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Abstract. Coastal hillslopes often host higher concentrations
of earthquake-induced landslides than those further inland,
but few studies have investigated the reasons for this occur-
rence. As a result, it is unclear if regional earthquake-induced
landslide susceptibility models trained primarily on inland
hillslopes are effective predictors of coastal susceptibility.
The 2016 Mw 7.8 Kaikōura earthquake on the northeast-
ern South Island of New Zealand resulted in ca. 1600 land-
slides> 50 m2 on slopes> 15◦ within 1 km of the coast, con-
tributing to an order of magnitude greater landslide source
area density than inland hillslopes within 1 to 3 km of the
coast. In this study, logistic regression modelling is used
to investigate how landslide susceptibility differs between
coastal and inland hillslopes and to determine the factors that
drive the distribution of coastal landslides initiated by the
2016 Kaikōura earthquake. Strong model performance (area
under the receiver operator characteristic curve or AUC of
ca. 0.80 to 0.92) was observed across eight models, which
adopt four simplified geology types. The same landslide
susceptibility factors, primarily geology, steep slopes, and
ground motion, are strong model predictors for both inland
and coastal landslide susceptibility in the Kaikōura region.
In three geology types (which account for more than 90 %
of landslide source areas), a 0.03 or less drop in model AUC
is observed when predicting coastal landslides using inland-
trained models. This suggests little difference between the
features driving inland and coastal landslide susceptibility
in the Kaikōura region. Geology is similarly distributed be-
tween inland and coastal hillslopes, and peak ground ac-
celeration (PGA) is generally lower in coastal hillslopes.
Slope angle, however, is significantly higher in coastal hill-

slopes and provides the best explanation for the high density
of coastal landslides during the 2016 Kaikōura earthquake.
Existing regional earthquake-induced landslide susceptibil-
ity models trained on inland hillslopes using common pre-
dictive features are likely to capture this signal without ad-
ditional predictive variables. Interestingly, in the Kaikōura
region, most coastal hillslopes are isolated from the ocean
by uplifted shore platforms. Enhanced coastal landslide sus-
ceptibility from this event appears to be a legacy effect of
past erosion from wave action, which preferentially steep-
ened these coastal hillslopes.

1 Introduction

Steep rocky coastlines, which account for ca. 80 % of wa-
terfront around the globe (Emery and Kuhn, 1982), are a
naturally desirable location to live in and for recreation. A
growing global population has resulted in human encroach-
ment on coastlines, with nearly one-quarter of the human
population now living in close proximity to the coast (Small
and Nichols, 2003). At the same time, global climate change
and rising sea levels threaten to increase the rate of coastal
landsliding and cliff retreat, in part, due to wave action over-
topping protective beaches and impacting coastal cliff faces
more frequently (e.g. Young et al., 2014; Limber et al., 2018).
The increasing frequency and intensity of these events will
impact people and infrastructure near coastal hillslopes (e.g.
Jibson, 2006; Dellow et al., 2017; Handwerger et al., 2019).

To help mitigate and manage these hazards, previous stud-
ies have attempted to define landslide susceptibility mod-
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els for steep coastal regions using a physical understanding
of the forcings that contribute to coastal mass wasting and
the susceptibility factors that make failure more likely (e.g.
Keefer, 2000; He and Beighley, 2008; Budetta et al., 2008;
Dickson and Perry, 2016; Francioni et al., 2018; Young,
2018; Limber et al., 2018). Forcings include rainfall, wave
and tidal action, and storm surge, whereas susceptibility fac-
tors include steep topography, geology, rock structure, hy-
drology, urbanization, and soil moisture, among other factors
(Vann Jones et al., 2015; Dickson and Perry, 2016; He and
Beighley, 2008). In tectonically active regions, earthquakes
also act as a forcing that contributes to coastal landslide sus-
ceptibility (Griggs and Plant, 1998; Hancox et al., 2002), but
few models have considered the influence of strong ground
motion.

Similarly, while a number of studies (e.g. Budimir et al.,
2015; Parker et al., 2015; Massey et al., 2018) have at-
tempted to define factors contributing to regional earthquake-
induced landslide susceptibility, few have focused specifi-
cally on coastlines. In several cases (e.g. Griggs and Plant,
1998; Collins et al., 2012; Massey et al., 2018) a significantly
higher landslide density was observed on coastal hillslopes as
compared with inland hillslopes, but this has yet to be con-
sidered in most probabilistic landslide susceptibility assess-
ments. Given the potential influence of increased precipita-
tion, weathering, and soil moisture along coastlines (Motter-
shead, 2013), it is possible that regional earthquake-induced
landslide susceptibility models, primarily trained on inland
hillslopes, may not effectively predict coastal landslide dis-
tributions. In this study, we explicitly test whether a land-
slide susceptibility model trained on landslides from inland
hillslopes captures the distribution of coastal landslides. The
purpose of this test is to determine if existing variables can
explain the difference between inland and coastal landslide
densities or if future landslide susceptibility models should
consider additional coastal-specific variables.

Following the 2016 Mw 7.8 Kaikōura earthquake along
the northeastern coast of the South Island of New Zealand
(Hamling et al., 2017), Massey et al. (2018) observed an or-
der of magnitude greater number of landslides along coastal
hillslopes as compared with inland hillslopes. No clear phys-
ical control on this increased landslide density was identi-
fied, although several hypotheses were presented, including
differing slope geometry resulting in ground motion ampli-
fication along the Kaikōura coast and reduced rock mass
strength. Here, the distribution of coastal landslides from the
2016 Kaikōura earthquake is used to (1) train comparative
logistic regression earthquake-induced landslide susceptibil-
ity models for use in coastal and inland hillslopes in the
Kaikōura region, (2) evaluate factors that might contribute
to an increased coastal coseismic landslide density during an
earthquake, and (3) explore some of the mechanisms that re-
sulted in increased coseismic landslide susceptibility along
the Kaikōura coast in 2016.

2 Background

2.1 The 2016 Mw 7.8 Kaikōura earthquake

The 2016 Mw 7.8 Kaikōura earthquake initiated on the
Humps fault near the township of Waiau ca. 40 km inland
from the coast in the northeastern South Island of New
Zealand (Hamling et al., 2017). The earthquake triggered
a cascade of fault ruptures on more than 20 onshore and
offshore faults primarily to the northeast of the epicentre
(Fig. 1; Litchfield et al., 2018). The earthquake, which caused
complex surface deformation along ca. 110 km of coastline
(Clark et al., 2017), ruptured faults of both the North Can-
terbury Domain (NCD) and the Marlborough Fault System
(MFS) tectonic domains which transfer plate motion from
the Hikurangi Subduction Zone in the north to the transpre-
sive Alpine Fault in the south (Fig. 1; Litchfield et al., 2018).

The earthquake generated more than 30 000 landslides,
which were primarily concentrated within the steep slopes of
the Seaward Kaikōura Range, around surface fault ruptures,
and in steep sections of coastline (Figs. 1 and 2; Massey et
al., 2018, 2020a; Bloom et al., 2022). Statistical modelling
by Massey et al. (2018, 2020a) found that the regional distri-
bution of landslides from the Kaikōura earthquake was well
explained by geology, slope, distance to surface fault traces,
peak ground velocity (PGV), local slope relief, and elevation.
While Massey et al. (2018) acknowledged a higher density of
landslides along the Kaikōura coast, they did not investigate
coastal landslide susceptibility, nor the underlying mech-
anisms involved in the distribution of coastal earthquake-
induced landslides. Here, we separate out coastal versus non-
coastal hillslopes from this regional analysis and indepen-
dently investigate the factors that might have contributed to-
wards increased landslide susceptibility of coastal hillslopes
during the 2016 Kaikōura earthquake.

2.2 Coastal and geologic setting

Much of the northeastern coast of New Zealand’s South Is-
land is steep and rocky (Figs. 1 and 2). Coastal hillslopes are
primarily composed of intensely jointed Lower Cretaceous
greywacke of the Torlesse Supergroup along with younger
Upper Cretaceous to Neogene sedimentary units (Rattenbury
et al., 2006). These units are, in places, overlain by less-
consolidated Pleistocene alluvial, fluvial, and beach deposits.
Portions of the region’s steep coastline, primarily south of the
Haumuri Bluffs at Conway Flat (Fig. 1), form steep coastal
cliffs ca. 50 to 150 m in height, many of which are subject
to wave action at high tide (Bloom et al., 2023). North of the
Haumuri Bluffs, however, most coastal hillslopes are uplifted
and buffered from direct wave action by shore platforms that
have, in places, been anthropogenically modified to facilitate
road and rail corridors (Fig. 2; Mason et al., 2017; Stringer
et al., 2021).
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Figure 1. (a) Location of the Kaikōura earthquake within the tectonic setting of New Zealand. Active faults from the 1 : 250000 scale New
Zealand Active Faults Database (Langridge et al., 2016) are in grey, and simplified major offshore structures are in blue. The black arrows
show the relative motion of the Pacific and Australian plates (Beavan et al., 2002). (b) Area of the Kaikōura earthquake with active faults of
the New Zealand Active Faults Database in grey and fault ruptures from the 2016 Kaikōura earthquake in red (Litchfield et al., 2018; Zinke
et al., 2019). The shaded blue area is the focus of this study, a 3 km buffer of the coast where modelled PGA from the Kaikōura earthquake
was greater than 0.2 g. The red points identify locations where Ota et al. (1996) estimated coastal uplift rates (noted next to labels). Major
faults that cross the coastline in the Kaikōura region are labelled. MFS refers to the Marlborough Fault System north of the Hope fault, while
NCD refers to the North Canterbury Domain south of the Hope fault. The base image is a multidirectional hillshade of the Land Information
New Zealand 8 m DEM (LINZ, 2021a).

