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Abstract. The impact of assimilating GNSS-ZTD (global
navigation satellite system–zenith total delay) on the pre-
cipitable water vapor and precipitation forecast over Italy is
studied for the month of October 2019, which was charac-
terized by several moderate to intense precipitation events,
especially over northwestern Italy. The WRF (Weather Re-
search and Forecasting) model, version 4.1.3, is used with
its 3D-Var data assimilation system to assimilate ZTD obser-
vations from 388 GNSS receivers distributed over the coun-
try. The dataset was built collecting data from all the major
national and regional GNSS permanent networks, achieving
dense coverage over the whole area. The water vapor forecast
is verified for the forecast hours of 1–6 h after the last data as-
similation time. Results show that WRF underestimates the
atmospheric water vapor content for the period, and GNSS-
ZTD data assimilation improves this underestimation. The
precipitation forecast is verified in the phases of 0–3 and 3–
6 h after the last data assimilation time using more than 3000
rain gauges spread over Italy. The application of GNSS-ZTD
data assimilation to a case study improved the precipitation
forecast by increasing the rainfall maximum and by better fo-
cusing the precipitation pattern over northeastern Italy, with
the main drawback being the prediction of false alarms. Con-

sidering the study over the whole period, GNSS-ZTD data
assimilation had a positive impact on rainfall forecast, with
an improvement in the performance up to 6 h and with sta-
tistically significant results for moderate to intense rainfall
thresholds (25–30 mm (3 h)−1).

1 Introduction

The Mediterranean area is often struck by severe weather
and deep convective events because of the presence of the
warm sea, the complex orography of the area and the spe-
cific synoptic-scale environment. This scenario is worsened
by climate change, which is affecting many weather and cli-
mate extremes, and the frequency and intensity of heavy-
precipitation events have increased in most of the world
(IPCC, 2023). Numerical weather prediction (NWP) mod-
els are useful tools to predict adverse weather conditions and
to guide responsive actions for mitigating the impact of se-
vere weather. Over the past years, the use of NWP models,
along with an increasing availability of computing power,
has led to an improvement in the forecast accuracy. However,
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NWPs have well-known difficulties in representing the phys-
ical processes at small spatial and temporal scales, which are
involved in convective or severe weather events (Stensrud et
al., 2009).

One of the common problems of NWP-based nowcasting
and short-term forecasting is the spin-up time because the
model needs a few hours to balance the inconsistencies be-
tween the initial and boundary conditions to properly repro-
duce the small-scale dynamic (Lagasio et al., 2019). Data as-
similation of local observations in NWP has been reported
as a key factor in reducing this issue and improving the pre-
diction of high-impact weather events (Federico et al., 2021).
Among local observations, water vapor plays a key role be-
cause of its importance in humid and energetic exchanges
in the atmosphere. Therefore, good knowledge of water va-
por distribution in space and time is a fundamental require-
ment for improving NWP forecasts of convective and severe
weather events.

Global navigation satellite system (GNSS – a collective
term used to address all global and regional satellite nav-
igation systems, including the Global Positioning System
(GPS), Galileo, GLONASS and BeiDou) routine observation
processing for geodetic and geophysical purposes can pro-
vide estimates of the tropospheric delays (generally ZTD –
zenith total delay), directly connected to the water vapor con-
tent in the atmosphere, which can be very useful to improve
NWP forecasts. Relevant, albeit non-exhaustive, experiences
are shortly summarized hereafter:

– Vedel and Huang (2004) assimilated GNSS-ZTD into
the High Resolution Limited Area Model using three-
dimensional variational data assimilation (3D-Var) and
found improvements for the forecast of geopotential
height and high precipitation levels.

– Poli et al. (2007), assimilated GNSS-ZTD using four-
dimensional variational data assimilation (4D-Var) and
the ARPEGE (Action de Researche Petite Echelle
Grande Echelle) global model. Results show the posi-
tive impact of the GNSS-ZTD data assimilation on the
forecast of synoptic-scale circulations and precipitation
in spring and summer. Other studies followed in France
(Boniface et al., 2009; Yan et al., 2009) and found a
positive impact of GNSS-ZTD data assimilation on the
NWP forecast.

– Bennitt and Jupp (2012) assimilated GNSS-ZTD obser-
vations by both 3D-Var and 4D-Var using the Met Office
North Atlantic and European model. The assimilation
of GNSS-ZTD resulted in an improvement of the cloud
forecast.

– Lindskog et al. (2017) performed GNSS-ZTD data
assimilation, assimilating data into the HARMONIE-
AROME model at 2.5 km horizontal resolution. The as-
similation was performed by 3D-Var and improved the
forecast by up to 1.5 d.

– Rohm et al. (2019) assimilated GNSS (both ZTD and
precipitable water) in the Weather Research and Fore-
casting (WRF) model at 4 km horizontal resolution over
Poland for 2 months. They found an improvement in
predicting both water vapor and precipitation. In the
same direction, Trzcina et al. (2020) showed the posi-
tive impact of assimilating the GNSS tomography wet
refractivity field on temperature and precipitation fore-
casting at the short range (0–6 h) over Poland.

– Giannaros et al. (2020) showed the positive impact of
GNSS-ZTD data assimilation on both precipitation and
water vapor forecast over Greece, and Caldas-Alvarez
and Khodayar (2020) showed similar results with the
climatic setting of the COSMO model over a large por-
tion of the Mediterranean and central Europe.

– Risanto et al. (2021) assessed the impact of GPS pre-
cipitable water vapor (PWV) data assimilation on short-
range North American monsoon precipitation forecasts
over northwest Mexico. They showed that GPS-PWV
data assimilation created more favorable conditions for
nocturnal convection organization, leading to a better
precipitation forecast.

– Singh et al. (2019) studied the impact of GNSS-ZTD
data assimilation over the Indian region with the WRF
model. They showed a positive impact on the precipi-
tation forecast and on the lower- to middle-tropospheric
moisture, upper-air temperature, and middle- and upper-
tropospheric wind.

– Yang et al. (2020) assimilated both radar reflectivity
and GNSS-ZTD for a heavy-rainfall event over Taiwan.
They showed the complementary role of both observa-
tions in improving the precipitation forecast.

The assimilation of GNSS data is also used in an opera-
tional context. The Rapid Refresh model over the USA as-
similates GPS-derived integrated water vapor (IWV) every
hour from 300 stations across the USA (Benjamin et al.,
2016). The study shows that there is a clear benefit in using
GNSS observations in rapid refresh weather forecasting.

