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Abstract. Rockslides are a major hazard in mountainous re-
gions. In formerly glaciated regions, the disposition mainly
arises from oversteepened topography and decreases through
time. However, little is known about this decrease and thus
about the present-day hazard of huge, potentially catas-
trophic rockslides. This paper presents a new theoretical
concept that combines the decrease in disposition with the
power-law distribution of rockslide volumes found in sev-
eral studies. The concept starts from a given initial set of
potential events, which are randomly triggered through time
at a probability that depends on event size. The developed
theoretical framework is applied to paraglacial rockslides
in the European Alps, where available data allow for con-
straining the parameters reasonably well. The results suggest
that the probability of triggering increases roughly with the
cube root of the volume. For small rockslides up to 1000 m3,
an exponential decrease in the frequency with an e-folding
time longer than 65 000 years is predicted. In turn, the pre-
dicted e-folding time is shorter than 2000 years for volumes
of 10 km3, so the occurrence of such huge rockslides is un-
likely at the present time. For the largest rockslide possible
at the present time, a median volume of 0.5 to 1 km3 is pre-
dicted. With a volume of 0.27 km3, the artificially triggered
rockslide that hit the Vaiont reservoir in 1963 is thus not ex-
traordinarily large. Concerning its frequency of occurrence,
however, it can be considered a 700- to 1200-year event.

1 Introduction

Rockslides are a ubiquitous hazard in mountainous regions.
The biggest rockslide in the European Alps since 1900 took
place in 1963 at the Vaiont reservoir. It involved a volume
of about 0.27 km3. Owing to an overtopping of the dam, it
claimed more than 2000 lives. However, the reservoir played
an important part in triggering this huge rockslide, so it can-
not be considered a natural event. The largest natural rock-
slides in the Alps since 1900 are considerably smaller (e.g.,
Gruner, 2006).

In turn, two huge rockslides with volumes of several cu-
bic kilometers have been identified and dated. These are the
Flims rockslide with a deposited volume of about 10 km3

(Aaron et al., 2020) in the carbonatic rocks of the Rhine
Valley and the Köfels rockslide with a deposited volume of
about 4 km3 (Zangerl et al., 2021) in the crystalline rocks
of the Oetz valley. Estimates of the ages of these two gi-
ant events scatter by some 100 years (Deplazes et al., 2007;
Nicolussi et al., 2015, and references therein). Within this
scatter, however, both ages are about 9500 BP. These ages
refute the older idea of triggering by glacial debuttressing.
Since the inner Alpine valleys were largely free of ice by
about 18 000 BP (e.g., Ivy-Ochs et al., 2008), an immediate
relation to the deglaciation of the respective valleys can be
excluded. Consequently, von Poschinger et al. (2006) con-
cluded that rockslides of several cubic kilometers have to be
taken into consideration also at present.

Although an immediate effect of deglaciation can be ex-
cluded for the Flims and Köfels rockslides, the former glacia-
tion of the valleys plays a central part in rockslide disposi-
tion. In the context of paraglacial rock-slope failure, Cruden
and Hu (1993) proposed the concept of exhaustion (see also
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Ballantyne, 2002a, b). The concept is similar to radioac-
tive decay. Starting from an initial population of potentially
unstable sites, it is assumed that each of them is triggered
at a given probability per time λ. Then both the remaining
number of potentially unstable sites and the rockslide fre-
quency decrease like e−λt . Analyzing a small data set of
67 rockslides with volumes V ≥ 1000 m3 (10−6 km3) from
the Canadian Rocky Mountains, where 14 similar poten-
tially unstable sites were found, Cruden and Hu (1993) es-
timated λ= 0.18 kyr−1, equivalent to an e-folding time T =
λ−1
= 5700 yr.

As a main limitation, however, the estimate T = 5700 yr
refers to the total number of rockslides with V ≥ 1000 m3.
Whether this estimate could be transferred to rockslides of
any given size is nontrivial. If this result could be transferred
to rockslides of any size in the Alps, the present-day prob-
ability even of huge rockslides would be only by a factor
of e

9500
5700 ≈ 5 lower than it was at the time of the Flims and

Köfels rockslides.
Analyzing the statistical distribution of landslide sizes be-

came popular a few years after the concept of exhaustion was
proposed, presumably pushed forward by the comprehensive
analysis of several thousand landslides in Taiwan by Hovius
et al. (1997). Reanalyzing several data sets, Malamud et al.
(2004) found that landslides in unconsolidated material as
well as rockfalls and rockslides follow a power-law distribu-
tion over some range in size. The exponent of the power law
was found to be independent of the triggering mechanism
(e.g., earthquakes, rainstorms, or rapid snowmelt) but is con-
siderably lower for rockfalls and rockslides than for land-
slides in unconsolidated material. The distinct dependence
on the material was confirmed by Brunetti et al. (2009). For
deeper insights into the scaling properties of landslides, the
review article of Tebbens (2020) is recommended.

Several models addressing the power-law distribution of
landslides have been developed so far (Densmore et al., 1998;
Hergarten and Neugebauer, 1998; Hergarten, 2012; Alvioli
et al., 2014; Liucci et al., 2017; Jeandet et al., 2019; Camp-
forts et al., 2020). Some of these studies discussed landslides
in the context of self-organized criticality (SOC). The idea of
SOC was introduced by Bak et al. (1987) and promised to be-
come a unifying theoretical concept for dynamic systems that
generate events of various sizes following a power-law distri-
bution. Jensen (1998) characterized SOC systems as slowly
driven, interaction-dominated threshold systems. In the con-
text of landslides, relief is generated directly or indirectly
(e.g., in combination with fluvial incision) by tectonics. This
process is rather continuous and slow. In turn, landslides take
place as discrete events if a threshold is exceeded and re-
lief is diminished. A system that exhibits SOC approaches
some kind of long-term equilibrium between long-term driv-
ing and instantaneous relaxation with power-law-distributed
event sizes.

