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Abstract. Assessing or forecasting seismic damage to build-
ings is an essential issue for earthquake disaster manage-
ment. In this study, we explore the efficacy of several ma-
chine learning models for damage characterization, trained
and tested on the database of damage observed after Italian
earthquakes (the Database of Observed Damage – DaDO).
Six models were considered: regression- and classification-
based machine learning models, each using random forest,
gradient boosting, and extreme gradient boosting. The struc-
tural features considered were divided into two groups: all
structural features provided by DaDO or only those con-
sidered to be the most reliable and easiest to collect (age,
number of storeys, floor area, building height). Macroseis-
mic intensity was also included as an input feature. The seis-
mic damage per building was determined according to the
EMS-98 scale observed after seven significant earthquakes
occurring in several Italian regions. The results showed that
extreme gradient boosting classification is statistically the
most efficient method, particularly when considering the ba-
sic structural features and grouping the damage according to
the traffic-light-based system used; for example, during the
post-disaster period (green, yellow, and red), 68 % of build-
ings were correctly classified. The results obtained by the
machine-learning-based heuristic model for damage assess-
ment are of the same order of accuracy (error values were
less than 17 %) as those obtained by the traditional RISK-UE
method. Finally, the machine learning analysis found that the

importance of structural features with respect to damage was
conditioned by the level of damage considered.

1 Introduction

Population growth worldwide increases exposure to natural
hazards, increasing consequences in terms of global eco-
nomic and human losses. For example, between 1985 and
2014, the world’s population increased by 50 % and aver-
age annual losses due to natural disasters increased from
USD 14 billion to over USD 140 billion (Silva et al., 2019).
Among other natural hazards, earthquakes represent one-fifth
of total annual economic losses and cause more than 20 000
deaths per year (Daniell et al., 2017; Silva et al., 2019). To
develop effective seismic risk reduction policies, decision-
makers and stakeholders rely on a representation of conse-
quences when earthquakes affect the built environment. Two
main risk metrics generally considered at the global scale are
associated with building damage: direct economic losses due
to costs of repair/replacement and loss of life of inhabitants
due to building damage. The damage is estimated by com-
bining the seismic hazard, exposure models, and vulnerabil-
ity/fragility functions (Silva et al., 2019).

For scenario-based risk assessment, damage and related
consequences are computed for a single earthquake defined
in terms of magnitude, location, and other seismological fea-
tures. Many methods have been developed to characterize the
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urban environment for exposure models. In particular, dam-
age assessment requires vulnerability/fragility functions for
all types of existing buildings, defined according to their de-
sign characteristics (shape, position, materials, height, etc.)
and grouped in a building taxonomy (e.g. among other con-
ventional methods, FEMA, 2003; Grünthal, 1998; Guéguen
et al., 2007; Lagomarsino and Giovinazzi, 2006; Mouroux
and Le Brun, 2006; Silva et al., 2022). At the regional/coun-
try scale, damage assessment is therefore confronted with the
difficulty of accurately characterizing exposure according to
the required criteria and assigning appropriate vulnerabili-
ty/fragility functions to building features. Unfortunately, the
necessary information is often sparse and incomplete, and
the exposure model development suffers from economic and
time constraints.

Over the past decade, there has been growing interest in
artificial intelligence methods for seismic risk assessment
due to their superior computational efficiency, their easy han-
dling of complex problems, and the incorporation of uncer-
tainties (e.g. Riedel et al., 2014, 2015; Azimi et al., 2020;
Ghimire et al., 2022; Hegde and Rokseth, 2020; Kim et al.,
2020; Mangalathu and Jeon, 2020; Morfidis and Kostinakis,
2018; Salehi and Burgueño, 2018; Seo et al., 2012; Sun et al.,
2021; Wang et al., 2021; Xie et al., 2020; Y. Xu et al., 2020;
Z. Xu et al., 2020). In particular, several studies have tested
the effectiveness of machine learning methods in associating
damage degrees with basic building features and spatially
distributed seismic demand with acceptable accuracy com-
pared with conventional methods or with post-earthquake
observations (e.g. Riedel et al., 2014, 2015; Guettiche et
al., 2017; Harirchian et al., 2021; Mangalathu et al., 2020;
Roeslin et al., 2020; Stojadinović et al., 2021; Ghimire et
al., 2022). In parallel, significant efforts have been made to
collect post-earthquake building damage observations after
damaging earthquakes (Dolce et al., 2019; MINVU, 2010;
MTPTC, 2010; NPC, 2015). With more than 10 000 sam-
ples compiled, the Database of Observed Damage (DaDO)
in Italy, a platform of the Civil Protection Department, devel-
oped by the Eucentre Foundation (Dolce et al., 2019), allows
exploration of the value of heuristic vulnerability functions
calibrated on observations (Lagomarsino et al., 2021), as well
as the training of heuristic functions using machine learning
models (Ghimire et al., 2022) and considering sparse and in-
complete building features.

The main objective of this study is to investigate the ef-
fectiveness of several machine learning models trained and
tested on information from DaDO to develop a heuristic
model for damage assessment. The model may be classified
as heuristic because it applies a problem-solving approach
in which a calculated guess based on previous experience
is considered for damage assessment (as opposed to apply-
ing algorithms that effectively eliminate the approximation).
The damage is thus estimated in a non-rigorous way defined
during the training phase, and the results must be validated
and then tested against observed damage. By analogy with

Figure 1. Geographic location of the buildings considered in this
study.

psychology, this procedure can reduce the cognitive load as-
sociated with uncertainties when making decisions based on
damage assessment by explicitly considering the uncertain-
ties in the assessment, being aware of the incompleteness
of the information and the accuracy level to make a deci-
sion. The dataset and methods are described in the Data and
Method sections, respectively. The fourth section presents
the results of damage prediction produced by machine learn-
ing models compared with conventional methods, followed
by the Discussion and Conclusions sections.

2 Data

The Database of Observed Damage (DaDO; Dolce et al.,
2019) is accessible through a web-based geographic infor-
mation system (GIS) platform and is designed to collect and
share information about building features, seismic ground
motions, and observed damage following major earthquakes
in Italy from 1976 to 2019 (with the exclusion of the 2016–
2017 central Italy earthquake for which data processing is
ongoing). A framework was adopted to homogenize the dif-
ferent forms of information collected and to translate the
damage information into the EMS-98 scale (Grünthal, 1998)
using the method proposed by Dolce et al. (2019). For this
study, we selected building damage data from seven earth-
quakes summarized in Table 1 and presented in Fig. 1.

