs, ability
to use a small dataset for training, and resistance to overfit-
ting compared to ANN models (Hao et al., 2018). These fea-
tures make SVMs less sensitive to the data sample size, en-
hancing the robustness of the drought model. Regarding the
forecasting aspect, SVMs employ a kernel function to map
predictors in a high-dimensional hidden space, subsequently
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Table 3. Main studies using artificial intelligence models to forecast drought in the MedR.

Reference Inputs Outputs Methods Timescale Study Drought type Study
area period

Mohammed Precipitation SPI BG, RSS, Monthly, Syria Agricultural, 1946–2005
et al. (2022) RT, RF seasonal, hydrological

annual

Di Nunno et Precipitation NARX neural Seasonal Italy Hydrological 1997–2020
al. (2021) and discharge networks

El Aissaoui Monthly SPI, SVR1: linear; Monthly Morocco Meteorological 1979–2013
et al. (2021) average SPEI SVR2:

precipitation, polynomial;
monthly SVR3: RBF;
min/max air SVR4:
temperature, sigmoid
MARH,
MMSR

Achour et Monthly SPI TFPWcu, Monthly, Algeria Meteorological 1960–2010
al. (2020) rainfall data ANN seasonal,

annual

El Alaoui El Monthly SPI PCA, Monthly, Morocco Meteorological 1970–2017
Fels et al. rainfall frequency annual
(2020) amount analysis,

ANN

El Ibrahimi Observed Predicted ANFIS, Monthly, Morocco Meteorological 1978–2014
and Baali SPI SPI ANN-MLP, seasonal,
(2018) SVR, ANN, annual

WA-ANFIS,
WA-SVR,
WA-ANN-MLP

Djerbouai Historical SPI ARIMA, Monthly, Algeria Meteorological 1936–2008
and Souag- monthly SARIMA, seasonal,
Gamane rainfall WA-ANN annual
(2016)

Myronidis et Monthly SPI ARIMA-ANN Annual, Greece Meteorological 1973–2008
al. (2012) precipitation, seasonal

monthly
in situ
measurements
of water lake
levels

Danandeh Rainfall and SPEI-3, CNN-LSTM, Monthly Türkiye Meteorological 1971–2016
Mehr et al. temperature SPEI-6 genetic
(2023) time series programming,

ANN, LSTM,
CNN

Başakın et Monthly Predicted ANFIS, Monthly, Türkiye Meteorological 1900–2016
al. (2021) sc-PDSI sc-PDSI EMD-ANFIS seasonal

Özger et al. Monthly Predicted EMD, WD, Monthly, Türkiye Meteorological 1900–2016
(2020) sc-PDSI sc-PDSI ANFIS, seasonal

SVM,
WD-ANFIS,
EMD-ANFIS,
WD-SVM
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transforming the predictand to the output space (El Aissaoui
et al., 2021). This process allows the SVM model to gen-
erate effective and accurate forecasts about potential future
drought events given the input variables.

El Aissaoui et al. (2021) used the support vector regres-
sion (SVR) model with three kernel functions (linear, sig-
moid, polynomial, and radial basis function (RBF)) for the
prediction of drought in the region of upper Moulouya (Mo-
rocco) through SPI and SPEI. Their research underscores the
SVR model’s effectiveness, particularly with the RBF ker-
nel function, in forecasting the drought indices SPI (R =
0.92) and SPEI (R = 0.89). Mohammed et al. (2022) eval-
uated the applicability of four machine learning algorithms,
namely bagging (BG), random subspace (RSS), random
tree (RT), and random forest (RF), in predicting agricultural-
and hydrological-drought events in the eastern MedR based
on SPI. The results of this study revealed that hydrological
drought (SPI-12, SPI-24) was more severe over the study
area and BG was the best model in the validation stage with
RMSE≈ 0.62 to 0.83 and r ≈ 0.58 to 0.79.

To further improve the prediction accuracy of artificial in-
telligence (AI) models, pre-processing of data using wavelet
decomposition (WD), PCA, or empirical mode decomposi-
tion (EMD) is recommended. These techniques known as
hybrid models have gained attention due to their potential to
improve prediction accuracy and better capture complex rela-
tionships in the data (Yoo et al., 2015; Liu et al., 2020). The
pre-processing techniques are used to extract and represent
the essential features and patterns within the data and statis-
tical methods, such as ANN, SVM, or RF, and model the re-
lationship between the input variables and the target drought
index. El Ibrahimi and Baali (2018) explored the prediction
of short-term (SPI-3) and long-term (SPI-12) drought con-
ditions using six models – SVR, ANN-MLP, adaptive neuro-
fuzzy inference systems (ANFISs), WA-SVR, WA-MLP, and
WA-ANFIS – in the Saïss Plain (Morocco). They argued that
ANN models were more efficient than SVR models and that
the use of wavelet analysis has enhanced the prediction skill
of ANN models, which is probably due to their capacity to
detect local discontinuities and nonstationary characteristics
of the data.

Özger et al. (2020) evaluated the effect of using EMD
and WD for decomposing time-series data on drought pre-
diction using the self-calibrated Palmer drought severity in-
dex (sc-PDSI) and ANN and SVM machine learning models.
They found that the accuracy of standalone machine learning
models in midterm sc-PDSI predictions was unsatisfactory,
but it significantly improved when EMD and WD techniques
were introduced, particularly for hybrid wavelet models.

In summary, machine learning and hybrid models, which
combine pre-processing techniques with statistical methods,
have demonstrated their efficiency in drought forecasting, as
they can effectively handle intricate, nonlinear relationships
and adjust to a diverse range of input data characteristics.
However, the applicability of these models may be challeng-

ing when input variables exhibit strong dependence on each
other. This dependency can lead to several issues such as
multicollinearity, overfitting, and diminishing returns (Mal-
oney et al., 2012). To address these limitations and improve
drought forecasting performance, it is essential to consider
joint probability models (Madadgar and Moradkhani, 2014;
Hao et al., 2018).

4.4 Joint probability models

The probabilistic analysis of drought events plays a sig-
nificant role in the planning and management of water re-
source systems, particularly in arid or semi-arid Mediter-
ranean regions known for low annual and seasonal precipi-
tation. Drought return periods, which estimate the frequency
of drought events, can provide valuable information for re-
sponsible water management during drought conditions. The
univariate frequency analysis is a common method for ana-
lyzing drought events. As mentioned above, drought is usu-
ally characterized by its severity, duration, and frequency,
which can be extracted using the theory of runs introduced by
Yevjevich (1967). These characteristics present a dependence
structure that can be ignored by the univariate approach, re-
sulting in an under-/overestimation of drought risks. As such,
several joint probability theories have been recently incorpo-
rated into drought risk analysis that include two or more vari-
ables. One of the most important joint probability models that
has garnered increasing attention in the hydrologic commu-
nity over the last decade is the copula model (Jehanzaib et
al., 2021; Pontes Filho et al., 2020; Das et al., 2020; Zellou
and Rahali, 2019; Mortuza et al., 2019; Ozga-Zielinski et al.,
2016; Xu et al., 2015; AghaKouchak, 2014; Madadgar and
Moradkhani, 2013; Chen et al., 2013).

There are numerous copula families and classes, such as
elliptic, Archimedean (Clayton, Frank, Gumbel, Joe), ex-
treme value, and Bayesian to cite but a few. The choice of the
most suitable copula family depends on the specific model-
ing goals and the structure of the data being modeled (Genest
and Favre, 2007; Joe, 2014).

A brief overview of the bivariate copula theory is given
here to initiate readers with its concept and application.
However, for additional details on the theory and con-
cepts of the copula, readers may refer to the monographs
by Joe (1997) and Nelsen (2007). Furthermore, compre-
hensive methodological understanding of constructing high-
dimensional copulas, such as pair copula construction (PCC)
and nested Archimedean construction (NAC), can be gar-
nered from the works of Aas and Berg (2009) and Savu and
Trede (2010).

Let F be a two-dimensional distribution function, with
univariate margins F1 and F2 for random variables U and V ,
respectively. According to Sklar’s theorem (Sklar, 1959),
there exists a copula C such that

F(U,V )= C (F1(U),F2(V ))U,V ∈ R, (3)
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with C being unique when F1(U) and F2(V ) are continu-
ous marginal distributions, so C : [0,1]2→ [0,1] that sat-
isfies the boundary conditions C(u,0)= C(0,v)= 0 and
C(u,1)= C(1,u)= u (uniform margins) for any values of
u ∈ [0,1] and the so-called 2-increasing property (Papaioan-
nou et al., 2016).