Long-term coastal uplift in the Kaikōura region is lo-
cally variable as a result of major faults, including the
Hope, Kekerengu–Needles, and Hundalee, which cross-cut
the coastline (Fig. 1; Litchfield et al., 2018; Howell and
Clark, 2022). Approximate regional estimates of uplift based
on Pleistocene marine terraces suggest ca. 2.0 mm yr−1 of
uplift at the Conway River mouth, 1.3 mm yr−1 at the Hau-
muri Bluffs, 1.1 mm yr−1 at Kaikōura township, 1.1 mm yr−1

at the Clarence River mouth, and ca. 0.5 mm yr−1 ca. 10 km
south of Cape Campbell (Fig. 1; Ota et al., 1996). These
measurements generally align well with more recent mea-
surements of ca. 0.9 to 1.3 mm yr−1 at Kaikōura (Nicol et
al., 2022). Single-event vertical displacement from the 2016
Kaikōura earthquake ranged from ca.−2.5 to 6.5 m along the
Kaikōura coast (Clark et al., 2017; Howell and Clark, 2022),
but the areas that subsided in 2016 have undergone net uplift
over the Holocene and Pleistocene (Ota et al., 1996; Howell
and Clark, 2022).

As a result of low coastal population density, little work
has been done to estimate long-term coastal retreat rates for
the South Island of New Zealand. The few studies that have

estimated retreat (Bloom et al., 2023; Kirk, 1975, 1977) sug-
gest highly variable rates modulated by lithology and topog-
raphy. Average rainfall measured in the township of Kaikōura
is ca. 721 mm yr−1 (Macara, 2014) but is highly spatially
variable along the Kaikōura coast, ranging from ca. 675 to
ca. 1500 mm yr−1 (NIWA, 2022). Over the historical record,
significant landsliding along the Kaikōura coast has been
observed following large storms, for example Cyclone Ali-
son (March 1975) and ex-Tropical Cyclone Ita (April 2014),
which brought high rainfall to the region over a short period
of time (Massey et al., 2021a).

3 Data and methods

To explore coastal earthquake-induced landslide suscep-
tibility in the Kaikōura region, we rely on a combina-
tion of predictive landslide susceptibility features and an
earthquake-induced landslide inventory produced by Massey
et al. (2020a) following the 2016 Kaikōura earthquake
(Fig. 2). These datasets are used to examine the distribution
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Figure 2. A multidirectional hillshade of post-earthquake lidar (Massey et al., 2020b) with coastal earthquake-induced landslides mapped
by Massey et al. (2020a). A high density of coastal earthquake-induced landslides was observed within the scars of relict landslides that are
common along the coastline. Shore platforms modified by road and rail corridors buffer the base of the coastal hillslopes.

of landslides with distance from the Kaikōura coast and pro-
vide training data for comparative inland and coastal land-
slide susceptibility models (Fig. 3). For the purposes herein,
inland hillslopes are defined as hillslopes within > 1 to 3 km
of the Kaikōura coast and coastal hillslopes as hillslopes
within 1 km of the coastline (Massey et al., 2018). This dis-
tinction was based on three main factors. First, the observed
landslide density is much higher within 1 km of the coast
than within 1 to 3 km despite generally similar distributions
of lithology, elevation, and vegetation. Second, hillslopes
greater than 3 km from the coast capture a different propor-
tion of lithology and alpine terrain (Fig. 1) with a higher
landslide density. These hillslopes are more difficult to com-
pare with the coastal setting and may be affected by different
processes. Third, the area within 1 km of the coast primar-
ily encompasses terrain up to the first topographic ridgeline
(Massey et al., 2018) and is therefore more representative
of “coastal-facing” hillslopes than those at greater distances.
The differences between the coastal and inland susceptibility
models are investigated to examine the factors contributing
to an increased density of landslides on the Kaikōura coast.
The following sections provide an overview of these datasets
and analyses.

3.1 The 2016 Kaikōura landslide inventory

For this analysis, mapped source area polygons from ver-
sion 2.0 of the 2016 Kaikōura earthquake-induced landslide
inventory (Figs. 2 and 3; Massey et al., 2020a) were con-
verted into a binary 8 m grid of landslide and non-landslide
grid cells. Grid cells were assigned a value of 1 if the cen-
tre point of the grid cell fell within a landslide source area
polygon and a value of 0 if it did not. Based on the size area
distribution of landslides within 3 km of the Kaikōura coast-
line, landslides smaller than 50 m2 were excluded from the
analysis. This was done in an effort to eliminate potential
bias resulting from preferential mapping of smaller failures
along the Kaikōura coastal road corridor (Fig. A1 in the Ap-
pendix). Here, distance to the Kaikōura coastline was defined
using the nearest Euclidean distance from the centre point of
each 8 m grid cell to the coast as defined by the Land Infor-
mation New Zealand (LINZ) Topo50 New Zealand Coast-
lines (LINZ, 2021b). Investigations were limited to slopes
greater than 15◦, which captured ca. 91 % of cumulative
landslide source area, while excluding most hillslopes un-
likely to produce significant landsliding in this region. This
threshold is commonly applied (e.g. Meunier et al., 2007;
Kritikos et al., 2015) to confine investigations to hillslopes
capable of producing landslides. Furthermore, analyses were
limited to those areas where modelled PGA (Worden et al.,
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Figure 3. Logistic regression model workflow. Gridded landslide data and predictive features are used to train and test binary logistic
regression models. Model results are used to compare inland and coastal landslide susceptibility and to assess the importance of predictive
features. NDMI stands for normalized difference moisture index, while PGA/PGV stands for peak ground acceleration/velocity.

2020) was greater than 0.2 g (the triggering threshold for
New Zealand’s earthquake-induced landslide response tools;
Massey et al., 2021b). Areas with PGA greater than 0.2 g in-
clude ca. 99 % of mapped coastal landslide source areas from
the 2016 Kaikōura earthquake. Finally, the ca. 452 000 m2

seafront landslide was excluded from the analysis to avoid
skewing descriptive statistics and modelling. The source area
of the seafront landslide occurs approximately 1 to 3 km from
the coast but is located directly along a surface-rupturing
fault (> 9 m vertical displacement; Bloom et al., 2021). The
failure is almost an order of magnitude larger than the next
largest 2016 failure within 3 km of the coastline and is not
representative of failures within the wider coastal region.

To supplement the landslide inventory, we reviewed the
high-resolution pre- and post-event digital elevation mod-
els and orthophotographs used to create the Kaikōura
earthquake-induced landslide inventory (Massey et al.,
2020a) and manually assigned each landslide source area
polygon either a “first movement” designation or one of
three landslide activity designations derived from Cruden
and Varnes (1996): “reactivated retrogressive rock or debris”,
“reactivated moving debris”, or “reactivated moving rock”.
These designations represent the landslide activity in rela-
tion to past failures. For the purposes herein, a past failure
was defined as any landslide, landslide debris, or landslide
scar that was apparent on the hillslope before the 2016 earth-
quake. First movements have no obvious link with a pre-2016
failure. Reactivated retrogressive rock or debris exhibited ex-
tension of a pre-2016 landslide head scarp opposite to the
failure direction. In this case we also include coastal cliff-top

failures where there was evidence of past landslides. Reac-
tivated moving rock exhibited remobilization of the major-
ity of material within an observed pre-2016 landslide. Re-
activated moving debris exhibited minor deformation within
the body of a past landslide, including partial reactivation of
landslide debris.

3.2 Landslide distribution

To examine the distribution of landslides in relation to the
coast, the landslide source area density, referred to herein
as landslide density, was calculated at an increasing distance
from the coast. Landslide density is the sum of the gridded
landslide source area within 24 m bins at a distance from
the LINZ Topo50 New Zealand Coastlines (LINZ, 2021b)
divided by the total area within the bin. Landslide density
was further broken down within five geology types (Geol-
Codes) simplified from the New Zealand QMAP (Ratten-
bury et al., 2006). GeolCode 1 represents Quaternary sands,
silts, and gravels that are primarily fluvial deposits but also
include alluvial fan, marine, and recent beach deposits; Ge-
olCode 2 represents Neogene limestones, sandstones, and
siltstones; GeolCode 3 represents Upper Cretaceous to Pa-
leogene rocks, including limestones, sandstones, and silt-
stones; GeolCode 4 represents minor undifferentiated vol-
canic rocks; GeolCode 5 represents Lower Cretaceous Tor-
lesse (Pahau terrane) basement rocks that are predominantly
heavily deformed sandstones and argillite, commonly re-
ferred to as greywacke in New Zealand; and finally Geol-
Code 6 represents undifferentiated relict landslides and hills-
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lope deposits as defined by QMAP. It is important to note that
relict landslides and hillslope deposits are not systematically
mapped within QMAP (Rattenbury et al., 2006).