The converted EMS-98 damage grade (DG) ranges from
damage grade DG0 (no damage) to DG5 (total collapse). The
building features are available for each individual building
and relate to the shape and design of the building and the
built-up environment (Table 2, Fig. 2) as follows:
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Table 1. Building damage data from DaDO for the seven earthquakes considered in this study. “Ref” is the reference to the earthquake used
in the paper. “DL” is the number of the damage grade available in DaDO. “NB” is the number of buildings considered in this study. AeDES
is the post-earthquake damage survey form, first introduced in 1997 and which became the official operational tool recognized by the Italian
Civil Protection Department in 2002.

Ref Earthquake Event date Mag. (Mw) Epicentre Damage survey form DL NB

Lat Long

E1 Irpinia 1980 23 Nov 1980 6.9 40.91 15.37 Irpinia 1980 8 37 828
E2 Pollino 1998 9 Sep 1998 5.6 40.04 15.98 AeDES-1998 4 9485
E3 Molise–Puglia 2002 31 Oct 2002 5.9 41.79 14.87 AeDES-2000 4 6396
E4 Emilia-Romagna 2003 14 Sep 2003 5.3 44.33 11.45 AeDES-2000 4 239
E5 L’Aquila 2009 6 Apr 2009 6.3 42.34 13.34 AeDES-2008 4 37 999
E6 Emilia-Romagna 2012 20 May 2012 6.1 44.89 11.23 AeDES-2008 4 10 581
E7 Garfagnana–Lunigiana 2013 21 Jun 2013 5.3 44.15 10.14 AeDES-2008 4 1474

– building location – defined by its latitude and longitude,
assigned using either the exact address of the building if
available or the address of the local administrative cen-
tre (Dolce et al., 2019);

– number of storeys – total number of floors above the
surface of the ground;

– age of building – time difference between the date of the
earthquake and the date of building construction/reno-
vation;

– height of building – total height of the building above
the surface of the ground, in metres;

– floor area – average of the storey surface area, in square
metres;

– ground slope condition – four types of ground slope
conditions (flat, mild slope, steep slope, and ridge);

– roof type – four types of roofs (thrusting heavy roof,
non-thrusting heavy roof, thrusting light roof, and non-
thrusting light roof);

– position of building – indication of the building’s posi-
tion in the block (isolated, extreme, corner, and interme-
diate);

– regularity – building regularity in terms of plan and ele-
vation, classified as either irregular or regular;

– construction material – vertical elements of good- and
poor-quality masonry, good- and poor-quality mixed
frame masonry, reinforced concrete frame and wall,
steel frame, and other.

For features defined as value ranges (e.g. date of construc-
tion/renovation, floor area, and building height), the aver-
age value was used. Furthermore, the Irpinia 1980 building
damage portfolio (E1) was constructed using the specific Ir-
pinia 1980 damage survey form, while the AeDES damage

survey form was used for the others. The Irpinia 1980 dataset
will therefore be analysed separately.

Building damage data from earthquake surveys other than
the Irpinia 1980 earthquake damage survey primarily include
damaged buildings. This is because the data were collected
based on requests for damage assessments after the earth-
quake event (Dolce et al., 2019). The damage information
in the DaDO database is still relevant for testing the ma-
chine learning models for heuristic damage assessment. Mix-
ing these datasets to train machine learning models can lead
to biased outcomes. Therefore, the machine learning models
were developed on the other earthquake dataset excluding the
Irpinia dataset, and the Irpinia earthquake dataset was used
only in the testing phase.

The distribution of the samples is very imbalanced
(Fig. 2): for example, there is a small proportion of build-
ings in the DG4+DG5 categories (7.59 %) and a large ma-
jority of masonry (65.47 %) compared to reinforced concrete
frame (21.31 %) buildings. This imbalance should be taken
into account when defining the machine learning models.

To consider spatially distributed ground motion, the origi-
nal DaDO data are supplemented with the main-event macro-
seismic intensities (MSIs) provided by the United States Ge-
ological Survey (USGS) ShakeMap tool (Wald et al., 2005).
MSIs given in terms of modified Mercalli intensities are con-
sidered and assigned to buildings based on their location. The
distribution of MSI values in the database is shown in Fig. 2k.

3 Method

3.1 Machine learning models

Ghimire et al. (2022) applied classification- and regression-
based machine learning models to the damage observed after
the 2015 Gorkha earthquake, Nepal (NPC, 2015). The main
concepts for method selection, the definition of the dataset
for training and testing, and the representation of model per-
formance are presented here.
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Table 2. Distribution of the different features used in this study.

No. Parameters Data type Distribution Remarks
(%)