The main advantage of the copula over the traditional
multivariate distributions is its ability to model the nonlin-
ear dependence structure between variables independently
from the choice of their marginal distributions (Salvadori and
De Michele, 2004). This concept simplifies the joint proba-
bility analysis, and its application in high dimensions (with a
large number of variables or predictors) becomes possible.

Serinaldi et al. (2009) constructed a four-dimensional joint
distribution using the copula approach and SPI to model
the stochastic structure of drought variables in Sicily (Italy).
Drought return periods were next computed as the mean
interarrival time, taking into account two drought charac-
teristics at a time by means of the corresponding bivariate
marginals of the fitted four-dimensional distribution. Bouab-
delli et al. (2020) investigated the joint probability and joint
return period of drought severity and duration using copula
theory to assess the hydrological-drought risk in the refer-
ence period and its probability of occurrence in the future
under two climate change scenarios in three basins located
in northern Algeria. Bonaccorso et al. (2015) evaluated the
conditional probability of future SPI classes under the hy-
pothesis of multivariate normal distribution of NAO and SPI
series in Sicily (Italy). The results of this study indicated that
transition probabilities towards equal or worse drought con-
ditions increase as the NAO tends towards extremely positive
values. Table 4 displays additional examples of the applica-
tion of the joint probability models to forecast drought in the
MedR.

All the abovementioned studies confirm that copulas can
accurately capture the joint distribution and dependence
structure between multiple drought predictors without mak-
ing strong assumptions about their marginal distributions. By
combining the strengths of machine learning models with the
flexibility of copulas, researchers can develop more accurate
and reliable hybrid methods that better represent the intrica-
cies of hydrological processes and climatic variables, even in
the presence of strong dependence among the input variables
(Jiang et al., 2023; Li et al., 2022; Wu et al., 2022; Zhu et al.,
2020).

4.5 Ensemble streamflow prediction

The ESP method, a commonly used technique in hydrologi-
cal forecasting, was primarily intended for medium- to long-
term streamflow prediction (Day, 1985). However, its utility
extends to the prediction of hydrological droughts, character-
ized by low streamflows (KyungHwan and DegHyo, 2015;
Sutanto et al., 2020; Troin et al., 2021).

ESP operates on the principle of employing historical data
to generate an ensemble of possible future climate conditions
(Turco et al., 2017b). The process begins by determining the
current state of the system, considering parameters such as
current streamflow, soil moisture levels, and reservoir levels,
which serve as the initial conditions for the forecast (Wan-
ders and Wood, 2016). The generation of the ensemble in-
volves choosing a historical record at each time (day, week,
or month) of forecast that will provide the meteorological in-
puts (Day, 1985). By repeating this process for every time in
the historical record, an ensemble of forecasts is produced,
each member representing a potential future scenario. The
hydrological model is run for each ensemble member, us-
ing the chosen meteorological inputs and initial conditions
to generate a range of potential future states of the system
(Harrigan et al., 2018). The ensemble of forecasts is then an-
alyzed to derive probabilistic predictions.

As new data become available, forecasts can be updated
by re-initializing the system’s state and generating a new en-
semble of forecasts. A significant advantage of this method is
that it enables the uncertainty prediction by producing a va-
riety of potential future streamflow forecast scenarios which
can increase the confidence of this approach, specifically for
its operational use in water management (Troin et al., 2021).

However, the limitations of the ESP method must be noted.
For instance, it presupposes that future behavior will mir-
ror past behavior, a concept that may not hold under chang-
ing climatic conditions (Wanders and Wood, 2016). Fur-
thermore, the method’s performance is heavily reliant on
the quality and duration of the historical meteorological
records used in the ensemble generation process (Turco et
al., 2017b).

ESP is frequently employed as a benchmark for compari-
son with more sophisticated forecasting methods, such as dy-
namical climate models or hybrid statistical–dynamical mod-
els (AghaKouchak et al., 2014; Turco et al., 2017b; Torres-
Vázquez et al., 2023). Although these more complex meth-
ods can outperform ESP in some instances, the computation-
ally efficient ESP method often exhibits comparable perfor-
mance, particularly when forecasting a few months ahead
(Turco et al., 2017b; Torres-Vázquez et al., 2023).

4.6 Markov chain models

Markov chains are effective tools to understand the stochastic
characteristics of drought events and their temporal depen-
dency. These models assume that future states depend only
on the current state.

Mathematically, the Markov chain is a stochastic pro-
cess X such that at any time t , Xt+1 is conditionally inde-
pendent from X0, X1, X2, . . . ,Xt−1, given Xt ; the probabil-
ity that Xt+1 takes a particular value j depends on the past
only through its most recent value Xt :
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Table 4. Main studies using joint probability models to forecast drought in the MedR.

Reference Inputs Outputs Methods Timescale Study Drought type Study
area period

Bouabdelli Monthly SPI-12, Copula Seasonal, Algeria Meteorological, Baseline
et al. (2020) precipitation, SDI-6 theory, annual hydrological 1941–2011,

temperature hydrological future
nine GCMs modeling 2021–2100
of CMIP5 using GR2M

Bonaccorso NAO; areal SPI DCTP (SPI, Monthly, Sicily, Meteorological 1921–2008
et al. (2015) monthly NAO) seasonal Italy

precipitation
series

Serinaldi et Mean areal SPI; joint Probabilistic Seasonal Italy Meteorological 1921–2003
al. (2009) precipitation, return analysis of

aggregated periods of drought
at 6 months drought characteristics

using copula

Hamdi et Daily Joint Two- Annual Tunisia Hydrological 1966–2008
al. (2016) streamflow probabilities dimensional

data and copula model,
bivariate the threshold
return level method
periods

Esit and Monthly SPI Two- Seasonal Türkiye Meteorological 1963–2016
Yuce precipitation dimensional
(2023) copula model

Tosunoglu Monthly SPI, Two- Monthly Türkiye Meteorological 1966–2006
and Can rainfall probabilistic dimensional
(2016) series properties copula model

of droughts

P {Xt+1 = j |X0,X1, . . ., Xt } = P {Xt+1 = j |Xt = i}

∀i,jεS, t ∈ T . (4)

A Markov chain is characterized by a set of states, S, and by
the transition probability, Pij , between states. The transition
probability Pij is the probability that the Markov chain is at
the next time point in state j , given that it is at the present
time point in state i.

The drought prediction using this concept can be ex-
pressed as the transition from a wet or normal state to a
dry state (or the other way around) or the transition from
one drought severity state to another (e.g., no drought,
mild drought, moderate drought, extreme drought). Habibi
et al. (2018) studied meteorological drought in northern Al-
geria’s Chéliff–Zahrez Basin, employing both localized and
spatially distributed probabilities for temporal transitions us-
ing Markov chains and recurrence probabilities using an op-
timal time-series model, the APARCH approach. Paulo and
Pereira (2007) used Markov chains, incorporating homoge-
neous and nonhomogeneous formulations, to predict drought

transitions up to 3 months ahead, based on SPI derived from
67 years of data in southern Portugal. The nonhomogeneous
Markov model outperformed its counterpart by considering
the initial month and seasonal rainfall variations. Table 5 lists
additional studies that apply Markov chain models for MedR
drought forecasting.

These studies generally support the effectiveness of
Markov chain models in providing valuable drought insights.
However, it is essential to consider the challenges associated
with applying Markov chains within the MedR, as the re-
gion’s complex topography, considerable interannual climate
fluctuations, limited data availability, and nonstationarity re-
sulting from climate change can adversely affect the mod-
els’ core assumptions and constrain their long-term forecast-
ing accuracy. Addressing these challenges calls for the adop-
tion of more sophisticated techniques that encompass both
stochastic and physically based approaches, ultimately en-
hancing the accuracy and reliability of drought predictions in
this region (Paulo and Pereira, 2007).
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Table 5. Main studies using Markov chain model to forecast drought in the MedR.