Considering the GNSS data assimilation over Italy, Fac-
cani et al. (2005), using the Mesoscale Model 5 (MM5) at
9 km horizontal resolution and 3D-Var to assimilate GNSS-
ZTD over Italy, found improvements in the precipitation
forecast during the transition from winter to spring.

By assimilating a wide range of Sentinel-1 and GNSS-
ZTD observations over Italy into the WRF model, Lagasio et
al. (2019) found that the forecasts benefit the most when the
model is provided with information on the wind field and/or
the water vapor content. Mascitelli et al. (2019, 2021) re-
ported two successful experiments of GNSS-ZTD and PWV
data assimilation with the RAMS@ISAC model in Italy. The
3D-Var system was used to assimilate GNSS-ZTD, while
nudging was used to assimilate the PWV. In both cases the
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assimilation showed a significant improvement in the short-
term prediction of water vapor with smaller impact on the
precipitation forecast.

This paper enriches the numerical experiments made over
Italy to improve the precipitation and water vapor forecast
through GNSS-ZTD data assimilation because it refers to a
different period compared to previous studies (October 2019)
and uses the data of 388 GNSS receivers widely spread over
the country for the whole period, giving a robust assessment
of the impact that GNSS-ZTD data assimilation can have on
forecasting at the local scale. In addition, it considers two
issues that are important in the operational context: the op-
timal spacing of GNSS receivers for data assimilation and
bias removal. The first experiment estimates the observation-
error decorrelation length scale and applies it to optimize the
GNSS-ZTD data assimilation by data thinning, while the sec-
ond experiment quantifies the impact of the bias removal on
the forecast performance because the bias cannot be com-
pletely removed in an operational context.

It is also noted that a similar configuration of the WRF
model used in this paper is already operational at the National
Research Council of Italy, Institute of Atmospheric Sciences
and Climate (CNR-ISAC), in the framework of the agree-
ment between the Civil Protection Department (DPC) and
CNR-ISAC to improve the NWP forecast in different time
ranges. So the results of this paper are of practical impor-
tance as GNSS-ZTD data could also be assimilated in the
near future in the operational run.

This paper is organized as follows: Sect. 2 shows the data
and methods used, including the model setting, the GNSS-
ZTD dataset and the statistics for the verification. Section 3
discusses the results, showing the impact of GNSS-ZTD data
assimilation on the WRF analyses (both ZTD and PWV), on
the precipitation forecast for a case study, and on the PWV
and precipitation forecast for the whole period. Conclusions
are given is Sect. 4. Finally, more details on the statistics used
in the paper as well as the resampling test are reported in the
Appendix.

2 Data and methods

2.1 WRF model configuration and assimilation method

The model used in this study is the Weather Research and
Forecasting model with advanced WRF dynamics (WRF-
ARW, Version 4.1.3; Skamarock et al., 2019). The model was
run over one domain covering the whole Italian territory and
central Europe (Fig. 1) with a spatial horizontal resolution
of 3 km. The model grid has 635× 635 grid points and 50
vertical levels, with the model top at 50 hPa. The main phys-
ical parameterizations used are the following: the Thomp-
son scheme (Thompson et al., 2008) for microphysics; the
Mellor–Yamada–Janjić (Eta) turbulent kinetic energy (TKE)
scheme for the boundary layer (Janjic, 1994); and the Dud-

Figure 1. WRF model domain and GNSS receivers’ height [m]
above sea level.

hia scheme (Dudhia, 1989) and the Rapid Radiative Transfer
Model (RRTM; Mlawer et al., 1997) for shortwave and long-
wave radiation, respectively.

The experiment aims at evaluating the impact of GNSS-
ZTD data assimilation on the precipitation prediction in the
short term (up to 6 h in this paper). For this purpose, we con-
sidered a 1-month period, from 2 to 31 October 2019. The
choice of the period is due to two main reasons: on the one
hand, this month was characterized by both widespread and
localized precipitation events over Italy; on the other hand,
a dense network of GNSS receivers (about 500) is available
for the country. It is important to note that the number of
receivers actually used for data assimilation was reduced to
388 by applying data thinning as discussed in Sect. 2.2.

GNSS-ZTD data assimilation was performed using the
3D-Var tool distributed with the WRF model, which is one
of the components of the WRF Data Assimilation (WRFDA)
system and also includes 4D-Var and ensemble data assimi-
lation systems (Barker et al., 2004, 2012; Huang et al., 2009).

We consider two kinds of simulations: control simulations,
without GNSS-ZTD data assimilation, hereafter also CTRL,
and simulations assimilating GNSS-ZTD, hereafter also
GNSS. The European Centre for Medium-Range Weather
Forecasts (ECMWF) Integrated Forecasting System (IFS) 3-
hourly operational analysis–forecast cycle at 0.25◦ starting
at 12:00 UTC on the day before the actual day to forecast is
used for initial and boundary conditions to simulate a real
forecasting context. The temporal scheme used for the simu-
lations uses a very short-term forecast (VSF) approach, with
a 6 h update (Fig. 2).

In this scheme, for each day, we run four simulations start-
ing from a cold start. Each simulation lasts 12 h. The first 6 h
of each run is used for the model spin-up and for data assimi-
lation in GNSS simulations, while the last 6 h is used as fore-
cast. Therefore, four runs are necessary to cover a whole day.
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Figure 2. Rapid update cycle at 6 h. Red dots denote analysis times.

For GNSS simulations, in the assimilation phase, we consid-
ered an analysis every 1 h (red points of Fig. 2), starting from
the beginning of the simulation and reaching the sixth hour,
so a total of seven analyses are performed for each run. For
CTRL simulations we use only initial and boundary condi-
tions from ECMWF IFS and no other data are assimilated.

GNSS-ZTD observations are assimilated by 3D-Var,
which is a variational approach involving the calculation of
the analysis that minimizes a cost function by measuring its
distances from the background and observations. The cost
function is given by

J (x)=
1
2
(x− xb)

TB−1 (x− xb)

+
[
yo−H (x)

]TR−1 [yo−H (x)
]
,

where x is the state vector; xb is the background field; H is
the forward observational operator which transforms the x

vector in the observational space; yo is the observation vec-
tor; and B and R are the error covariance matrices, respec-
tively, for the background and observations.