Now the question arises of how the idea of paraglacial ex-
haustion can be reconciled with the power-law distribution
of rockslide sizes, perhaps in combination with SOC. While
size distributions of rockfalls and rockslides were addressed
in several studies during the previous decade (e.g., Bennett
et al., 2012; Lari et al., 2014; Valagussa et al., 2014; Strunden
et al., 2015; Tanyas et al., 2018; Hartmeyer et al., 2020; Mo-
hadjer et al., 2020), only the two latest studies refer directly
to paraglacial exhaustion. Mohadjer et al. (2020) attempted
to estimate the total volume of rockfalls in a deglaciated val-
ley at different timescales up to 11 000 years. In turn, Hart-
meyer et al. (2020) investigated the rockfall activity at walls
above a retreating glacier at much smaller spatial and tempo-
ral scales.

In this paper, a theoretical framework for event-size-
dependent exhaustion is developed, which means that the de-
cay constant λ depends on the event size. In the following
section, it is illustrated that the Drossel–Schwabl forest-fire
model, as one of the simplest models in the field of SOC, and
the model for rockslide disposition proposed by Hergarten
(2012) already predict such a behavior. In Sect. 3, the theo-
retical framework will be developed. This framework will be
applied to the Alps in Sect. 4, and it will be investigated to
what extent the sparse available data on large rockslides can
be used to constrain the parameters.

2 Motivation

2.1 The Drossel–Schwabl forest-fire model

Let us start with the Drossel–Schwabl forest-fire model (DS-
FFM in the following) as an example. While several simi-
lar models in its spirit were developed soon after the idea of
SOC became popular, the version proposed by Drossel and
Schwabl (1992) with a simplification introduced by Grass-
berger (1993) attracted the greatest interest. Although ob-
viously oversimplified, it was found later that it reproduces
some properties of real wildfires quite well (Malamud et al.,
1998; Zinck and Grimm, 2008; Krenn and Hergarten, 2009).

The DS-FFM is a stochastic cellular automaton model that
is usually considered on a two-dimensional square lattice
with periodic boundary conditions. Each site can be either
empty or occupied by a tree. In each time step, a given num-
ber θ of new trees is planted at randomly selected sites, as-
suming that planting a tree at an already occupied site has no
effect. Then a randomly selected site is ignited. If this site
is occupied by a tree, this tree and the entire cluster of con-
nected trees are burned. By default, only nearest-neighbor
connections are considered.

Regardless of the initial condition, the DS-FFM self-
organizes towards a quasi-steady state in which as many trees
are burned as are planted on average. If the growth rate θ
and the size of the model are sufficiently large, about 40 %
of all sites are occupied on average and the distribution of
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Figure 1. Burned clusters of trees without regrowth on a 256× 256
grid. One unit of time corresponds to one event of ignition. Colored
patches correspond to clusters burned at different times. White sites
were already empty in the beginning, while black clusters are still
present after the simulated 1000 events of ignition.

the fire sizes roughly follows a power law. The DS-FFM
was investigated numerically and theoretically in numerous
studies (e.g., Christensen et al., 1993; Henley, 1993; Clar
et al., 1994; Pastor-Satorras and Vespignani, 2000; Pruessner
and Jensen, 2002; Schenk et al., 2002; Hergarten and Krenn,
2011), resulting in a more or less complete understanding of
its properties.

Let us now assume that the growth of new trees ceases sud-
denly at some time in the quasi-steady state so that the avail-
able clusters of trees are burned successively. Figure 1 shows
an example computed on a small grid of 256× 256 sites with
θ = 100. It is immediately recognized that the largest fires
take place quite early. This property is owing to the mecha-
nism of ignition. Each cluster of trees can be burned equiv-
alently by igniting any of its trees. So the probability that a
cluster of trees is burned is proportional to the cluster size
(number of trees). This implies that large clusters are pre-
ferred to small clusters at any time. This property was al-
ready used by Hergarten and Krenn (2011) for deriving a
semi-phenomenological explanation of the power-law distri-
bution in the quasi-steady state and by Krenn and Hergarten
(2009) for modifying the DS-FFM towards human-induced
fires.

Owing to the preference of large fires, the DS-FFM
in a phase without regrowth is an example of event-size-
dependent exhaustion. Figure 2 shows the size distribution
of the fires derived from a simulation on a larger grid of
65 536× 65 536 sites with θ = 10 000. It is immediately rec-
ognized that the distribution derived from the quasi-steady
state (black curve) follows a power law only over a lim-
ited range. The rapid decline for s > 105 is due to the fi-

Figure 2. Frequency of the fires in the DS-FFM during phases with-
out growing trees. All distributions were obtained from simulations
on a 65 536× 65 536 grid with θ = 10 000 and smoothed by loga-
rithmic binning with 10 bins per decade. The black curve describes
the frequency of fires per ignition event in the quasi-steady state,
while the other curves describe different time slices. These data
were obtained by stacking 75 simulated sequences starting from dif-
ferent points of the quasi-steady state.

nite growth rate θ . As explained by Hergarten and Krenn
(2011), the excess of fires at the transition to the rapid de-
cline (s ≈ 105) is owing to the shape of large clusters and is
thus a specific property of the DS-FFM, which is not relevant
for the following considerations.