Reference Inputs Outputs Methods Timescale Study Drought type Study
area period

Habibi et Annual SPI, Markov chain Annual Algeria Meteorological 1960–2010
al. (2018) precipitation time-series models models, and Time

from 65 (GBM, GBMAJ, series models
meteorological APARCH, AR1,
stations AR2, ARCH,

ARMA,
EGARCH,
GARCH, MA1,
MA2)

Paulo and 67-year SPI Nonhomogeneous Monthly, Portugal Meteorological 1931/1932–
Pereira averages of and homogeneous seasonal, 1998/1999
(2007) monthly Markovian annual

precipitation modeling

Lazri et al. Annual SPI Markov chain Annual Algeria Meteorological 2005–2010
(2015) precipitation model, transition

maps from probability matrix
meteorological
satellite data,
219 rain
gauges and
radar
precipitation

Nalbantis Monthly SPI, SDI Nonstationary Monthly, Greece Hydrological 1970–1971
and precipitation, Markov chain seasonal, to
Tsakiris monthly annual 1999–2000
(2009) streamflow

Akyuz et Observed Probabilities First-order Annual Türkiye, Hydrological 1938–2005
al. (2012) annual and return Markov chain New York,

streamflow periods of model, second- Sweden
droughts order Markov

chain model

Cancelliere Monthly SPI Markov chain Seasonal, Sicily, Meteorological 1921–2003
et al. (2007) precipitation model annual Italy

at 43
precipitation
stations

5 Dynamical drought prediction methods

Dynamical drought prediction methods are generally based
on the use of seasonal climate forecasts derived from com-
prehensive GCMs. The European Centre for Medium-Range
Weather Forecasts (ECMWF) System 4 (SYS4), the Hadley
Centre Global Environmental Model (HadGEM), the Com-
munity Earth System Model (CESM), and the National Cen-
ters for Environmental Prediction (NCEP) Climate Forecast
System (CFS) are some widely recognized examples. De-
signed to emulate physical processes across the atmosphere,
ocean, and land surface, these GCMs can produce near-term
forecasts for various climatic factors such as precipitation,

temperature, surface pressure, and winds. However, these
models typically provide a global overview and possess a
relatively coarse resolution, which spans 150 to 300 km hori-
zontally and encompasses 10 to 20 vertical atmospheric lay-
ers and up to 30 oceanic layers. This level of detail may
not offer the specificity necessary for local-scale impact as-
sessments. To counter this, post-processing steps, encom-
passing downscaling and bias correction, are crucial when
employing GCM forecasts (Tuel et al., 2021; Gumus et al.,
2023). The main objective here is to refine the global, coarse-
grained GCM data into higher-resolution forecasts. These re-
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fined forecasts are far more pertinent for predicting seasonal
drought events at a regional and local scale within the MedR.

The most common approaches to downscale GCM fore-
casts include statistical models, dynamic or nested models,
and hybrid statistical–dynamical models (Wilby et al., 2004).
In statistical downscaling, large-scale variables are used as
the predictors and desired near-surface climate variables are
the predictands (Aguirre-Gutiérrez et al., 2019). The role of
statistical models is then to measure the correlations between
predictors and predictands, whereas dynamical downscaling
refers to the use of high-resolution regional simulations to
dynamically extrapolate the effects of large-scale climate
processes to regional or local scales based on a nesting ap-
proach between GCMs and regional climate models (RCMs)
(Giorgi and Gutowski, 2015). However, it is known that
GCMs contain significant systematic biases that may propa-
gate into RCMs through the lateral and lower boundary con-
ditions and thus degrade the dynamically downscaled simu-
lations and lead to large uncertainties (Maraun, 2016). Be-
sides, climate predictions from a single climate model simu-
lation are sensitive to initial oceanic and atmospheric states
and can represent only one of the possible pathways the cli-
mate system might follow.

5.1 Multi-model ensemble

To allow probabilistic estimates of climate variables with
uncertainties in quantification, it is necessary to carry out
an ensemble of simulations with different initial conditions
from each model and to combine various models as en-
semble members. The frequently used multi-model ensem-
ble (MME) and bias correction methods include quantile
mapping (Wood et al., 2002) and Bayesian model averag-
ing (Krishnamurti et al., 1999; Seifi et al., 2022). These
methods proceed by adjusting the modeled mean, variance,
and/or higher moments of the distribution of climate vari-
ables to match the observations. However, such MME sim-
ulations can be very computationally demanding. Therefore,
some international dynamical downscaling intercomparison
projects were carried out such as the Coordinated Regional
Climate Downscaling Experiment (CORDEX; Wilby et al.,
1998) and its Mediterranean initiative Med-CORDEX (Ruti
et al., 2016) to provide present and future climate simula-
tions with a high spatial resolution (∼ 12 km). In a study
conducted by Turco et al. (2017b), the accuracy and relia-
bility of ECMWF’s System 4 (SYS4) in forecasting drought
conditions, characterized by a 6-month SPEI-6, across Eu-
rope from 1981 to 2010 were evaluated. The authors found
that the SYS4 model effectively projected the spatial patterns
of SPEI-6 and various drought conditions (ranging from ex-
treme to normal) with a reasonable degree of precision up
to a lead time of 2 months. In the same geographical con-
text, Ceglar et al. (2017) demonstrate the power of dynamical
models in the agricultural sector by investigating the relation-
ship between large-scale atmospheric circulation and crop

yields in Europe. Their research highlights the significant po-
tential of such models in developing effective seasonal crop
yield forecasting and, consequently, in advancing dynamic
adaptation strategies to climate variability and change.

All these studies confirmed the good performance of MME
methods in providing probabilistic drought forecasts for 1 to
2 months of lead time and improving drought onset de-
tectability. However, much effort should be made in selecting
the most skilled GCM ensembles in reproducing the large-
and synoptic-scale atmospheric and land surface conditions
associated with drought development in the MedR. By pri-
oritizing ensembles that adequately capture the region’s dis-
tinct climate characteristics, spatial–temporal variability, and
land–atmosphere interactions, the MME forecasts can miti-
gate biases related to key meteorological variables such as
temperature or precipitation and significantly improve the
precision and reliability of drought predictions (Li et al.,
2023; Ahmed et al., 2019).

5.2 Coupled hydrological models

On the other hand, GCMs often struggle to accurately repre-
sent some complex elements of the hydrological cycle, such
as soil moisture, streamflow, groundwater level, and PET.
The inherent complexities of these variables and the broad
spatial scale of GCMs make it challenging to fully capture
their behavior. This gap can limit the effectiveness of GCMs
in drought prediction and modeling (Balting et al., 2021).
Consequently, to dynamically forecast agricultural and hy-
drological droughts, the water balance should be correctly
simulated by hydrological models forced by climate fore-
casts (Wanders and Wood, 2016). Among the most used
models to forecast hydrological drought, we cite the Soil
& Water Assessment Tool (SWAT) (Arnold et al., 1998),
the variable infiltration capacity (VIC) model (Liang et al.,
1994), and the Community Land Model (CLM) (Oleson et
al., 2004). These models can incorporate data on soil mois-
ture, vegetation, snow water equivalent, groundwater level,
and other initial hydrologic conditions with climate forecasts
to simulate the movement of water through the hydrologi-
cal cycle, including the processes of precipitation, evapora-
tion, infiltration, and runoff. Crop growth models can also be
coupled with hydrological models to make an accurate pre-
diction of agricultural drought and its impact on crop yields
(Narasimhan and Srinivasan, 2005; Abhishek et al., 2021).

Coupled hydroclimatic models can improve drought fore-
casting by allowing for the consideration of feedback be-
tween the hydrological and climatological components of the
Earth system. Indeed, drought conditions can affect the avail-
ability of water for evapotranspiration, which in turn can af-
fect the amount of moisture in the atmosphere and the like-
lihood of precipitation. By incorporating this feedback into
the model, it is possible to produce more accurate forecasts
of drought conditions.
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In a recent study, Brouziyne et al. (2020) combined me-
teorological and hydrological drought indices (SPI and SDI)
with a SWAT model forced by bias-corrected CNRM-CM5
data to predict future droughts under two representative con-
centration pathways (RCPs; RCP4.5 and RCP8.5) in the Bou
Regreg watershed, Morocco. They confirmed that using mul-
tiple drought indices and a comprehensive water budget in-
dicator such as total water yield provided a valid approach
to evaluating drought conditions in a Mediterranean con-
text. Marx et al. (2018) analyzed a multi-model ensemble of
45 hydrological simulations based on three RCPs (RCP2.6,
RCP6.0, and RCP8.5), five GCMs (CMIP5), and three state-
of-the-art hydrological models (mHM, Noah-MP, and PCR-
GLOBWB) to investigate how hydrological low flows are af-
fected under different levels of future global warming. Based
on the analysis of the results, the authors recommended using
multiple hydrological models in climate impact studies and
embracing uncertain information in the multi-model ensem-
ble as well as its single members in the adaptation process.