The R matrix is given by the sum of instrumental and rep-
resentation errors. To prepare observational data for 3D-Var,
the obsproc tool was employed for GNSS-ZTD observations.
Data for each analysis were considered on a 1 h time range,
centered at the hour of the analysis. The R matrix is diag-
onal, which requires data thinning (see next section), and
the ZTD error is set to 5 mm. Different regional networks
are considered to reach the considerable number of GNSS-
ZTD receivers used in this paper; however, we used a con-
stant value for the errors in all receivers because the software
and the processing method are the same for all the receivers.
Also, the GNSS-ZTD time series were visually checked, and
no specific differences among networks arose. The value of
5 mm was not specifically computed for this experiment but
comes from previous comparisons that, in any case, do not
extend to the whole of Italy (Tagliaferro, 2021; Krietemeyer
et al., 2018; Mascitelli et al., 2019, 2021). In these works, the
GNSS-ZTD retrieved with the method used in our paper was
compared with other methods and with radiosoundings. In
general, comparison with radiosondes shows differences in
the range of 1.0–1.5 cm (i.e., larger than the error used in this

paper), while comparison with other methods shows differ-
ences between 0.1 and 0.8 mm. Now, the comparison with
radiosondes is less representative of the GNSS-ZTD error
because radiosondes can move far from the GNSS receiver,
and the 0.5 cm used in this paper comes from the comparison
with other methods to estimate ZTD. However, future ex-
periments considering different errors for different networks
should be done to assess this point in more detail.

As regards the B matrix, the calculation for this study is
performed via the GEN_BE tool, employing the National
Meteorological Center (NMC) method (Parrish and Derber,
1992) for the month of October and the option CV5, which
accounts for five control variables.

The GNSS-ZTD observations are considered to have un-
biased errors compared to the WRF model. To achieve this
goal, a statistical bias correction was applied to the ZTD data
for the whole period. First the raw GNSS data are assimilated
into 3D-Var to calculate the corrections that come from the
background. The difference between the observation and the
background is saved for each receiver and for each time giv-
ing the quantity (O−B)k,t , where k is the receiver index and
t is the time. The quantity (O −B)k,t takes into account the
difference between the model orography and receiver height
that, in our case, is never larger than 300 m. For each receiver
we compute the background bias by averaging (O −B)k,t
over all times:

(O −B)k =

N∑
t=1

(O −B)k,t

N
,

where N is the total number of times (i.e., observations)
available for each GNSS receiver. Then we use the corrected
observation O ′k,t in 3D-Var:

O ′k,t =Ok,t − (O −B)k.

This method is like that applied in many papers including
some cited in the Introduction.
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2.2 Observational datasets and verification procedure

2.2.1 GNSS data

To achieve a good spatial density of the ZTD measurements,
the GNSS data have been collected from all major Italian na-
tional and regional GNSS networks. To derive ZTDs, GPS
L1 and L2 pseudorange and phase measurements were ad-
justed in precise point positioning (PPP) mode (Bevis et al.,
1992; Zumberge et al., 1997) by using the GNSS data pro-
cessing suite Breva, which is a proprietary, closed-source
version of the free and open-source goGPS software (Her-
rera et al., 2016). Both Breva and goGPS are developed by
GReD.

Several of the used stations tracked only GPS satellites;
thus we decided to process only GPS observations, disre-
garding data from other GNSS constellations. Table 1 de-
scribes the corrections applied to the observations, as well as
the stochastic model.

Figure 1 presents the locations and the heights of the 388
GNSS stations used over the Italian Peninsula and its sur-
roundings after a reduction in their number. Although the
initial number of GNSS receivers was about 500, more than
100 GNSS receivers were discarded considering the follow-
ing two requirements: (a) the difference between the receiver
and WRF model height at the closest grid point to the GNSS
receiver must be less than 300 m (similarly to Bennitt and
Jupp, 2012; Rohm et al., 2019; and Mascitelli et al., 2019)
and (b) in the case that two or more receivers fell in the same
WRF grid cell, the one whose height was closer to the model
orographic height was retained. At the end of the process,
388 GNSS receivers were used for data assimilation and the
closest distance between any two receivers was larger than
10 km. No further data thinning was applied.

2.2.2 Forecast verification

As regards the evaluation of the precipitation forecast perfor-
mances, five precipitation scores are calculated, i.e., the fre-
quency bias (FBIAS), probability of detection (POD), threat
score (TS), equitable threat score (ETS) and false alarm rate
(FAR). A detailed description of these scores is provided in
Appendix A.

In the following, we will show the results of the scores,
summarizing them through a performance diagram (Roebber,
2009), with the exception of the ETS. In this diagram the
perfect score is the one that reaches the upper-right corner
of the diagram. The x axis represents the success ratio (SR),
which is defined as 1−FAR, while the POD is on the y axis.
The straight lines from the origin represent the FBIAS, while
the hyperboles branches are the TS.

We considered the forecast for both types of run, CTRL
and GNSS, taking into account two main periods after the
last analysis time in order to evaluate the impact of GNSS-
ZTD data assimilation on the precipitation forecast at differ-

ent ranges: the first 3 h (from the 6th to the 9th hour of run)
and the second 3 h of forecast (from the 9th to the 12th hour
of run). The model forecast in correspondence to a given rain
gauge is computed using the nearest-neighbor method. By
this method, we consider all WRF precipitation values at grid
points in a radius of 21x

√
2 from the rain gauge, with 1x

being the WRF model grid spacing, and we select the grid
point with the rainfall value closest to the rain gauge obser-
vation.

Precipitation data come from the Italian rain gauge net-
work, with more than 4000 rain gauges over Italy. This net-
work belongs to the Italian regional administrations, and data
are collected nationwide by the Civil Protection Department
(Davolio et al., 2015).

Furthermore, a test to assess the statistical significance of
the differences between CTRL and GNSS precipitation fore-
casts is performed. The resampling test of Hamill (1999) is
used (see Appendix B for details).

For precipitable water vapor verification, we focused on
both the assimilation and forecast phases. Verification is
made calculating two main scores.

The first is BIAS, which measures the mean differences
between forecast (F ) and observation (O):

BIAS=
1
N

∑N

i=1
(Fi −Oi) . (1)

The second is root mean square error (RMSE), which mea-
sures the mean of the squared differences between forecast
and observation:

RMSE=

√
1
N

∑N

i=1
(Fi −Oi)

2, (2)

with N number of forecast–observation pairs considered in
the statistics.