The distribution of the fires that take place during the first
10 000 steps after growth has ceased is almost identical to
the distribution in the quasi-steady state. A small deficit is
only visible at the tail. So the overall consumption of clus-
ters during the first 10 000 steps is negligible, except for the
largest clusters. The trend that large clusters are consumed
more rapidly than small clusters is consolidated over larger
time spans. In the time interval from t = 105 to 106, the fre-
quency of fires with sizes s ≈ 105 is by more than 2 decades
lower than in the quasi-steady state, while the frequency of
fires with s / 103 is still almost unaffected.

As a central result, the power-law distribution of the fires
is consumed through time from the tail. In particular, the ex-
ponent (slope in the double-logarithmic plot) stays the same
in principle, while only the range of the power law becomes
shorter. Finally, however, the decay also affects the frequency
of the smallest fires.

2.2 A simple model for rockslide disposition

Hergarten (2012) proposed a simple model for rockslide dis-
position. This model is based on topography alone and as-
sumes that each site of a regular lattice may become unstable
if exposed to a random trigger. The probability of failure p
is assumed to be a function of the local slope S, measured in
the direction of steepest descent among the eight nearest and
diagonal neighbors. Sites with a slope below a given slope
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Figure 3. Simulated rockslide sites for a part of Switzerland. In
addition to the outlines of the unstable areas, the respective trigger-
ing points are also shown for events with V ≥ 10−4 km3 (105 m3).
Colors are just used for distinguishing overlapping outlines. Coor-
dinates refer to UTM 32.

Smin always remain stable (p = 0), while sites steeper than
a given slope Smax become unstable whenever exposed to a
trigger (p = 1). A linear increase in probability,

p =
S− Smin

Smax− Smin
, (1)

is assumed in the range between Smin and Smax. As soon as a
site becomes unstable, as much material as needed for reduc-
ing the slope to Smin is removed, and a trigger is applied to
all eight neighbors. Depending on the topography, this may
lead to large avalanches.

Applied to the topography of the Alps, the Himalayas, and
the southern Rocky Mountains, the model reproduced the
observed power-law distribution of rockslide volumes rea-
sonably well. Differences between the considered mountain
ranges were found concerning the transition from a power
law to an exponential distribution at large volumes. However,
the model has not been applied widely since then, except for
the study on landslide dams by Argentin et al. (2021).

Figure 3 illustrates the application of the model to a region
in Switzerland. Since the model has not been tested system-
atically for terrain models with less than 10 m grid spacing,
the 2 m terrain model of Switzerland (Bundesamt für Lan-
destopografie swisstopo, 2022) was resampled to 10 m grid
spacing. Since the model is used only for illustration here,
the parameter values Smin = 1 and Smax = 5 were adopted
from Hergarten (2012) and Argentin et al. (2021). A total of
10 triggers per square kilometer were applied to the actual
topography (so not a sequence of consecutive events).

As the main point to be illustrated, different trigger-
ing points result in very similar events at some locations.

At some other locations, events arising from different trig-
gers are overlapping but differ in size. Both effects become
stronger with increasing event size. This means that larger
potential rockslides are more likely to be triggered than
smaller potential rockslides in the model.

Qualitatively, this behavior is similar to that of the DS-
FFM but more complex. Since randomness is not limited to
triggering but is also part of the propagation of instability,
even rockslides of different sizes may be triggered from the
same point. In contrast to the DS-FFM, finding a quantitative
relation between event size and probability of being triggered
is not trivial for the rockslide model.

It is, however, recognized that the triggering points are not
distributed uniformly in the area but are concentrated around
the lower part of the outline. In this model, the initial insta-
bility preferably occurs at very steep sites and then predomi-
nantly propagates uphill since the uphill sites become steeper
due to the removal of material. Accordingly, the increase in
triggering probability with area (and thus also with volume)
should be weaker than linear.

3 Theoretical framework

Let us assume that the process of exhaustion starts at t = 0
from a given set of objects (potential events) described by a
nondimensional size s. This size is defined in such a way that
the probability λ of decay (generating an event) per time is
proportional to s (as in the DS-FFM),

λ(s)= µs, (2)

with a given value µ. Let φ(s, t) be the frequency density
of the objects still there at time t . Since φ(s, t) refers to the
number of objects of size s, it decreases according to

∂

∂t
φ(s, t)=−λ(s)φ(s, t)=−µsφ(s, t). (3)

This leads to

φ(s, t)= φ(s,0)e−µst , (4)

where φ(s,0) is the initial frequency density of the objects.
Let us further assume that the objects initially follow a

power-law (Pareto) distribution, which is most conveniently
written in the cumulative form

8(s,0)= ns−α (5)

with an exponent α. The cumulative frequency 8(s, t) de-
scribes the expected number of objects with sizes greater
than or equal to s at time t . In the context of statistics,8(s, t)
is the complementary cumulative frequency, while the cumu-
lative frequency originally refers to the number of objects
smaller than s. For a power-law distribution, considering the
complementary frequency simplifies the equations and al-
lows for a convenient graphical representation as a straight
line in a double-logarithmic diagram.
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Since 8(1,0)= n, the initial number of objects with sizes
s ≥ 1 is n. The respective frequency density is

φ(s,0)=−
∂

∂s
8(s,0)= nαs−α−1, (6)

which yields

φ(s, t)= φ(s,0)e−µst = nαs−α−1e−µst (7)

in combination with Eq. (4).
Computing the cumulative frequency 8(s, t) requires the

integration of Eq. (7):

