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Abstract. Wildfires are key not only to landscape trans-
formation and vegetation succession, but also to socio-
ecological values loss. Fire risk mapping can help to man-
age the most vulnerable and relevant ecosystems impacted
by wildfires. However, few studies provide accessible daily
dynamic results at different spatio-temporal scales. We de-
velop a fire risk model for Sicily (Italy), an iconic case of the
Mediterranean Basin, integrating a fire hazard model with
an exposure and vulnerability analysis under present and fu-
ture conditions. The integrated model is data-driven but can
run dynamically at a daily time step, providing spatially and
temporally explicit results through the k.LAB (Knowledge
Laboratory) software. This software provides an environ-
ment for input data integration, combining methods and data
such as geographic information systems, remote sensing and
Bayesian network algorithms. All data and models are se-
mantically annotated, open and downloadable in agreement
with the FAIR principles (findable, accessible, interoperable
and reusable). The fire risk analysis reveals that 45 % of vul-
nerable areas of Sicily have a high probability of fire occur-
rence in 2050. The risk model outputs also include qualita-
tive risk indexes, which can make the results more under-
standable for non-technical stakeholders. We argue that this
approach is well suited to aiding in landscape and fire risk
management, under both current and climate change condi-
tions.

1 Introduction

Fire, as a natural disturbance, has played an important role
in shaping forest structure, increasing biodiversity and lead-
ing species’ evolution (Bond and Keeley, 2005; Pausas et
al., 2004; Kelly and Brotons, 2017). However, the balance
between the natural fire regime and the ecosystem is of-
ten disrupted when humans modify the environment to their
needs. In recent years, the rural depopulation and simultane-
ous spread of urban areas in the form of residential buildings
into the countryside have increased fire frequency and burned
areas (Faivre et al., 2014; Robinne et al., 2016). Although
this is a worldwide problem, the Mediterranean climatic area
has experienced a particularly great impact (Kocher and But-
sic, 2017; Leone et al., 2009; Pausas and Fernández-Muñoz,
2012).

Sicily (Italy), the largest island of the Mediterranean Sea
with 25 711 km2, has been the cradle of several civilizations
and their traditions, with continuous and intense human ex-
ploitation of natural resources (forestry, grazing, agriculture)
(Antrop, 2005; Sereni, 1961), encompassing multiple agri-
cultural and agroforestry landscapes (Baiamonte et al., 2015;
Di Maida, 2020). Due to its great variability in topogra-
phy, lithology, pedology (Catalano et al., 1996) and climate
(Bazan et al., 2015), Sicily is rich in biodiversity and ecosys-
tems (Cullotta and Marchetti, 2007; Peruzzi et al., 2014).
Therefore, the island can be viewed as representative of the
Mediterranean Basin as a whole.
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Moreover, Sicily is the most populated island in the
Mediterranean Sea with nearly 5 million inhabitants, similar
to Denmark or Finland (Planistat Europe and Bradley Dun-
bar Association, 2003). As a consequence, year after year the
environment has undergone degradation due to an increase in
intensive farming practices, urbanization growth in the most
populated and tourist areas, and the loss of traditional agri-
cultural and forest management because of rural population
abandonment (Bazan et al., 2019; Falcucci et al., 2007; Pres-
tia and Scavone, 2018). In the last 50 years, the increase in
forest and scrub mass due to the abandonment of traditional
land management (Bonanno, 2013; Ragusa and Rapicavoli,
2017) and the increase in the frequency of long droughts
created optimal conditions for the occurrence of wildfires
(Mouillot et al., 2005; Ruffault et al., 2020). The population
living in the wildland–urban interface zone is particularly at
risk due to exposure to fire and difficulty in evacuation.

Uncontrolled wildfires in Sicily have increased in recent
years, making Sicily the Italian region with the highest num-
ber of fire events and the largest burned area between 2009
and May 2016 (Fig. 1). The probability of fire occurrence is
mainly linked to ignition sources, forest fuels and environ-
mental conditions (Ganteaume et al., 2013; Hantson et al.,
2015; Ricotta and Di Vito, 2014). The ignition sources are
usually divided into natural causes (mainly lightning but ge-
ological causes too) and human (accidental or intentional)
(Aldersley et al., 2011; Ganteaume et al., 2013; Rodrigues
and de la Riva, 2014). The main causes of wildfires in Sicily
are human-driven (Corrao, 1992; Ferrara et al., 2019). Ar-
son and accidental wildfires, set up to create new pasture re-
sources or to burn stubble, are the primary causes of wild-
fires, especially in areas where vegetation interfaces with ur-
ban structures.

The consequences of wildfires exceed the loss of forest
cover, vary over time and can be long-lasting. Some ecosys-
tem properties and functions that deliver benefits to humans
(Daily, 1997; Roces-Díaz et al., 2022), including biodiver-
sity, may be lost. This diminishment might happen when
natural fire regimes and forest ecosystems are strongly al-
tered by human intervention (Tedim et al., 2020; Arno and
Brown, 1991), leading to an increase in fire extent, intensity
and severity (Pausas et al., 2008; Regos et al., 2014; Castell-
nou et al., 2019). For example, after the wildfires in summer,
with the arrival of the first heavy rains, there can be extensive
erosion in burned areas, loss of organic matter or pollution of
adjacent waterbodies (Bisson et al., 2005; Certini, 2005). In
general, burned areas lose their carbon sequestration capacity
and desirability for outdoor recreation (Moreira and Russo,
2007).

The literature on fire modeling at different spatio-temporal
scales is vast (Ganteaume et al., 2013; Jain et al., 2020;
Tymstra et al., 2020). Due to its drought sensitivity, most
studies focus on the Mediterranean climatic region (Oliveira
et al., 2012; Satir et al., 2016; Wittenberg and Malkinson,
2009). Among the different methods applied, machine learn-

Figure 1. Total number of fire ignitions and percentage of area
burned (over 30 ha) in Italy by region between 2009 and May 2016.
Source: fire activity statistics, Servizi Antincendio Boschivo (Italian
fire services).

ing models are gaining traction due to increased computing
power and data access. Many algorithms have been tested, in-
cluding artificial neural networks, support vector machines,
maximum entropy and random forest (Jain et al., 2020).

Risk fire mapping has been one of the most widely studied
approaches in the forest fire literature. Even so, many models
have become obsolete and have not been renewed (Ager and
Finney, 2010; Mohajane et al., 2021). Their spatio-temporal
resolutions are too coarse (Lozano et al., 2017), or they do
not take into account the distribution of forest fuel types
(Bacciu et al., 2021; Michael et al., 2021), which is essential
for risk reduction (Castellnou et al., 2019). Moreover, risk
conditions for society are induced by progressive changes in
environmental conditions. For this reason, it is indispensable
to create open models that can incorporate new transdisci-
plinary data and knowledge (Nikolakis and Roberts, 2022;
Wunder et al., 2021) that have arisen since 2016 (Artés et al.,
2019; Duane et al., 2021).