3.3 Landslide susceptibility features

A number of machine learning and statistical modelling tech-
niques, for example logistic regression, random forest, or
deep neural networks, have been successfully applied to re-
gionally estimate landslide susceptibility (Reichenbach et al.,
2018). The choice of modelling technique is largely gov-
erned by the scale and requirements of the analysis. In this
study the binary logistic regression technique is used be-
cause it (1) balances relatively high model performance with
low model training times and (2) has high “explainability”,
allowing us to easily identify the importance of individual
predictive features in trained models (Fig. 3; Budimir et al.,
2015). The purpose of using machine learning in this study is
to better understand predictive features, not to create a fore-
cast model or susceptibility maps. Other types of models, for
example deep neural networks, may result in higher model
performance more suited to forecasting but sacrifice explain-
ability and require longer training times (Reichenbach et al.,
2018), limiting their application in this case.

The basic requirements for all empirical landslide suscep-
tibility analyses are, typically, a categorical landslide dataset
(defining the presence or absence of a landslide at any given
location) and one or more predictive features that can be used
to train the model (Fig. 3; Budimir et al., 2015). A separate
categorical landslide dataset (not used in model training) is
used to test the efficacy of the trained model (Fig. 3). Model
performance is optimized differently based on the modelling
technique but usually involves varying model “hyperparame-
ters” or values used to control model process and refining the
predictive features used to train the model (Lombardo and
Mai, 2018; Reichenbach et al., 2018). Here, we discuss the
choice of predictive features and further describe the appli-
cation of the logistic regression modelling technique.

For this analysis, 25 common predictive features used in
other landslide susceptibility studies (e.g. Budimir et al.,
2015) were developed. These features included a range of
lithologic, topographic, and surface conditions, for example,
slope angle, roughness, and vegetation greenness (NDVI)
(Fig. A2). Of these features, 13 that produced variance infla-
tion factor (VIF) scores greater than 10 were excluded. VIF,
defined as

VIF=
1

1−R2
i

, (1)

is an assessment of the linear relationship between any indi-
vidual feature and all other potential features (R2

i ) (Kutner
et al., 2004). Excluding collinear features ensures more rep-
resentative model weighting, generally improves model per-
formance, and maintains model explainability.

The various features used in this analysis (Table 1) were
converted to raster format and/or aligned to the spatial reso-
lution of the LINZ 8 m DEM (LINZ, 2021a) using the GDAL
rasterize and warp functions with nearest-neighbour resam-
pling. The LINZ 8 m DEM, primarily derived from the Jan-
uary 2012 LINZ Topo50 20 m contours (LINZ, 2021a), was
used to derive the curvature, aspect, elevation, and slope fea-
tures used in the analysis (Table 1). While the LINZ 8 m
DEM has known limitations for local terrain analysis, on a
regional scale, it captures the majority of terrain characteris-
tics (Appendix A) and is one of the few datasets with appro-
priate coverage and resolution for our analysis.

Similar to the landslide density analysis, the extent of fea-
tures (Table 1) was limited to slopes greater than 15◦ and
areas with PGA (defined by the USGS ShakeMap; Worden
et al., 2020) greater than 0.2 g. Continuous landslide suscep-
tibility features (Fig. 3, Table 1) were scaled using the fol-
lowing standard scalar method:

z=
x−µ

σ
, (2)

where the standardized value (z) is the original value (x) mi-
nus the mean (µ) of all values divided by the standard devi-
ation (σ ) of all values. Using the standard scalar allows us to
compare model coefficients or the weights assigned to each
feature during model training side-by-side.

3.4 Logistic regression modelling

The predictive power of individual landslide susceptibility
features during the Kaikōura earthquake was strongly modu-
lated by geology type (Massey et al., 2018, 2020a; Singeisen
et al., 2022). Separate coastal (0 to 1 km from the coast) and
inland (1 to 3 km from the coast) models were, therefore,
trained in four simplified geology types (GeolCodes 1, 2, 3,
and 5; Fig. 3) using predictive features and the Scikit-learn
Python library (Table 1). GeolCode 4 (volcanics) and Geol-
Code 6 (mapped hillslope deposits) lacked sufficient data to
support a robust model and were excluded from the analy-
sis. Additional models were trained using the combined data
from inland and coastal hillslopes, and these results are in-
cluded in Appendix B (Figs. B1 and B2).

Models were trained on 80 % of gridded data, leaving
20 % of data for independent verification of the model perfor-
mance (Fig. 3). Across model training, random 10-fold cross-
validation was used to evaluate model uncertainty. In K-fold
cross-validation, the training dataset is partitioned into K (in
this case 10) parts (Hastie et al., 2017), and models are iter-
atively trained using all parts minus one. The remaining por-
tion of data excluded from training in each iteration is used to
validate model performance. An L1 regularization was used
to penalize poor features and improve model prediction by
simplifying the model (Lombardo and Mai, 2018). Using the
L1 (also known as the least absolute shrinkage selection op-
erator or LASO; Tibshirani, 1996) allows the model to assign
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Table 1. Landslide susceptibility features.

Number Feature Type Description

1 Coast distance Continuous Euclidean distance (GDAL) from the LINZ Topo50
New Zealand Coastlines (LINZ, 2021b)

2 Curvature Continuous Curvature (RichDEM) derived from Land Information
New Zealand (LINZ) 8 m DEM (LINZ, 2021a)

3 Cut slopes Categorical Modified cut slopes mapped as polygons and gridded to
8 m. Values of 1 indicate the presence of a cut slope at
the grid cell centre point.

4 and 9 Aspect (eastness and northness) Continuous Eastness (sin) and northness (cos) of aspect (GDAL,
converted to radians) produced using LINZ 8 m DEM
(LINZ, 2021a)

5 Elevation Continuous LINZ 8 m DEM (LINZ, 2021a) primarily derived from
January 2012 LINZ Topo50 20 m contours (LINZ,
2021a); native resolution: 8 m pixel−1

6 Fault distance Continuous Euclidean distance (GDAL) from 14 surface-ruptured
faults from 2016 by Bloom et al. (2022)

7 Ground Motion Continuous PGA and PGV from USGS ShakeMap v4 (Worden
et al., 2020; Kaikōura ShakeMap products accessed
at https://earthquake.usgs.gov/earthquakes/eventpage/
us1000778i/shakemap/intensity, last access: 7 Septem-
ber 2021); native resolution: 336 m pixel−1

8 NDMI (normalized difference moisture index) Continuous Derived from October 2016 Landsat 8 Imagery (U.S.
Geological Survey, 2022): NDMI = (Band 5−Band 6)
/ (Band 5+Band 6); native resolution: 30 m pixel−1

10 OFD (off-fault deformation) Categorical OFD zone as defined for 14 faults by Bloom et
al. (2022) as polygons gridded to 8 m. Values of 1 indi-
cate the presence of an OFD zone at the grid cell centre
point.

11 Slope Continuous Slope (GDAL) derived from LINZ 8 m DEM (LINZ,
2021a)

12 Structural aspect Continuous Difference between aspect and dip direction of QMAP
bedding measurements (Rattenbury et al., 2006; see Ap-
pendix A for additional details)

13 Geology (GeolCode) Categorical Simplified from 1 : 250000 scale New Zealand QMAP
(Rattenbury et al., 2006) classes: (1) Quaternary sands
and gravels, (2) Neogene sediments, (3) L. Creta-
ceous – Paleogene sediments, (4) volcanics, (5) Torlesse
greywacke (Pahau), and (6) landslide and hillslope de-
posits

overly collinear or unsupportive features a coefficient of 0.
The Stochastic Average Gradient Accelerated (SAGA) solver
(Defazio et al., 2014), which supports L1 regularization, was
used to weight coefficients. In all cases, models converged
prior to a maximum of 100 iterations. Based on hyperparam-
eter tuning, a C (inverse of regularization strength) of 1 was
applied to the models. The target datasets have a greater num-
ber of non-landslide source area (value of 0) grid cells than

landslide (value of 1) grid cells (Table A1 in the Appendix).
To limit overprediction, no attempt was made to balance or
otherwise weight the datasets during model training.

The intention of this work was not to systematically eval-
uate or compare model prediction. However, estimates of the
area under the receiver operator characteristic (AUC) curve
were used to demonstrate the relatively high performance
of all trained models. The ROC curve (e.g. Fawcett 2006;
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Lombardo and Mai, 2018) plots the true positive rate (TPR)
against the false positive rate (FPR) at different probability
thresholds. TPR, also known as “sensitivity”, represents the
ratio of positive predictions that were correctly classified as
positive by the model, i.e. pixels modelled as failures that
actually failed in 2016. FPR is calculated as 1 – specificity,
where specificity is the true negative rate (TNR) or the ratio
of negative model predictions that were correctly classified as
negative. The shape of the ROC curve is used to evaluate the
goodness of fit for a binary classifier – in this case, whether
a grid cell represents a landslide source area or not (Y = 1 or
Y = 0). The class prediction for each instance is determined
based on the probability threshold. The area under the ROC
curve is calculated to quantify the shape of the curve in a
single reportable value. Values of AUC close to 1 represent
better model performance, while values close to 0.5 represent
near-random results (Hosmer et al., 2013). As a final test to
demonstrate the efficacy of the models, we used the results of
models trained on inland data to predict the coastal landslide
distribution (Fig. 3), and this is also reported based on AUC.

