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S1. Delineation of mangroves and channels  

The use of satellite-borne remote sensing allowed us to delineate the mangroves and channels from 
aquaculture ponds, urban areas and surrounding agricultural land. ESA’s Sentinel 2 is a collection of 
multi-spectral optical images which allows calculating the Normalized Difference Vegetation Index 
(NDVI) at a spatial resolution of 10 m. NDVI ranges from -1 to 1 with values above zero, indicating 
the presence of vegetation. In our study, mangroves were determined by pixels with a NDVI-value 
above a threshold value. To determine that value, we randomly selected 50 points in the mangroves 
and 50 points in other land cover types (e.g. aquaculture ponds, built-up areas, etc.). NDVI at all points 
in mangroves exceed the value of 0.6 while 49 of 50 in other land cover types did not. Consequently, 
mangroves were determined as all pixels with a NDVI-value > 0.6. To ensure channel connectivity, 
we applied a 1-pixel-wide dilation and erosion algorithm (Suppl. Figure 1). Afterwards, the entire 
domain was visually checked and compared with aerial pictures collected through Google Earth. If 
needed corrections were applied. Finally, manually delineated data of mangroves and channels for sub 
areas within our study area were available through ESPOL, and after visual comparison, our NDVI-
based results were considered satisfactory.  
 

 
Figure S1 | Close up of original channel (A) dilation process of 1 pixel wide shown as blue pixels (B) erosion 
process after dilation, light green pixels indicate pixels which were removed again after erosion (C). Note how 
the channel kept its original width but is connected now.  

Unrealistic channel bathymetry 

 
Figure S2 | Example of channel segment where the distance between bathymetric observations is on average 
larger than the channel width and indicative example of the along-centerline and perpendicular-centerline 
coordinates (A) and a resulting interpolated bathymetry using cartesian coordinates (instead of along- and 
perpendicular-centerline coordinates), which does not conserve the thalweg or bed shape (B). 
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S2. Intertidal flat topography 

We delineated 20 zones which cover significantly large intertidal flats (area > 40 km2), for which no 
bathymetric data was available. Per intertidal flat, we collected all available cloud-free Sentinel 2 
images through the Google Earth Engine and for each image, the Modified Normalised Difference 
Water Index (MNDWI) was calculated as:  
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  (eq. S1) 
 

With Green and SWIR being respectively the measured reflectance in the  green part of the visible 
electromagnetic spectrum (560 nm) and short-wave infrared part of the spectrum (1614 nm). MNDWI 
values range between -1 and +1 with positive values representing open water and negative values 
representing dry terrain. If the MNDWI in a cell exceeds a threshold value, determined through Otsu-
thresholding, the cell can be considered to be submerged, and thus to be located beneath the water 
surface (Bishop-Taylor et al. 2019). MNDWI values below the threshold are considered to be emerged 
terrain. The boundary between all emerged and submerged cells (the waterline) is considered then as 
a contour line with an elevation that is considered equal to the observed water surface elevation at a 
nearby tide gauge station, measured at the same time as the capture of the Sentinel 2 image. Combining 
different images, taken at different times and different moments in the tidal cycle, results in a set of 
contour lines, from which we interpolated an estimated digital elevation model (DEM) of the intertidal 
flat. Elevation in areas which are located lower than the lowest water level for which a cloud-free image 
was found, are estimated by linearly interpolating between the lowest found contour line and the 
surrounding bathymetric data provided by INOCAR, right outside of the intertidal flat. The spatial 
resolution of the Green and SWIR bands of Sentinel 2 imagery have a spatial resolution of 10 and 20 
m respectively. When calculating MNDWI, the resolution of the Green band was aggregated average-
based to 20 m and consequently, the eventual spatial resolution of MNDWI was 20 m. As > 99 % of 
the mesh elements within the intertidal flats have a resolution larger than 20 m, generating the intertidal 
topography at a spatial resolution of 20 m was considered sufficient. 
 
The waterline-extraction method, as this technique is often referred to, is proven to result in good 
estimation of intertidal zone topographies. However, it is dependent on the quality and quantity of the 
available satellite images and on the proximity to the used tide gauge stations (Sagar et al. 2017, Khan 
et al. 2019).  

S3. Discharge extrapolation 

The available discharge data only represent 73% of the watershed of the Guayas delta but was 
completed using a linear precipitation-weighted interpolation with monthly precipitation data collected 
from OpenLandMap. For each watershed for which discharge data was available, we determined the 
total precipitation for each month for the period 1990 - 2019 and collected the monthly mean discharge 
for that respective watershed. The monthly mean discharge was significantly linearly correlated to the 
total precipitation within that watershed that month (Suppl. Figure 3). We repeated the procedure using 
daily precipitation sums and daily discharge observations but the resulting linear correlations were 
weaker than for the monthly series. For each watershed where no discharge data was available, we 
calculated the monthly total precipitation as well. Next, we estimated monthly mean discharges by 
applying the linear regression equation from the most nearby discharge-data-available watershed. 
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Figure S3 | Monthly mean discharge values for 3 watersheds plotted agains the total precipitation sums within 
the respective watersheds. For the three given watersheds, there is a significant linear correlation between 
precipitation and discharge. 