8(s, t)=

∞∫
s

φ(σ, t)dσ =

∞∫
s

nασ−α−1e−µσtdσ. (8)

Substituting u= µσt , the integral can be transformed into

8(s, t)= nα(µt)α

∞∫
µst

u−α−1e−udu

= nα(µt)α0(−α,µst), (9)

with the upper incomplete gamma function

0(q,x)=

∞∫
x

uq−1e−udu. (10)

The negative rate of change in φ(s, t) defines the fre-
quency density of the events per unit time and at time t :

f (s, t)=−
∂

∂t
φ(s, t)= µsφ(s, t)= nµαs−αe−µst . (11)

The respective cumulative frequency of the events per unit
time, F(s, t), can be computed by performing the same steps
as in Eqs. (8) and (9):

F(s, t)=

∞∫
s

f (σ, t)dσ = nµα(µt)α−10(1−α,µst). (12)

As an example, Fig. 4 shows the respective distributions
for α = 1.2 (similar to the DS-FFM) and µ= 1 (which only
affects the timescale). The two frequency densities f (s, t)
and φ(s, t) are still close to the respective initial densities at
t = 10−3 over a considerable range of sizes. Their exponents
differ by 1 (α vs. α+ 1). According to Eqs. (4) and (11), the
actual frequency density drops below the respective power
law by a factor of e at a size

sc =
1
µt
. (13)

Figure 4. Cumulative frequency and frequency density of the events
per unit time (F(s, t), f (s, t)) and the objects still present (8(s, t),
φ(s, t)) at t = 0 and t = 10−3 for α = 1.2 and µ= 1. All distribu-
tions were normalized to the total number n of objects with sizes
s ≥ 1 (n= 1 in all equations).

Owing to this property, sc can be used for characterizing
the transition from a power law to an exponential decrease at
large event sizes. In this example, sc= 1000 at t = 10−3.

For the cumulative frequencies, the deviations from the re-
spective power law extend towards smaller sizes compared to
the frequency densities. The stronger deviation arises from
the dependence of the cumulative frequency at size s on the
frequency density of all greater sizes.

4 Application to paraglacial rockslides in the Alps

Applying the framework developed in Sect. 3 to paraglacial
rockslides in a given region requires the definition of the
event size s in the sense of Eq. (2) at first. This means that
the probability of failure at a potential rockslide site is pro-
portional to s. As discussed in Sect. 2.2, defining s is not
straightforward here. So let us assume a general power-law
relation

s =

(
V

V0

)γ
(14)

with a given exponent γ and a reference volume V0. Since µ
in Eq. (2) is the decay constant λ for s = 1, it is the decay
constant for rockslides with a volume V = V0 here, and n
(Eq. 5) is the initial number of potential rockslide sites with
V ≥ V0.

If the shape of the detached body was independent of its
volume, areas would be proportional to V

2
3 and lengths pro-

portional to V
1
3 . So assuming that failure can be initiated

at each point of the fracture surface at the same probabil-
ity would lead to γ = 2

3 . Taking into account that large de-
tached bodies are relatively thinner than small bodies (Larsen
et al., 2010) would result in γ > 2

3 but still considerably be-
low 1. The simple model considered in Sect. 2.2 suggests that
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the length of the outcrop line might be the relevant property
rather than the area, which would result in γ ≈ 1

3 .
Keeping the exponent γ as an unknown parameter, for-

ward modeling based on the concept of size-dependent ex-
haustion involves the four parameters γ , µ, α, and n. When
referring to real-world data, however, it is not known when
the process of exhaustion started. Therefore, a real-world
time t0 must be assigned to the starting point t = 0 used in
the theoretical framework, which introduces an additional
parameter.

Since data on the frequency of rockslides are sparse and
the completeness of inventories is often an issue, validating
the exhaustion model and constraining its parameters is chal-
lenging. For the European Alps as a whole, a combination of
historical and prehistorical data is used in the following.

1. A total of 18 rockslides with volumes between 0.001
and 0.01 km3 (1 to 10×106 m3) took place from 1850 to
2020 CE. These are 15 events up to 2000 CE reported by
Gruner (2006) and 3 events in the 21th century (Dents
du Midi, 2006; Bondo 2011 and 2017).

2. Seven rockslides with volumes between 0.01 and
0.1 km3 (10 to 100×106 m3) took place from 1850 to
2020 CE (Gruner, 2006).

3. Two rockslides with volumes greater than 0.1 km3 took
place from 1000 to 2020 CE (Gruner, 2006).

4. At t = 9450 BP, the largest potential rockslide volume
is 10 km3, corresponding to the age (Deplazes et al.,
2007) and volume (Aaron et al., 2020) of the Flims
rockslide.

5. At t = 9500 BP, the second-largest potential rockslide
volume is 4 km3, corresponding to the age (Nicolussi
et al., 2015) and volume (Zangerl et al., 2021) of the
Köfels rockslide.

6. At t = 3210 BP, the largest potential rockslide volume
is 1.1 km3, corresponding to the Kandersteg rockslide
(Singeisen et al., 2020).

7. At t = 4150 BP, the second-largest potential rockslide
volume is 1 km3, corresponding to the Fernpass rock-
slide (Gruner, 2006).

Anthropogenically triggered rockslides were not taken
into account in these data.