On the society side, knowledge plays a key role in risk re-
duction, decision-making, coordinated policy action and re-
learning with regard to fire. Vulnerability is associated with
a lack of risk communication, especially a lack of sufficient
information that can lead to a misunderstanding of risk (Birk-
mann et al., 2010). This has important implications for moti-
vation and the perceptual capacity to act and adapt to climate
change (Grothmann and Patt, 2005). Moreover, understand-
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ing the fire risk processes can help society to comprehend the
landscape transformation needed for a lower-risk environ-
ment (Otero et al., 2018). Although efforts are being made,
few resources are allocated to the accessibility, sharing and
integration of knowledge at multiple scales across different
stakeholders (Weichselgartner and Pigeon, 2015). Therefore,
it is crucial to develop accessible tools and methods for fire
risk assessment, where managers and stakeholders can con-
sider social and environmental consequences.

Similarly, on the scientific side, lack of transparency
has been one of the traditional characteristics of modeling
(i.e., black-box model), even within the decision support
system, leading to several scientific, organizational and eth-
ical issues (Guidotti et al., 2018). Moreover, most of the
models and resources developed by scientific research are
not transferable or shared between different programming
languages or modeling infrastructures. To connect scientific
knowledge, we applied the integrated modeling approach
of ARtificial Intelligence for Environment & Sustainability
(ARIES; https://aries.integratedmodelling.org/, last access:
29 August 2023), which integrates a network of web-
accessible data, models and other resources, implementing
the FAIR principles (Wilkinson et al., 2016) through the
k.LAB (Knowledge Laboratory) software, a semantic web-
based modeling platform. The FAIR principles apply to the
generated data and models, which must be

– findable – simple to identify by humans and computers;

– accessible – with easy access to metadata and resources
stored;

– interoperable – ready to be exchanged, interpreted
and combined in a (semi-)automated way with other
datasets;

– reusable – sufficiently well described to be reused in fu-
ture research and integrated with other data sources.

This study analyses wildfire activity for the years 2007–
2020 to model fire risk in Sicily. We have adopted the def-
inition of fire risk provided by the Sixth Assessment Re-
port (AR6) of the IPCC (Intergovernmental Panel on Climate
Change), i.e., the dynamic interaction between the compo-
nents of “climate-related hazards with the exposure and vul-
nerability of the affected human or ecological system to the
hazards” (IPCC, 2012). Thus, in this article, we focus on an-
swering three questions: where are wildfires likely to occur?
What ecosystem services might be affected? And what is the
impact on the environment and society?

To this end, we have developed a set of models in the
k.LAB software, and we integrated them into the ARIES net-
work. These models are modular, interconnected and seman-
tically explicit under k.LAB, where we simulated the current
wildfires and their interaction with key human and biophysi-
cal drivers, using a machine learning algorithm. Furthermore,
as proof of the advantages of using FAIR data and resources,

it has been possible to analyze future fire risk under climate
change and consider the consequences for different ecosys-
tem services using models included in ARIES and developed
by other experts.

2 Material and methods

2.1 Study area

A case study was carried out on the island of Sicily, the
largest and most populated island in the Mediterranean.
Within its 2571 ha, the altitudinal range reaches 3357 m at
the peak of one of the most active volcanoes in the world
(Thomaidis et al., 2021). The island has a Mediterranean
climate with mild and wet winters and dry and hot sum-
mers, highlighting the southwest coast, where the climate
is affected by the African currents and summers. Rainfall is
scarce, leading to water deficits in some provinces. More-
over, the change in land use has gradually modified the cli-
mate, with less rainfall and drier rivers (Drago, 2005; Ragusa
and Rapicavoli, 2017).

The land use change caused mainly by intense deforesta-
tion throughout Sicily’s history has favored intense agricul-
tural practices, especially in the center and southwest. Thus,
agricultural areas cover 57 % of the island, of which 35 %
are arable lands and 22 % permanent crops. Roughly a third
of Sicily is forest, shrublands and open areas. Woodlands
and semi-natural areas are sparse in the agricultural area and
denser in areas with special protection, the most important
being the Mount Etna surroundings, the Nebrodi Park and
the nature reserve of Bosco della Ficuzza (Sicilia Assesso-
rato beni culturali ed ambientali e pubblica istruzione, 1996).
Due to its long-lasting socio-ecological history, location in
the Mediterranean Sea, its fragility under climate change and
increasing fire regime, Sicily represents an ideal study area
representative of the Mediterranean socio-ecological context.

2.2 Fire risk analysis

The interaction of environmental and social processes drives
the fire risk (Table 1), determined by the combination of a
physical hazard and the vulnerability of the socio-ecological
elements exposed (IPCC, 2012).

Fire hazard captures the probability of fire occurrence,
based on historical wildfires and drivers such as biophysical
factors and human-modified areas. The fire hazard interacts
with the elements exposed; we highlight exposed ecological
values and ecosystem services such as biodiversity, pollina-
tion, carbon mass, soil retention and outdoor recreation that
may be affected by fire occurrence.

Vulnerability refers to exposed elements that are more
susceptible to being highly or irreparably damaged due to
their intrinsic or contextual characteristics. The wildland–
urban interface (WUI) is particularly fire-prone because it
is a forested area less than 200 m from an urban area (Gan-
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Table 1. Fire risk is defined by vulnerability and hazard components (IPCC, 2012).

Risk
The potential likelihood of negative consequences for the elements of value in a context considering the

probability of occurrence of fire hazards. Fire risk results from the interaction of vulnerability, exposure and hazard.

1. Hazard 2. Exposure 3. Vulnerability

Probability of occurrence of a Elements (and their values) that The tendency of exposed elements
physical event (natural or human- are in a context where a hazardous to be adversely affected by a
induced) that may damage the event, such as fire, may happen hazardous event, for example, the
elements in the same time–space predisposition, susceptibility,
context, for instance, the fragility and weakness of the exposed
probability of fire occurrence elements

Fire hazard components Ecosystem services exposed Vulnerability

Weather – Vegetation carbon mass – Wildland–urban interface
– temperature – Pollination (WUI)
– weekly maximum – Outdoor recreation – Wildland–agricultural

temperature – Soil retention interface (WAI)
– days without – Biodiversity∗ – Nationally designated areas

precipitation (CDDAs)
– weekly precipitation
– solar radiation
Biophysical drivers
– forest fuel
– elevation
– slope
Human drivers
– distance to protected

area
– distance to road
– distance to human

settlement

∗ Technically not an ecosystem service but added here as an associated element of exposure.

teaume et al., 2021; Intini et al., 2020) due to the relationship
between the ignition points and populated areas (Chappaz
and Ganteaume, 2022). It also represents a high weakness of
human settlements, as they are extremely close to the forest
and becoming a problem in fire management (Cohen, 2008).
The wildland–agricultural interface (WAI) is a forest area in
close proximity to an agricultural area (within 200 m) and
highly predisposed to burning due to the fire used for clearing
forest and pasture or crop establishment (Leone et al., 2009;
Ortega et al., 2012). Moreover, fire impacts agricultural land,
making food safety susceptible to hazards (Baas et al., 2018).
Natural areas with special protection (UNEP-WCMC and
IUCN, 2022) are particularly fragile, with species with dif-
ferent endemism ranges and that are sensitive to social, cli-
mate and environmental changes (Baiamonte et al., 2015).