3 Results and discussion

3.1 ZTD and precipitable water vapor results for the
analysis phase

In this section we consider the differences between the first
guess (FG) and the observations and between the analyses
(ANL) and the observations. Statistics are presented consid-
ering all simulations (30× 4). For each simulation, six times
are considered for the first guess and analysis, one for each
time (red dots of Fig. 2), except for the analysis at the ini-
tial time of each simulation because it is coincident with the
last analysis time of the previous simulation, the latter being
considered in the results.

Two types of statistics are shown. In the first statistics we
present the time series of the bias and RMSEs aggregating all
receivers together for each analysis time; in this case, refer-
ring to Eqs. (1) and (2), N is the number of GNSS receivers
considered at the analysis time. In the second statistics, we

https://doi.org/10.5194/nhess-23-3319-2023 Nat. Hazards Earth Syst. Sci., 23, 3319–3336, 2023



3324 R. C. Torcasio et al.: The impact of GNSS zenith total delay data assimilation

Table 1. Corrections applied to the observations and stochastic model.

Ionospheric delay Pre-eliminated through the ionosphere-free linear combination
of L1 and L2

Ephemerides International GNSS Service final combination

Coordinates Estimated, one set per station per day

ZTD Estimated epoch-wise, with random walk model (noise
0.003 m

√
h
−1)

ZTD north and
east gradient

Estimated epoch-wise, with random walk model (noise
0.0001 m

√
h
−1)

Solid Earth Corrected according to International Earth Rotation and Refer-
ence Systems Service 2010

Ocean loading
effects

Corrected using coefficient computed from the FES2004 model
(Lyard et al., 2006)

Mapping function Vienna Mapping Function

show the PWV BIAS and RMSE computed for each receiver;
in this case, referring to Eqs. (1) and (2), N is the number of
analyses performed for the whole period (30× 4× 6= 720
first guess and analysis pairs).

Figure 3 shows the time series for ZTD BIAS (Fig. 3a) and
ZTD RMSE (Fig. 3b) calculated for the whole period. From
Fig. 3a it is apparent that the ANL BIAS (blue curve) has
lower absolute values compared to that of FG (red curve) for
all times considered. The better results obtained by ANL is
confirmed also by the BIAS values calculated over all times
together, shown in the upper-right part of the figure, which
is halved after the analysis (BIAS_A, −0.1 cm) compared to
the first guess (BIAS_F, −0.2 cm). Interestingly, the WRF
first-guess bias is mainly negative, showing an underesti-
mation of the water vapor content in the atmosphere. This
underestimation is reduced by GNSS-ZTD data assimilation
that increases the water vapor in the model. The positive im-
pact of the GNSS-ZTD data assimilations is confirmed by the
RMSE calculation (Fig. 3b). The RMSE for the whole period
for the analyses (RMSE_A) is 0.7 cm, compared to the value
of 1.3 cm for the first guess (RMSE_F).

It is important to discuss the impact of GNSS-ZTD data
assimilation over the Italian territory. This is shown consider-
ing the PWV estimated by the ZTD. The PWV in millimeters
is given by

PWV=Q(ZTDGNSS−ZHDWRF),

where ZHDWRF is the hydrostatic delay calculated using the
Saastamoinen (1972) equation given the WRF surface pres-
sure (psfc), latitude (ϕ) and height (h):

ZHDWRF =
0.0022767psfc

1.0− 0.0266cos(2φ)− 0.00000029h
.

Similarly to other studies (for example, Rohm et al., 2019),
we estimate the ZHD from the WRF surface pressure be-

cause no pressure observations were available in correspon-
dence to the GNSS-ZTD receivers.

The proportionality factor Q is computed as follows:

Q=
106

Rw(
k3
Tm
+ k′2)

,

where Rw = 461 J (kg K)−1 is the gas constant for water va-
por, k′2 = 22.9726 and k3 = 375 463 K hPa−1 are the refrac-
tivity constants from Rueger (2002), and Tm is the mean tem-
perature given by

Tm = 70.2+ 0.72TWRF,

where TWRF is the WRF surface temperature.
Figure 4 shows the PWV RMSE (panels a and b for first

guess and analysis, respectively) and the BIAS (panels c and
d for first guess and analysis, respectively) for the whole
period at each GNSS receiver. Both statistics are improved
by data assimilation. The impact of GNSS-ZTD data assim-
ilation on PWV RMSE is apparent as most of the green–
orange–red colors (RMSE between 1.0 and 2.5 mm, Fig. 4a)
are reduced to dark-green–green colors (RMSE between 0.5
and 1.5 cm, Fig. 4b). For the BIAS the improvement is less
apparent, but it is clearly shown by the increase in the or-
ange, red and yellow dots in panel (d) compared to panel (c)
of Fig. 4.

All in all, the results of this section show a positive im-
pact of GNSS-ZTD data assimilation on the ZTD and PWV
over the period, and the net result is the increase in the model
water vapor content over the area, because the first-guess un-
derestimation of the ZTD (and PWV) is reduced by data as-
similation.
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Figure 3. Time series of ZTD BIAS (a) and of ZTD RMSE (b) calculated for all sensors together for first guess (red curve) and analysis
(blue curve) during the analysis phase. Dates are shown along the x axis.

3.2 Rainfall forecast for a case study

The selected date is the 15 October 2019, in the 3 h be-
tween 18 and 21:00 UTC. This phase was selected because
it is representative of the improvement that the assimilation
of GNSS-ZTD had for several cases on the 3 h precipitation
forecast. During this time period, three main thunderstorms
developed: the first two over the northeast and northwest of
Italy, respectively, with a precipitation maximum between 60
and 70 mm (3 h)−1, and the third in southern Italy, with pre-
cipitation ranging between 40 and 50 mm (3 h)−1. We start
examining the innovations, i.e., the analysis minus first-guess
fields, at 18:00 UTC on 15 October (Fig. 5a), which is the
last analysis before the 3 h forecast considered in this sec-
tion and has an important role in the 3 h rainfall forecast. In-
deed, as shown below, the precipitation between 18:00 and
21:00 UTC has several correspondences with the innovations
at 18:00 UTC.

Figure 5a shows the innovations at 18:00 UTC on 15 Octo-
ber 2019 at about 1800 m above the ground surface. A com-
plex pattern of positive and negative innovations is shown
thanks to the many observations available, which add infor-
mation on the water vapor field at the subregional scale (the
distance between two closest maxima or minima of Fig. 5a
can be roughly estimated in 50–70 km).