Constraints 4–7 differ from constraints 1–3 since they
are not inventories over a given time span but refer to the
largest or second-largest available volumes at a given time.
The respective statistical distributions are described by rank-
ordering statistics (e.g., Sornette, 2000, Chapter 6). Despite
the different types of the data, they can be combined in a
maximum likelihood formalism. The likelihood of a given
parameter combination (γ , µ, α, n, and t0) is the product of

seven factors then. The first three factors are the probabili-
ties that 18, 5, and 2 events occur in the volume ranges and
time spans defined in constraints 1–3. The fourth factor is
the probability density of the volume of the largest potential
rockslide at V = 10 km3 and t = 9450 BP. The remaining fac-
tors are obtained from the same principle. The respective ex-
pressions for the seven factors are developed in Appendix A.

However, the seven constraints defined above provide a
very limited basis for constraining the five parameters γ ,
µ, α, n, and t0. Since these constraints refer to volumes
V ≥ 10−3 km3 (1×106 m3), it would be useful to include in-
formation about smaller events from local inventories. As ex-
haustion predominantly affects the frequency of large events,
it makes sense to assume that the power-law distribution typ-
ically found in local inventories defines the initial distribu-
tion, so the initial frequency density f (s,0) of the events
follows a power law with the exponent α (Eq. 11). As re-
viewed by Brunetti et al. (2009), this exponent is typically in
the range αV ∈ [1.1,1.4], where the subscript V indicates that
this value refers to volume instead of the generic measure of
event size s. The relation between αV and α is easily obtained
from the cumulative frequency of the events at t = 0,

F(s,0)∝ s−(α−1)
∝ V −γ (α−1)

= V −(αV−1), (15)

with

αV = γ (α− 1)+ 1. (16)

While αV is used instead of α in the following, knowl-
edge about αV from real-world inventories is not directly
included in the maximum likelihood approach. The typical
range αV ∈ [1.1,1.4] is only used for checking whether the
estimate obtained from the maximum likelihood approach is
consistent with local inventories.

Technically, all computations were performed in terms of s
(Eq. 14) instead of V and consequently using α instead of αV.
The transfer to V and αV, which are more useful than s and α
in the interpretation, was performed afterwards.

Figure 5a shows the likelihood as a function of the expo-
nents αV and γ . For each combination of these two parame-
ters, the respective values of µ, n, and t0 that maximize the
likelihood were computed. Since absolute values of the like-
lihood have no immediate meaning, all values are normalized
to the maximum values. In addition to the likelihood values,
the obtained values of t0 are illustrated in the form of contour
lines, while the obtained values of µ and n are not shown.

The highest likelihood is even achieved for αV = 1 in com-
bination with γ = 0.28. However, the likelihood decreases
only by a factor of 0.68 for αV = 1.4 and γ = 0.47. For a
Gaussian likelihood function, the standard deviation would
correspond to a reduction by a factor of e−0.5

≈ 0.61, which
is marked by the gray contour line. So the entire parameter
region inside the gray line cannot be considered unlikely.

Qualitatively, however, the observed increase in likeli-
hood towards smaller exponents αV makes sense. Since size-
dependent exhaustion particularly reduces the frequency of
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Figure 5. Likelihood as a function of αV and γ for different scenarios. The maximum likelihood values taken over all combinations of the
remaining parameters µ, n, and t0 are shown. Likelihood values are normalized to the maximum value, and the gray contour line refers to
e−0.5

≈ 0.61 of the maximum likelihood. Black contour lines describe the obtained time t0 (BP) at which the process of exhaustion started.
Colored dots refer to the points with the highest likelihood for αV = 1, 1.1, 1.2, 1.3, and 1.4.

large events, it may introduce a bias towards larger esti-
mates of αV in rockslide inventories compared to the initial
distribution. As illustrated in Fig. 4, the deviation from the
power law increases continuously with increasing event size,
so there is no distinct range of validity for the power-law
distributions. As a consequence, any method that does not
take into account the deviation from the power law explic-
itly will likely overestimate the exponent. So the real value
of αV may be rather at the lower edge of the observed interval
αV ∈ [1.1,1.4] or even be slightly below 1.1.

The data set used for calibration is not only quite small
but also potentially incomplete. For the inventories used for
constraints 1 and 2, incompleteness should not be a serious
problem. The inventory used for the third constraint is small
and thus does not contribute much information, so an addi-
tional event would not change much. In turn, the assumptions
on the largest or second-largest potential rockslide at a given
time are more critical. As an example, the Kandersteg rock-
slide was assumed to be much older (t = 9600 BP; Tinner
et al., 2005) than the recent estimate (t = 3210 BP; Singeisen
et al., 2020) for several years. So constraints 6 and 7 would
have been different a few years ago.

In general, constraints 4–7 based on rank ordering may
be affected by the discovery of unknown huge rockslides, as
well as by new estimates of ages or volumes of rockslides
that are already known. Perhaps even more important, rock-
slides larger than those in constraints 4–7 may take place in
the future.

To illustrate the effect of a potential incompleteness, it
is assumed that the Kandersteg rockslide is not the largest
potential event at t = 3210 BP but that there is one addi-
tional larger event. For the formalism, it makes no differ-
ence whether this event already took place or will take place
in the future. As a moderate scenario, it is assumed that
this additional event is smaller than the Köfels rockslide
(1.1km3 < V < 4km3). This scenario shifts the rank of the

events in constraints 6 and 7 by one (Kandersteg to second
and Fernpass to third).