Fire risk is considered the cumulative consequence of the
interplay of context-specific elements. Those elements cap-
ture vulnerability, exposure and hazard components emerg-
ing from the probability of fire occurrence. In this study we
quantify fire risk by measuring the potential area affected,

the hot spots of biodiversity, and ecosystem services poten-
tially exposed and their vulnerability. We also assess fire risk
in both current and future conditions (Sect. S1, Fig. S1 in the
Supplement) to consider the impact of climate change.

2.2.1 Fire hazard model

The model presented in this study is developed using the
k.LAB software to achieve interoperability from the data
sources to the generated modeling results (Villa et al.,
2017). Within k.LAB, an ontology-driven language called
Knowledge-Integrated Modeling (k.IM) provides the basis
for the semantic annotations (i.e., explicit definitions) of re-
sources, such as external datasets, and individual modeling
tasks (Sect. S1, Fig. S2). Once the resources are assembled
in the resulting computational workflow, k.LAB returns as
output contextualized models’ results visualized on a map.
To ensure transparency, textual documentation of the process
followed to achieve the results with annexed references and
details about the workflow is also provided to the users.
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Table 2. Information about historical fire data.

Historical fire perimeter Historical fire ignition

Source Regional agency of fire control FIRMS
in Sicily

Spatial resolution GPS error, less than 10 m MODIS: 1 km
VIIRS: 375 m

Temporal coverage and time 1 January 2007–31 December MODIS Collection 6:
consistency 2020 (daily) 11 November 2000–present (daily)

VIIRS: 20 January 2012–present
(daily)

Coordinate reference system EPSG:102092 – EPSG:4326, WGS 84,
(CRS) Monte Mario (Greenwich) Italy 2, projected geographic

for the years 2009 and 2017, and
EPSG:3004, Monte Mario / Italy
zone 2, projected

Feature type Polygon Point

Accurate spatio-temporal detection of fire hazard is essen-
tial for the modeling and analysis of fire risk; thus, a sys-
tem that transparently keeps track of the origin and relia-
bility of input data is crucial. The input data used in this
study were collected from different sources and can be clas-
sified into two categories: (i) historical wildfires and (ii) ex-
planatory variables, which include weather, human and bio-
physical drivers. The data collection and processing are dis-
cussed in the following sections. All the data and resources
are semantically annotated, openly accessible and interoper-
able within k.LAB.

Historical fire data from 2007 to 2020 were collected from
two different sources: the regional agency of fire control in
Sicily was used to identify the fire perimeter, and the Fire In-
formation for Resource Management System (FIRMS) satel-
lite data were used to locate the ignition point (Table 2).

The regional agency collects the perimeter data of histori-
cal fires and provides the fire start and end dates collected by
the Forestry Information System (SIF – Sistema Informativo
Forestale) and the forestry command corps of the Sicilian
region (Comando del Corpo Forestale della Regione Sicil-
iana). FIRMS was developed by the University of Maryland
to locate active fires in near real time by data from MODIS
(Moderate Resolution Imaging Spectroradiometer) and VI-
IRS (Visible Infrared Imaging Radiometer Suite) (Giglio et
al., 2016; Schroeder et al., 2014). MODIS is an instrument
aboard Terra and Aqua satellites that provides global cover-
age every 1–2 d, and the VIIRS sensor is on board the Suomi
and JPSS satellites and provides full global coverage every
12 h. When there was information from both satellites for the
same fire perimeter, VIIRS was prioritized. Due to its spec-
tral and spatial resolution, the VIIRS sensor is more accurate
in fire detection (omission and commission of errors) thanks

to the detection of the radiative power of the fire, especially
in low-biomass areas (Fu et al., 2020).

Satellite data were used to locate the fire ignition point
inside the perimeter provided by the regional agency. The
centroid was considered the ignition point for the perimeters
when it was not identifiable using satellite data. To prevent
double counting from the data sources, each fire perimeter
was double-checked to verify that there was only one ignition
point per fire perimeter. We obtained a total of 7492 points
linked with their ignition date (day, month and year).

In addition to the ignition data, we prepared an equal num-
ber of locations without fire events. This is needed to pre-
serve a balanced dataset of observations that considers the
explanatory-variable values in both the case of ignition and
the absence of ignition. The result of an imbalanced training
dataset is a “skewed data bias” and a model not capable of
discriminating relevant patterns in data (Rennie et al., 2003).
The weights for the class with fewer training data will be
lower when the training data are skewed. Consequently, clas-
sification will be unfairly biased in favor of one class over
another. The learning algorithm becomes too specific, lead-
ing to overfitting (Li et al., 2021).

The points without ignition were randomly generated with
seeds within the study area between 1 January 2007 and
31 December 2020. It was verified that none of these points
overlap with historically burned perimeters in date and lo-
cation. The “ign” attribute differentiates ignition points (1)
from non-ignition points (0) (Fig. 2).

The data feeding the machine learning model come from
open resources on the cloud provided by well-known and
reliable institutions. Those input data are incorporated au-
tomatically, depending on the spatio-temporal needs of the
model. In the Sicily model, the data come from the regional
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Figure 2. Distribution of historical wildfires (category 1, black color) and no wildfires (category 0, grey color) in the Sicily region from 2007
to 2020.

government of Sicily and the University of Catania or the E-
OBS (ensemble observation) project, among others (Table 3).

In the case of Sicilian wildfires, the human factor is one
of the main triggers that lead to the depopulation of country
areas by land managers and an increasing number of tourists
and visitors. The human drivers used as explanatory variables
in the model are distance to protected areas, distance to road
and distance to human settlement. Those variables are calcu-
lated using semantics in the k.LAB software. This software is
able to compute geographical distances (Euclidean distance)
between spatial objects. Additionally to human drivers, the
fire hazard also depends on (i) weather (especially due to
long dry seasons); (ii) topography; and (iii) environment,
characterized by the high flammability of the Mediterranean
forests (Corrao, 1992). Some of the weather variables, based
on E-OBS data, were integrated into the ARIES network.
Those drivers influence fuel type, moisture levels and fire be-
havior.