Figure 5b shows the latitude–height cross section of the in-
novations at the same time of Fig. 5a. The cross section is for
the longitude 12.6◦ E. Water vapor values in the range 0.4–
1.0 g kg−1 are shown in several parts of the cross section at
about 1600 m height a.g.l. in western Sicily (37.5◦ N) reveal-
ing a considerable impact of GNSS-ZTD data assimilation
(> 10 % of the first-guess value) on the water vapor field.

Between 18:00 and 21:00 UTC, moderate to intense pre-
cipitation are shown in NE and NW of Italy by rain
gauge observations, with maximum intensities larger than

60 mm (3 h)−1 (Fig. 6a). Some areas of moderate precipita-
tion are apparent in central and southern Italy with maxima
between 20 and 50 mm (3 h)−1.

The CTRL, Fig. 6b, has a good forecast because it rep-
resents the two main precipitation areas over NW and NE
of Italy. There are, however, less satisfactory points in the
CTRL rainfall forecast: first, the maximum over NE of Italy
is composed by two branches and one of them is displaced
close to the sea, starting from Venice and going toward NE.
This branch is a false alarm, at least in its southernmost part.
Second, the maximum over central Italy, starting from Tus-
cany and displaced in the SW–NE direction is displaced to
the north, compared to observations. Third, the precipitation
over southern Italy is missed.

The assimilation of GNSS-ZTD improves the precipitation
forecast. The pattern of the precipitation over NE is more in
agreement with observations because precipitation does not
appear separated in two branches as in the CTRL and the
precipitation amount for GNSS simulations is higher, bet-
ter catching the observation maximum. This agrees with the
increase in the water vapor over NE of Italy given by the
last assimilation (Fig. 5a). A similar improvement is appar-
ent in the south of Italy, where the precipitation was missed
by CTRL. In this case the observed precipitation is well fore-
cast by GNSS and the increase in precipitation is determined
by the increase in water vapor over the area (Fig. 5a). The
maximum over central Italy is not much improved by the as-
similation of GNSS-ZTD because, even if there is better su-
perposition with observations compared to the control fore-
cast, there are more false alarms in the GNSS forecast.

Section S3 of the Supplement shows the rainfall scores for
CTRL and GNSS for this case study. GNSS forecast has a
better performance compared to CTRL, especially for thresh-
olds larger than 40 mm (3 h)−1.
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Figure 4. PWV RMSE for FG (a) and ANL (b) and PWV BIAS for FG (c) and ANL (d) calculated for each sensor over all times of analysis.

3.3 Results for the water vapor forecast for the whole
period

In this section we show the impact of GNSS-ZTD data as-
similation on the PWV forecast. Three different statistics are
considered: the time series of the differences between the
PWV RMSE of CTRL and GNSS simulations for different
forecasting times; the time series of the difference between
the PWV absolute value of the BIAS of CTRL and GNSS
simulations for different forecasting times; the RMSE maps
of PWV for CTRL and GNSS on two different forecasting
times. The PWV is computed as shown in Sect. 3.1, replac-
ing ZTDGNSS with ZTDWRF

The first two statistics are shown in Fig. 7 for the first
(red curve), third (blue curve) and sixth hour of forecast
(green curve). Considering the differences between CTRL
and GNSS PWV RMSE, positive values show better perfor-

mance of the forecasts assimilating GNSS-ZTD, and, from
Fig. 7a, it is apparent that the GNSS-ZTD data assimilation
improves the PWV forecast at different forecast ranges, with
the exceptions of a few cases. The RMSE of the GNSS simu-
lations can have an RMSE lower than CTRL simulations up
to 2.5 mm, and, from Fig. 7a, a decrease in the improvement
of GNSS-ZTD data assimilation for longer forecasting times
is also notable as the red curve shows, with some exceptions,
larger values than the blue curve, which, in turn, has larger
values that the green curve. However, it is important to note
that the positive impact of GNSS-ZTD data assimilation on
the PWV forecast is still apparent after 6 h of forecast.

The bias is also improved by the GNSS-ZTD data assim-
ilation as the difference in the absolute value of the bias
for CTRL and GNSS simulations shows positive values. As
for RMSE, the bias improvement decreases with forecasting
time.
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Figure 5. Innovations of water vapor at 18:00 UTC on 15 October 2019; (a) horizontal map around 1800 m above the surface. Cross section of
(b) is taken along the red line; (b) latitude–height cross section of water vapor innovations with the first-guess temperature (black contours).

Figure 6. Precipitation between 18:00 and 21:00 UTC on 15 October 2019: (a) rain gauge observations; (b) CTRL forecast; (c) GNSS
forecast.

It is interesting to evaluate the spatial distribution of the
improvement of GNSS-ZTD data assimilation on the PWV
forecast over Italy. This is shown in Fig. 8 for the first hour of
forecast (panels a and b for CTRL and GNSS, respectively)
and for the sixth hour of forecast (panels c and d for CTRL
and GNSS, respectively). Figure 8 shows that the improve-
ment of RMSE is not limited to a specific area, thanks to the
good coverage of the GNSS receivers used in this work, but
it is widespread with RMSE more than halved in correspon-
dence to most receivers.

The RMSE for the sixth forecast hour increases for both
CTRL and GNSS simulations compared to the first fore-
cast hour, as expected because the forecast error increases
with forecasting time. However, the increase in the RMSE is
larger for the GNSS simulations (comparison between panels
b and d) than for the CTRL simulation (panels a and c), and
the impact of GNSS-ZTD data assimilation decreases with
the forecasting time over the whole Italian territory.

3.4 Results for the precipitation forecast over the whole
period

In this section we show the impact of GNSS-ZTD data assim-
ilation on the precipitation forecast statistics for the whole
period (2–31 October 2019). Two precipitation phases are
considered: the first 3 h of each simulation after the last as-
similation time (also 0–3 h) and the following 3 h, i.e., from
the third to the sixth hour of each simulation after the last
assimilation time (hereafter 3–6 h), to evaluate for how long
the GNSS-ZTD data assimilation impacts the precipitation
forecast.