5.3 Long-term drought projection under climate
change

As climate change continues to influence drought events in
the MedR, it is vital to integrate long-term climate projec-
tions into drought forecasting strategies (Tramblay et al.,
2020). In this regard, GCMs are essential for projecting fu-
ture climate changes under varying scenarios, such as Rep-
resentative Concentration Pathways (RCPs) or Shared So-
cioeconomic Pathways (SSPs).1 Coupled with downscaling
techniques, these models offer region-specific projections of
critical climate variables including precipitation, tempera-
ture, surface pressure, and winds. These projections are in-
strumental in estimating long-term drought events, facilitat-
ing a more comprehensive risk assessment for stakeholders
and decision-makers. Baronetti et al. (2022) analyzed the ex-
pected characteristics of drought episodes in the near (2021–
2050) and far (2071–2100) future compared to the base-
line conditions (1971–2000) for northern Italy using EURO-
CORDEX and Med-CORDEX GCM–RCM pairs at a spa-
tial resolution of 0.11◦ for the RCP4.5 and RCP8.5 sce-
narios. The results indicated that the GCM–RCM pairs per-
formed generally well, while in complex environments such
as coastal areas and mountain regions, the simulations were
affected by considerable uncertainty. Dubrovský et al. (2014)
used an ensemble of 16 GCMs to map future drought and cli-
mate variability in the MedR. Bağçaci et al. (2021) compared
the capacity of the Coupled Model Intercomparison Project

1SSPs are the latest climate change scenarios used in CMIP6.
They not only incorporate greenhouse gas emissions scenarios like
their predecessor, RCPs from CMIP5, but also integrate socioeco-
nomic factors, such as population growth, economic development,
and technological progress. Essentially, SSPs provide a more holis-
tic view of possible future climate scenarios by considering both
environmental and societal changes.

Phase 6 (CMIP6, the latest release) model ensembles in rep-
resenting the near-surface temperature and precipitation of
Türkiye in comparison with its predecessor CMIP5 to better
understand the vulnerability degree of the country to climate
change. In a study conducted by Cos et al. (2022), the au-
thors compared climate projections from CMIP5 and CMIP6
models to assess the impacts of climate change in the MedR.
The findings reveal a robust and significant warming trend
across all seasons, with CMIP6 models projecting stronger
warming compared to CMIP5. While precipitation changes
show greater uncertainties, a robust and significant decline is
projected over large parts of the region during summer by the
end of the century, particularly under high-emission scenar-
ios. Seker and Gumus (2022) used 22 global circulation mod-
els from CMIP6 to project future precipitation and tempera-
ture changes in the MedR. The MMEs outperform individual
GCMs in simulating historical data, and the projections in-
dicate a decrease in precipitation by 15 % for SSP2-4.5 and
20 % for SSP5-8.5. Table 6 shows the main studies using dy-
namical models to forecast drought in the MedR.

In summary, recent advancements in seasonal drought
forecasting with dynamical models encompass increased cli-
mate resolution, improved representation of physical pro-
cesses, improved initialization methods using data assimi-
lation techniques (Zhou et al., 2022), use of multi-model
ensembles (Wanders and Wood, 2016; Seker and Gumus,
2022), coupled modeling approaches (Guion et al., 2022),
and the development of sub-seasonal to seasonal predictions
(Zhou et al., 2021). These steps have contributed to more ac-
curate and reliable drought predictions. However, even with
these improvements, predicting drought months in advance
remains a significant challenge due to the inherent complex-
ity and chaos of the climate system.

6 Hybrid statistical–dynamic methods

While statistical models, when appropriately fine-tuned, can
effectively predict seasonal drought events, a significant lim-
itation arises from the nonstationary relationship between the
predictors and predictands used in the forecasting process
(AghaKouchak et al., 2022). This can limit their ability to
accurately predict unprecedented drought events, which fall
beyond the scope of their historical training data (Hao et al.,
2018). On the other hand, dynamical models are proficient at
capturing the nonlinear interactions among the atmosphere,
land, and ocean, enhancing their ability to detect the onset
of droughts (Turco et al., 2017b; Ceglar et al., 2017). How-
ever, despite their advanced capabilities, their forecast profi-
ciency is generally constrained to a few months of lead time
(Turco et al., 2017b). To address the shortcomings associated
with seasonal forecasting skills, hybrid models employ statis-
tical or machine learning methods to merge a broad variety
of forecasts from statistical and dynamical models into a fi-
nal probabilistic prediction product (Slater et al., 2023). The
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Table 6. Main studies using dynamical models to forecast drought in the MedR.

Reference Inputs Outputs Methods Timescale Study Drought type Study
area period

Elkharrim Historical SPI ASD Seasonal, Morocco Meteorological Baseline
and Bahi precipitation, annual 1961–2010,
(2014) HadCM3 future

(monthly 2014–2099
precipitation
and
temperature),
observed
GHCN v3, NCEP
and NCAR
reanalysis

Marx et al. GCMs: Hydrological Annual Europe Meteorological, Baseline
(2018) GFDL-ESM2M, models: hydrological 1971–2000

HadGEM2-ES, mHM,
IPSL-CM5A-LR, Noah-MP,
MIROC-ESM-CHEM, PCR-GLOBWB
NorESM1-M

Vasiliades Observed PDSI, Monthly Monthly Greece Meteorological, 1960–2002
and Loukas runoff Weighted UTHBAL hydrological
(2009) and the PDSI, PHDI conceptual

moisture water
anomaly balance
Z index, model
runoff
and soil
moisture

Brouziyne CNRM-CM5 SPI-12, Hydrological Annual Morocco Meteorological, Baseline
et al. (2020) (RCP4.5, SDI-12, model: hydrological 1985–2005,

RCP8.5), monthly SWAT future
GLDAS 25 km runoff, 2030–2050
reanalysis data, rainfall, and
observed daily future 2080–2100
rainfall and water
temperature yield
(max and min)
series

Mendicino Monthly GRI A water Seasonal, Italy Meteorological, 1959–2006
et al. (2008) precipitation, balance annual hydrological

temperature, model
SPI, NDVI

Dubrovský Monthly PDSI, Multi-GCM Seasonal MedR Meteorological Baseline
et al. (2014) and daily Z index forecast 1961–1990,

precipitation future
and temperature 2070–2100
outputs from
16 GCM
simulations
(IPCC AR4)
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Table 6. Continued.

Reference Inputs Outputs Methods Timescale Study Drought type Study
area period

Ruffault et Daily Maps of Water Annual, France Agricultural, Baseline
al. (2014) precipitation, summer balance seasonal hydrological 1961–1990,

temperature, and precipitation, model, future
global radiation number of quantile 2071–2100
from ARPEGE- wet days in mapping/
Climate model summer and anomaly
version 4, drought method
historical intensity
observations
from SAFRAN
dataset

frequently used merging methods include regression analy-
sis, BMA, and the Bayesian post-processing method (Hao et
al., 2018; Strazzo et al., 2019; Han and Singh, 2020; Xu et
al., 2018). The BMA method involves the estimation of the
posterior probability density function (PDF) of model param-
eters based on the observed data and uses this PDF to weight
each individual model forecast (Tian et al., 2023). The hy-
brid forecast is then generated as the weighted average of the
individual forecasts from statistical and dynamical models.
The BMA weights’ estimation with simultaneous model un-
certainty quantification can also be used in selecting the best-
performing ensemble members to reduce the cost of running
large ensembles (Raftery et al., 2005). There is also an op-
portunity to enhance the probabilistic seasonal forecast skill
through Bayesian post-processing methods such as the cali-
bration, bridging, and merging (CBaM) technique (Schepen
et al., 2014, 2016; Strazzo et al., 2019). The calibration step
consists in optimizing the dynamical forecasts from multi-
ple GCMs by analyzing their correlation to observed data
through a statistical model. In the bridging step, the dynam-
ical forecasts from GCMs are calibrated using some large-
scale climate indices (e.g., ENSO, NAO, PDO, AO), and fi-
nally, the merging component combines the forecasts of the
two previous steps.

These hybrid statistical–dynamical models combine the
strengths of both modeling approaches and offer several ad-
vantages compared to either statistical or dynamical mod-
els alone. Thereby, seasonal drought forecasting using hy-
brid models has recently become an active area of research
(Madadgar et al., 2016; Strazzo et al., 2019; AghaKouchak
et al., 2022). On a global scale, Yuan and Wood (2013)
analyzed the capability of seasonal forecasting of global
drought onset and found that despite climate models in-
creasing drought detection, a significant proportion of on-
set events are still missed. Their findings underscore the
urgent need for implementing reliable, skillful probabilistic
forecasting methods to better manage the inherent uncertain-
ties and potentially improve drought predictability. Dutra et

al. (2008) confirmed that the uncertainty in long-lead-time
forecasts suggests that drought onset might fundamentally be
a stochastic problem. Mo and Lyon (2015) also found that
improvements in near-real-time global precipitation obser-
vations could yield the most substantial advances in global
meteorological-drought prediction in the near term. This re-
inforces the notion that the effectiveness of dynamical mod-
els is fundamentally associated with the quality of the initial
data and the inherent stochastic nature of drought onset.