As shown in Fig. 5b, this scenario shifts the likely range
towards lower values of the exponent γ . According to its def-
inition (Eq. 14), lower values of γ correspond to a weaker
dependence of the decay constant on volume. So the exhaus-
tion of large events becomes relatively slower then, which is
the expected behavior if we assume an additional large event
at a later time.

The third scenario (Fig. 5c) goes a step further by as-
suming that there was a potential event even larger than
the Köfels rockslide but smaller than the Flims rockslide
(4 km3<V < 10 km3) at the time of the Kandersteg rock-
slide. This means that the rank of the Köfels rockslide in
constraint 5 changes from second to third. However, the like-
lihood values shown in Fig. 5c reveal no further shift towards
lower values of γ but even a small tendency back towards the
default scenario (Fig. 5a).

In the following, the rockslide size distributions corre-
sponding to the five dots in all three scenarios (Fig. 5a–c)
are considered. This means that the values αV = 1, 1.1, 1.2,
1.3, and 1.4 are considered for each scenario, while only the
most likely values of the other parameters γ , µ, n, and t0 are
used.

Let us now come back to the question about the size
of the largest rockslide to be expected in the future in the
Alps, i.e., for the largest potential rockslide volume at present
(2020 CE). Let 8(V,t) be the cumulative frequency at the
present time (Eq. 9 expressed in terms of V instead of s).
Then 8(V0, t) is the total number of potential rockslides
with V ≥ V0. Each of them is smaller than V at a probability
1− 8(V,t)

8(V0,t)
. Raising this probability to the power of 8(V0, t)

yields the probability that all potential rockslides are smaller
than V . Then

P(V, t)= 1−
(

1−
8(V,t)

8(V0, t)

)8(V0,t)

(17)
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Figure 6. Cumulative probability of the largest rockslide at present
(2020 CE). Different line types refer to the three considered scenar-
ios.

is the probability that the largest potential rockslide has a
volume of at least V . Using the relation (1− x

n
)n→ ex for

n→∞, this probability can be approximated by

P(V, t)= 1− e−8(V,t) (18)

if the total number 8(V0, t) is sufficiently large.
Figure 6 shows the cumulative probability P(V, t) of the

largest potential rockslide volume at present (2020 CE).
For the default scenario, this volume is greater than 0.5 to
0.7 km3 (depending on αV) at 50 % probability (the median).
This variation in the median size is owing to the finding that
different values of the exponent αV yield similar values of
the likelihood, so αV cannot be constrained further from the
data.

As already expected from Fig. 5b and c, the two scenar-
ios with an additional large rockslide are similar. However,
the median of the largest available volume is in the range
between 0.74 and 1.04 km3 and thus about 1.5 times higher
than for the default scenario. So the estimate of the largest
volume to be expected involves two sources of uncertainty
with the same order of magnitude. First, there is the inability
to constrain αV sufficiently well, owing to the limited amount
of data. Second, there is the potential incompleteness of the
data concerning the largest events at a given time, which is
here taken into account by considering the two alternative
scenarios.

If we go back to the time of the Kandersteg rockslide
(t = 3210 BP), the relevance of the uncertainties changes.
As shown in Fig. 7, the volumes predicted for the consid-
ered values of αV differ only by about 10 %. At that time,
the statistics of the largest possible rockslides are still con-
strained well by constraints 4–7. The predictions obtained
for different values of αV start to spread when proceeding
towards the recent time. In turn, the difference between the
scenarios stays roughly the same. So the question of whether
the Kandersteg rockslide was the largest potential event at its

Figure 7. Cumulative probability of the largest rockslide at the time
of the Kandersteg rockslide (3210 BP). Different line types refer to
the three considered scenarios.

time or only the second-largest has a similar effect at its time
as it has today.

As a third source of uncertainty, the statistical nature of
the prediction must be taken into account. Depending on αV
and on the considered scenario, the present-day 85 % and
15 % quantiles are 0.3–0.65 km3 and 0.95–2 km3, respec-
tively (Fig. 6). So the 70 % probability range (comparable
to the standard deviation of a Gaussian distribution) of the
largest potential rockslide covers a factor of about 3 in vol-
ume. This uncertainty is even larger than the two other con-
tributions to the uncertainty. It is an inherent property of the
statistical distribution and would not decrease even if all pa-
rameter values (γ , µ, αV, n, and t0) were known exactly.

In all scenarios, the probability that a rockslide with
V ≥ 3 km3 takes place in the future is below 5 %. The
probability of a rockslide with V ≥ 10 km3 is even lower
than 0.2 %. These results shed new light on the conclusion
of von Poschinger et al. (2006) that rockslides of several cu-
bic kilometers have to be taken into consideration also at
present. Such events may be possible concerning their mech-
anism and the climatic conditions, but it is very unlikely that
such an event would still be waiting to take place according
to this framework.

In turn, the probability that there will be no rockslide with
V ≥ 0.24 km3 is also less than 5 % (P = 0.95 in Fig. 6). This
result sheds new light on the artificially triggered rockslide
that struck the Vaiont reservoir in 1963 and claimed about
2000 lives. With a volume of about 0.27 km3, this rockslide
cannot be considered extraordinarily large, and natural events
of this size must be taken into account in the future.

Figure 8 brings the probability of occurrence into play.
It shows the expected cumulative frequency F(V, t) (events
per year) at present. All curves are strikingly close to each
other for 5× 10−4 km3

≤ V ≤ 0.02 km3. In this range, the
frequencies are constrained well by recent inventories (con-
straints 1 and 2).
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Figure 8. Cumulative rockslide frequency at present (2020 CE).
Different line types refer to the three considered scenarios.