Because model features were standardized using the stan-
dard scalar method, model coefficients can be directly com-
pared for each predictive feature to estimate feature impor-
tance (Fig. 3). Following the techniques of Lombardo and
Mai (2018) and Williams et al. (2021), jackknife and single-
variable logistic regression model permutations were also
trained for inland and coastal hillslopes in GeolCodes 1, 2,
3, and 5 to further assess feature importance (Fig. 3). In
the jackknife method, a single landslide susceptibility fea-
ture is iteratively removed during model training (Lombardo
and Mai, 2018; Williams et al., 2021). Individual model re-
sults are then compared in order to evaluate the influence of
removing each feature from the model. A more substantial
drop in model AUC suggests higher importance for the re-
moved feature. In the single-variable method, models are it-
eratively trained on each susceptibility feature separately to
determine individual feature importance. In these models, a
higher model AUC suggests that the feature has a greater in-
dependent explanatory value.

4 Results

4.1 Distribution of coastal earthquake-induced
landslides

Similar to the results of Massey et al. (2018), an order of
magnitude greater earthquake-induced landslide density was
observed across coastal hillslopes as a result of the 2016
Kaikōura earthquake (Fig. 4). Within 1 km of the coast, 1621
landslides> 50 m2 were observed on slopes greater than 15◦

with a mean PGA greater than 0.2 g. Given these filters, on
average, coastal landslides were slightly larger than inland
landslides (ca. 870 m2 for coastal hillslopes and ca. 780 m2

for inland hillslopes; Table B1). Removing landslide size

and slope filters results in a similar coastal landslide density.
Source area density peaks at ca. 7 % between 0 and 100 m
from the coastline and drops to ca. 0.5 % at 1000 m from
the coastline (Fig. 4). Between 1000 m from the coastline
and 3000 m from the coastline, landslide source area den-
sity remains generally consistent, with an average density of
ca. 0.5 % (Fig. 4).

4.2 Distribution of lithology

Most landslides from the 2016 Kaikōura earthquake occur
within Torlesse greywacke (GeolCode 5), younger sedimen-
tary units (GeolCode 2 and 3), and unconsolidated Quater-
nary units (GeolCode 1) (Table 2). Less than 1 % of land-
slides were observed within volcanic rocks (GeolCode 4)
or mapped pre-existing failures and hillslope deposits (Ge-
olCode 6), which are not systematically mapped. Regional
landslide density does not mirror the distribution of lithology
(Table 2), and landslide source areas disproportionately oc-
cur within Upper Cretaceous to Paleogene sediments (Geol-
Code 3) and, along the coast, within Lower Cretaceous Tor-
lesse greywacke (GeolCode 5). The general landslide den-
sity trends are primarily driven by these two geology types.
Within ca. 100 m of the coast, landslide density is as high as
ca. 6 % in both GeolCode 3 and GeolCode 5 (Fig. 4).

4.3 Landslide activity

Of the mapped landslides from the 2016 Kaikōura earth-
quake, ca. 13 % within 1 km of the coast and ca. 34 % be-
tween 1 and 3 km of the coast were first movements (Table 3).
The remaining failures were a combination of reactivation of
relict landslides, including retrogression of pre-existing land-
slide head scarps, and reactivation of landslide debris. Within
Torlesse greywacke (GeolCode 5), ca. 49 % of inland land-
slides were first movements as compared with ca. 17 % of
coastal failures (Table 3).

4.4 Coastal vs. inland earthquake-induced landslide
susceptibility models

The AUC of cross-validated coastal models is generally con-
sistent with similar studies (e.g. Reichenbach et al., 2018;
Williams et al., 2021) and ranges from ca. 0.79 in coastal
Neogene sediments (GeolCode 2) to ca. 0.92 in coastal Qua-
ternary sediments (GeolCode 1) with generally low vari-
ability across 10 cross-validations (Fig. 5). Additionally, all
model AUCs were within the range of cross-validations when
independently testing model performance using 20 % of data
withheld from model training (Fig. 5).

The results of inland model training were used to pre-
dict the coastal landslide distribution (Figs. 5 and 6). Models
trained on inland landslides and applied to coastal hillslopes
generally produced the same or lower AUC values than mod-
els trained on coastal hillslopes (Fig. 5). There was a ca. 0.20
drop in AUC in GeolCode 1, a ca. 0.03 drop in GeolCode

Nat. Hazards Earth Syst. Sci., 23, 2987–3013, 2023 https://doi.org/10.5194/nhess-23-2987-2023



C. K. Bloom et al.: Coastal earthquake-induced landslide susceptibility 2995

Figure 4. Overall landslide source area density (landslide density) within 24 m bins at an increasing distance from the Kaikōura coast as
defined by the LINZ Topo50 Coastlines (LINZ, 2021b). Landslide densities within GeolCodes 1, 2, 3, and 5 are presented separately in the
bottom plots.

Table 2. Distribution of lithology and landslides.

GeolCode Geology Percent of Percent of Coastal Percent of Percent of Inland
coastal area coastal landslide inland area inland landslide
(0 to 1 km) landslides density (%) (1 to 3 km) landslides density (%)

1 Quaternary 7.3 9.0 2.5 3.8 2.1 0.3
2 Neogene 32.9 20.1 1.2 21.2 20.1 0.5
3 Paleogene 16.8 25.3 3.1 23.8 39.6 0.8
5 Torlesse 42.9 45.6 2.2 51.2 38.1 0.4
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Table 3. Earthquake-induced landslide activity in relation to past failures.

Coast (0 to 1 km)

GeolCode Geology First Reactivated Reactivated Reactivated
movement retrogressive moving rock moving debris

movement

1 Quaternary 12 % 43 % 3 % 42 %
2 Neogene 8 % 54 % 4 % 35 %
3 Paleogene 13 % 33 % 4 % 50 %
4 Volcanics 0 % 0 % 0 % 0 %
5 Torlesse 17 % 28 % 4 % 51 %
6 Relict landslides (QMAP) 0 % 39 % 1 % 60 %
All All 13 % 38 % 4 % 45 %

Inland (1 to 3 km)

1 Quaternary 28 % 39 % 3 % 30 %
2 Neogene 21 % 53 % 4 % 23 %
3 Paleogene 24 % 40 % 4 % 32 %
4 Volcanics 31 % 46 % 8 % 15 %
5 Torlesse 49 % 19 % 2 % 29 %
6 Relict landslides (QMAP) 28 % 40 % 4 % 28 %
All All 34 % 38 % 3 % 25 %

Figure 5. Logistic regression model performance from models trained on each geology type (GeolCode) in coastal (a) and inland (b)
hillslopes. Model performance is measured by the area under the receiver operator characteristic curve (AUC). Each boxplot shows the
results of 10-fold cross-validation using 80 % of the available target dataset. The yellow stars represent the model performance when applied
to the 20 % of data withheld from training. The red stars in the coast results represent the performance of the inland model when applied to
the coast dataset. The red star with an arrow pointing down in the GeolCode 1 coast represents an AUC beyond the extent of the plot at 0.64.

3, and almost no drop in GeolCodes 2 and 5 (Fig. 5). Vi-
sual inspection of modelled landslide probability when ap-
plying the inland-trained model to coastal hillslopes also sug-
gests relatively strong model performance (Fig. 6). We gener-
ally observe higher landslide probability where coastal land-
slides (not included in model training) occurred during the
Kaikōura earthquake.

We compare and contrast model coefficients alongside the
results of jackknife and single-variable models for each ge-

ology type (Figs. 7 and 8) to further examine the relative im-
portance of the predictive features.

4.4.1 GeolCode 1 – Quaternary

For inland (1 to 3 km from the coast) unconsolidated Quater-
nary units (GeolCode 1), the distance to fault and slope fea-
tures had the highest model coefficients (Fig. 7). For coastal
hillslopes (0 to 1 km from the coast), a low model coeffi-
cient was observed for the NDMI (soil moisture) feature,
suggesting an inverse relationship where lower values of
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Figure 6. Example of an inland-trained (1 to 3 km from the coast)
landslide susceptibility model applied to both inland and coastal
hillslopes. The base image is a hillshade of post-earthquake lidar
(Massey et al., 2020b) with actual earthquake-induced landslides
mapped by Massey et al. (2020a). The location is coincident with
Fig. 2 (location identified in Fig. 1).

the soil moisture proxy predict higher landslide susceptibil-
ity. A ca. 0.04 drop in AUC was observed for coastal jack-
knife models trained without the NDMI predictor (Fig. 8).
In single-variable models, NDMI alone produced an AUC of
ca. 0.79 ±0.03 (±1σ ) in coastal hillslopes, ca. 0.07 higher
than the slope-only model which yielded the next highest
AUC. In jackknife models of inland hillslopes, there was
not a substantial drop in AUC for any model iteration, and
in single-variable models of inland hillslopes, a number of
features produced high model performance (fault distance
an AUC of ca. 0.88± 0.04, ShakeMap PGV an AUC of
ca. 0.79±0.03, and slope an AUC of ca. 0.74±0.11; Fig. 8).

4.4.2 GeolCode 2 – Neogene

In Neogene sediments (GeolCode 2), a similar distribution of
coefficients for inland and coastal hillslopes was observed,
with the highest model coefficients for the slope feature
(Fig. 7). Additionally, negative coefficients for NDMI were
observed in both inland and coastal hillslopes. While obser-
vations of model coefficients were largely supported by jack-
knife models in both inland and coastal hillslopes, the most

substantial drop in AUC (ca. 0.05) was seen with the ex-
clusion of the coastal slope feature (Fig. 8). Single-variable
models showed an AUC of ca. 0.72± 0.02 for coastal slope
features and ca. 0.75±0.03 for inland slope features (Fig. 8).