Performance diagrams are shown in Fig. 9 for both CTRL
and GNSS and for three different precipitation thresholds,
namely 1, 10 and 30 mm (3 h)−1. Starting from the analysis
of the 0–3 h forecast, the following four points can be no-
ticed: (a) the GNSS-ZTD assimilation improves the precipi-
tation forecast for all precipitation thresholds as the GNSS
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Figure 7. Time series of the differences between PWV-RMSE for CTRL and GNSS (a) and of the difference in the absolute value of the
BIAS for the CTRL and GNSS simulations (b). The red curve is for the first forecast hour, the blue curve is for the third forecast hour and
the green curve is for the sixth forecast hour. The date format is the month followed by the day.

symbols are always closer to the upper-right corner com-
pared to the CTRL; (b) the FBIAS of the CTRL is underes-
timated for all precipitation thresholds; (c) the FBIAS, POD,
FAR and TS of the GNSS are always larger than the cor-
responding CTRL; (d) the performance of both GNSS and
CTRL decreases with the increasing precipitation thresholds.
Point (a) shows that the precipitation forecast is improved by
GNSS-ZTD data assimilation; points (b) and (c) show that
the assimilation of GNSS-ZTD improves the CTRL underes-
timation of the precipitation events for all thresholds. Point
(c) shows that, while the performance of GNSS is improved
compared to CTRL, the added value of GNSS-ZTD data as-
similation is reduced by the FAR increase. This point will be
confirmed by the results of the statistical test shown later in
this section. Point (d) shows the well-known difficulties of
correctly predicting the correct number, location and timing
of precipitation events as their intensity increases.

Results for the 3–6 h phase are like those of the 0–3 h pe-
riod, highlighted in the four points above, with the exception
that the FAR for the 30 mm (3 h)−1 threshold is reduced by
GNSS-ZTD data assimilation. In addition, the comparison of
Fig. 9a and b shows that the improvement of the model per-
formance decreases with increasing forecasting time because
the GNSS and CTRL symbols are closer for the 3–6 h phase
compared to the 0–3 h forecast. This is in agreement with the
analysis of the PWV presented in the previous section.

All in all, there are two important points to remark upon
for the 0–3 and 3–6 h performance diagrams: (a) the perfor-
mance of CTRL is improved by GNSS-ZTD data assimila-
tion; (b) the impact of assimilating GNSS-ZTD on the pre-
cipitation forecast lasts at least 6 h.

To better examine the difference in the statistical scores
of the CTRL and GNSS forecasts shown in Fig. 9, the re-
sults of a bootstrap statistical test (see Appendix B for de-
tails) are shown in Table 2 for the 0–3 and 3–6 h forecast

phases. The level of statistical significance is shown in plain
text (90 %, 95 %, 99 %) if the GNSS simulations perform bet-
ter than CTRL and in bold for the opposite case. The sta-
tistical test was computed for 1 and 5 mm (3 h)−1 and then
every 5 mm (3 h)−1 up to 50 mm (3 h)−1 thresholds. Results
are shown up to 30 mm (3 h)−1 thresholds because differ-
ences were not statistically significant for larger precipita-
tion events. From Table 2, it is apparent that the assimila-
tion of GNSS-ZTD has a good and significant impact on
the precipitation forecast because the FBIAS and POD are
improved for several thresholds. The FAR is worsened by
the data assimilation because of the larger number of false
alarms predicted by GNSS compared to CTRL. This limits
the improvement of the ETS, which accounts for both hits
and false alarms; however, the ETS has statistically signifi-
cant improvements at 25 and 30 mm (3 h)−1, showing a sig-
nificant and positive impact of GNSS-ZTD data assimilation
for moderate–intense precipitation forecast. Finally the im-
provement of the FBIAS, POD and ETS scores for both the
0–3 and the 3–6 h phases is noted, showing that the impact of
GNSS-ZTD data assimilation lasts at least 6 h into the fore-
cast.

4 Sensitivity tests

4.1 Data-thinning experiment

As discussed in Sect. 2, the ZTD observation-error covari-
ances are assumed to be uncorrelated in space and the R ma-
trix is diagonal. However, the ZTD observation errors are
correlated to some degree and the assimilation of GNSS-
ZTD data from receivers that are too close is sub-optimal.
To consider in more detail this issue, we performed a sen-
sitivity test for 16 d of October 2019 and data thinning. The
days selected are those from 14 to 23 October that, as better
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Figure 8. Maps of the PWV RMSE for the first (a, b) and sixth (c, d) forecasting hour. Panels (a) and (c) are for CTRL simulations; panels
(b) and (d) are for GNSS simulations.

Table 2. Results of the resampling statistical test. Statistical significance of 90 %, 95 % and 99 % is shown in plain-text when GNSS-ZTD
data assimilation improves the statistics, while it is shown in bold when the GNSS-ZTD data assimilation has a negative impact on the
statistics. Significant values less than 90 % are not shown. The first number in each cell refers to the first 3 h of forecast (0–3 h), while the
second number refers to the second 3 h of forecasts (3–6 h). Significant values less than 90 % are represented by the forward slash symbol.

1 mm (3 h)−1 5 mm (3 h)−1 10 mm (3 h)−1 15 mm (3 h)−1 20 mm (3 h)−1 25 mm (3 h)−1 30 mm (3 h)−1

FBIAS 99; 99 99; 99 99; 99 99; / 99; / 95; 90 95; /
ETS 90; / /; / /; / /; / /; / 90; 90 95; /
POD 99; 99 99; 99 99; 99 99; / 99; / 90; 90 95; /
FAR 99; 99 99; 95 99; / 95; / 90; / /; / /; /
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Figure 9. Performance diagram showing precipitation scores over the whole period for CTRL (squares) and GNSS (circles) for the 0–
3 h period (a) and for the 3–6 h period (b) after the assimilation phase for three different precipitation thresholds: 1 mm (3 h)−1 (in red),
10 mm (3 h)−1 (in green) and 30 mm (3 h)−1 (in magenta).

discussed in the Supplement of this paper, were character-
ized by heavy and widespread rainfall, especially in the NW
of Italy, and those from 5 to 10 October, which were also
characterized by moderate to intense rainfall. In this experi-
ment (THIN), we first derive a distance where the observa-
tion errors become uncorrelated (d) and then GNSS-ZTD ob-
servations are assimilated only if their distance is larger than
the d value. To estimate this distance, we use the method of
Desroziers et al. (2005; see also Bennit et al., 2017).