1 Damage No damage DG0 Categorical 43.63 Fig. 2a
grades Slight damage DG1 28.90
(DGs) Moderate damage DG2 7.41

Substantial damage DG3 12.48
Very heavy damage DG4 3.94
Total collapse DG5 3.65

2 Number of 0–3 NF1 Numerical 85.81 Fig. 2b
storeys 3–5 NF2 13.01

> 5 NF3 1.19

3 Age 0–20 AG1 Numerical 15.22 Fig. 2c
(years) 21–40 AG2 18.81

41–60 AG3 34.15
61–80 AG4 21.34
> 80 AG5 10.49

4 Floor area 0–50 A1 Numerical 22.16 Fig. 2d
(square metres) 50–100 A2 34.73

100–150 A3 22.53
150–200 A4 8.32
> 200 A5 12.26

5 Height 0–10 H1 Numerical 87.78 Fig. 2e
(metres) 10–15 H2 10.69

> 15 H3 1.50

6 Position Corner P1 Categorical 9.71 Fig. 2f
Extreme P2 24.47
Internal P3 22.80
Isolated P4 43.02

7 Ground Ridge GS1 Categorical 2.62 Fig. 2g
slope Plain GS2 34.25

Moderate slope GS3 43.74
Steep slope GS4 20.39

8 Regularity Irregular in plan and elevation IRe Categorical 22.28 Fig. 2h
Regular in plan and elevation Re 77.72

9 Roof Heavy, no thrust R1 Categorical 36.43 Fig. 2i
type Heavy thrust R2 11.25

Light thrust R3 26.48
Light, no thrust R4 25.83

10 Material Masonry, poor quality CM1 Categorical 36.51 Fig. 2j
Masonry, good quality CM2 28.96
Mixed frame masonry, poor quality CM3 2.64
Mixed frame masonry, good quality CM4 5.21
Reinforced concrete frame CM5 21.31
Reinforced concrete wall CM6 0.42
Steel frame CM7 0.09
Other CM8 4.10
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Figure 2. Distribution of the different features in the database. E1, E2, E3, E4, E5, E6, and E7 represent Irpinia 1980, Pollino 1998, Molise–
Puglia 2002, Emilia-Romagna 2003, L’Aquila 2009, Emilia-Romagna 2012, and Garfagnana–Lunigiana 2013 building damage portfolios,
respectively. The y axis is the percentage distribution. and the x axis is (a) damage grade, (b) number of storeys (NF1: 0–3, NF2: 3–5, NF3:
> 5 storeys), (c) building age (AG1: 0–20, AG2: 21–40, AG3: 41–60, AG4: 61–80, AG5: > 80 years), (d) floor area (A1: 0–50, A2: 51–100,
A3: 101–150, A4: 151–200, A5: > 200 m2), (e) height (H1: 0–10, H2: 10–15, H3: > 15 m), (f) building position (P1: corner, P2: extreme,
P3: internal, P4: isolated), (g) ground slope condition (GS1: ridge, GS2: plain, GS3: moderate slope, GS4: steep slope), (h) regularity in
plan and elevation (IRe: irregular, Re: regular), (i) roof type (RT1: heavy, no thrust, RT2: heavy thrust, RT3: light, no thrust, RT4: light
thrust), (j) construction material (CM1: poor-quality masonry, CM2: good-quality masonry, CM3: poor-quality mixed frame masonry, CM4:
good-quality mixed frame masonry, CM5: reinforced concrete frame, CM6: reinforced concrete wall, CM7: steel frames, CM8: other), and
(k) macroseismic intensity.

To develop the heuristic damage assessment model, the
damage grades are considered the target feature. The damage
grades are discrete labels, from DG0 to DG5. The three most
advanced classification and regression machine learning al-
gorithms were selected: random forest (RFC) and random
forest regression (RFR) (Breiman, 2001), gradient boosting
classification (GBC) and gradient boosting regression (GBR)
(Friedman, 1999), and extreme gradient boosting classifi-
cation (XGBC) and extreme gradient boosting regression
(XGBR) (Chen and Guestrin, 2016). A label (or class) was
thus assigned to the categorical response variables (DG)
for the classification-based machine learning models. For

the regression-based machine learning models, DG is con-
verted into a continuous variable to minimize misclassifica-
tions (Ghimire et al., 2022). For the regression-based ma-
chine learning models, DG is converted into a continuous
variable as tested by Ghimire et al. (2022): first, the damage
grades were ordered and considered a continuous variable
ranging between 0 (DG0) and 5 (DG5). Because the regres-
sion model outputs a real value between 0 and 5 and not an
integer, we rounded the output (real number) to the nearest
integer to plot the confusion matrix. However, the error ma-
trices were computed without rounding the model outputs to
the nearest integer.

https://doi.org/10.5194/nhess-23-3199-2023 Nat. Hazards Earth Syst. Sci., 23, 3199–3218, 2023
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Building features and macroseismic intensities were con-
sidered input features. A one-hot encoding technique was
used to convert the categorical features (i.e. ground slope
condition, building position, roof type, construction material)
into binary values (1 or 0), resulting in 28 input variables
(Table 2). No input features were removed from the dataset:
some building features (e.g. number of storeys and height)
may be correlated, but we assumed that the presence of cor-
related features does not impact the overall performance of
these machine learning methods (Ghimire et al., 2022). No
specific data cleaning methods were applied to the DaDO
database.

The machine learning algorithms from the scikit-learn
package developed in Python (Pedregosa et al., 2011) were
applied. The machine learning models were trained and
tested on the randomly selected training (60 % of the dataset)
and testing (40 % of the dataset) subsets of data, considering
a single earthquake dataset or the whole DaDO dataset. The
testing subset was kept hidden from the model during the
training phase.

3.2 Machine learning model efficacy

The efficacy of the heuristic damage assessment model (i.e.
its ability to predict damage to a satisfactory or expected de-
gree) was analysed in three stages: comparison of the effi-
cacy of the machine learning models using metrics, analysis
of specific issues related to machine learning using the se-
lected models, and application of the heuristic model to the
whole DaDO dataset.

3.2.1 First stage: model selection

In the first stage, only the L’Aquila 2009 portfolio was con-
sidered for the training and testing phases. This is the largest
dataset in terms of the number of buildings and was obtained
using the AeDES survey format (Baggio et al., 2007; Dolce
et al., 2019). Model efficacy was provided by a confusion
matrix, which represents model prediction compared with
the so-called “ground truth” value. Accuracy was then rep-
resented on the confusion matrix by the ratio of the number
of correctly predicted DGs to the total number of observed
values per DG (ADG).

Total accuracy (AT) was computed as the ratio of the num-
ber of correctly predicted DGs to the total number of ob-
served values. AT and ADG values close to 1 indicate high
efficacy. Moreover, the quantitative statistical error was also
calculated as the mean of the absolute value of errors (MAE)
and the mean squared error (MSE) (MAE and MSE values
close to 0 indicate high efficacy). For classification-based
machine learning models, the ordinal value of the DG was
used to calculate the MAE and MSE scores directly. For the
regression-based machine learning models, the output DG
values were rounded to the nearest integer for the accuracy

scores plotted for the confusion matrix but not for the MAE
and MSE value calculations.

3.2.2 Second stage: machine-learning-related issues

In the second stage, the best heuristic model for damage as-
sessment was selected based on the highest efficacy and used
to analyse and test specific issues related to machine learn-
ing: (1) the imbalance distribution of DGs in DaDO; (2) the
performance of the selected model when only some basic,
but accurately assessed, building features are considered (i.e.
number of storeys, location, age, floor area); and (3) the sim-
plification of the heuristic model, in the sense that DGs are
grouped into a traffic-light-based classification (i.e. green,
yellow, and red, corresponding to DG0+DG1, DG2+DG3,
and DG4+DG5, respectively). In the second stage, the is-
sues related to machine learning were first analysed using
the L’Aquila 2009 portfolio. The whole DaDO dataset was
then used.

3.2.3 Third stage: application to the whole DaDO
portfolio and comparison with RISK-UE

In the third stage, several learning and testing sequences were
considered, with the idea of moving to an operational config-
uration in which past information is used to predict damage
from future earthquakes: either learning based on a portfolio
of damage caused by one earthquake and tested on another
portfolio or learning based on a series of damage portfolios
and tested on the portfolio of damage caused by an earth-
quake placed in the chronological continuity of the earth-
quake sequence considered. In this stage, the efficacy of the
heuristic damage assessment model was analysed by com-
paring the prediction values with the so-called ground truth
values through the error distribution as follows:

εd (%)=
(ne

N

)
· 100, (1)

where ne is the total number of buildings at a given error
level (difference between observed and predicted DGs) and
N is the total number of buildings in the damage portfolio.

In this stage, the efficacy of the heuristic damage
assessment model was compared with the conventional
damage prediction framework proposed by the RISK-UE
method (Milutinovic and Trendafiloski, 2003). The RISK-
UE method assigns a vulnerability index (IV) to a building,
based on its construction material and structural properties
(e.g. height, building age, position, regularities, geographic
location). For a given level of seismic demand (MSI), the
mean damage (µd) and the probability (pk) of observing a
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given damage level k (k = 0 to 5) are given by

µd = 2.5
[

1+ tanh
(

MSI+ 6.25IV− 13.1
2.3

)]
, (2)

pk =
5!

k!(5− k!)