4.4.3 GeolCode 3 – Paleogene

In Paleogene sediments (GeolCode 3) a similar distribution
of coefficients was again observed in inland and coastal hill-
slopes, with the highest model coefficients for the slope and
distance to fault features (Fig. 7). A strong negative coef-
ficient was also observed for the mean PGA in inland hill-
slopes. In jackknife models there was a ca. 0.13 drop in both
coastal and inland model AUCs with the removal of the slope
feature and a ca. 0.03 drop in a coastal model AUC with
the removal of the fault distance feature (Fig. 8). In single-
variable models, slope showed the best model performance,
with an inland model AUC of ca. 0.77± 0.03 and a coastal
model AUC of ca. 0.81± 0.03 (Fig. 8).

4.4.4 GeolCode 5 – Lower Cretaceous

In Lower Cretaceous Torlesse greywacke (GeolCode 5), high
model coefficients were observed for the slope and mean
PGA features, although these are strongly outweighed by the
fault distance feature in inland hillslopes (Fig. 7). A ca. 0.09
drop in a coastal model AUC and a ca. 0.13 drop in an in-
land model AUC were observed with the removal of the
slope feature in jackknife models (Fig. 8). Interestingly, only
a ca. 0.01 drop in an inland model AUC was observed with
the removal of the fault distance feature despite a high model
coefficient. As a single feature, slope had the highest AUC
in both inland (0.85± 0.2) and coastal (0.82± 0.02) models
(Fig. 7), while PGA had an AUC of ca. 0.72± 0.02.

4.5 Summary of results

Despite an order of magnitude higher landslide density ob-
served within 1 km of the Kaikōura coast (Fig. 4), few sig-
nificant differences were observed between modelled coeffi-
cients in inland and coastal landslide susceptibility models.
Additional models trained on both coastal and inland data
yielded similar model coefficients (Fig. B2). Models trained
on data from 1 to 3 km inland and applied to coastal hill-
slopes from 0 to 1 km were still highly predictive and only
resulted in a 0.03 or less drop in AUC as compared with mod-
els trained and tested on coastal hillslopes in GeolCodes 2, 3,
and 5 (Fig. 5). These three geology types account for greater
than 90 % of coastal landslide density (Table 2).

The larger variation in model performance (ca. 0.20) be-
tween inland and coastal models of GeolCode 1 could rep-
resent a true difference between inland and coastal land-
slide susceptibility. Inland GeolCode 1, however, accounts
for less than 4 % of the total inland area and ca. 2 % of in-
land landslides (Table 2). Given a slightly larger spread in
AUC (Figs. 5 and 8) and model coefficients (Fig. 7) across
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Figure 7. Model coefficients for models trained on each GeolCode. The points with associated error bars represent the mean and standard
deviation (SD) of the coefficient across 10-fold cross-validations. The colour bars indicate which feature the point is associated with and
the model data used to train the model (either coast or inland). In cases where no error bar is present, the standard deviation is less than
0.1. Negative coefficients result in a higher weight for small values, while positive coefficients result in a higher weight for high values.
For example, a negative coefficient for fault distance suggests that there is a higher landslide susceptibility closer to faults, while a positive
coefficient for slope suggests that a greater slope angle has higher landslide susceptibility. All features are standardized prior to model
training, allowing for the direct comparison of coefficients within the same model.

10 cross-validations, it is also possible that there is simply
not enough data to train an effective model in inland Geol-
Code 1.

Some minor differences in model coefficients were ob-
served, in particular the higher importance of fault distance
in coastal GeolCode 3 and inland GeolCode 5, but these do
little to explain the overall landslide density trend. Despite
a high model coefficient for fault distance in inland Geol-
Code 5, there was only a ca. 0.01 drop in AUC in jackknife
models, suggesting a potentially high correlation with other
predictive features (likely PGA; Fig. A2). Across jackknife
and single-variable models, slope and, in the case of Geol-
Code 5, PGA appear to be much stronger and more effective

features than fault distance for predicting the regional land-
slide distribution within both inland and coastal hillslopes of
the Kaikōura region.

5 Discussion

5.1 Factors controlling increased coastal landslide
density

Modelling of landslide susceptibility successfully captures
the coastal distribution of landslides from the Kaikōura earth-
quake but does not provide a clear explanation for the order
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Figure 8. Results of jackknife (a, c) and single-variable (b, d) logistic regression models. The model performance is measured by the area
under the receiver operator characteristic curve (AUC). The boxplot for each model shows the results of a random 10-fold cross-validation.
In jackknife models, a single model feature is iteratively removed from model training, and a bigger drop in AUC represents higher feature
importance. In single-variable models, a separate model is trained using each feature, and a higher AUC represents a higher explanatory
value. An AUC close to 0.5 represents near-random results, while an AUC near 1 represents near-perfect results (Hosmer et al., 2013).

of magnitude difference in inland and coastal landslide den-
sity. To better explain this occurrence, the distribution of sev-
eral of the most important landslide susceptibility features
from the modelling was further examined (Fig. 9; additional
features are discussed in Appendix B).

Slope. Model coefficients and jackknife models (Figs. 7
and 8) suggest that slope is one of the most important features
determining the distribution of landslides from the Kaikōura
earthquake in both inland and coastal slopes. Massey et
al. (2018) noted a lower overall distribution of slope near the
coast in the Kaikōura region; however, when hillslopes be-
low 15◦ are excluded, we observe a slightly higher average
slope (ca. 1◦) within 1 km of the coast as compared with 1 to
3 km inland (Fig. B3). While this difference may seem small,
the variation in slope with distance from the coast largely

mirrors modelled landslide susceptibility and landslide den-
sity trends across geology types (Fig. 9). Steeper slopes, pre-
dominantly those occurring within ca. 500 m of the coastline
(Fig. 9), appear to have a primary control on increased co-
seismic landslide density in proximity to the Kaikōura coast-
line.

Strong ground motion (mean PGA and distance to fault).
Across geology types a decrease in ground motion and an
increase in fault distance are observed at ca. 500 m from the
coast. This is particularly evident in GeolCode 5 (Fig. 9) and
does little to explain the observed landslide density trends.
It is important to note, however, that there is a large concen-
tration of landslides on the northern Kaikōura coast where
modelled ground motion is high, and model coefficients sug-
gest that, particularly for GeolCode 5, high modelled PGA is
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Figure 9. Landslide density for each GeolCode (solid black line) within 24 m bins at an increasing distance from the Kaikōura coast plotted
alongside the distribution of standardized predictive features (orange, green, purple, and red lines) and landslide (LS) susceptibility (blue line)
based on a logistic regression model trained on inland data from 1 to 3 km. Standardized features and landslide susceptibility are presented
as the mean of values within 24 m bins with distance from the coast.

Nat. Hazards Earth Syst. Sci., 23, 2987–3013, 2023 https://doi.org/10.5194/nhess-23-2987-2023



C. K. Bloom et al.: Coastal earthquake-induced landslide susceptibility 3001

a good predictor of coastal landslide density (Fig. 7). The
steep decrease in modelled PGA/PGV observed near the
coast (Fig. 9) could be a result of increasing distance from
the seismic source south of Kaikōura. Here, coastal land-
slides concentrate within weaker actively eroded lithologies
that fail at lower ground motions (Bloom et al., 2023).

Topographic and site amplification of seismic waves (e.g.
Ashford et al., 1997) likely contributed to local variability in
strong ground motion intensity within individual coastal and
inland hillslopes during the Kaikōura earthquake. Ground
motion variability is known to influence landslide suscepti-
bility (e.g. Sepúlveda, 2022; Massey et al., 2022) but remains
challenging to estimate on a regional scale. Outside of apply-
ing regional ground motion intensity estimates (PGA/PGV
from the USGS ShakeMap), this analysis does not investi-
gate the role of site-specific ground motion. Given the coarse
native resolution of PGA/PGV estimates from the USGS
ShakeMap (336 m pixel−1; Worden et al., 2020), uncharac-
terized ground motion variability may have an influence on
the distribution of landslides from the 2016 Kaikōura earth-
quake.

Lithology and geologic structure (geology and structural
aspect). A similar distribution of lithology was observed in
both inland and coastal hillslopes (Table 2), and it is assumed
that, over short distances, geology has a relatively consis-
tent influence on landslide susceptibility. As a result, while
geology appears to strongly modulate landslide density, it
does not readily explain the increase in coastal landslide den-
sity from the 2016 Kaikōura earthquake. Likewise, the cor-
relation between lithologic bedding and topographic aspect
does not strongly define coastal landslide susceptibility on
the Kaikōura coast. There is some correlation between bed-
ding and aspect within GeolCode 3 along the coast north of
the Clarence River mouth (Fig. 1) and in coastal GeolCode
5 where landslide densities are higher. However, hillslopes
within the heavily deformed GeolCode 5 may be susceptible
to failure regardless of the presence of persistent structural
discontinuity. In the heavily jointed rock mass, debris and
rock avalanches, the dominant failure mechanism along the
Kaikōura coast can develop along centimetre- to metre-scale
discontinuities (Singeisen et al., 2022) that are not captured
by the estimation of larger-scale bedding. Furthermore, field
investigations along the Kaikōura coast (e.g. Stringer et al.,
2021) have shown that many failures from the 2016 earth-
quake, particularly in mapped GeolCode 5, occurred as re-
activations of pre-existing landslide debris or within Quater-
nary hillslope deposits that were unlikely to be strongly influ-
enced by bedding orientation. While QMAP (Rattenbury et
al., 2006) provides the highest-resolution mapping currently
available at the required extent for this regional analysis, the
mapping resolution is not high enough to sufficiently resolve
these materials regionally.