S4. Vertical reference level 

All raw bathymetric data was referenced to local mean sea level (MSL). For 10 of the 11 tide gauges, 
we know the height of the local MSL relative with respect to the WGS84 reference ellipsoid. These 
heights were interpolated and added to all bathymetric point observations using a linear TIN 
interpolation based on the channel coordinates of each bathymetric point relative to the level-I 
channels. Finally, we reduced the ellipsoidal heights of the bathymetry to a mean-tide quasi-geoid 
model (mean-tide refers to the adopted permanent tide system, see Mäkinen and Ihde (2009) for more 
details) that was computed from the XGM2019e geopotential model (Zingerle et al., 2020) on a 2’ 
(appr. 4 km) grid using the service provided by the International Centre for Global Earth Models (Ince 
et al., 2019). At open sea and along the boundaries, the reduction from local MSL to the XGM2019e-
derived quasi-geoid model turned out to be negligible. Note that for our area of interest the quasi-geoid 
and geoid can be used synonymously. 

Bathymetric data in the open sea and the boundary water levels at the seaward boundary did not require 
corrections as for the seabound tide gauge stations the differences between local MSL and XGM19 
reference level are negligible.  

S5. Calibration of bottom friction 

To calibrate the model, we selected the period of September 22 to October 2, 2019, because (1) for this 
period we have continuous water level observations from all tide gauge stations, (2) it is the dry season 
and hence, uncertainties in the river discharge have minimal effect on the calibration process, (3) this 
period falls outside an El Niño or El Niña event, and (4) it includes a neap tide and a spring tide.  
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In addition to ME and CRMSE, we also calculated the ratio between standard deviation of simulated 
water levels and observed water levels (𝜎+′, suppl. eq. 4) to assess modelled tidal range and the 
correlation coefficient R (suppl. eq. 5) to assess model tidal phase:  
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785  (eq. S5) 
where 𝜎+ and 𝜎2 are the standard deviation of the simulated and observed water levels respectively.  
We compare different simulations on a single Taylor Diagrams polar-coordinate plots which can show 
𝐶𝑅𝑀𝑆𝐸′(normalised CRMSE) and 𝜎+′ along with 𝑅 on one single diagram (Kärnä & Baptista, 2016): 

𝐶𝑅𝑀𝑆𝐸′ = 	 9):&;
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 (eq. S6) 
On such a Taylor diagram, each marker represents the water levels at a tide gauge station and the values 
on the three axes can be read as follows: 

a. the average correspondence between simulated and observed water levels is represented by 
𝐶𝑅𝑀𝑆𝐸′ and can be derived from the diagram as the distance (dashed red lines) of each marker 
to the reference point (large red marker) 

b. 𝜎+′ indicates the fit between observed and simulated tidal range and can be read on the diagram 
as the distance (dashed white lines) of the markers to the thick white line. On the latter, the 
standard deviation of observations and simulations are equal and 𝜎+′ equal to 1; and 

c. the correlation coefficient 𝑅 is an indicator for the tidal phase performance or the correspondence 
between the simulated and observed moments in time of high and lower waters. It is shown on a 
Taylor’s diagram as the distance to the dotted blue line where 𝑅 equals 1.  

In Suppl. Figure 4, a Taylor diagram compares simulated water levels with observed water levels at 11 
tide gauge stations. For n equal to 0.0175 and n equal 0.0150, tidal phase and mean performance are 
equally good but the model capacity to represent the tidal range over model domain is significantly 
better for n equal to 0.0175 (Suppl. Table 1).  
While model performance is particularly good in the Western branch, 𝜎+′ values are increasingly 
smaller than 1 when the tide propagates upstream through the eastern branch (stations 8, 9 and 11). 
The model underestimates the tidal range in the eastern channel and fails to capture the upstream tidal 
amplification (Suppl. Figure 4B). Therefore, we assigned a different Manning coefficient in all 
channels north and east of tidal station 10, which on its turn was calibrated. A bed roughness of n equal 
to 0.0125 resulted in the best performance in the eastern branch, according to all evaluation statistics 
and the Taylor diagram (Suppl. Figure 4C). Changing the Manning coefficient  in the eastern branch 
had no effect on the model performance elsewhere in the domain (Suppl. Figure 4D), and therefore n	
equal to 0.0175 was kept in the rest of the domain.  
 
Table S1 | Average (+/- standard deviation) of the following evaluation parameters: Root mean square error 
(RMSE), standard deviation of the simulated water levels (𝜎!′), correlation coefficient (R) and the Nash and 
Sutcliffe Model Efficiency (ME) for varying Manning coefficient  (n) values.  The green shaded row indicates 
the optimal value for the Manning coefficient. 
 

Manning’s	n	 RMSE	 𝜎+′	 R	 ME	
n	=	0.0125	 0.16±0.04	 1.13±0.03	 0.99±0.01	 0.96±0.02	
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n	=	0.0150	 0.11±0.03	 1.06±0.05	 0.99±0.00	 0.98±0.01	

n	=	0.0175	 0.11±0.06	 0.99±0.06	 0.99±0.01	 0.98±0.02	

n	=	0.0200	 0.15±0.09	 0.98±0.07	 0.93±0.02	 0.96±0.04	
 

 
Figure S4 | Normalised Taylor diagrams (A, C) representing the model performance and scatter plots of 
observed versus simulated tidal ranges (B, D) for different Manning coefficient values (color of markers) for (A, 
B) a single Manning coefficient for all branches (shape of marker) and (C, D) a different Manning coefficient 
value for the eastern branch compared to the western branch and outer delta.  
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