(µd

5

)5(
1−

µd

5

)5−k
. (3)

Herein, comparing the heuristic model and the RISK-UE
method amounts to considering the following steps, based
on the equations given by RISK-UE.

– Step 1. The buildings in the training and testing datasets
are grouped into different classes according to construc-
tion material.

– Step 2. For a given building class in the training dataset,
computation of the following is performed:

- Step 2.1. The mean damage (µd) using the observed
damage distribution at a given MSI value is given
by

µd =
∑5

k=0
pkk. (4)

- Step 2.2. The vulnerability index (IV) with the µd
obtained in step 2.1 is given by

IV =
1

6.25

[
13.1−MSI+ 2.3

(
tanh−1

( µd

2.5
− 1

))]
. (5)

– Step 3. For the same building class in the test dataset,
calculation of the following is performed:

- Step 3.1. The mean damage (µd) of Eq. (2) for a
given MSI value with the value of IV obtained in
step 2.2 is calculated.

- Step 3.2. The damage probability (pk) of Eq. (3)
with the value of µd obtained in step 3.1 is calcu-
lated.

- Step 3.3. The distribution of buildings in each dam-
age grade within a range of MSI values observed in
the test dataset is calculated as

Npred,k =
∑

MSI
pknobs,MSI, (6)

where nobs,MSI is the total number of buildings ob-
served in the test set for a given MSI value.

- Step 3.4. The absolute error (εk) in each damage
level k is given by

εk =

∣∣∣∣Nobs,k−Npred,k

N

∣∣∣∣ , (7)

where Nobs,k is the total number of buildings ob-
served in the given damage grade k.

Similarly, the heuristic damage assessment model was also
compared with the mean damage relationship (Eq. 4) applied
to the test set. Thus, for each building class in the test set, the
error value (Eq. 7) for each DG was computed from the µd
of the observed damage using Eq. (4), the probability pk of
obtaining a given DG k (k = 0 to 5) using Eq. (3), and the
distribution of buildings in each DG Npred,k for a given MSI
value using Eq. (6).

4 Result

4.1 First stage: model selection

The efficacy of the regression (RFR, GBR, XGBR) and
classification (RFC, GBC, XGBC) machine learning mod-
els trained and tested on the randomly selected 60 % (train-
ing set) and 40 % (test set) of the 2009-L’Aquila earthquake
building damage portfolio is summarized in Table 3. The hy-
perparameters indicated in Table 3 were chosen after tests
performed by Ghimire et al. (2022). The regression-based
machine learning models RFR, GBR, and XGBR yielded
similar MSE scores (1.22, 1.22, and 1.21) and accuracy
scores (AT = 0.49, 0.50, and 0.50), considering the five DGs
of the EMS-98 scale. In the confusion matrix (Fig. 3a: RFR,
Fig. 3b: GBR, Fig. 3c: XGBR), the accuracy ADG values
show that the efficacy of these models is higher for the lower
DGs (around 60 % for DG0 and 55 % for DG1) and lower for
the higher DGs (6 % and 1 % of the buildings are correctly
classified in DG4 and DG5, respectively).

For the classification-based machine learning models, the
XGBC model ([MSE,AT]= [1.78, 0.59]) was more effective
than the RFC ([MSE, AT]= [1.86, 0.57]) and GBC ([MSE,
AT]= [1.80, 0.58]) models, considering the EMS-98 scale.
In the confusion matrix (Fig. 3d: RFC, Fig. 3e: GBC, Fig. 3f:
XGBC), the accuracy ADG values also show higher model
efficacy for the lower DGs (86 % for DG0 and 39 % for DG1)
and lower efficacy for the higher DGs (5 %, 23 %, 12 %, and
17 % buildings correctly classified in DG2, DG3, DG4, and
DG5, respectively).

The classification-based machine learning models thus
yielded slightly better predictive efficacy, but it was still
lower than in recent studies using other datasets (Ghimire
et al., 2022; Harirchian et al., 2021; Mangalathu et al., 2020;
Roeslin et al., 2020; Stojadinović et al., 2021). The high clas-
sification error in the higher DGs could be related to the
characteristics of the building portfolio and the imbalance
of DG distribution. Among the classification methods, the
XGBC model showed slightly higher classification efficacy;
the XGBC model was therefore selected for the next stages,
stages 2 and 3.

https://doi.org/10.5194/nhess-23-3199-2023 Nat. Hazards Earth Syst. Sci., 23, 3199–3218, 2023
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Table 3. Summary of optimized hyperparameter parameters, accuracy AT, and quantitative statistical error values for the regression-based
and classification-based machine learning methods in the test set. The parameters are the hyperparameters chosen for the machine learning
models (the other model parameters not mentioned here are the default parameters in the scikit-learn documentation; Pedregosa et al., 2011).
The best accuracy and error values are indicated in bold. The optimum hyperparameters were selected thanks to k-fold cross-validation
(10-fold), by randomly selecting a percentage for training and percentage for testing, for different combinations of hyperparameters and the
optimum evaluated in terms of performance metrics on testing is finally selected.

Method Parameters Accuracy MSE MAE
AT

RFR n_estimators= 1000 0.49 1.22 0.77
max_depth= 25

GBR n_estimators= 1000 0.50 1.22 0.77
max_depth= 10
learning_ rate= 0.01

XGBR n_estimators= 1000 0.50 1.21 0.76
max_depth= 10
learning_ rate= 0.01

RFC n_estimators= 1000 0.57 1.86 0.77
max_depth= 25

GBC n_estimators = 1000 0.58 1.80 0.77
max_depth= 10
learning_ rate= 0.01

XGBC n_estimators= 1000 0.59 1.78 0.74
max_depth= 10
learning_ rate= 0.01

4.2 Second stage: issues related to machine learning

4.2.1 Imbalance distribution of the DGs in DaDO

The efficacy of the heuristic damage assessment model de-
pends on the distribution of target features in the training
dataset. This can lead to low prediction efficacy, especially
for minority classes (Estabrooks and Japkowicz, 2001; Jap-
kowicz and Stephen, 2002; Branco et al., 2017; Ghimire et
al., 2022). The previous section reports significant misclassi-
fication associated with the highest DGs for all classification-
and regression-based models (Fig. 3), i.e. for the DGs with
the lowest number of buildings (Fig. 2a). The efficacy of
the XGBC model is analysed below, addressing the class-
imbalance issue with data resampling techniques applied to
the training phase and considering the L’Aquila 2009 portfo-
lio.