Meteorological data were obtained from the E-OBS
Copernicus project (Cornes et al., 2018). We used the last
version released in March 2021 to obtain data from 1 Jan-
uary 2007 to 31 December 2020. The data were processed
with R software to obtain the meteorological data needed on
each specific day such as daily temperature and daily solar
radiation (Table 3).

In addition, heatwaves and long periods of drought are
great drivers for the majority of extreme wildfires (Nar-
cizo et al., 2022; Nojarov and Nikolova, 2022; Parente et
al., 2018). Moreover, with climate change, these episodes
will increase in number, frequency and intensity, especially
for the projections for Representative Concentration Path-
way 8.5 (RCP8.5; Molina et al., 2020). We have taken into
account variables such as the mean of maximum tempera-
tures, the number of days without rain and the precipitation
accumulated during the previous week.

The topographic factors used (slope and elevation) are
constant components of the fire risk model. They have a
strong influence on other parameters such as fuel conditions
and weather. Slope and elevation were generated from a dig-
ital elevation model (DEM) at a 10 m resolution.

Fuel type and land cover composition have a significant
effect on fire ignition. Deep knowledge of the fuel bed is key
to fire management, as it is one of the main components of
fire risk. Fuel bed has been reformulated into fuel models
for easier use in models and systems. The characteristics and
properties of fuel types used categorical ranges between 1
and 7 (Sect. S2, Table S1 in the Supplement) according to
the Prometheus project (Lasaponara et al., 2006). The lat-
ter defines fuel type as a recognizable combination of fuel
components with distinct species, shapes, dimensions, struc-
tures and continuity that will display a particular fire behav-
ior under specific burning conditions (Merrill and Alexan-
der, 1987). The land cover map source is based on the Ital-
ian “Map of Nature” (Angelini et al., 2009). Land cover is
mainly composed of extensive crops and complex farming
systems (46 %), so the main fuel type is ground fuels such as
grass (50 % of land in Sicily). Of the land cover on the island,
29 % is non-combustible.

Among the models that were tested, one of them had the
fire frequency as input, calculated with the historical wild-
fires from 2007–2020. This model had an accuracy above
95 %. After several literature searches and discussions with
experts, it was decided not to incorporate fire frequency into
the model. Although the accuracy was much better than
the model finally chosen (83.6 %), the main disadvantage
was the possibility of overfitting. In addition, it may lower
the likelihood of detecting wildfires in unusual areas due to
changes in land use or phenomena such as climate change.
Finally, the difficulty of accessing new wildfires to incorpo-
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Table 3. Variables in the Bayesian network (BN) model.

Variable Description Type Unit Source
(semantic
language)

Occurrence of fire Present and absent Discrete 1 (fire), 0 (no fire) ARIESa, SIFb and
within site FIRMSc

Atmospheric Mean temperature Continuous ◦C E-OBSd

temperature

Weekly maximum Mean of maximum Continuous ◦C ARIESa (based on
atmospheric temperature in the E-OBSd data)
temperature last week

Count of day Counting days Continuous – ARIESa (based on
without since last E-OBSd data)
precipitation precipitation

Weekly Accumulated Continuous mm ARIESa (based on
precipitation precipitation E-OBSd data)
volume during a week

Solar radiation Total solar Continuous J m−2 E-OBSd

radiation

Value of forest Forest fuel type Discrete see Sect. S2, University of
during fires Table S1 Catania

Elevation Geographical Continuous m SITRe

elevation above sea
level, as described
by a digital
elevation model

Slope Inclination of the Continuous grade ARIESa (based on
above-water terrain elevation from
in a geographical SITRe)
region

Distance to Distance to Continuous m k.LABf (based on
protected area protected area OSMg)

Distance to road Distance to road Continuous m k.LABf (based on
OSMg)

Distance to human Distance to human Continuous m k.LABf (based on
Settlement settlement OSMg)

a ARIES: ARtificial Intelligence for Environment & Sustainability. b SIF: Sistema Informativo Forestale (Forestry Information
System). c FIRMS: Fire Information for Resources Management System. d E-OBS: ensemble observation. e SITR: Sistema
Informativo Territoriale Regionale (Regional Spatial Information System). f k.LAB: Knowledge Laboratory. g OSM:
OpenStreetMap (OpenStreetMap contributors, 2020).

rate into the frequency variable was another important reason
for this choice.

2.2.2 A Bayesian network model of fire hazard

Bayesian networks (BNs) (Pearl, 1988) have been widely
used in recent years and have been highlighted as a power-
ful tool for modeling complex problems, representing uncer-
tainty and assisting stakeholders when the data are highly in-

terlinked (Henriksen et al., 2007; Kangas and Kangas, 2004;
Penman et al., 2011). Thus, the BN model is especially use-
ful in environmental modeling of factors such as wildfire risk
because it (i) involves a high level of uncertainty, (ii) has lim-
ited or incomplete data on key system variables, (iii) con-
tains both qualitative and quantitative information or data in
different forms, and (vi) integrates multidisciplinary systems
(Chen and Pollino, 2012). In addition, the system is transpar-
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Table 4. Discretization applied to the variables used in the fire occurrence modeling.

Semantic Method Bins

Atmospheric temperature in ◦C

equal width

10
Weekly maximum atmospheric temperature in ◦C 10
Solar radiation in J m−2 5
Weekly precipitation volume in mm 10

Count of day without precipitation

equal frequency

5
Slope in grade 5
Elevation in m 5
Distance to protected area in m 5
Distance to road in m 5
Distance to human settlement in m 5

ent in its process, as its nodes’ table shows the dependency’s
strength between nodes and their parents in terms of condi-
tional probability distribution and the relationships between
variables are made explicit.

A BN is a model that graphically represents causal asser-
tions between variables as patterns of probabilistic depen-
dencies. A directed acyclic graph (DAG) of a BN is built with
nodes (variables) and edges between the nodes (dependen-
cies and mutual relationships between variables). Each suc-
cessor node (children) is only determined by the values of
its immediate predecessors (parents) known as the parental
Markov property (Pearl, 2009). Roots are the nodes without
any parent and with marginal distribution (Borsuk, 2008).

The BN has been learned using the WEKA (Waikato Envi-
ronment for Knowledge Analysis) library integrated into the
k.LAB software (Bouckaert, 2004; Frank et al., 2016; Will-
cock et al., 2018). WEKA is an open-source Java library that
provides a collection of machine learning algorithms. The
WEKA interface provides graphical and text components to
inspect some BN’s properties as basic algorithm information,
the BN structure, the probability distribution table or the ac-
curacy by class.