Fault zones (distance to fault and OFD). Bloom et
al. (2022) observed a higher incidence of landslides within
the fault zone of ruptured faults from the 2016 Kaikōura

earthquake. While there is a slightly higher density of land-
slides within the OFD zone, there is a lower proportion of
OFD area along the Kaikōura coastline as compared with in-
land hillslopes. Approximately 0.6 % of coastal area occurs
within the OFD zone of surface fault rupture from the 2016
Kaikōura earthquake, while ca. 2.5 % of inland hillslopes oc-
cur within a mapped OFD zone. Landslide source areas that
occur within the OFD zone account for ca. 19 % of landslide
source area in inland hillslopes but only ca. 1 % of landslide
source area along the coast.

OFD may partially explain the distribution of landslide
source areas in inland hillslopes but does little to explain
widespread coastal failures or the order of magnitude greater
number of coastal landslides. This being said, there is still
some ambiguity as to the influence of rock mass deformation
from fault zones along the coast that did not rupture signif-
icantly in 2016, for example the Hope fault, which extends
just offshore in parallel to much of the northern Kaikōura
coast. A history of strong ground motion and fault defor-
mation has been shown to progressively decrease rock mass
strength and increase landslide susceptibility over multiple
earthquakes (Parker et al., 2015; Gischig et al., 2016; Bloom
et al., 2022; Massey et al., 2022). This may result in an in-
creased landslide susceptibility due to amplification of strong
ground motion and decreased rock mass strength. While it
is possible that damaged rock within the fault zone of the
Hope fault results in a higher landslide density in the northern
Kaikōura coast, there is also an increase in landslide suscep-
tibility along the coast south of Kaikōura, where faults like
the Hundalee are present further offshore (Fig. 1). This sug-
gests that the relatively continuous zone of increased coastal
landslide density is not solely influenced by fault zones on
the Kaikōura coast.

Anthropogenic modification of slopes (cut slopes). Up-
lifted shore platforms and marine terraces both north and
south of Kaikōura have been anthropogenically modified by
cut and fill slopes to support road and rail infrastructure.
Most fill slope failures are too small and are not steep enough
to be resolved in this analysis (which considers failures
greater than 50 m2 and slopes steeper than 15◦). Cut slopes
only account for ca. 1 % of hillslopes along the Kaikōura
coastline. Approximately 4 % of coastal landslides (63 of
1621) were found to be in contact with a cut slope near the
coast. Even if we consider all failures associated with cut
slopes to be a direct result of hillslope modification, this can-
not fully explain the higher density of coastal landslides well
beyond anthropogenic influence.

Precipitation, soil moisture, and enhanced weathering
(NDMI). NDMI, a proxy for soil moisture, is generally sim-
ilar within coastal and inland hillslopes (Fig. B3). In Tor-
lesse greywacke (GeolCode 5), NDMI is on average 0.17 for
coastal hillslopes and 0.13 for inland hillslopes, which could
indicate increased moisture along greywacke portions of the
Kaikōura coast 1 month prior to the earthquake (Figs. 9 and
B3). A high spatial variability in average rainfall observa-
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tions (NIWA, 2022), however, makes it difficult to expand
this observation out to longer timescales. It might be ex-
pected that increased rainfall and other moisture on the coast
would increase chemical weathering rates, leading to a re-
duction in rock mass strength, but it is not currently possi-
ble to characterize these influences on a regional scale. On a
single-event or seasonal timescale, increased NDMI might be
a proxy for increased pore water pressure along the Kaikōura
coast; however, models suggest that higher NDMI, itself,
does not fully explain the distribution of earthquake-induced
landslides. In Quaternary and Neogene units, and to a lesser
extent Paleogene units, lower NDMI is actually a better pre-
dictor of landslide occurrence (Fig. 7). NDMI is strongly cor-
related with vegetation greenness (Table A2), and less vege-
tation may help to explain some shallow failures. In Lower
Cretaceous Torlesse greywacke, NDMI is a comparatively
weak predictor of earthquake-induced landslides in both in-
land and coastal hillslopes.

5.2 Conceptual model relating coastal hillslope
morphology and landslide susceptibility to
geomorphic history

Based on the distribution of landslide susceptibility features
and statistical analysis, the slope feature provides much of
the explanation for increased landslide density along the
Kaikōura coastline (Fig. 9). The distribution of slope within
each GeolCode (Fig. 9) reveals substantially steeper slopes
(up to ca. 4◦ higher on average) within ca. 250 to 500 m of
the coast, particularly within GeolCodes 2, 3, and 5.

In many regions, coastal oversteepening results from a
combination of uplift and wave action that actively under-
cuts coastal cliffs (Emery and Kuhn, 1982). In the Kaikōura
region, however, most steep coastal slopes, with the ex-
ception of those at Conway Flat (Bloom et al., 2023), are
currently isolated from direct wave action by recent uplift,
which forms shore platforms. The ages of these uplifted plat-
forms (Howell and Clark, 2022) suggest that this isolation
has lasted for several hundred years at the least. Only 16 land-
slides outside of Conway Flat (ca. 1 % of landslides) have
a direct connection with the ocean. As a result, while rapid
uplift of the Kaikōura coast (Ota et al., 1996) contributes to
steeper slopes, the contributions of wave erosion to long-term
coastal evolution are less clear.

Increased landslide susceptibility along the coast can be
traced back to physical variables associated with the ge-
omorphic evolution of these hillslopes (Fig. 10). The pri-
mary observation is that coastal-facing slopes are generally
steeper than their inland counterparts (Fig. 9). These steep-
ened slopes also tend to coincide with pre-Kaikōura earth-
quake landslides – approximately 83 % of coastal landslides
in Torlesse greywacke occurred partially to wholly within
areas affected by past landslides (Table 3), often as reacti-
vations (retrogression) of their head scarps (Fig. 2). Similar
trends are observed for the distribution of landslides within

younger sedimentary units (Table 3), and these findings are
in line with field observations along the Kaikōura coast fol-
lowing the 2016 earthquake (e.g. Mason et al., 2017; Stringer
et al., 2021). Thus, steeper coastal hillslopes are more prone
to failure due to larger driving forces (i.e. gravitational com-
ponent due to slope) and are collocated with rock masses at
reduced or residual strength, leading to relatively low factors
of safety and higher landslide susceptibility.

Relict landslides are a common observation in the hill-
slopes above uplifted shore platforms along the Kaikōura
coast, particularly within Torlesse greywacke (GeolCode 5;
Fig. 2). These relict landslides have left steep, potentially
destabilized head scarps and, in some cases, debris within
the body of failures (Stringer et al., 2021). The provenance
and timing of these relict failures are largely unclear, but a
general lack of deposited material at the base of the hill-
slopes (Fig. 2) suggests that they may have developed while
in contact with an active erosional source, such as rivers or
the ocean (Fig. 10; Crozier, 2010).

In our conceptual model, wave action leads to cliff col-
lapse and landsliding while the ocean is in direct contact with
the hillslope (Figs. 10(1) and 10(2)). Once uplift or relative
sea level fall occurs, hillslopes are buffered from wave ac-
tion at the toe but remain oversteepened, particularly within
upper slopes where relict landslide head scarps are present
(Fig. 10(3) and 10(4)). In the case of the Kaikōura region,
uplifted wave cut platforms provide ideal locations for trans-
portation infrastructure (Fig. 10(5)). While modification of
lower hillslopes may not result in substantially increased
landslide susceptibility on a regional scale, oversteepened
upper hillslopes may remain highly susceptible to coseismic
failure over multiple earthquake events (Fig. 10(6); Rault et
al., 2019; Singeisen et al., 2022). Increased susceptibility is
likely to persist until the hillslope reaches a state of relative
equilibrium with the surrounding landscape or until active
erosion recurs at the base of the slope (Crozier, 2010). With
coastal uplift rates of ca. 2 to 0.5 mm yr−1 (Ota et al., 1996)
along the Kaikōura coast, oversteepened slopes could repre-
sent up to thousands of years of increased landslide suscep-
tibility. Without an active erosional source, earthquakes and
large rainfall events may disproportionately contribute to the
geomorphic evolution of these coastal hillslopes (Fig. 10).

5.3 Implications for earthquake-induced landslide
susceptibility in coastal settings

Most earthquake-induced landslide susceptibility models al-
ready rely heavily on lithology, strong ground motion, and
slope as predictive features. As such, the findings here sup-
port the efficacy of using regionally trained models to char-
acterize earthquake-induced landslide susceptibility on the
Kaikōura coast without additional predictive features. In the
Kaikōura region, a “near-coast” categorical feature (Figs. B1
and B2) does not substantially improve model prediction. In
other regions, such a feature may serve as a reasonable proxy
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Figure 10. Conceptual model for the evolution of slope stability along the Kaikōura coast. Hillslopes are oversteepened by active erosion,
and debris is cleared from shore platforms by wave action. Following uplift, hillslopes are anthropogenically modified, and earthquakes
result in failures within upper hillslopes and the scars of relict landslides. Terrestrial erosion from earthquakes and rainfall work to bring the
oversteepened hillslope back into equilibrium with the surrounding landscape (Crozier, 2010).

for other underlying coastal influences, but this is subject to
additional study.