Four strategies to solve the class-imbalance issue were
tested:

a. random undersampling – randomly selecting the num-
ber of data entries in each class equal to the number of
data entries in the minority class (DG4 in our case);

b. random oversampling – randomly replacing the number
of data entries in each class equal to the number of data
entries in the majority class (DG0 in our case);

c. the synthetic minority oversampling technique
(SMOTE) – creating an equal number of data en-
tries in each class by generating synthetic samples by
interpolating the neighbouring data in the minority
class;

d. a combination of oversampling and undersampling
methods – oversampling of the minority class using the
SMOTE method, followed by the edited nearest neigh-
bours (ENN) undersampling method to eliminate data
that are misclassified by their three nearest neighbours
(SMOTE-ENN).

Figure 4 shows the confusion matrices of the four strate-
gies considered for the class-imbalance issue. Compared
with Fig. 3f (i.e. XGBC), the effects of addressing the issue
of imbalance were as follows:

a. Undersampling (Fig. 4a). The ADG value increased by
20 %/22 %/26 % for DG2/DG4/DG5 and decreased by
29 % for DG0.

b. Oversampling (Fig. 4b). The ADG value increased by
11 %/16 %/18 % for DG2/DG4/DG5 and decreased by
13 % for DG0.

c. SMOTE (Fig. 4c). The ADG value increased by
4 %/1 %/4 % for DG2/DG4/DG5 and decreased by 3 %
for DG0.
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Figure 3. Normalized confusion matrix between predicted and observed DGs. The values given in each main diagonal cell are the accuracy
scores ADG. All values are also represented by the colour scale.

d. SMOTE-ENN (Fig. 4d). The ADG value increased by
13 %/9 %/8 % for DG2/DG4/DG5 and decreased by
25 % for DG0.

The AT, MAE, and MSE scores are given in Table 4 with
the associated effects.

In conclusion, the random oversampling method improves
prediction in the minority class without significantly decreas-
ing prediction in the majority class. The random oversam-
pling method was therefore applied in this study.
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Table 4. Scores of the accuracy AT, MSE, and MAE metrics in the test set considering the imbalance issue and their variation 1 compared
with values without consideration of the imbalance.

Method Accuracy AT MSE MAE

Scores 1 Score 1 Score 1

Undersampling 0.26 −0.33 1.24 −0.34 1.20 0.46
Oversampling 0.53 −0.06 2.13 0.35 0.86 0.12
SMOTE 0.57 −0.02 1.87 0.09 0.77 0.03
SMOTE-ENN 0.49 −0.10 2.28 0.50 0.93 0.19

Figure 4. Confusion matrices for the four methods to solve the DG imbalance issue in DaDO. The values given in each main diagonal cell
are the accuracy scores ADG. All values are also represented by the colour scale.

4.2.2 Testing the XGBC model with basic features

This section begins by exploring the importance of each fea-
ture in the heuristic damage assessment model applied to
the L’Aquila 2009 portfolio. We used the Shapley additive
explanations (SHAP) method developed by Lundberg and
Lee (2017). The SHAP method compares the efficacy of the
model with and without considering each input feature to
measure its average impact, provided in terms of mean ab-
solute SHAP values.

Figure 5a shows the average SHAP value associated with
each feature considered in this study as a function of DG.
The most weighted features are building age, location (lat-
itude and longitude), material (poor-quality masonry, rein-
forced concrete (RC) frame), MSI, roof type, floor area, and
height. Interestingly, the mean SHAP values are dependent
on the DG; i.e. the weight of the feature is not linear depend-
ing on the DG considered – this is never taken into account in
vulnerability methods. For example, Scala et al. (2022) and
Del Gaudio et al. (2021) observed a decrease in the vulner-
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ability of structures as the construction year increases, with-
out distinguishing the DG considered, which is not the case
herein. Note also that the importance score associated with
the location feature can indirectly capture variations in local
geological properties and the spatially distributed vulnera-
bility associated with the built-up area of the L’Aquila 2009
portfolio (e.g. the distinction between the historic town and
more modern urban areas). Furthermore, the average SHAP
value obtained for poor-quality masonry buildings for DG3,
DG4, and DG5 confirms the same high vulnerability of this
typology as in the EMS-98 scale (Grünthal, 1998), regardless
of DG.

Some basic features of the building (e.g. location, age,
floor area, number of storeys, height) are observed with a
high mean SHAP value (Fig. 5a). Compared with others,
these five basic features can easily be collected from the field
or provided by national census databases, for example. Fig-
ure 5b shows the efficacy of the heuristic damage assessment
model using XGBC trained with a set of easily accessible
building features (i.e. basic-features setting: geographic lo-
cation, floor area, number of stories, height, age, MSI), after
addressing the class-imbalance issue using the random over-
sampling method. Compared with Fig. 4b (considering all
features and named as the full-features setting), the XGBC
model with the basic-features setting (Fig. 5b) gives almost
the same efficacy, with only a 6 % average reduction in the
accuracy scores.

4.2.3 Testing the XGBC model with the traffic-light
system for damage grades

In this section, a simplified version of the DG scale was
used, in the sense that the DGs are classified according to
a traffic-light system (TLS) (i.e. green G, yellow Y, and
red R classes, corresponding to DG0+DG1, DG2+DG3,
and DG4+DG5, respectively), as monitored during post-
earthquake emergency situations (Mangalathu et al., 2020;
Riedel et al., 2015; ATC, 2005; Bazzurro et al., 2004). For
the TLS-based damage classification, the XGBC model (af-
ter oversampling to compensate for the imbalance issue) with
the basic-features setting applied to the L’Aquila 2009 port-
folio (Fig. 6a) gives almost the same efficacy compared to
the full-features setting (Fig. 6b). For example, accuracy val-
ues ADG using the basic-features setting and the full-features
setting were 0.76/0.34/0.56 and 0.82/0.36/0.54 for G/Y/R
classes, with the accuracy scores (AT) of 0.68 and 0.72, re-
spectively. Mangalathu et al. (2020), Roeslin et al. (2020),
and Harirchian et al. (2021) reported similar damage grade
classification accuracy values of 0.66, 0.67, and 0.65, respec-
tively.

The efficacy of the heuristic damage assessment model
using TLS-based damage classification indicates that clas-
sifying damage into three classes is much easier for the ma-
chine learning model compared with the six-class classifica-
tion system (EMS-98 damage classification). This is also ob-

served during damage surveys in the field, which sometimes
find it hard to distinguish between the intermediate damage
grades, such as between DG2 and DG3 or between DG3 and
DG4. Similar observations have been reported in previous
studies by Guettiche et al. (2017), Harirchian et al. (2021),
Riedel et al. (2015), Roeslin et al. (2020), and Stojadinović
et al. (2021).