The 100-year event (F(V, t)= 0.01 yr−1) has a volume of
0.04–0.045 km3. This is approximately the size of the rock-
slide that took place in Val Pola in 1987 (e.g., Crosta et al.,
2003). In the context of large events, the 475-year event is of-
ten considered, which is the event with a probability of 10 %
over 50 years. The predicted volume of this event is 0.15–
0.2 km3. The predicted frequency of the size of the Vaiont
rockslide (V = 0.27 km3) is between than 0.00145 yr−1 and
0.00085 yr−1, which means that a 700- to 1200-year event
was triggered at the reservoir in 1963. Finally, rockslides
with a volume of 1 km3 should be expected at a probability
of less than 1 per 5000 years.

Let us now come back to the question of what we can learn
about the process of exhaustion. Concerning the process, the
exponent γ is the central parameter, while αV does not refer
immediately to exhaustion, and µ, n, and t0 should depend
on the considered case study. The likelihood plots shown in
Fig. 5 tentatively suggest γ ≈ 1

3 . Despite the uncertainty of
this estimate, γ ≈ 1

3 is clearly more likely than γ ≈ 2
3 . In

terms of triggering a given site from different points, this
finding suggests that triggering should take place rather from
the outcrop line of the failure surface (or a part of it) than
from any point of the entire failure surface.

This knowledge may also be useful for validating or re-
futing models. So far, reproducing an exponent in the range
αV ∈ [1.1,1.4] seems to be the main goal of models of rock-
slide disposition. Although already challenging, this is still a
rather weak criterion. In the context of SOC, it would only
refer to the quasi-steady state, while the exponent γ provides
additional information about the behavior if driving ceases.

However, the simulation shown in Sect. 2.2 already re-
vealed that determining γ from simulations may be chal-
lenging. The observed concentration of the triggering points
around the outlines of the predicted rockslides tentatively
suggests that the model proposed by Hergarten (2012) may
behave correctly, but the occurrence of overlapping events of
different sizes makes a direct analysis difficult. Simulating

Figure 9. The e-folding time of the exhaustion as a function of the
volume. Different line types refer to the three considered scenarios.

and analyzing exhaustion starting from a quasi-steady state
would be an alternative strategy of validation for compre-
hensive models that also include long-term driving, such as
HyLands (Campforts et al., 2020).

As a fundamental property of the process of exhaustion,
Fig. 9 shows the e-folding time:

T =
1
λ
=

1
µs
=

1
µ

(
V

V0

)−γ
. (19)

For V ≥ 10 km3, T is shorter than 2000 years for all sce-
narios. In turn, T > 65 000 yr for V ≤ 10−6 km3 (1000 m3).
So paraglacial exhaustion should have a minor effect on the
frequency of events with V ≤ 1000 m3. The e-folding time
T = 5700 yr estimated by Cruden and Hu (1993) occurs in
Fig. 9 in a range from V = 0.04 km3 to V = 0.5 km3, depend-
ing on the considered scenario. However, Cruden and Hu
(1993) found T = 5700 yr as a lumped e-folding time for an
inventory with 10−6 km3

≤ V ≤ 0.05 km3. So it seems that
Cruden and Hu (1993) overestimated the exhaustion of small
rockslides (underestimated T ) perhaps due to undetected po-
tential landslide sites.

From a geological point of view, the time t0 at which the
process of exhaustion started might even be the most interest-
ing parameter. As shown in Fig. 5, the likely parameter range
even comprises values of t0 earlier than 15 000 BP. Such val-
ues would bring the deglaciation of the major valleys back
into play. However, Fig. 10 reveals that the results become
unrealistic between t0 and the time of the Flims rockslide
(9450 BP). In particular for small values of αV, the approach
predicts an unrealistically large number of rockslides with
V ≥ 10 km3 during the early phase of exhaustion. All com-
binations that yield a starting time t0 earlier than 15 000 BP
predict more than 10 potential rockslides with V ≥ 10 km3 at
t = 15 000 BP, and it is very unlikely that the Flims rockslide
is the only preserved one among those.

However, t0 is only a hypothetical time at which exhaus-
tion started from a power-law distribution without any cut-
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Figure 10. Cumulative frequency of potential rockslide sites with
V ≥ 10 km3. Different line types refer to the three considered sce-
narios.

off at large sizes. As observed in Sect. 2.1, even the quasi-
steady state of the DS-FFM already shows a cutoff in the
power-law distribution at large event sizes. This behavior is
typical for models in the context of SOC. While the cutoff
can be attributed to the finite growth rate in the DS-FFM,
it is even not clear what the quasi-steady state would look
like in the rockslide model discussed in Sect. 2.2. For the
paraglacial exhaustion process it is, however, obvious that the
initial relief imposes an upper limit on the potential rockslide
volumes. So the process already must start from a power-
law distribution with a cutoff. At least qualitatively, it makes
sense to assume that it starts from the distribution including
some exhaustion at a time later than t0 (formally,8(V,t) for
t > 0). A later starting time would correspond to a lower ini-
tial relief then. In order to estimate how much later than t0
the process started, we can make the hypothesis that there
were not many paraglacial rockslides with V ≥ 10 km3 in to-
tal, which means that8(V,t) should not be much larger than
1 for V = 10 km3 at the time when the process of exhaustion
started. If we assume 1≤8(V,t)≤ 2, the process of exhaus-
tion should have started between 12 000 BP and 10 000 BP
for all scenarios in Fig. 10.