Findings here may be applied to rocky coastlines else-
where, but consideration should be made for potentially im-
portant site-specific conditions that may or may not be in-
corporated in this investigation. Of particular note, Parker et
al. (2015) identified the accumulation of rock mass defor-
mation over multiple earthquakes as a source of landscape
preconditioning that results in higher susceptibility to future
landslides. Similarly, the scars of relict landslides that occur
within the steep hillslopes of the Kaikōura coastline suggest
past susceptibility to failure and a potential accumulation of
deformation that is largely unresolved by this analysis (and
likely by most regional studies).

Previous investigations (e.g. Marc et al., 2015, 2019;
Massey et al., 2022) have suggested that increased landslide
susceptibility decays to background levels within several
years of an earthquake. It may be possible, however, that the
factors discussed in this study, including oversteepened hill-
slopes, fault deformation, coastal weathering, repeated earth-
quake shaking, and topographic amplification, contribute to
an accumulation of stress within the hillslope and, in turn,
a longer-term susceptibility to extreme event failure (Parker
et al., 2015). Currently, the detailed rock mass characteriza-
tion required to fully investigate the influence of rock mass
strength remains largely confined to the site-specific scale.
Our understanding of coastal landslide susceptibility would
benefit from future studies that attempt to decouple the in-
fluence of steep slopes from rock mass deformation on a re-
gional scale.

As a final note, since the 2016 Kaikōura earthquake, the
coastal road and rail corridors north and south of Kaikōura

have been fully re-established. In some cases, realignments
have been made to address ongoing rockfall and other slope
stability concerns (NZTA, 2021). In most cases, however,
the road and rail lines have been cleared, repaired, and re-
opened in their original alignments (as in panel 5 of Fig. 10).
Estimates of long-term network resilience were developed
shortly after the Kaikōura earthquake and, in part, rely on
quantified landslide hazard assessment (Justice et al., 2021).
This hazard assessment adopts the established assumption
that strong ground motion intensity plays a large role in gov-
erning the volume of coseismic landslide debris along the
Kaikōura coast (Massey et al., 2019). While our study does
not directly address quantified hazard, the results suggest
that the distribution of slope angle is generally steeper on
the Kaikōura coast compared with inland hillslopes. These
steeper slopes (and attendant history of slope failures) re-
sulted in a high density of coastal landslides during the
2016 Kaikōura earthquake. In future earthquakes, increased
coastal landslide susceptibility – the result of steeper slopes
along the coast – will expose coastal hillslopes to more land-
slides than inland hillslopes given the same level of ground
motion intensity. The ongoing likelihood of aftershocks and
strong ground motion in the Kaikōura region will test the effi-
cacy of mitigation measures installed to reduce risk to people
and infrastructure along the coast.

6 Conclusions

Distance to the Kaikōura coastline has a substantial influ-
ence on the distribution of landslides from the 2016 Kaikōura
earthquake. An order of magnitude greater landslide den-
sity was observed within 500 m of the coastline (as high as
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ca. 6 %) as compared with 1000 to 3000 m (ca. 0.5 %). Com-
parative logistic regression modelling suggests that the same
factors, primarily geology, strong ground motion, and slope,
define the distribution of landslides in both coastal (within
1 km of the coast) and inland hillslopes (1 to 3 km from
the coast). Regional earthquake-induced landslide suscepti-
bility models that rely on geology, strong ground motion,
and slope as strong predictive features are therefore likely
to account for this increased coastal landslide susceptibil-
ity in the Kaikōura region without separate treatment. Along
the Kaikōura coastline, hillslopes are generally steeper than
those inland, when comparing slope angles within similar
materials. Results suggest that slope angle provides the most
explanatory power and the simplest explanation for increased
coseismic landslide density at the coast. On the Kaikōura
coast, most hillslopes are currently buffered from wave ac-
tion by rapidly uplifted shore platforms; coastal hillslopes
host a high density of relict landslides that may have re-
sulted from relatively recent (< 1000 years) coastal erosion.
Relict landslides and proportionally steeper hillslopes main-
tain lower factors of safety and higher coastal landslide sus-
ceptibility as a legacy effect within hillslopes out of equilib-
rium with the surrounding landscape, which may persist for
up to thousands of years.

Appendix A: Additional methods and data

A1 Minimum landslide size

Prior to the 2016 Kaikōura earthquake, lidar was available
for areas in close proximity (< 1 km) to the Kaikōura coast-
line. This pre-earthquake lidar coverage likely allowed for
more detailed comparison with post-earthquake data. In or-
der to limit any potential bias resulting from differences in
the quality of landslide mapping on the Kaikōura coastline in
this comparative analysis, we evaluate the size area distribu-
tion of earthquake-induced landslides mapped by Massey et
al. (2020a) in proximity to the Kaikōura coast (Fig. A1) using
the methods of Malamud et al. (2004). We observed a slightly
higher distribution of small failures along the Kaikōura coast,
with the distribution of failures diverging around 50 m2.
While this may represent a real difference in landslide size
along the coast, we chose to exclude failures smaller than
50 m2 from the analysis. Because of the small size of fail-
ures, this exclusion is unlikely to strongly influence the final
results.

A2 Gridded landslide data

Landslide polygons from the inventory of Massey et
al. (2020a) were gridded to the 8 m resolution of the digital
elevation model (LINZ, 2021a) used to derive topographic
landslide susceptibility features. Table 2 shows the percent-
age of landslide source area in each GeolCode. Table A1

Figure A1. Size area distribution of landslides (Malamud et al.,
2004) from the Kaikōura earthquake-induced landslide inventory
(Massey et al., 2020a) within 0 to 1 km (coast) and 1 to 3 km (in-
land) of the coastline. The distributions diverge from one another
around 50 m2, and we use this as the minimum landslide size thresh-
old.

shows the raw number of landslide (1) and non-landslide (0)
grid cells used in the analysis.

A3 Landslide susceptibility features

We initially evaluated 25 common predictive features for this
analysis (Fig. A2). Of the 25 features we narrowed the choice
of features using only those features with a variance inflation
factor (VIF) score of 10 or less (Table A2). In comparative
model training, the best model performance was achieved
when using the USGS ShakeMap PGA (Worden et al., 2020)
for models of GeolCode 5 and the USGS ShakeMap PGV for
all other GeolCodes.

A4 Deriving the structural aspect feature

To derive a correlation between the dip direction of the bed-
ding and topographic aspect, we interpolated structural bed-
ding measurements from the New Zealand QMAP (Ratten-
bury et al., 2006). We corrected for the 360◦ direction of the
dip using the sin and cos of the dip direction and used the in-
verse distance-weighted (IDW) interpolation method in Ar-
cGIS to produce a continuous estimate of the dip direction in
each geology type (GeolCode). By subtracting the interpo-
lated dip direction from the topographic aspect, we get values
from −360 to 360◦, where a value close to −360, 0, or 360◦

represents a close correlation between the dip direction of the
bedding and topographic aspect. To make a continuous range
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Table A1. Landslide (LS) density by GeolCodes in both coastal and inland hillslopes, coastal hillslopes only, and inland hillslopes only with
the number of 1 and 0 landslide grid cells.

All GeolCode 1 GeolCode 2 GeolCode 3 GeolCode 5 Total

0 165176 841438 740592 1668137 3415343
1 2091 6527 9942 13898 32458
Total 167267 847965 750534 1682035 3447801
LS density 1.25 % 0.77 % 1.32 % 0.83 % 0.94 %

Coastal GeolCode 1 GeolCode 2 GeolCode 3 GeolCode 5 Total

0 71377 324791 162780 419017 977965
1 1838 4106 5180 9315 20439
Total 73215 328897 167960 428332 998404
LS density 2.51 % 1.25 % 3.08 % 2.17 % 2.05 %

Inland GeolCode 1 GeolCode 2 GeolCode 3 GeolCode 5 Total

0 93799 516647 577812 1249120 2437378
1 253 2421 4762 4583 12019
Total 94052 519068 582574 1253703 2449397
LS density 0.27 % 0.47 % 0.82 % 0.37 % 0.49 %

Figure A2. Pearson’s R2 correlation for common predictive features considered in this analysis. Red features were not included in the final
modelling analysis.
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Table A2. Variance inflation factor for features used in this analysis.
PGA from the USGS ShakeMap (Worden et al., 2020) is used for
GeolCode 5 and PGV from the same model for all other GeolCodes.

Feature VIF – PGV VIF – PGA

Curvature 1.02 1.02
Cut slopes 1.00 1.00
Eastness 1.08 1.08
Elevation 3.22 3.22
Fault distance 1.84 1.86
NDMI 3.63 3.65
Northness 1.19 1.19
OFD 1.05 1.05
Slope 9.86 9.38
Structural aspect 3.51 3.48
USGS ShakeMap 6.67 6.05

for this analysis, we take the absolute value of the difference
(0 to 360), subtract 180 (−180 to 180), and take the absolute
value again to arrive at 0 to 180, where 180 represents a high
correlation between the dip direction and topographic aspect
and 0 represents a low correlation.

A5 Efficacy of the LINZ 8 m DEM for regional analysis
in the Kaikōura region

The LINZ 8 m DEM (LINZ, 2021a), interpolated from 20 m
contours with post-processing and filtering, is primarily suit-
able for cartographic visualization. While this may not repre-
sent the most ideal dataset with which to conduct terrain anal-
ysis, it is the highest-resolution elevation dataset available
with consistent coverage of the Kaikōura region prior to the
2016 Kaikōura earthquake. Given the relatively small size of
many coastal landslides, using a coarser DEM would likely
result in underprediction of coastal landslides and would
limit our ability to make robust claims about differences in
landslide susceptibility between inland and coastal slopes.