The model has been written in a semantically explicit
way using the aforementioned k.IM language (Sect. S1,
Fig. S2), which compiles in Web Ontology Language (OWL)
(Bao et al., 2012) and allows us to ontologically define and
model natural-language-like logical expressions. In addition,
a model written in k.IM is able to interoperate with other
models available in the k.LAB environment. When model-
ing in k.IM, concepts that have been previously defined in
a knowledge base are invoked; examples are earth:Site and
chemistry:Fire as depicted in Sect. S1 (Fig. S2). Those con-
cepts contain meanings that facilitate a semantic integration
within the system (Villa et al., 2017).

Since the BN is built with categorical values, continuous
data need to be discretized. Discretization allows the estab-
lishment of non-linear values between variables and more
complex distributions (Friedman and Goldszmidt, 1996).
Discretizing the data helps to interpret the results more eas-

ily when it comes to decision-making processes by facilitat-
ing communication between modelers and end users. How-
ever, the interval selection interferes with the final results.
We have been taking into account that the higher the number
of intervals, the more data are needed to find significant de-
pendencies (Aguilera et al., 2011); the nodes become weak
when there are many intervals because there are fewer data
for each distribution.

Among the methods to use for discretization (Beuzen et
al., 2018), in this study we use both the equal-width and
equal-frequency binning unsupervised methods, according
to the input data distribution (see the data histograms in
Sect. S3). In the first case, the algorithm divides the data into
k intervals of equal size, and in the case of equal frequency,
the user specifies the sub-ranges that result in k intervals
(bins) with approximately the same number of values. Af-
ter modeling with different discretization ranges and obtain-
ing similar accuracy results, we have chosen, for each of the
variables, the minimum number of intervals in order to make
ecological sense, maintain statistical significance and mini-
mize information loss (Sect. S4, Table S2). The discretization
applied is shown in Table 4.

To learn the BN, 80 % of the dataset was used to ac-
tually learn the model and 20 % to test the relationship
between historical wildfires (observations) and explanatory
variables. On the learning side, we selected the K2 algorithm
(Cooper and Herskovits, 1992). This type of score-based al-
gorithm searches for the most probable belief-network struc-
ture through a heuristic search. The K2 algorithm processes
each node in turn and greedily considers adding edges from
previously processed nodes to the current one, adding the
edges that maximize the network’s score. It turns to the next
node when any of the following requirements are met: (i) it
has reached the maximum number of parents, (ii) there are
no more parents to add and (iii) the score has not improved
(Chen et al., 2008). The number of parents for each node can
be restricted to a predefined maximum (e.g., maxparents
= 1) to mitigate overfitting.
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Figure 3. Directed acyclic graph (DAG) of the fire hazard Bayesian network model where the arc width shows the strength of influence
between nodes. Nodes show the relative probability of each interval of the variable, described in the Supplement (Sect. S4, Table S2).

The BN predictors have been distributed in a directed
acyclic graph (DAG) as shown in Fig. 3. The DAG assigns
probabilities to each variable’s predictor: anthropogenic and
biophysical factors such as meteorology, topography and en-
vironment. The most influential variable of a BN results from
the following characteristics: (i) the strength of influence
of each edge connecting the nodes (Balbi et al., 2019) and
(ii) how “far”, in terms of number of edges, an input node is
from the final output (Marcot et al., 2006). The strength of in-
fluence is calculated from the conditional probability tables
and expresses the difference between the probability distri-
butions of two nodes by looking at the posterior probability
distribution of a node, for each possible state of the parent or
child node. To summarize this difference, we report normal-
ized Euclidean distance, although other types of distances
(e.g., Hellinger) are also used (Balbi et al., 2019). Table 5
quantifies numerically the strength of influence as the thick-

ness of the edges between the fire hazard node and its chil-
dren. The predictors with the highest strength of influence are
(i) atmospheric temperature, (ii) days without precipitation,
(iii) fuel type and (iv) solar radiation (Table 5), all of which
are directly linked to the final output (fire occurrence). While
atmospheric temperature, number of days without precipita-
tion and solar radiation are expected to increase in variability
and increase fire hazard with limited options for human mit-
igation, fuel type can be managed with timely landscape in-
terventions, reducing its combustibility level where it is more
necessary.

Finally, to be more understandable for end users and stake-
holders, the results of the model were divided into three equal
intervals related to the level of fire occurrence (high: more
than 66 % chance; medium: between 33 % and 66 % chance;
low: less than 33 % chance).
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Table 5. Strength of influence of fire occurrence on its child nodes.

Variable Strength of
influence

Atmospheric temperature 0.338
Day without precipitation 0.193
Fuel type 0.192
Solar radiation 0.191
Elevation 0.158
Maximum weekly atmospheric temperature 0.154
Distance to protected area 0.145
Slope 0.138
Distance to road 0.117
Weekly precipitation volume 0.113
Distance to human settlement 0.112

2.2.3 Drivers of vulnerability and exposed elements

Social vulnerability and environmental vulnerability have
been assessed as the tendency of exposed elements to be po-
tentially damaged by a fire hazard due to their intrinsic or
contextual conditions (IPCC, 2012). First, we used models
developed in previous projects in k.LAB to determine the
socio-ecological exposed elements. The ecosystem service
models and biodiversity considered are those included in the
ARIES global model set (Martínez-López et al., 2019). Once
the fire hazard model is in k.LAB, all the data and models
can interoperate through the explicit semantics (Villa et al.,
2017). Thus, we can reuse previous ecosystem service mod-
els developed (Martínez-López et al., 2019; Willcock et al.,
2018), applying them to a different context and creating new
knowledge. In this case, due to the specificities of Sicily and
the relevance of ecosystem services affected by wildfires, we
choose to consider the following models: (i) vegetation car-
bon mass, (ii) pollination, (iii) outdoor recreation, (iv) bio-
diversity and (v) soil retention. These models, published in
Martínez-López et al. (2019) and Willcock et al. (2018), are
briefly described below:

– Vegetation carbon mass. This is a calculation of the
above- and belowground carbon storage in vegetation
(t ha−1), in accordance with Tier 1 IPCC methodology
(Gibbs and Ruesch, 2008; IPCC, 2006).

– Pollination. Based on land use, cropland and weather
patterns, the pollination model generates spatially ex-
plicit data of the supply and demand for insect pollina-
tion services.

– Outdoor recreation. This is a calculation of the acces-
sibility of recreational features of the natural landscape,
as well as the demand for them, based on the methods
by Paracchini et al. (2014).

– Biodiversity. This employs a Bayesian network ap-
proach used to learn from site-based expert estimations

of “biodiversity value” to create a map of the entire Si-
cilian region (Willcock et al., 2018).