In line with these findings, a unique approach was under-
taken by Ribeiro and Pires (2016) in the MedR. They pro-
posed a hybrid scheme that combines dynamical forecasts
from the UK Met Office (UKMO) operational forecasting
system with past observations as predictors in a statistical
downscaling approach based on the MLR model for long-
range drought forecasting in Portugal (Table 7). They con-
cluded that hybridization improves drought forecasting skills
in comparison to dynamical forecasts.

Leveraging these advantages of hybrid statistical–
dynamical models, the prediction of flash droughts has be-
come possible. Indeed, these events can develop rapidly by
a quick decline in soil moisture and streamflow that may
cause devastating economic and ecological impacts in a short
period (from a few days to 1–2 months) (Mo and Letten-
maier, 2015), which makes them particularly challenging
to forecast. By providing a more nuanced understanding of
the drought contributing factors, hybrid statistical–dynamical
models help to identify potential warning signs of an immi-
nent drought event, improve drought early warning systems,
and reduce the false alarm rate of drought onset (Xu et al.,
2018), thus tackling some of the limitations and challenges
highlighted in the earlier studies.
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Table 7. Main studies using hybrid statistical–dynamical models to forecast drought in the MedR.

Reference Inputs Outputs Methods Timescale Study Drought type Study
area period

Ribeiro UKMO SPI-3 MLR Seasonal, Portugal Meteorological, 1987–2003
and Pires operational annual agricultural,
(2016) forecasting hydrological

system

Figure 3. Pie chart showing the proportion of the use of indices in the surveyed studies in the MedR for different drought types.

7 Discussion

7.1 Drought types and indices

The indices adopted by the surveyed studies were grouped
according to three distinct drought categories: meteorolog-
ical, agricultural, and hydrological. Figure 3 illustrates the
percentage of usage for each index by category. Meteorolog-
ical droughts were the most common, appearing in 63.00 %
of the examined studies, followed by agricultural droughts
with approximately 22.20 %, whereas hydrological droughts
were the least prevalent, making up only 14.80 %.

SPI was the primary indicator, used in 70.59 % of
meteorological-drought studies. But it also served as an indi-
cator for hydrological and agricultural droughts, with usage
rates of around 25.00 % and 8.33 %, respectively.

Despite the apparent versatility of SPI, its reliance on pre-
cipitation data limits its ability to account for other influential
factors such as evapotranspiration, soil moisture, land usage,
and water management practices. Consequently, an overem-
phasis on SPI could potentially constrain our comprehension
of drought phenomena in the MedR. To enrich this under-
standing, it is recommended to incorporate a broader range
of indicators and models that include a more diverse set of
variables. Using multivariate drought indices such as SPEI,
PDSI, or sc-PDSI or, alternatively, a combination of multi-
ple indices can contribute to a more comprehensive view by
including regional feedback mechanisms in the forecast pro-
cess. This approach also enhances our capacity to evaluate
the impacts of global warming on drought severity and inten-
sity in the MedR (see Marcos-Garcia et al., 2017; Gouveia et
al., 2017).

https://doi.org/10.5194/nhess-23-3543-2023 Nat. Hazards Earth Syst. Sci., 23, 3543–3583, 2023



3564 B. Zellou et al.: Review article: Towards improved drought prediction in the Mediterranean region

On the other hand, SDI was the most applied index in
hydrological-drought studies in the MedR (37.50 %). It is
calculated by comparing the current streamflow to the long-
term average or median streamflow for a specific location and
time of year (Nalbantis and Tsakiris, 2009). Despite its use-
fulness, there are some limits to using SDI in the MedR. In-
deed, this region is known for highly variable climates with
strong seasonality (wet winters and dry summers) and the
presence of transient streams or intermittent rivers that flow
only during and after rainfall events, especially in sub-humid
and semi-arid areas. Groundwater recharge principally oc-
curs during the wet season, when precipitation infiltrates the
soil and replenishes aquifers (Scanlon et al., 2006). In these
regions, SDI may not provide an accurate representation of
the hydrological drought as it relies solely on streamflow
data. Therefore, the use of SDI should be made in com-
bination with other drought indices that consider variables
such as groundwater, soil moisture, runoff, and regional vari-
ations in precipitation and streamflow patterns for accurate
hydrological-drought assessment.

One can notice from Fig. 3 that the agricultural-drought
studies are characterized by more diversity of indices. This
diversity can be explained by the varied range of agro-
climatic conditions that characterize the MedR, including a
wide range of soil types, topography, and vegetation cover.
These diverse conditions can result in varying impacts of
drought on agricultural production, which require different
drought indices to accurately capture the extent and sever-
ity of the drought. In addition, the MedR is also home to
a diverse range of crops, each with different sensitivities to
drought (Fereres and Soriano, 2007). This diversity of crops
can require different indices to assess the impact of drought
on each crop.

Overall, a suitable index should be able to capture the im-
pacts of drought, detect changes over time, and differentiate
between different levels of severity while also being accurate
and easily interpretable by stakeholders.

7.2 Drought forecasting accuracy

Key obstacles in drought modeling include the absence of a
one-size-fits-all model, choosing suitable inputs, determining
an index that accurately represents drought tracking in vari-
ous regions, and the uneven geographical influence that leads
to discrepancies in model accuracy (Mishra and Desai, 2006;
Murray and Ebi, 2012). Consequently, contrasting different
methodologies is crucial for developing a reliable prediction
model.

The accuracy of drought prediction depends on various
factors such as the quality and availability of data, spatial
and temporal scales, prediction lead time, and model com-
plexity, to cite but a few (Wilhite et al., 2014; Mishra and
Singh, 2010). For consistency, this analysis only includes
studies that use R2 as an evaluation criterion of the forecast
with a lead time of 1 month. Joint probability models were

excluded from this analysis, since the accuracy evaluation
criteria were different. Moreover, the concept of lead time
is not addressed in most of the surveyed studies. It is also
important to note that this analysis does not include hybrid
statistical–dynamical models, as the number of studies ap-
plying this approach in the MedR was quite limited. Conse-
quently, the available research is insufficient to offer a com-
prehensive understanding of the applicability and effective-
ness of these models in the region.

Figure 4 shows a box-and-whisker plot of drought fore-
casting model accuracy based on R2 in the surveyed studies
in the MedR (see Appendix). According to the graph, hybrid
models appear to be the most accurate and consistent, with
the highest median and shortest box height. Markov chains
and AI models also have relatively short box heights, indicat-
ing high agreement and accuracy across studies. Meanwhile,
dynamical and regression models exhibit moderate to high
accuracy (both have a median equal to 0.79), but the height
of the dynamical model box is shorter than that of the re-
gression models, suggesting greater consistency. Time-series
models also show moderate to high accuracy, with a median
equal to 0.82.

Nonetheless, Fig. 4 provides valuable information about
the relative performance of different models across multi-
ple studies in the MedR. The consistently high median of
hybrid models suggests that they are particularly effective
for drought forecasting in the region. Similarly, the consis-
tent performance of the AI and Markov chain models sug-
gests that these models also show promise. The variability
in the performance of the regression, as well as the time se-
ries, as indicated by their taller boxplots, suggests that there
may be more variability in the effectiveness of these models
across different studies and regions. The results also show
that dynamical models can provide valuable insights into
drought conditions. However, the high variability in their per-
formance suggests that there may be room for improvement
in the development and implementation of these models in
the MedR.