The regional nature of this assessment should reduce
concern about local irregularities in the underlying DEM.
To examine this assumption, we downsampled a limited
1 m pre-earthquake lidar-derived DEM collected along the
Kaikōura coast in 2012 (LINZ, 2021c) to the 8 m resolu-
tion of the LINZ 8 m DEM (LINZ, 2021a) and compared
the two datasets. Limited lidar coverage extends to ca. 500 m
inland along much of the Kaikōura coastline and accounts
for ca. 30 % of the study area included in this analysis. We
find a strong one-to-one correlation between the two datasets
(Fig. A3). While local irregularities in the LINZ 8 m DEM
(LINZ, 2021a) may limit the usefulness of this dataset on a
site-specific scale, on the regional scale of this analysis, the
LINZ 8 m DEM and its derivations are largely characteristic
of actual pre-earthquake terrain conditions.

Figure A3. Relationship between LINZ 8 m DEM (LINZ, 2021a)
and a 2012 lidar DEM (LINZ, 2023).

Appendix B: Additional results

B1 Full model

In addition to comparative models of inland and coastal hill-
slopes, two models were trained using 80 % of both inland
and coastal data. The first model matches the inland and
coastal models included in the main text. The second model
includes an additional binary coast feature where inland hill-
slopes are assigned a value of 0 and coastal hillslopes a value
of 1. Both models performed well and were predictive of both
inland and coastal landslides in the remaining 20 % of data
used for testing (Fig. B1). Model coefficients from the full
model were generally similar to inland and coastal models
(Fig. B2).
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Figure B1. Logistic regression model performance from models trained on each geology type (GeolCode) in both coastal and inland hill-
slopes. The model on the left includes a binary coast feature where grid cells within 1 km of the coast are assigned a value of 1 and grid cells
within 1 to 3 km of the coast are assigned a value of 0. Model performance is measured by the area under the receiver operator characteristic
curve (AUC). Each boxplot shows the results of 10-fold cross-validation using 80 % of the available target dataset. The yellow stars represent
model performance when applied to the 20 % of data withheld from training.

Figure B2. Model coefficients for models trained on each GeolCode. The points with associated error bars represent the mean and standard
deviation (SD) of the coefficient across 10 cross-validations. The colour bars indicate which feature the point is associated with and the
model data used to train the model. In cases where no error bar is present, the standard deviation is less than 0.1. Negative coefficients result
in a higher weight for small values, while positive coefficients result in a higher weight for high values. For example, a negative coefficient
for fault distance suggests that there is a higher landslide susceptibility closer to faults, while a positive coefficient for slope suggests that a
greater slope angle has higher landslide susceptibility. All features are standardized prior to model training, allowing for the direct comparison
of coefficients within the same model.
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B2 Coastal vs. inland features and landslides

In addition to the analysis presented in the main text we also
examined the distribution of predictive features within inland
and coastal slopes greater than 15◦ (Fig. B3).

We supplement this analysis by examining the distribution
of predictive features within landslide source areas in inland
and coastal slopes greater than 15◦ (Fig. B4).

On average, coastal landslides (within 1 km of the coast)
are ca. 10 % larger than inland landslides (between 1 and
3 km from the coast) on slopes> 15◦ with PGA> 0.2 g
(when excluding the seafront landslide and landslides
smaller than 50 m2; Table B1). Given the same filters, there
are ca. 30 % more landslides in coastal hillslopes (Table B1),
which make up ca. 1/3 of the total study area.

Figure B3. Distribution of predictive features in all Kaikōura inland and coastal slopes greater than 15◦. Inland slopes are represented by
orange lines, and coastal slopes are represented by blue lines.
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Figure B4. Distribution of predictive features within the Kaikōura earthquake-induced landslide source areas on inland and coastal slopes
greater than 15◦. Inland slopes are represented by orange lines, and coastal slopes are represented by blue lines.

Table B1. Mean landslide area in inland and coastal hillslopes where slopes> 15◦, PGA> 0.2 g. Inland estimates exclude the seafront
landslide.

Slopes> 15◦ Landslide Mean area Standard deviation
count (m2) (m2)

Inland (1 to 3 km) 1099 783 2279
Coast (0 to 1 km) 1621 866 2517

B3 Additional observations

Curvature. Curvature was well distributed, and few differ-
ences between inland and coastal hillslopes were observed
(Figs. B3 and B4).

Aspect (northness and eastness). Ridgelines and valleys
generally trend from northeast to southwest in the Kaikōura
region (Fig. B3), and landslide source areas on both inland
and coastal hillslopes occur disproportionately on south- to
southeast-facing hillslopes (Fig. B4). Within 1 km of the
coastline, a larger proportion of southeast-facing hillslopes
were observed that generally correlated well with landslide
density trends across geology types.

Elevation. A steady rise in elevation is observed with dis-
tance from the Kaikōura coastline. This rise in elevation,
however, does not appear to directly correlate with the land-
slide density trend that is observed with distance.

Code availability. The code used to process the datasets in this pa-
per (as outlined in Table 1) is available through RichDEM (http:
//github.com/r-barnes/richdem; Barnes, 2016) and GDAL (https:
//gdal.org; GDAL/OGR contributors, 2022). The code used to train
the models included in this paper is available through scikit-
learn (https://github.com/scikit-learn/scikit-learn; Pedregosa et al.,
2011).

Data availability. Datasets used to support the models in
this paper include the following: (1) the 2016 Kaikōura
earthquake-induced landslide inventory (Massey et al.,
2020a); (2) the LINZ 8 m DEM (https://data.linz.govt.nz/
layer/51768-nz-8m-digital-elevation-model-2012, LINZ,
2021a); (3) the LINZ Topo50 New Zealand Coastlines
(https://data.linz.govt.nz/layer/50258-nz-coastlines-topo-150k/,
LINZ, 2021b); (4) 14 surface-ruptured faults from the 2016
Kaikōura earthquake (Bloom et al., 2022); (5) the OFD zone
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as defined for 14 surface-ruptured faults from the Kaikōura
earthquake (Bloom et al., 2022); (6) PGA and PGV from the USGS
ShakeMap v4 (Worden et al., 2020, https://earthquake.usgs.gov/
earthquakes/eventpage/us1000778i/shakemap/intensity); (7) Octo-
ber 2016 Landsat 8 imagery (https://earthexplorer.usgs.gov/, U.S.
Geological Survey, 2022); and (8) New Zealand QMAP geology
for the Kaikōura region (https://shop.gns.cri.nz/qkaikoura-zip/,
Rattenbury et al., 2006). Additionally, NIWA’s National Climate
Database (https://cliflo.niwa.co.nz/, NIWA, 2022) was used to
determine rainfall along the Kaikōura coast, and the New Zealand
Active Faults Database (Langridge et al., 2016) was used to show
active faults in the Kaikōura region alongside fault ruptures from
the 2016 Kaikōura earthquake in Fig. 1.
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2016 Mw 7.8 Kaikōura, New Zealand, Earthquake From
Optical Image Correlation: Implications for Strain Local-
ization and Long-Term Evolution of the Pacific-Australian
Plate Boundary, Geochem. Geophy. Geosy., 20, 1609–1628,
https://doi.org/10.1029/2018GC007951, 2019.

https://doi.org/10.5194/nhess-23-2987-2023 Nat. Hazards Earth Syst. Sci., 23, 2987–3013, 2023

https://doi.org/10.1007/978-981-19-6597-5_14
https://doi.org/10.1007/978-981-19-6597-5_14
https://doi.org/10.1016/j.geomorph.2022.108386
https://doi.org/10.1007/s10346-020-01543-y
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1016/j.margeo.2014.12.008
https://doi.org/10.1016/j.geomorph.2021.107795
https://usgs.github.io/shakemap/
https://doi.org/10.1016/j.geomorph.2017.10.010
https://doi.org/10.1016/j.margeo.2013.11.007
https://doi.org/10.1029/2018GC007951

	Abstract
	Introduction
	Background
	The 2016 Mw 7.8 Kaikoura earthquake
	Coastal and geologic setting

	Data and methods
	The 2016 Kaikoura landslide inventory
	Landslide distribution
	Landslide susceptibility features
	Logistic regression modelling

	Results
	Distribution of coastal earthquake-induced landslides
	Distribution of lithology
	Landslide activity
	Coastal vs. inland earthquake-induced landslide susceptibility models
	GeolCode 1 – Quaternary
	GeolCode 2 – Neogene
	GeolCode 3 – Paleogene
	GeolCode 5 – Lower Cretaceous

	Summary of results

	Discussion
	Factors controlling increased coastal landslide density
	Conceptual model relating coastal hillslope morphology and landslide susceptibility to geomorphic history
	Implications for earthquake-induced landslide susceptibility in coastal settings

	Conclusions
	Appendix A: Additional methods and data
	Appendix A1: Minimum landslide size
	Appendix A2: Gridded landslide data
	Appendix A3: Landslide susceptibility features
	Appendix A4: Deriving the structural aspect feature
	Appendix A5: Efficacy of the LINZ 8m DEM for regional analysis in the Kaikoura region

	Appendix B: Additional results
	Appendix B1: Full model
	Appendix B2: Coastal vs. inland features and landslides
	Appendix B3: Additional observations

	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