– Soil retention. The model provides biophysical esti-
mates of soil loss and retention by plants (in metric tons
of sediment per hectare per year) using the widely em-
ployed Revised Universal Soil Loss Equation (RUSLE;
Renard et al., 1997).

To create a comprehensive indicator of ecosystem services
and biodiversity, we converted the above-mentioned model-
ing output to a common scale, using quantitative and qual-
itative criteria. In order to calculate the potentially reduced
social and ecological services, we used the normalization
method, instead of others such as qualitative categorization
and probabilistic approaches (normal, Poisson, binary) (Chu-
vieco et al., 2003). We transformed each modeling output
rescaling it from 0 to 1 and using the minimum and maxi-
mum value within the Sicily context. The quantitative scale
was classified into three categories (1 – low; 2 – medium; 3
– high) using equidistant intervals, thus integrating all mod-
eling outputs into a single value. In this quantitative cross-
assessment, the most valuable component was prioritized.
The final map was overlaid with wildland areas.

Once exposure was identified, we located the most vul-
nerable elements that were exposed to fire. Spatial data were
generated for WUI, WAI and protected areas. In order to cre-
ate the WUI area, we generated a 200 m buffer map from
the human settlements and then overlaid it with the forest
areas. The WAI map followed the same procedure but with
the buffer map from the agricultural areas. Finally, we use the
FAO map (UNEP-WCMC and IUCN, 2022) for the protected
areas. Vulnerable areas were overlapped with the exposure
map.

Finally, the fire hazard model was used to predict how
the most vulnerable exposed elements could be affected
in current and future climatic conditions. The future cli-
mate data were drawn from the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) for RCP8.5 from
the Coordinated Regional Climate Downscaling Experiment
(CORDEX) (Giorgi et al., 2009). The data are bias-corrected
and simulated by state-of-the-art global and regional climate
model pairs. To generate the climatic variables, we used the
same process as for the current variables. We kept the other
variables (solar radiation, fuel, slope, elevation, distance to
road, protected area and human settlement) with the current
conditions.
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Figure 4. Number of ignitions vs. burned area by year from 2007 to 2020. Source: regional agency of fire control in Sicily and FIRMS.

Figure 5. Number of ignitions vs. burned area by month from 2007 to 2020. Source: regional agency of fire control in Sicily and FIRMS.

3 Results

3.1 Historical data analysis

During the analysis period (2007–2020) 28 814.698 ha was
burned in 12 749 fire perimeters, and the data show signif-
icant variability between years (Fig. 4). The average area
burned is equivalent to 20 630 ha with 910 ignitions per year,
2012 being the worst year with 1274 ignitions and 55 699 ha
burned. However, the monthly distribution over this period is
skewed toward July and August (Fig. 5) due to the weather’s
favorable fire conditions in this period. August is clearly the
month with more wildfires in all the years analyzed, with
4166 ignitions and 118 481 ha burned in total (26 % more
area than July, the second-worst month).

Fire frequency analysis (Fig. 6) showed that a quarter of
the area affected during 13 years (from 2007 to 2020) has
burned once and 34.8 % twice, 23.1 % has burned three times
or more, and nearly 6 % has burned more than five times.
Burned areas are spread throughout Sicily; however, areas

close to cities, such as Palermo, have been burned more than
others.

Fire ignition causes have been recorded since 2010. Fig-
ure 7 shows that, every year, more than 70 % of wildfires are
caused by arson, with 2010, 2011 and 2012 being particularly
relevant. The percentage of wildfires caused by negligence or
natural effects is of little relevance. In general, it seems that
the trend of arson has decreased significantly over the years,
from 91.54 % to 67.06 %. A large part of the percentage that
has decreased due to arson has been replaced by wildfires of
unknown origin, so we cannot be confident that this trend is
real.

3.2 The Bayesian data-driven approach

The Bayesian network model shows the probability of each
child node under the probability of fire occurrence (where
fire hazard is the parent node). For this purpose, in Fig. 3,
the state of the parent node based on historical fire is set to
100 %, indicating that wildfire is certain. The posterior prob-
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Figure 6. Fire frequency aggregated by year. The legend shows how many times the same area has been burned during the period of 2007–
2020.

Figure 7. Relative frequency of fires by main fire causes in Sicily
for 2010–October 2020 as a proportion of the total wildfires.

ability of each state of the explanatory variables is then ob-
tained given the conditional probability table (CPT) of each
node (Fig. 3).

Accordingly, the fire occurrence probability at “atmo-
spheric temperature” is highest between 24.71 and 28.65 ◦C
(Sect. S4, Table S2) and the weekly maximum temperature
is between 27.93 and 31.69 ◦C. In over 80 % of the cases,
the weekly precipitation accumulated is below 0.05 mm for
fire occurrence. Moreover, the more days without precipita-
tion and the higher the solar radiation, the higher the prob-
ability of fire occurrence. As for the topographic variables,
the most important is the slope, since the probability of fire
is directly proportional to the slope. The same is observed
in the case of elevation but with a less obvious pattern. The

probability of fire is higher in locations that are closer to hu-
man activities such as roads or buildings and protected areas.
Finally, in the case of the environmental variables, the high-
est fire probability by fuel forest type (Sect. S2, Table S1) is
when ground fuel is grass (type 1), followed by high shrubs
(between 2.0 and 4.0 m) and young trees resulting from nat-
ural regeneration or forestation (type 4). The third-riskiest
fuel type is type 5, which occurs when the ground fuel is re-
moved either by prescribed burning or by mechanical means.
This situation may also occur in closed canopies in which the
lack of sunlight inhibits the growth of surface vegetation.

The most influential variables (in terms of connection
strength) according to our BN algorithm are atmospheric
temperature, days without precipitation and fuel type (Ta-
ble 5). While atmospheric temperature and the number of
days without precipitation are expected to increase in vari-
ability and increase fire hazard with limited options for hu-
man mitigation, fuel type can be managed with timely land-
scape interventions, reducing its combustibility level where
it is more necessary.

The k-fold cross-validation algorithm has been used to es-
timate the model’s accuracy. This algorithm uses the training
and testing process k times and averages the results. The re-
sults for k = 10 showed that 83.997 % of the instances were
correctly classified into two categories: occurrence and non-
occurrence of wildfires.

We use the confusion matrix to measure the performance
of the classification (Table 6). The results show not only
12 172 correctly classified instances, but also 1426 false pos-
itives and 893 false negatives. The type-I error (false pos-
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Table 6. Confusion matrix of fire hazard BN modeling.