4.2.4 Testing the XGBC model with the whole dataset

The efficacy of the XGBC model was tested using a dataset
with six building damage portfolios, excluding the 1980-
Irpinia building damage portfolio. The XGBC model was
trained and tested on the randomly selected 60 % (training
set) and 40 % (test set) of the dataset for EMS-98/TLS dam-
age classification, with two sets of features (full-features set-
ting and basic-features setting), applying the random over-
sampling method to compensate for class-imbalance issues.
Figure 7 shows the associated confusion matrix.

The basic-features setting resulted in a similar level of
damage prediction compared with the full-features setting
for both EMS-98-based and TLS-based damage classifica-
tion systems. For EMS-98 damage classification (Fig. 7a, b),
the accuracy ADG scores indicated in the confusion matri-
ces are almost the same for the basic-features setting and
the full-features setting. Furthermore, the accuracy AT and
MAE scores are also almost the same (0.45 and 1.08 for the
basic-features setting and 0.48 and 0.95 for the full-features
setting).

Likewise, for TLS-based damage classification (Fig. 7c,
d), the accuracy values ADG for the basic-features
setting/full-features setting are almost the same, with simi-
lar accuracy AT and MAE scores (0.63/0.45 and 0.67/0.39,
respectively).

4.3 Third stage: application to the whole DaDO
portfolio and comparison with Risk-UE

In this section, the efficacy of the heuristic damage assess-
ment model was considered for building damage predictions,
without considering the time frame of the earthquakes. Two
scenarios were considered: (1) a single building damage port-
folio was used for training, and the model was then tested on
the others (named single-single), in situations using a sin-
gle portfolio to predict future damage, and (2) some building
damage portfolios were used for training but testing was per-
formed on a single portfolio (named aggregate-single); i.e.
more damage portfolios were used as a training set to pre-
dict the damage caused by the next earthquake. The model
XGBC was applied with the basic-features setting (number
of storeys, building age, floor area, height, MSI for EMS-98)
and EMS-98-based and TLS-based damage classification.
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Figure 5. (a) Graphic representation of the importance scores associated with the different input features considered for the XGBC model.
The features (the same as in Fig. 2) considered in this study are on the y axis, and the x axis is the mean SHAP score according to DG.
(b) Confusion matrices considering the basic-features setting. The values given in each main diagonal cell are the accuracy scores ADG. All
values are also represented by the colour scale.

Figure 6. Confusion matrices for (a) the basic-features setting and (b) the full-features setting using the classification based on the traffic-light
system (TLS), grouping the EMS-98 damage grades (DGs) into three classes (green for no or slight damage, yellow for moderate damage,
and red for heavy damage). The values given in each main diagonal cell are the accuracy scores ADG. All values are also represented by the
colour scale.

4.3.1 Single-single scenario

First, a series of building damage portfolios, concerning
earthquakes occurring in northern or southern Italy and of
different magnitudes, were used for training and testing:

i. training set E3 and test sets E1, E5, and E7;

ii. training set E5 and test sets E1, E3, and E7;

iii. training set E7 and test sets E1, E3, and E5.

Figure 8 shows the distribution of correct DG classification
(i.e. 1−εd in percent given by Eq. 1) observed for each build-
ing for the EMS-98 damage grade (Fig. 8a) and the TLS
(Fig. 8b) systems. The x axis represents the incremental error
in the damage grade (e.g. 1 corresponds to the1 of the dam-
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Figure 7. Confusion matrices for EMS-98 (a, b) and TLS (green for no or slight damage, yellow for moderate damage, red for heavy damage)
(c, d) damage classification systems using the full-features setting (a, c) and the basic-features setting (b, d). The values given in each main
diagonal cell are the accuracy scores ADG. All values are also represented by the colour scale.

age grade between observation and prediction, regardless of
the DG considered).

For the EMS-98 damage scale, correct classification
(x value centred on 0) in the range of 31 % to 48 % was
found, depending on the training/test datasets. The error dis-
tribution is quite wide with incorrect predictions of±1 DG in
the range of ±13 % to 35 %. Remarkably, when considering
the E1 portfolio (Irpinia 1980), for which the post-earthquake
inventory was based on another form, as the test set, the er-
ror is larger. The predictions at ±1 DG (i.e. the sum of the
x values in Fig. 8a between−1 and+1) were 70.5 %, 69.9 %,
and 72.8 % with portfolios E3, E5, and E7 as the test set, re-
spectively, for an average of 71 %. For the other portfolios,
the average of the predictions at ±1 DG was 77 %, 78 %,
and 77 %, respectively, for portfolios E5, E3, and E7 as the
test set. This tendency was also observed for the TLS dam-
age system (Fig. 8b). In this case, the classification of the E1
portfolio was correct on average (average of x values centred
on 0) at 63 % and equal to 72 %, 73 %, and 70.5 % for the
test on portfolios E5, E3, and E7. For both damage scales,
the distributions were skewed, with a larger number of pre-

dictions being underestimated (positive x values), which is
certainly a consequence of the choice of machine learning
models, their implementation (including imbalance issues),
the distribution of input and target features considered, or all
of these aspects. The interest of the machine learning model
is also to have a relevant representation of the errors and lim-
its of these methods.

4.3.2 Aggregate-single scenario

Secondly, several aggregated building damage portfolio sce-
narios were considered to predict a single earthquake, thus
testing whether the prediction was improved by increasing
the number of post-earthquake damage observations. Three
scenarios were tested. They are represented in Fig. 9, ap-
plying the EMS-98 damage grade (Fig. 9a) and the TLS
(Fig. 9b):

i. training set E2+E3+E4+E6 (shown as E2346) and
test sets E1, E5, and E7;

ii. training set E2+E4+E5+E6 (shown as E2456) and
test sets E1, E3, and E7;
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Figure 8. Distribution of the classification value (1− εd in percent given by Eq. 1) for (a) EMS-98-based and (b) TLS-based damage
classification using XGBC machine learning models and considering a single damage portfolio to predict a single portfolio (single-single
scenario). The colour bar indicates the associated value in each cell. The x values are the difference between the DG observed and the DG
predicted, regardless of the DG considered.

iii. training set E2+E4+E6+E7 (shown as E2467) and
test sets E1, E3, and E5.