This analysis concludes that simple statistical models such
as Markov chains, regression, and time series can still be
useful in some situations and are generally more transpar-
ent and easier to interpret. For example, when focusing on
a single variable to forecast drought (e.g., precipitation us-
ing SPI), simple models like ARIMA can effectively capture
the temporal patterns and provide reasonable forecasts. Or,
when drought conditions can be effectively represented by
discrete states or categories, Markov chains can be employed
to model the transition probabilities between these states and
forecast future drought conditions (Habibi et al., 2018; Nal-
bantis and Tsakiris, 2009; Paulo and Pereira, 2007). Also,
when working with a limited number of variables and mod-
erate interactions, simple regression models like linear or lo-
gistic regression can provide adequate predictions of drought
conditions (Sharma et al., 2018). The effectiveness of sim-
ple models in these situations depends on the specific con-
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Figure 4. Box-and-whisker plot to show the performance of drought prediction models denoted by the coefficient of determination (R2) for
the surveyed studies in the MedR. The lower edge of the box shows the 25th percentile, the upper edge of the box shows the 75th percentile,
and the median (50th percentile) is represented by the black line inside the box. The whiskers show the extent of the minimum and maximum
values within 1.5 times the interquartile range (IQR) of the box.

text and the data quality and quantity. When more com-
plex relationships or high-dimensional data are involved, it
may be necessary to employ more advanced models like dy-
namical models or combine simple models with techniques
like machine learning, copulas, or hybrid approaches to im-
prove forecasting performance. Hybrid statistical–dynamical
models present a promising avenue for enhancing forecast
accuracy, particularly for extended lead times and in situa-
tions where intricate processes and interactions are critical
(AghaKouchak et al., 2021; Mehran et al., 2017; Madadgar
et al., 2016). The relatively nascent emergence of these hy-
brid techniques has resulted in only a limited number of stud-
ies applying them in the MedR. This can be ascribed to fac-
tors such as data constraints, computational complexity, and
model uncertainty. Moreover, proficiency in both statistical
and dynamical modeling is needed, and interdisciplinary co-
operation is frequently deficient. Notwithstanding these chal-
lenges, there is an increasing interest not only in enhancing
traditional dynamical models but also in the development and
utilization of hybrid models. As research progresses and re-
sources become more accessible, these hybrid models may
see wider adoption for their potential to improve predictive
accuracy.

7.3 Spatial and temporal scales of drought

Figure 5 displays the spatial and temporal scales of drought
forecasting studies in the MedR with pie charts indicating the

percentage of use of the drought forecasting methods – sta-
tistical, dynamical, and hybrid statistical models – for each
spatiotemporal scale. This figure shows that the number of
drought forecasting studies tends to decrease as the spatial
scale increases and increases as the timescale increases. We
can also notice from this figure that the majority of studies
in the MedR focused on the local scales (e.g., city or catch-
ment), particularly at annual and seasonal timescales. In con-
trast, very few studies were conducted at the MedR scale, and
only a few studies were conducted at the country scale.

When considering the spatial scale, drought forecasting
becomes more challenging at larger scales due to various
factors. One of the major challenges is the complexity of
the interactions between different factors that contribute to
droughts, such as precipitation, temperature, soil moisture,
and vegetation cover (Sheffield and Wood, 2011). These in-
teractions are nonlinear and difficult to capture accurately,
especially at larger scales where there is more variability
and heterogeneity (AghaKouchak et al., 2015). For instance,
at the country scale, there could be different microclimates,
topography, and land use practices that affect these factors
differently (Vicente-Serrano et al., 2010a). This heterogene-
ity tends to increase as the spatial scale increases, making it
harder to calibrate and validate drought forecasting models.
On the other hand, the small number of studies that focused
on large geographic areas is probably due to the challenge of
data availability and homogeneity, which arises due to limi-
tations in data collection and standardization, particularly at
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Figure 5. Spatial and temporal scales of drought forecasting studies in the Mediterranean region with pie charts indicating the percentage of
use of the drought forecasting methods – statistical, dynamical, and hybrid statistical models – for each spatiotemporal scale.

larger spatial scales (Dai, 2011). This can lead to incomplete
or inconsistent datasets, which in turn can impact the accu-
racy of drought forecasting models. Remote sensing tech-
nologies can provide a solution to this problem by allowing
for the collection of large-scale, high-resolution data that can
improve the accuracy of forecasting models (Gouveia et al.,
2017). The role of remote sensing data in improving drought
prediction will be further discussed in Sect. 8.2.

When considering the timescale, the number of drought
forecasting studies tends to increase as the scale increases.
Drought research often emphasizes seasonal, annual, or
decadal scales due to various factors. The slow-onset nature
of droughts necessitates studying their progression and re-
covery over extended periods (Mishra and Singh, 2010). In-
vestigating longer timescales also allows researchers to an-
alyze the impact of large-scale climate drivers, such as the
ENSO or NAO, on drought events (Dai, 2011). Moreover,
focusing on these timescales enables a better assessment of
drought consequences for water resources, agriculture, and
ecosystems, which are more pronounced over extended pe-
riods (Wilhite and Pulwarty, 2017). Additionally, data avail-
ability and reliability tend to be higher for longer timescales,
facilitating more robust analyses. Long-term trends and cli-
mate change impacts on droughts can also be better under-
stood at longer timescales (Trenberth et al., 2014).

Notably, only one study focused on the weekly timescale.
Drought forecasting at small scales or weekly timescales
offers several advantages, including early warning and im-
proved water management (Pulwarty and Sivakumar, 2014),
quick response to flash droughts (Mo and Lettenmaier,
2015), support for agricultural decision-making (Hansen et

al., 2011), improved accuracy of longer-term forecasts (Yuan
et al., 2015), and model improvement and validation (Wood
et al., 2016). However, drought forecasting at such a small
scale may be more challenging due to the chaotic nature of
the atmosphere, making it difficult to accurately model com-
plex interactions between atmospheric conditions, land sur-
face characteristics, and water management practices over
short periods (Lorenz, 1963; Seneviratne et al., 2012).

On the other hand, the most commonly used forecasting
methods were statistical and hybrid statistical models, with
only a few studies applying dynamical models and the per-
centage of studies applying this last approach increases with
an increase in the temporal scale. There could be several
reasons for these findings. Dynamical models require large
quantities of high-quality input data, which may not be read-
ily available for the MedR due to limitations in historical
data and spatial coverage (Giorgi and Lionello, 2008). Sta-
tistical and hybrid statistical models often have lower data
requirements and are generally computationally more effi-
cient than dynamical models, making them more suitable for
regions with limited data availability and with computational
constraints. Furthermore, the percentage of studies applying
dynamical models increases with an increase in the tempo-
ral scale because these models are better suited for capturing
long-term climate variability and the influence of large-scale
climate drivers (Dai, 2011; Sheffield et al., 2012). Statisti-
cal and hybrid statistical models, conversely, are more effec-
tive at capturing short-term variability and local-scale pro-
cesses, which are often more relevant for drought forecasting
in the MedR (Mehran et al., 2014). Lastly, data availability
at shorter temporal scales can be a limiting factor for devel-
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oping and validating dynamical models (Shah and Mishra,
2020).

In summary, while increasing the spatial scale can de-
crease the accuracy of drought forecasting studies, increas-
ing the timescale can improve the accuracy by allowing
for a more comprehensive understanding of the various fac-
tors that contribute to drought conditions. It is essential to
consider both spatial and temporal scales when conducting
drought forecasting studies to ensure the most accurate pre-
dictions possible.

8 Challenges and future prospects

In the earlier discussion (Sect. 7), we analyze drought in-
dices, factors affecting the accuracy of drought forecasts, and
the significance of spatial and temporal scales in drought pre-
dictions within the MedR context. Building on this under-
standing, the following sections focus on the challenges and
prospects within the realm of drought forecasting, which will
help to pinpoint potential avenues for progress and innova-
tion in this area.

8.1 Data assimilation

The lack of in situ measurement networks and coarse global
seasonal forecast skills has hindered drought forecasting fa-
cilities, especially in data-poor regions (Pozzi et al., 2013;
Haile et al., 2020). In this regard, data assimilation (DA) pro-
vides a powerful approach to enhancing drought forecasting
accuracy by incorporating different observations and climate
forecasts into a hydrological model to generate more precise
initial conditions (Hao et al., 2018; Tang et al., 2016). There-
fore, many studies have referred to this method to better fore-
cast hydroclimatic variables (e.g., Bazrkar and Chu, 2021;
Peng, 2021; Xu et al., 2020; Liu et al., 2019; Steiger et al.,
2018; Steiger and Smerdon, 2017). The ensemble Kalman fil-
ter (EnKF) (Evensen, 1994) algorithm is one of the most pop-
ular DA techniques applied by the hydrologic community.
However, this assimilation method is subject to some inher-
ent drawbacks, especially in nonlinear dynamic systems, thus
resulting in suboptimal performance and violation of water
balance (Abbaszadeh et al., 2018). Given these limitations,
emphasis should be placed on the development of improved
DA algorithms that are better adapted to hydrological mod-
els, which allow the modeling of different temporal and spa-
tial scales and the improvement of water balance. This can
be achieved by modifying the standard approaches such as
the ensemble Kalman filter or variational algorithms so that
accurate predictions can be obtained at a reasonable com-
putational cost. These include among others hybrid EnKF–
Var methods (Bannister, 2017; Bergou et al., 2016; Mandel
et al., 2016) and AI algorithms for ensemble post-processing
(Grönquist et al., 2021). One recent advance in data assimila-
tion techniques for drought forecasting is the use of machine

learning algorithms to improve the accuracy of predictions.
For example, researchers have used machine learning tech-
niques to develop models that can analyze large quantities
of data from a variety of sources and generate more accurate
forecasts of drought conditions (Aghelpour et al., 2020; Rhee
and Im, 2017; Feng et al., 2019). These models can also be
updated in real time as new data become available, allowing
for more accurate and up-to-date forecasts. Another advance
in data assimilation techniques for drought forecasting is the
use of remote sensing data and reanalysis to improve the ac-
curacy of predictions, which may be particularly beneficial in
areas where ground-based observations are limited (Shahza-
man et al., 2021b; Shi et al., 2011).