Real

No fire Fire Sum

Predicted

No fire 5573 893 6466
(type-II error)

Fire 1426 6599 8025
(type-I error)

Sum 6999 7492 14 491

itive), i.e., detecting a fire where it, in reality, has not oc-
curred, could lead to allocating efforts to unnecessary areas.
The type-II error (false negative) could not identify the prob-
ability of fire in risk situations, and, therefore, the risk would
not be managed properly. A false negative rate (0.11) is cal-
culated as the number of incorrect positive predictions di-
vided by the total number of negatives; the best false positive
rate is 0.0.

Bayes’ theorem is key to interpreting the output of bi-
nary classification problems using the calculated confu-
sion matrix. Precision is the confusion matrix probability
P (fire / total predicted fire)= 6599/8025= 0.822. It is the
probability that the fire predicted as fire is true. Recall P

(fire / total actual fire)= 6599/7492= 0.881 is the propor-
tion of the actual fires that were correctly predicted by our
classification algorithm. Table 7 also shows that the precision
for the negative class (no fire) is 0.822. Moreover, the overall
accuracy (weighted average between fire and no fire) is 0.841
and 0.840 for precision and recall, respectively, and gives an
overall picture of our model. These weighted results are close
to our precision and recall values for fire variables because
our model is balanced (7492 wildfires (51.70 %) vs. 6999 no
wildfires (48.29 %)). Hence, the overall accuracy (0.84) is a
good metric in this situation.

The confusion matrix is also useful for measuring other
significant metrics such as the ROC (receiver operating char-
acteristic) curve that summarizes the performance of the
Bayesian classifier over all possible thresholds (Bradley,
1997; Fawcett, 2006). It measures accuracy in a weighted
sort and is appropriate when the observations are balanced
between each class, as in this case. For example, we used
a sorting-based method called area under the ROC curve
(AUC) that measures the two-dimensional region below the
ROC curve from (0, 0) to (1, 1). Not only does the model
present a strong AUC result of 0.915 for fire hazard, be-
cause the result is close to 1, but also it shows a significant
F measure (a harmonic mean of the precision and recall)
with 0.847. The model also performs well in terms of un-
certainty in the results. In the Supplement (Sect. S4, Fig. S6)
we display the uncertainty map associated with the standard
deviation of the probability distribution of fire hazard.

As an example, we present the fire hazard model results
(i.e., the mean values of the simulated probability distribu-
tions) for August 2050 because August is the month with the
most critical historical wildfires in Sicily (Fig. 5), assuming
no changes in ecosystem management. Given the ease of ac-
cess and reuse of models and data in k.LAB and as the input
data are on the platform and openly available, any user of the
modeling platform can run the fire hazard model at any time
in the future until 2055.

As anticipated, the results of the model were divided into
three equal intervals, related to the level of fire hazard (low:
probability of fire less than 33 %; medium: probability of fire
between 33 % and 66 %; high: probability of fire more than
66 %). Figure 8 shows the comparison between the average
results for August in 2020 and 2050 at 50 m resolution.

When comparing simulated outcomes for 2020 and 2050,
the increase in areas with high fire probability and de-
crease in those with low fire probability become evident.
The area with low fire probability changed from 12 300 to
4887 km2, representing a reduction of almost 40 %. The area
with medium probability of fire occurrence increased from
29 % of the total wildland area to 48 %. Finally, the wild-
land area with a high probability of fire occurrence changed
from 8 % (1675.26 km2) to 27 % (5357.62 km2), an increase
of 319.8 % between the two scenarios. We here highlight
the most significant change: from low to medium probabil-
ity of fire occurrence, which has increased by 7112.58 km2.
Conversely 4504.34 km2 of wildland areas with a low prob-
ability of fire occurrence remains unchanged between 2020
and 2050.

3.3 Wildfire risk levels

The wildfire risk map at 50 m resolution integrates a set of
variables related to exposure and vulnerability (Table 1). In
this study, we analyze the areas with important ecological
values and ecosystem services for both humans and nature,
which would be potentially affected in the case of fire due to
their exposure.

Figure 9 compares the average spatial variability in the
ecosystem services and ecological values exposed in Au-
gust 2020 and August 2050. The panels are distributed by
levels of fire occurrence probability (first row, low; second
row, medium; third row, high), according to the fire hazard
model. The 2020 column shows that the most exposed area
corresponds to the low fire hazard level. As the level of fire
hazard increases, the exposed area decreases. In contrast, the
2050 column shows that the most exposed area corresponds
to the medium fire hazard level, followed by high and low
probabilities of fire occurrence.

Linked to Fig. 9, Fig. 10 shows the changes (in km2) bro-
ken down by ES (ecosystem services). As we observed in
the exposure maps (Fig. 9), the fire hazard increases in all
ES. For example, the exposure to the carbon mass ecosystem
service and biodiversity will increase by more than 150 %
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Figure 8. Example of fire hazard in (a) August 2020 and (b) August 2050 classified by low, medium or high probability of fire occurrence.

Table 7. Sensitivity analysis of fire hazard model. TP rate: true positive rate; FP rate: false positive rate; F measure: F measure or F score;
MCC: Matthews correlation coefficient; ROC: receiver operating characteristic; PRC: principal response curve.

TP FP Precision Recall F MCC ROC PRC
rate rate measure

No fire 0.796 0.119 0.862 0.796 0.828 0.681 0.915 0.922
Fire 0.881 0.204 0.822 0.881 0.851 0.681 0.915 0.903
Weighted avg. 0.84 0.163 0.841 0.84 0.84 0.681 0.915 0.912

in the exposed areas with a high fire probability (Sect. S5,
Table S3). Outdoor recreation, soil retention and pollination
ecosystem services will increase by 117 %, 100 % and 56 %,
respectively. In contrast, the exposure with a low fire proba-
bility will decrease by between 50 % and 65 % each.

Figure 11 shows how the percentage of vulnerable areas
is distributed in each of the variables analyzed as a func-
tion of the fire probability. Therefore, following the same
trend as exposed areas, ecosystem services and ecological
values increase fire risk with the influence of climate change.
The WUI (wildland–urban interface) case increases by 19 %
for high fire probabilities in 2050, and almost half of the
wildfires will be at medium risk. In both WAI (wildland–
agriculture interface) and protected areas, half of their areas
could face a high fire risk in the future, doubling the 2020
data.

Most of the vulnerable locations close to agricultural areas
have a high probability of fire. However, one of the areas with
high vulnerability in the protected area overlaps with sites
that are difficult to access for the population, such as the Ne-
brodi Park or the Madonie Regional Natural Park (Fig. 12).

Overall, the area with the highest socio-ecological value is
in the northeastern quadrant of the island, coinciding with the
areas of highest fire risk. In contrast, regions with low protec-
tion are primarily agricultural areas, urban surroundings or
areas that have been affected by fire in the recent past. These
non-vulnerable areas dominate most of the Sicilian territory.