In view of this result, the deglaciation of the major valleys
cannot be refuted only as an immediate trigger of the huge
paraglacial landslides in the Alps but also as the start of the
process of exhaustion. The starting point may, however, be
the massive degradation of permafrost caused by rapid warm-
ing in the early Holocene era. For the Köfels rockslide, the
potential relation to the degradation of permafrost was dis-
cussed by Nicolussi et al. (2015) and Zangerl et al. (2021). In
these studies, the 2000-year time span from the beginning of
the Holocene era to the rockslide was considered too long for
a direct triggering. However, the concept of exhaustion only
assumes that the respective sites became potentially unstable
when permafrost retreated. Returning to Fig. 9, the predicted
e-folding times are between 1100 and 2600 years for vol-

umes from 4 to 10 km3. In view of this result, a time span
of 2000 years to the occurrence of an actual instability is not
too long.

However, the question for the actual trigger for the respec-
tive rockslides remains open. In principle, even the question
of whether a unique trigger is needed is still open. Large in-
stabilities may also develop slowly (e.g., Riva et al., 2018;
Spreafico et al., 2021), and failure may finally occur without
a unique trigger.

5 Conclusions

In this study, a theoretical concept for event-size-dependent
exhaustion was developed. The process starts from a given
set of potential events, which are randomly triggered through
time. In contrast to a previous approach (Cruden and Hu,
1993), the probability of triggering depends on event size.

The concept was applied to paraglacial rockslides in the
European Alps. Since available inventories cover only a quite
short time span and older data are limited to a few huge
rockslides, constraining the parameters involves a large un-
certainty. Nevertheless, some fundamental results could be
obtained.

Assuming that the probability of triggering is related to
the volume V by a power law V γ , the results indicate expo-
nents γ ≈ 1

3 or even slightly lower. Interpreting the depen-
dence on volume as the possibility to initiate an event from
different points, this result suggests that initiation may start
rather from the outcrop line of the failure surface (or from a
part of this line) than from any point of the failure surface.
The exponent γ may be helpful for validating or refuting sta-
tistical or process-based models.

The concept of event-size-dependent exhaustion predicts
an exponential decrease in rockslide frequency through time
with a decay constant depending on V . For small rock-
slides with V ≤ 1000 m3, the respective e-folding time is
longer than 65 000 years. So the frequency of small rock-
slides should not have decreased much since the last glacia-
tion. In turn, the predicted e-folding time is shorter than 2000
years for V ≥ 10 km3. So the occurrence of rockslides on
the order of magnitude of the Flims rockslide is unlikely at
the present time. These e-folding times are, however, consis-
tent with the idea that the process of exhaustion was initi-
ated by the degradation of permafrost at the beginning of the
Holocene epoch.

For the largest rockslide possible at the present time, dif-
ferent considered scenarios predict a median volume of 0.5
to 1 km3. However, the predicted frequency of such large
events is low (less than 1 per 5000 years for V ≥ 1 km3). The
predicted 100-year event has a volume of 0.04–0.045 km3.
The artificially triggered rockslide at the Vaiont reservoir
(1963 CE, V = 0.27 km3) can be considered a 700- to 1200-
year event in this context.
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Appendix A: The maximum likelihood formalism

In this section, a maximum likelihood approach that com-
bines data of the two types discussed in Sect. 4 is developed.

The first type of data (constraints 1–3 in Sect. 4) refers to
the number of events in a given range of sizes [s1, s2] dur-
ing a given time interval [t1, t2]. The expected number N is
easily obtained from the cumulative frequency 8(s, t) of the
potential events (Eq. 9) as

N =8(s1, t1)−8(s2, t1)−8(s1, t2)+8(s2, t2). (A1)

Then the respective factor in the likelihood is the probabil-
ity that the actual number n of events occurs, which is given
by the Poisson distribution

L1–3 =
Nn

n!
e−N . (A2)

The second type of data (constraints 4–7 in Sect. 4) is de-
scribed by rank-ordering statistics. The probability density of
the kth largest among n events is

pk(s)=

(
n
k

)1−

∞∫
s

p(σ)dσ

n−k ×(k1 )
p(s)

 ∞∫
s

p(σ)dσ

k−1

(A3)

(Sornette, 2000, Eq. 6.4), where p(s) is the probability den-
sity of the events. Replacing p(s) by the frequency density
φ(s)= np(s), switching to the cumulative frequency 8(s),
and joining the binomial coefficients yield

pk(s)=
(n− 1)!

(n− k)!(k− 1)!

(
1−

8(s)

n

)n−k
×φ(s)

(
8(s)

n

)k−1

. (A4)

In the limit n→∞ at finite k, terms n−1, . . .,n−k can be
replaced by n. In combination with the relation (1− x

n
)n→

ex , we obtain

pk(s)=
1

(k− 1)!
e−8(s)8(s)k−1φ(s). (A5)

If s was the measured property, the probability den-
sity pk(s) would already be the respective factor of the like-
lihood. Here, however, V is the measured property, so the
likelihood is obtained by transforming pk(s) from s to V ac-
cording to

L4–7 = pk(s)
ds
dV

, (A6)

with
ds
dV
= V

−γ

0 γV γ−1
=
γ

V0
s
γ−1
γ (A7)

obtained from Eq. (14). Then the likelihood is

L4–7 =
1

(k− 1)!
e−8(s)8(s)k−1φ(s)

γ

V0
s
γ−1
γ . (A8)

Finally, the total likelihood is the product of the seven fac-
tors according to Eqs. (A2) and (A8).
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