8.2 Remote sensing and reanalysis

Various challenges in drought modeling in the MedR are re-
lated to data availability: the lack of climatic and hydrolog-
ical observations in ungauged catchments, low station den-
sity, short data records, data gaps, and limited data access in
some Mediterranean countries. All these challenges can limit
the accuracy and reliability of drought predictions. Although
many efforts are being deployed by developing new complete
datasets in the MedR (Tuel and El Moçayd, 2023), finding al-
ternative data sources and modeling techniques is essential to
tackle these challenges.

Remote sensing data can provide real-time information
about the Earth’s surface, facilitating effective drought fore-
casting, monitoring, and early warning (Zhang et al., 2016).
Agricultural drought can be assessed by analyzing changes
in vegetation cover over time. Indeed, drought can lead to
marked changes in the health and vigor of vegetation, and
these changes can be detected using remote sensing data (Be-
lal et al., 2014). By analyzing changes in vegetation green-
ness over time, it is possible to identify areas that are expe-
riencing or are at risk of experiencing drought stress. More-
over, drought conditions related to vegetation or evapotran-
spiration can also be monitored with drought indices from
remote sensing products, such as the normalized difference
vegetation index (NDVI) or evaporation stress index (ESI)
(Shahzaman et al., 2021a). Microwave satellite data can also
be used to estimate soil moisture levels during the crop grow-
ing season, which can be used to predict and monitor poten-
tial agricultural droughts (Le Page and Zribi, 2019; Yuan et
al., 2015).

In addition, satellite observations of precipitation and
soil moisture such as IMERG (Huffman et al., 2015),
PERSIANN-CCS (Sadeghi et al., 2021), CHIRPS (Funk et
al., 2015), SMAP (Entekhabi et al., 2010), MSWEP V2
(Beck et al., 2019), GLEAM v3 (Martens et al., 2017), and
DROP (Turco et al., 2020) can be used in conjunction with
in situ observations and ground-based radar observation data
to fill observational gaps.
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Moreover, data from numerical weather forecasting re-
analysis such as ERA5-Land were used instead of or along
with direct observations to forecast drought in many stud-
ies (Babre et al., 2020; Junqueira et al., 2022; Parker et
al., 2021). ERA5-Land is a state-of-the-art global reanaly-
sis dataset that can provide a consistent view of the evolu-
tion of land variables (e.g., precipitation, temperature) over
several decades at an enhanced resolution (∼ 10 km). This
product obtained by assimilating observations through a 4D-
VAR data assimilation technique can be used as ground truth
in data-poor regions. For example, ERA5-Land can be used
to calibrate and validate climate forecasts and to choose an
ensemble of the most skilled GCMs in reproducing the ac-
tual observed climate in a specific region.

Similarly, SAFRAN, a high-resolution meteorological re-
analysis, has shown its utility in regions with sparse observa-
tional data. Tramblay et al. (2019) used SAFRAN to generate
a high-resolution (5 km) gridded daily precipitation dataset
for Tunisia between 1979 and 2015. Their study, which com-
bined data from 960 rain gauges with the SAFRAN analy-
sis, demonstrated that SAFRAN surpassed other standard in-
terpolation methods like inverse distance, nearest neighbors,
ordinary kriging, or residual kriging with altitude. The out-
come was a highly accurate gridded precipitation dataset that
could be instrumental for climate studies, model evaluation,
and hydrological modeling to support the planning and man-
agement of surface water resources.

Finally, remote sensing data and reanalysis remain valu-
able tools for drought forecasting and monitoring, as they
provide timely land surface information that can fill the ob-
servational gaps, help to identify areas at risk of potential
drought conditions, and monitor the progression of drought
over time.

8.3 Uncertainty analysis in drought forecasting

In spite of the large number of studies that have been car-
ried out on the probabilistic characterization of drought, the
quantification of uncertainty in these forecasts is still ig-
nored in major studies. Uncertainty analysis is an important
aspect of probabilistic drought forecast, as it allows users
to understand the degree of confidence associated with the
forecasted probabilities (Hao et al., 2016; Dehghani et al.,
2014). Therefore, more efforts should focus on quantifying
the uncertainty beyond just an ensemble of model simula-
tions (AghaKouchak et al., 2022).

Drought forecasting is subject to epistemic and aleatory
uncertainties. The first one arises from incomplete knowl-
edge of drought processes and can be reduced with improved
understanding, more data, and good model calibration and
validation. The second one is related to the inherent variabil-
ity and randomness in natural systems and is often difficult
to reduce (Pappenberger and Beven, 2006). In addition, un-
certainties in drought forecasting can vary by region, spatial
scale, and temporal scale. As we discussed in Sect. 7.3, even

when well calibrated and validated, the drought forecasting
model will not necessarily perform equally well in all periods
or locations. By considering the uncertainty in the drought
model a nonstationary process in space and time, researchers
can gain new insights into the variability in uncertainty and
its underlying causes (AghaKouchak et al., 2022). This per-
spective can help identify regions or periods where the un-
certainties are particularly high, which can guide further re-
search, data collection, and model development efforts. Ad-
ditionally, understanding the space–time variability in uncer-
tainty can inform the development of more robust and re-
liable forecasting and decision-making approaches that ac-
count for the changing nature of uncertainty.

Various techniques can be employed to quantify drought
forecast uncertainty, including ensemble forecasting (Palmer
et al., 2004), Bayesian methods (Vrugt et al., 2005), sensi-
tivity analysis (Saltelli et al., 2008), and probabilistic fore-
casting (Gneiting et al., 2005). Probabilistic drought predic-
tion can also involve the use of data assimilation techniques
to integrate different data sources, including remote sensing
data, ground-based observations, and output from meteoro-
logical and hydrological models. Lately, hybrid statistical–
dynamical models have shown their potential in reducing
uncertainties associated with both statistical and dynamical
methods (Yuan et al., 2015; Madadgar et al., 2016). For ex-
ample, shortcomings in dynamical model physics or data can
be counterbalanced by the empirical associations in statisti-
cal models, while uncertainties in statistical models resulting
from shifting climate conditions can be tackled by the phys-
ically based dynamical models (Yuan et al., 2015).

In summary, probabilistic drought prediction with un-
certainty analysis can comprise useful tools for decision-
makers, as it provides a more comprehensive view of the po-
tential impacts of drought and allows for more informed risk
management decisions. However, what is missing in the cur-
rent drought forecasting models is not just uncertainty quan-
tification, but also a lack of awareness of it (AghaKouchak et
al., 2022).

8.4 Drought information systems

A critical component of proactive approaches to drought pre-
paredness is providing timely and reliable climate informa-
tion, including seasonal forecasts, that helps decision-makers
prepare management policies (Manatsa et al., 2017). Identi-
fying drought risk in a timely manner depends on our ability
to monitor and forecast its physical causative mechanisms
at the relevant spatiotemporal scale. An integrated national
drought monitoring and early warning system has been im-
plemented in many regions and countries such as the United
States, New Zealand, South Asia, India, and Europe (Prab-
hakar and Rama, 2022) but has not taken place until re-
cently in developing countries (e.g., the southern and east-
ern Mediterranean countries). This is probably due to the
lack of a drought information system, the sparse observa-
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tion networks, and the low predictability of seasonal pre-
cipitation in these countries. To overcome these limitations,
there is a need for developing a drought information system
with a complete approach allowing data collection and pre-
processing; accurate probabilistic drought risk prediction us-
ing a combination of ensemble climate seasonal forecasts,
ground-based observations, reanalysis, conventional and re-
mote sensing observations, artificial intelligence, data assim-
ilation, and hydrological models; and drought information
dissemination through a web-based drought early warning
system (DEWS).