In this method, observation minus background (innova-
tion) and analysis minus observations (residual) statistics are
used. To compute the observation-error decorrelation dis-
tance, GNSS receivers are binned every 12.5 km and the co-
variance is computed as a function of the distance:

cov=
1∑n
i=1mi

∑n

i=1

∑
i=1mi[

yi −Hi(xa)
][

yj −Hj (xb)
]
, (3)

where mi is the number of GNSS receivers that fall into a
specific bin at a certain distance from the ith receiver, n is
the number of GNSS receivers and Hi is the observation
operator. By Eq. (3) the errors covariance is computed as a
function of the distance. Another parameter needed to assess
the observation-error correlation distance d is the observa-
tion standard error variance, which is the covariance for the
zero distance. It is computed as

σ 2
=

1
n

∑n

i=1

[
yi −Hi(xa)

][
yi −Hi(xb)

]
. (4)

Figure 10a shows the behavior of the error covariance as a
function of the distance (6.25 km, which is the central dis-
tance of the first bin; 18.75 km, which is the distance of the

second bin; etc.). The values of covariances have been nor-
malized by the variance s2 (Eq. 4). In statistics, correlation
values below 0.2 are usually assumed to be negligible, and,
from Fig. 10a, the 20 km distance can be reasonably assumed
to be the distance for observation-error decorrelation. The as-
similation of two receivers whose distance is less than 20 km
is considered sub-optimal and is avoided in the THIN exper-
iment.

To obtain GNSS receivers with about 20 km spacing, we
divided the domain (35–50◦ N and 5–20◦ E) with a regular
latitude–longitude lattice with 0.25◦ spacing and we selected
one GNSS receiver for each grid box. If more receivers are
present in the grid box, the one with the lowest topographical
difference from the WRF model is selected. The number of
GNSS receivers used in the data-thinning experiment is 259
(Fig. 10b).

Figure 11 shows the FBIAS, ETS, POD and FAR for the
CTRL, GNSS, and THIN and BIAS experiments (the last is
considered in the following section) for the 0–3 h forecast
phase. Here we limit the discussion to this phase as the dif-
ferences between THIN and BIAS are lower for the 3–6 h
phase. Considering the four scores, it is apparent that the
difference between THIN and GNSS is small, especially for
precipitation thresholds larger than 40 mm (3 h)−1. For lower
rainfall thresholds, the THIN experiment is slightly worse.
All in all, these results do not show an improvement for the
data-thinning experiment. This could be related to several
factors, and three of them seem more relevant: (a) the lim-
ited period considered, (b) the importance of the local scale
in water vapor distribution and (c) the fact that the Desroziers
method is an estimate of the optimal distance between two
receivers to be assimilated. So, considering the results of the
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Figure 10. (a) Error covariance as a function of the distance (red curve). Covariances are normalized with the variance s2. The y = 0.2 curve
is plotted for reference. (b) GPS receivers used for the forecast verification; (c) GPS receivers used for data assimilation.

data-thinning experiment, further research must be done to
obtain a definitive answer.

4.2 Impact of the bias removal

It is interesting to study the impact of the bias removal on the
precipitation forecast. The 3D-Var system assumes that ob-
servations are unbiased with respect to the WRF model, and
the bias was removed before data assimilation as discussed in
Sect. 2.1. This approach assumes that we know the observa-
tions for the forecasted period, which is not possible in an op-
erational context. While other methods are possible (Bennit
and Jupp, 2017; Giannaros et al., 2020; Benjamin et al., 2016,
among others), it is expected that in our case the impact of
the bias removal is small because we limited the data assim-
ilation to GNSS receivers with a maximum height difference
from the model orography of 300 m and because WRFDA
takes into account the difference between the GNSS receiver
and model height. To better assess this point, we compared
the results of simulations with or without bias removal for
the 10 d between 14 and 23 October 2019. The experiment
without bias removal is named BIAS (Fig. 11). As expected,
results show small differences between BIAS and GNSS ex-
periments with the latter performing slightly better.

5 Conclusions

In this paper we studied the impact of GNSS-ZTD data as-
similation on the short-term (up to 6 h) forecast over Italy for
the month of October 2019, using the WRF model. A dense
dataset of 388 GNSS receivers was used.

The comparison between first guess and ZTD observations
showed that the forecast without data assimilation underes-
timates the water vapor content for the period. The GNSS-

ZTD data assimilation partially compensates for this under-
estimation, increasing the water vapor content in the atmo-
sphere. The data assimilation roughly halves both the BIAS
and the RMSE statistics for the ZTD. The analysis over
the Italian territory shows a general reduction in BIAS and
RMSE of the PWV thanks to the rather homogeneous and
widespread coverage of GNSS receivers.

A case study on 15 October 2019 was chosen to show the
impact of assimilating GNSS-ZTD on the precipitation fore-
cast. The analysis at 18:00 UTC shows that 3D-Var spreads
the water vapor innovations both horizontally and vertically,
and the improvement of the short-term precipitation forecast
is notable, the main drawback being the increase in false
alarms over central Italy.

Considering the statistics over the whole period, the anal-
ysis of the PWV forecast shows a clear improvement for
the simulations with data assimilation. This improvement is
widespread over the Italian territory. The PWV RMSE is al-
most halved for the first forecasting time. As expected, the
improvement of the PWV RMSE decreases with forecasting
time as the effects caused by data assimilation are partially
advected out of Italy.

Assimilating GNSS-ZTD increases the precipitation of the
short-term forecast compared to CTRL, which shows a sys-
tematic underestimation of the FBIAS. Two 3 h periods were
considered after the last analysis time: 0–3 and 3–6 h. For
both periods, the FBIAS and the POD are increased by data
assimilation and the control forecast is improved. As a draw-
back, the number of false alarms was increased by GNSS-
ZTD data assimilation. The ETS is also improved by data as-
similation, even if the increase in the number of false alarms
limits the impact of data assimilation on this score.

The results of the resampling statistical test show that
the improvement for the FBIAS and POD is statistically
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Figure 11. (a) The FBIAS for the CTRL, GNSS, THIN and BIAS experiments; (b) as in (a) for the ETS; (c) as in (a) for the POD; (d) as in
(a) for the FAR. Scores are computed for the 1 mm (3 h)−1 threshold and every 2 mm (3 h)−1 from 2 to 60 mm (3 h)−1. Scores are computed
for the 10 d between 14 and 23 October 2019.

significant for several thresholds up to 30 mm (3 h)−1. The
FAR increase is statistically significant up to 20 mm (3 h)−1,
while the ETS has significant improvements for 1, 25 and
30 mm (3 h)−1.

We started to evaluate the impact of data thinning and of
the bias removal in this work. The impact of bias removal
is expected to be small because we assimilated data of the
GNSS receiver whose height difference from the model does
not exceed 300 m. This was confirmed by the results of a
numerical experiment spanning 10 heavy-precipitation days.
Also the data-thinning experiment did not show consistent
differences between the GNSS and THIN experiments. We
believe that a longer numerical experiment must be consid-
ered to better assess this point.