For the EMS-98 damage scale, correct classification (x value
centred on 0) in the range of 27 % to 49 % was found, de-
pending on the training/test datasets. As in Fig. 8, using the
E1 (Irpinia 1980) earthquake for testing scored lower regard-
less of the portfolio used for training (28.7 %, 27.2 %, and
27.4 % prediction accuracy). With E1 as the test set, the pre-
dictions at ±1 DG (i.e. the sum of the x values in Fig. 9a be-
tween −1 and +1) were 65.7 %, 63.8 %, and 62.4 % consid-
ering the E2346, E2456, and E2467 portfolios as the training
set, respectively, for an average of 64 % (compared with the
70 % score for the single portfolio scenario, Fig. 8a). Other
scenarios were also tested by aggregating the building dam-
age portfolios differently (not presented herein), leading to
two main conclusions: (1) the quality and homogeneity of
the input data (i.e. building features) affect the efficacy of
the heuristic model and (2) this efficacy is limited and not
improved by increasing the number of building damage ob-
servations, with a score (excluding E1) of between 40 % and
49 % (x value centred on 0) and up to 78 % (average of
the two scenarios, Figs. 8a and 9a) at ±1 DG. Considering

the TLS damage scale (Fig. 9b), a damage prediction effi-
cacy of about 72 % was obtained (compared with 72 % in
Fig. 8b), but no significant improvement was observed when
the number of damaged buildings in the training portfolio
was increased. For EMS-98 and TLS, the distributions were
skewed, with a larger number of predictions being underesti-
mated (positive x values).

In conclusion, the heuristic damage assessment model
based on the XGBC model gives a better score for TLS dam-
age assessment than for the EMS-98 damage scale. The TLS
system also allows for quick assessment of damage on a large
scale such as a city or region from an operational point of
view.

4.3.3 Comparing efficacy with the RISK-UE model

The efficacy of the heuristic damage assessment model was
then compared with conventional damage prediction meth-
ods, i.e. RISK-UE and the mean damage relationship (Eqs. 2
to 7), considering the basic-features settings. For RISK-UE,
mean damage µd (Eq. 4) was computed using the training
set and the vulnerability index IV for each building (Eq. 5).
A vulnerability index was then attributed to all the buildings
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in each class defined according to building features. The vul-
nerability indexes were then attributed to every building in
the test set; mean damage (µd) was computed with Eq. (2)
and then DG distribution with Eq. (3), before being com-
pared with the damage portfolio used for testing. Finally, the
distribution of the mean damage observed (Eq. 4) was com-
pared with the distribution of damage directly on the test set,
using Eq. (3).

Figure 10 shows the distribution of absolute errors asso-
ciated with the RISK-UE, mean damage relationship, and
XGBC methods (with and without compensation for the
class-imbalance issue) trained on earthquake building dam-
age portfolio E5 and tested on E3. For EMS-98 damage clas-
sification (Fig. 10a), the XGBC model (without compensa-
tion for class-imbalance issues) resulted in a level of absolute
errors similar to that of the RISK-UE and/or mean damage
relationship, except for DG0 (24 %). Random oversampling
to compensate for the class-imbalance issues improved the
distribution of errors for the XGBC model (errors less than
8 %, except for DG1 at 13 %).

For TLS-based damage classification, the XGBC model
also resulted in a similar level of errors compared with
the mean damage relationship and/or RISK-UE methods
(Fig. 10b), except for the green class (no or slight damage,
17.04 %). Compensation for class-imbalance issues slightly
improved the distribution of errors for the XGBC model with
a 2 % drop in errors for the green (no/slight damage) and yel-
low (moderate damage) classes.

Figure 11 shows the distribution of absolute errors trained
using the E2456 portfolio and tested on the E3 portfolio. For
EMS-98 damage classification (Fig. 11a), the XGBC model
(without compensation for class-imbalance issues) resulted
in a level of errors similar to that of the RISK-UE and/or
mean damage relationship; errors were highest for DG0 with
15.15 %. With compensation for the class-imbalance issues,
the XGBC model achieved a slightly lower error distribution
for DG0 (5 %) and DG3 (4 %); however, for other damage
grades, the error value increased significantly (DG1: 11 %,
DG2: 12 %, DG4: 7 %, DG5: 2 %). For TLS-based damage
classification, the distribution of absolute errors was similar
for both the XGBC model and the mean damage relation-
ship and/or RISK-UE methods (Fig. 11b). The highest abso-
lute error value was associated with the green (no or slight
damage) class of buildings (16.40 %). Compensation for the
class-imbalance issues slightly increased the error distribu-
tion for the XGBC model, with nearly 5 % for buildings
in the green (no or slight damage) and red (heavy damage)
classes.

These results show that the heuristic building damage
model based on the XGBC model, trained using building
damage portfolios with the basic-features setting, provides a
reasonable estimation of potential damage, particularly with
TLS-based damage classification.

5 Discussion

Previous studies have aimed to test a machine learning
framework for seismic building damage assessment (e.g.
Mangalathu et al., 2020; Roeslin et al., 2020; Harirchian et
al., 2021; Ghimire et al., 2022). They evaluated various ma-
chine learning and data balancing methods to classify earth-
quake damage to buildings. However, these studies (Man-
galathu et al., 2020; Roeslin et al., 2020; Harirchian et al.,
2021) had limitations such as limited data samples, limited
damage classes, and building characteristics limited to a spa-
tial coverage and range of seismic demand values. Ghimire
et al. (2022) also used a larger building damage database but
did not investigate the importance of input features as a func-
tion of damage levels and did not compare machine learning
with conventional damage assessment methods.

This study aims to go beyond previous studies by test-
ing advanced machine learning methods and data resampling
techniques using the unique DaDO dataset collected from
several major earthquakes in Italy. This database covers a
wide range of seismic damage and seismic demands of a
specific region, including undamaged buildings. Most impor-
tantly, this study highlights the importance of input features
according to the degrees of damage and finally compares the
machine learning models with a classical damage prediction
model (RISK-UE). The machine learning models achieved
comparable accuracy to the RISK-UE method. In addition,
TLS-based damage classification, using red for heavily dam-
aged, yellow for moderate damage, and green for no to slight
damage, could be appropriate when the information about
undamaged buildings is unavailable during model training.

Indeed, it is worth noting that the importance of the input
features used in the learning process changes with the degree
of damage: this indicates that each feature may have a con-
tribution to the damage that changes with the damage level.
Thus, the weight of each feature does not depend linearly on
the degree of damage, which is not considered in conven-
tional vulnerability methods.

The prediction of seismic damage by machine learning
remains until now has been tested on geographically lim-
ited data. The damage distribution is strongly influenced
by region-specific factors such as construction quality and
regional typologies, implementation of seismic regulations,
and hazard level. Therefore, machine-learning-based models
can only work well in regions with comparable character-
istics, and a host-to-target transfer of these models should
be studied. In addition, the distribution of damage is often
imbalanced, impacting the performance of machine learning
models by assigning higher weights to the features of the
majority class. However, data balancing methods like ran-
dom oversampling can reduce bias caused by imbalanced
data during the training phase, but they may also introduce
overfitting issues depending on the distribution of input and
target features. Thus, integrating data from a wider range
of input features and earthquake damage from different re-
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Figure 9. Distribution of the classification value (1− εd in percent given by Eq. 1) for (a) EMS-98-based and (b) TLS-based damage
classification using XGBC machine learning models and considering an aggregate damage portfolio to predict a single portfolio (aggregate-
single scenario). The colour bar indicates the associated value in each cell. The x values are the difference between the DG observed and the
DG predicted, regardless of the DG considered.