9 Conclusions

This study reviewed the recent statistical, dynamical, and hy-
brid statistical–dynamical methods used to forecast droughts
and their application in the MedR. Drought definitions, clas-
sification, indices, and causative physical mechanisms were
also presented in the context of the MedR. The main conclu-
sions of this review are as follows:

1. There are only a few studies on the analysis of physical
mechanisms causing droughts in the MedR. A review
of these studies has confirmed that seasonal drought
predictability skills are still very limited across the
region due to its relatively poor teleconnection with
ENSO compared to the tropical and subtropical re-
gions. Besides, the MedR is strongly influenced by
other climate patterns, such as the NAO, regional MO,
ULMOi, and NAWA, which can also affect the re-
gion’s weather and climate, but their relationship to
drought onset is rather weak and could not explain ma-
jor droughts in the region. Land surface memory can
also contribute to the predictability of seasonal and sub-
seasonal droughts. Thereby, an accurate representation
of these land–atmosphere processes is needed to im-
prove drought forecasting skills in mid-latitude regions
such as the Mediterranean.

2. Statistical models were largely used to forecast droughts
in the MedR. One of the major limitations of these
models is that they often assume a stationary relation-
ship between the predictors and the predictands, which
can lead to potentially inaccurate forecasts. In this re-
gard, AI models such as SVR, SVM, and ANN models
have been proven to have good capacity in detecting lo-
cal discontinuities and nonstationary characteristics of
the data and show satisfactory forecasting skills at lead
times of less than 6 months. Moreover, sophisticated
statistical models, incorporating a data pre-processing
technique such as wavelet analysis, EMD, or PCA with
AI models, have proven to be more efficient than using a
single model and can extend the lead time of the drought
forecast to up to 12 months. The copulas can also pro-
vide valuable insights into the complex relationships be-

tween different drought predictors. The use of copulas
enables a more in-depth analysis of the nonlinear de-
pendencies between variables such as temperature, pre-
cipitation, and soil moisture, yielding a more compre-
hensive understanding of the factors that contribute to
drought risk in a specific region. This leads to a more so-
phisticated and reliable forecast of drought probability.
Thus, copulas are a highly useful resource in the ongo-
ing effort to understand and manage the consequences
of drought.

3. Dynamical models, given their ability to capture nonlin-
ear interactions across the atmosphere, land, and ocean,
offer considerable potential for more accurate and re-
liable seasonal drought predictions. However, the in-
herent chaotic nature of the atmosphere restricts their
forecast skill to a few months in advance. Dynami-
cal drought forecasting has seen notable advancements,
such as enhanced climate model resolution, refined rep-
resentation of physical processes, improved initializa-
tion methods, the application of multi-model ensem-
bles, and the development of coupled modeling ap-
proaches. These developments have indeed bolstered
the accuracy and reliability of drought predictions. Nev-
ertheless, the implementation of these models in the
MedR is constrained by challenges such as limited
data availability, computational complexity, and inher-
ent model uncertainties.

4. Hybrid statistical–dynamical models can be promising
tools to potentially enhance the accuracy and reliability
of drought forecasting in the MedR. By merging a broad
variety of forecasts from statistical and dynamical mod-
els into a final probabilistic prediction, hybrid models
benefit from the strengths of both modeling approaches
and improve the forecast skill compared to an individual
model. But their applicability remains challenging due
to several constraints. Indeed, the hybrid model may re-
quire careful calibration and validation to ensure that it
is performing optimally, which can be time-consuming,
requiring a large number of data, specialized expertise,
and a high level of computational resources.

5. One of the major challenges in drought forecasting in
the MedR is the lack of long-term, high-quality hydro-
climatic observations to convey nonstationary patterns
and the variability in the climate. In addition, hydro-
logical model predictions are often poor, due to model
initialization, parametrization, and physical errors. To
address these challenges, it is important to improve
the availability and quality of data for drought fore-
casting in this region. This could involve implement-
ing better monitoring systems and increasing the num-
ber of weather stations in the region. In addition, ef-
forts should be made to improve the performance of
drought forecasting models, using more advanced data
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assimilation and machine learning techniques, and to in-
corporate data from other sources such as state-of-the-
art satellite observations and reanalysis with relatively
high spatiotemporal analysis to provide superior hydro-
logic and climate state estimates and consequently skill-
ful agricultural- and hydrological-drought forecasting.

6. Drought mapping is the final stage in which drought risk
information is disseminated and communicated to end
users. Major studies in the MedR analyze drought risk
using some drought indices without applying a visual-
ization via maps or presenting the risk on a single map
that shows the overall risk situation. An informative vi-
sualization of results via probabilistic drought risk maps
is recommended, whereby color gradations or contour-
ing is used to effectively illustrate the range of proba-
bilities. Ensuring cartographic rigor, such maps should
maintain spatial accuracy, use appropriate scaling, and
include a clearly defined legend to decrypt different
probability levels. Uncertainties related to drought mod-
eling and prediction also need to be perspicuously de-
fined, discussed, and communicated to increase their in-
telligibility and comprehensibility for decision-makers,
farmers, and other end users.

7. Finally, much effort should be made to improve the
communication and dissemination of drought forecasts,
extending their lead time and ensuring that decision-
makers and stakeholders have access to the most up-to-
date information.

Appendix A: Index of acronyms and abbreviations

Adaptive neuro-fuzzy inference systems ANFISs
Arctic Oscillation AO
Artificial neural network of multilayered perceptron ANN-MLP
Asymmetric power autoregressive conditional heteroskedasticity APARCH
Atmospheric water deficit AWD
Automated statistical downscaling ASD
Autoregressive AR
Autoregressive conditional heteroskedasticity time series of order 1 ARCH
Autoregressive integrated moving average ARIMA
Autoregressive moving average ARMA
Autoregressive moving average time series of order 1 MA1
Autoregressive moving average time series of order 2 MA2
Autoregressive time series of order 1 AR1
Autoregressive time series of order 2 AR2
Bagging BG
Bagnouls–Gaussen aridity index BGI
Barcelona Expert Centre BEC
Bayesian model averaging BMA
Breaks for additive season and trend BFAST
Convolutional neural network long short-term memory CNN-LSTM
Combined Drought Indicator CDI
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Co-ordinated regional climate downscaling experiment for the Mediterranean area Med-CORDEX
Corrected and unbiased trend-free pre-whitening TFPWcu
Coupled Model Intercomparison Project CMIP
Crop moisture index CMI
Drought class transition probabilities DCTP
Empirical mode decomposition EMD
Exponential general autoregressive conditional heteroskedasticity EGARCH
False alarm ratio FAR
Frequency bias FB
Generalized autoregressive conditional heteroskedasticity GARCH
Geometric Brownian motion GBM
Geometric Brownian motion time-series model with asymmetric jumps GBMAJ
Global Historical Climatology Network monthly GHCN
Global Land Data Assimilation System GLDAS
Groundwater resource index GRI
Hadley Centre Coupled Model version 3 HadCM3
Land surface temperature LST
Mean absolute error MAE
Moderate Resolution Imaging Spectroradiometer MODIS
Modified Fournier index MFI
Monthly average relative humidity MARH
Monthly mean solar radiation MMSR
Moving average MA
Multiple linear regression MLR
National Center for Atmospheric Research NCAR
National Centers for Atmospheric Prediction NCEP
National Oceanic and Atmospheric Administration NOAA
NDVI anomaly index NDVIA
Nonlinear autoregressive with exogenous inputs NARX
Normalized difference vegetation index NDVI
Normalized difference water index NDWI
North Atlantic Oscillation NAO
Pacific Decadal Oscillation PDO
Pedotransfer function PTF
Principal component analysis PCA
Probability of detection POD
Probability of false detection POFD
Random forest RF
Random subspace RSS
Random tree RT
Reconnaissance Drought Index RDI
Relative absolute error (RAE)
Root mean squared error RMSE
Sea surface temperature SST
Seasonal ARIMA SARIMA
Soil and Terrain Database SOTER
Soil moisture SM
Soil moisture agricultural drought index SMADI
Soil moisture and ocean salinity SMOS
Soil moisture anomaly index SMAI
Soil moisture deficit index SMDI
Soil moisture percentiles Wp
Soil water deficit index SWDI
Soil wetness deficit index SWetDI
Standardized water-level index SWI
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Streamflow drought index SDI
Support vector regression SVR
Surface reflectance (SR)
Temperature condition index TCI
The University of Thessaly monthly water balance UTHBAL
Vegetation condition index VCI
Vegetation health index VHI
Wavelet analysis WA
Wavelet decomposition WD
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