All in all, the statistical analysis reveals a positive impact
of GNSS-ZTD and the improvement is apparent up to 6 h.

While the results of this paper are encouraging, there are
several points that need future studies. First, the Mediter-
ranean climate has important seasonal variability and the im-
pact of assimilating GNSS-ZTD must be studied in different
seasons. Second, this study refers to only 1 month: longer pe-
riods must be considered to give a more robust assessment of
the impact of GNSS-ZTD data assimilation on the forecast
over Italy. Third, other techniques to assimilate GNSS data,
such as assimilating the precipitable water vapor (PWV), and
the sensitivity of the results to the background error matrix

should be considered in future studies. Fourth, assimilating
GNSS-ZTD in real time over Italy and assimilating the ZTD
gradients are two subjects that deserve detailed future re-
search.

Appendix A: Precipitation scores

Scores are computed starting from contingency tables (Ta-
ble A1) for dichotomous events, i.e., events that can have
only two values. In this case the two values are “yes” or “no”
and the event is “precipitation is above or equal to a certain
threshold”.

Table A1. Contingency table for dichotomous events.

Forecast

Yes No
Observation Yes a c

No b d

In Table A1, a,b,c and d have the following meaning:

– a represents the hits. A hit occurs when both the precip-
itation forecast and the corresponding rain gauge obser-
vation are above or equal to a rainfall threshold.
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Figure A1. Rain gauge elevations [m].

– b represents the false alarms. A false alarm occurs when
the precipitation forecast is above or equal to a rainfall
threshold, while the corresponding rain gauge observa-
tion is below the same threshold.

– c represents the misses, i.e., when the precipitation fore-
cast is below a rainfall threshold, while the correspond-
ing rain gauge observation is above or equal to the same
threshold.

– d represents the correct no forecasts, i.e., when both
the precipitation forecast and the corresponding obser-
vation are below a rainfall threshold.

The rain gauges used for computing the elements of the con-
tingency tables are shown in Fig. A1. Not all rain gauges
report data for each 3 h time interval considered, and the av-
erage number of reports is 2700.

Starting from the values in Table A1, the following scores
can be defined:

– Frequency bias (FBIAS).

FBIAS=
a+ b

a+ c
, (A1)

which represents the frequency of the predicted events
above a rainfall threshold with respect to observed
events and can assume values between 0 and ∞, with
1 being the best value possible.

– Probability of detection (POD).

POD=
a

a+ c
, (A2)

which is the ratio between the number of correctly pre-
dicted events and the number of observed events and
can assume values between 0 and 1, with 1 being the
best value possible.

– Threat score (TS).

TS=
a

a+ b+ c
, (A3)

which is given by the ratio between the number of
events correctly predicted and the sum of observed and
predicted events. The TS assumes values between 0 and
1, and 1 is the best value that can be obtained.

– Equitable threat score (ETS).

ETS=
a− ar

a+ b+ c− ar
,where ar =

(a+ b)(a+ c)

a+ b+ c+ d
. (A4)

The ETS is similar to the TS but takes into account the
possibility of correctly forecasting an event by chance.
It varies in the range between −1/3 and 1, with 1 being
the best value. A value of zero represents a useless fore-
cast in which the probability of correctly predicting an
event is random.

– False alarm rate (FAR).

FAR=
b

a+ b
, (A5)

which is the ratio between false alarms and the number
of predicted events and can assume values between 0
and 1. In this case the best value possible is 0. Scores
were computed after summing contingency table ele-
ments for each model over all simulations (4× 30= 120
times in this paper, for both the 0–3 and the 3–6 h fore-
cast intervals).

Appendix B: The resampling method

The resampling method from Hamill (1999) is used for as-
sessing if score differences are statistically significant in a
confidence interval. For this purpose, a hypothesis test is per-
formed. The null hypothesis is that the scores of the consid-
ered models do not differ.

In our case, the null hypothesis is that the differences be-
tween the two model scores, i.e., CTRL and GNSS, are zero.
Let S1 and S2 be a generic score, namely the FBIAS, ETS,
POD and FAR (see Appendix A for details), for the two
model types, CTRL and GNSS, respectively. The null hy-
pothesis can be then written as

H0 : S1− S2 = 0. (B1)

The test statistic is calculated after summing contin-
gency table elements for each model over all simulations
(4× 30= 120 times in this paper, for both the 0–3 and the
3–6 h forecast intervals). The contingency tables can be writ-
ten as a vector:

xi,j = (a,b,c,d)i,j , (B2)
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where i is the model type (CTRL or GNSS) and j = 1, . . . ,
120 is the contingency table for each time interval.

The contingency table elements are then summed over all
times for both model forecasts CTRL and GNSS,

Si = f

(
n∑
j=1

xi,j

)
, (B3)

and the test statistic is given by the difference between S1
and S2.

Resampled sums can be calculated after randomly choos-
ing either one or the other model for each time. Let Ij be
a random number which can assume values of 1 and 2 for
CTRL and GNSS, respectively, with j = 1, . . . , 120. We can
then sum the shuffled vectors over all times,

S∗1 = f

(
n∑
j=1

xIj,j

)
, (B4)

and sum separately data not selected for the first sum, given
by the index (3 – Ij ):

S∗2 = f
(∑n

j=1
x(3−Ij),j

)
. (B5)

Each sample is produced to be consistent with a null distri-
bution; i.e., score differences (S∗1− S

∗

2 ) are zero.
This random sampling is performed many times (10 000).
We consider the significance levels of α = 0.01, α = 0.05

and α = 0.1, and we test the null hypothesis H0 with the per-
centiles. Let tL be the α

2 percentile of S1−S2 distribution and
tU be the (1−α)

2 percentile of S1−S2 distribution; the null hy-
pothesis H0 is rejected at the level of 90 % (α = 0.1), 95 %
(α = 0.05) or 99 % (α = 0.01) if

S1− S2 < tL (B6)

or

S1− S2 > tU , (B7)

where S1 and S2 are the non-resampled scores.

Code availability. The code for post-processing the WRF
model output can be requested from the first author
(rc.torcasio@isac.cnr.it) or from the corresponding author,
and it is freely available. For the code of the GNSS data processing,
refer to Eugenio Realini (eugenio.realini@g-red.eu). The goGPS
software can be found at https://doi.org/10.5281/zenodo.10053746
(Gatti et al., 2023).
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