Figure 10. Comparison of the efficacy of the heuristic model with the conventional model considering the DaDO portfolio (training set: E5;
test set: E3) for (a) EMS-98-based and (b) TLS-based damage classification. The x axis is the damage grade, and the y axis is the percentage
of absolute error (εk in percent given by Eq. 7). The blue bar corresponds to the mean damage relationship; the red bar corresponds to the
RISK-UE method; and the green and orange bars correspond to the heuristic model without (XGBC1) and with (XGBC2) compensation for
the class-imbalance issues, respectively.
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Figure 11. Comparison of the efficacy of the heuristic model with the conventional model considering the DaDO portfolio (training set:
E2456; test set: E3) for (a) EMS-98-based and (b) TLS-based damage classification. The x axis is the damage grade, and the y axis is
the percentage of absolute error (εk in percent given by Eq. 7). The blue bar corresponds to the mean damage relationship; the red bar
corresponds to the RISK-UE method; and the green and orange bars correspond to the heuristic model without (XGBC1) and with (XGBC2)
compensation for the class-imbalance issues, respectively.

gions, relying on a host-to-target strategy, could help achieve
a more natural balance of datasets and lead to less biased
results. Moreover, the machine learning methods only train
on the data available in the learning phase that reflect the
building portfolio in the study area. The importance of the
features contributing to the damage could thus be modulated
and would require a host-to-target adjustment for the appli-
cation of the model to another urban zone/seismic region.

However, the machine learning models trained and tested
on the DaDO dataset resulted in similar damage prediction
accuracy values to those reported in existing literature us-
ing different models and datasets with different combinations
of input features. This might suggest that the uncertainty re-
lated to building vulnerability in damage classification may
be smaller than the primary source of uncertainty related to
the hazard component (such as ground motion, fault rupture,
or slip duration).

In recent years, there has been a proliferation of open
building data, such as the OpenStreetMap-based dynamic
global exposure model (Schorlemmer et al., 2020) and build-
ing damage datasets after an earthquake (such as DaDO).
We must therefore continue this paradigm shift initiated by
Riedel et al. (2014, 2015), which consisted in identifying the
exposure data available and with as much certainty as pos-
sible and in finding the most effective relationships for esti-
mating the damage, unlike conventional approaches, which
proposed established and robust methods but relied on data
that were not available or were difficult to collect. The global
dynamic exposure model will make it possible to meet the
challenge of modelling exposure on a larger scale with avail-
able data, using a tool capable of integrating this large vol-
ume of data. Machine learning methods are one such rapidly
growing tool that can aid in exposure classification and dam-

age prediction by leveraging readily available information. It
is therefore necessary to continue in this direction in order to
evaluate the performance of the methods and their pros and
cons for maximum efficacy of the prediction of damage.

Future works will therefore have to address several key
issues that have been discussed here but that need to be fur-
ther investigated. For example, the weight of the input fea-
tures varies according to the level of damage, but one can
question the systematization of this observation whatever the
dataset and feature considered. The efficiency of the selected
models and the management of imbalance data remain to be
explored, in particular by verifying regional independence.
Taking advantage of the increasing abundance of exposure
data and post-seismic observations, the imbalanced feature
distribution and observed damage levels could be solved by
aggregating datasets independent of the exposure and hazard
contexts of the regions, once the host-to-target transfer of the
models has been resolved. Finally, key input features (still
not yet identified) describing hazard or vulnerability may be
unexplored, and incorporating them into the models may im-
prove the accuracy of damage classification.

6 Conclusions

In this study, we explored the efficacy of machine learning
models trained using DaDO post-earthquake building dam-
age portfolios. We compared six machine learning models:
RFC, GBC, XGBC, RFR, GBR, and XGBR. These models
were trained on a number of building features (location, num-
ber of storeys, age, floor area, height, position, construction
material, regularity, roof type, ground slope condition) and
ground motion intensity defined in terms of macroseismic
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intensity. The classification models performed slightly better
than the regression methods, and the XGBC model was ulti-
mately found to be the most efficient model for this dataset.
To solve the imbalance issue concerning observed damage,
the random oversampling method was applied to the training
dataset to improve the efficacy of the heuristic damage as-
sessment model by rectifying the skewed distribution of the
target features (DGs).

Surprisingly, we found that the weight of the most impor-
tant building feature evolves according to DG; i.e. the weight
of the feature for damage prediction changes depending on
the DG considered. This is not taken into account in conven-
tional methods.

The basic-features setting (i.e. considering the number
of storeys, age, floor area, height, and macroseismic inten-
sity, which are accurately evaluated for the existing build-
ing portfolio) gave the same accuracy (0.68) as the full-
features setting (0.72) with the TLS-based damage classifica-
tion method. For training and testing, the homogeneity of the
information in the portfolios is a key issue for the definition
of a highly effective machine learning model, as shown by
the data from the E1 earthquake (Irpinia-1990). However, the
efficacy of the model reaches a limit which is not improved
by increasing the number of damaged buildings in the port-
folio used as the training set, for example. For damage pre-
diction, this type of heuristic model results in approximately
75 % correct classification. Other authors (e.g. Riedel et al.,
2014, 2015; Ghimire et al., 2022) have already reached this
same conclusion by increasing the percentage of the training
set compared with the test set.

Despite this limit threshold, the level of accuracy achieved
remains similar to that attained by conventional methods,
such as RISK-UE and the mean damage relationship, for
the basic-features settings and TLS-based damage classifica-
tion (error values less than 17 %). Machine learning models
trained on post-earthquake building damage portfolios could
provide a reasonable estimation of damage for a different re-
gion with similar building portfolios, after host-to-target ad-
justment.

Some variability may have been introduced into the dam-
age prediction model due to the framework defined to trans-
late the original damage scale to the EMS-98 damage scale
and because, in the DaDO database, the year of construction
and the floor area of each building are provided as interval
values and missing locations of buildings have been replaced
with the location of local administrative centres. The latter
can lead to a smoothing of the macroseismic intensities to be
considered for each structure and also affect the distance to
the earthquake. Similarly, the building damage surveys were
carried out after the seismic sequence, which includes after-
shocks as well as the mainshock, whereas the MSI input cor-
responds to the mainshock from the USGS ShakeMap. All
these issues may reduce the efficacy of the heuristic model
and its limit threshold. Addressing these issues could im-

prove the damage prediction performance of machine learn-
ing models.

Code availability. The machine learning models were developed
using scikit-learn documentation, and the value of hyperparameters
used are provided in Table 3 (https://scikit-learn.org/stable/install.
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