4 Discussion and summary

Although historical fire data are becoming more accessible
and findable, there is still much to be done to enhance their
full use (e.g., their interoperability and reusability). The most
reliable data are those collected in the field by authorized
public or private institutions, but in many cases, it is ex-
tremely difficult to access and download field data for the
general public. In contrast, satellite data are becoming in-
creasingly accessible. However, fires cannot always be prop-
erly detected by satellites for the following reasons: (i) they
need a minimum fire size or intensity (linked to the reso-
lution), (ii) there can be false alarms (commission errors),
(iii) the information can be obscured by clouds or overstory
vegetation, or (iv) the time of satellite overpass may not co-
incide with the fire (Hantson et al., 2013; Schroeder et al.,
2008).

In this study, we use both satellite data and field data to
verify and complement the fire-related information. Overall,
common problems for satellite and field data are the scarce
harmonization among data formats and the lack or bad qual-
ity of metadata. In this study, the main difficulties were the
differences in parameters such as the coordinate reference
system and lack of metadata information and fire attributes
between the yearly perimeters of fire. By integrating the data
in k.LAB, all the data resources were harmonized, properly
classified and made available online with complete metadata.

Concerning the model quality, model errors are related
to data location, spatio-temporal resolution or logical con-
sistency (Guptill and Morrison, 2013; Kraak and Ormeling,
2020). Utilizing multiple data sources adds strength to the
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Figure 9. Exposure map of ecological values and ES (ecosystem services) that may interact with levels of forest fire probability (low, medium
and high) in 2020 and 2050.

Figure 10. Comparison of the fire hazard level – low (grey), medium (yellow), high (red) – by the importance of the socio-ecological elements
exposed in different color tones (low, medium or high). Values show the surface average (km2) in August 2020 and 2050.
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Figure 11. Percentage of the vulnerable areas distributed in each of
the variables analyzed (WUI, WAI, protected areas) as a function of
the fire probability.

model and has been especially useful for detecting small
wildfires related to land management: the vast majority of
wildfires in Sicily. These kinds of wildfires may be too short-
lived for administration technicians to record or not intense
enough to be captured by satellites. Moreover, we find this
strategy avoids a bias in the estimation of predictors’ proba-
bilities (Roy et al., 2005).

The historical fire set was analyzed, filtered, cleaned and
processed prior to fire hazard modeling. The frequency of
wildfires from 2007 to 2020 was analyzed; some areas have
burned more than once in the same year or in more than
5 years during the 13-year period. We suggest that future
studies would have to study why this phenomenon can hap-
pen and how it could be avoided, as such a high frequency

of wildfires disrupts the cycle of natural processes of plants
and animals, vegetation structure and composition, and asso-
ciated ecosystem services.

Once the perimeters of each of the wildfires were iden-
tified, the associated information from the administration’s
wildfire records was combined with the active fire points
from the satellites to find the fire ignition area. Some dif-
ferences were observed in the satellite and the government
data. This may be due to reasons mentioned above: wild-
fires not detectable by satellites or agricultural burnings de-
tected as wildfires when the administration does not consider
them as such. A great deal of effort was devoted to data col-
lection, cleaning, validation, pre-processing and storage that
complies with FAIR principles, leading to a reliable and open
dataset on the basis of the occurrence of the fire model.

The model strength has been improved by extracting in-
formation from the predictors’ data with dynamic and static
variables such as meteorological or topographic data, respec-
tively. Thus, the predictors have informed the model with
values specific to each fire event. In addition, the predictors
come from reliable and tested sources such as Copernicus or
the Italian government as well as expert researchers and tech-
nicians. Some of the resources already existed within k.LAB,
such as protected areas or human settlement distribution, and
others were added, such as fuel types or the high-resolution
digital elevation model. The new information has been anno-
tated in the semantic language k.IM and, like the historical
fire data, is now open to any user and can interact with other
k.LAB models in line with the FAIR principles.

It should be noted that this model has taken into account
not only some of the explanatory variables at the time of igni-
tion but also some variables describing the ex ante situation.
Variables such as the average maximum temperature of the
previous week, the accumulated precipitation or the number
of days without rain were prior to the fire. The influence of
climatic factors can help to predict the occurrence of wild-
fires related to climate change and the stress to which the
forest was exposed (Halofsky et al., 2020; Trumbore et al.,
2015).

The machine learning algorithm used, BN (Bayesian net-
work), provides a flexible and adaptable approach to struc-
turing the peculiarities of fire hazard modeling: different data
sources, changes in spatio-temporal resolution and dynamic
versus static input data. BNs are useful in conducting prob-
abilistic risk assessments, since they are capable of directly
modeling all the probability distributions for stable condi-
tions and trade-offs, which is crucial for risk assessments
such as fire risk of complex ecological systems. They also
provide insights into or quantification of the influence of a
particular node on others (Kumar and Banerji, 2022). In ad-
dition, the evaluation of BNs presents much lower costs and
efforts than other options, even when the dataset is partly in-
complete, which is quite common for environment-related
data (Bielza and Larrañaga, 2014). Most of the remaining
issues are related to meteorological conditions and environ-
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Figure 12. Risk map of hot spots of biodiversity and ecosystem services exposed in protected areas, at the wildland–urban interface and at
the wildland–agricultural interface in August 2020, colored from blue with a value of 0 (low socio-environmental value) to red with a value
of 3 (high socio-environmental value). Areas that are exposed but not vulnerable are shaded in grey. Areas with no wildland and areas that
are not exposed are in white.

mental data, due to either the timely failure of nearby stations
or problems in post-processing. However, these problems can
be solved by integrating data with higher spatial resolution,
which, once semantically annotated, will automatically sub-
stitute lower-quality resources.

Another advantage of BNs is that they are not black-box
models: the direct interpretation of the results, based on the
probabilities of the predicting variables, is given in each node
probability distribution. With traditional modeling it is often
difficult to access the details of the model accuracy for the
end user, leading to a lack of reliability. Thanks to k.LAB
and its web browser k.Explorer, the accuracy of the model
is accessible and interpretable for non-expert end users as
stakeholders or land managers as we showed in the results.
In line with FAIR principles, the final output and all the vari-
ables needed to compute the fire occurrence are supported by
a narrative report produced at runtime to facilitate its inter-
pretation. All these outputs are open and downloadable.

The algorithm used has provided significant values to de-
tect areas with a high probability of fire occurrence. Thus,
BNs provide a fast, reliable and accessible tool for land man-
agers through k.LAB and semantics. The metrics related to
type-I and type-II errors can have great implications in prac-
tice; their acceptable values give credibility to the application
and use of the model in real situations.

The integrated model has been able to simplify a problem
as complex as the occurrence of wildfires by combining very
disparate datasets. Given the results, we successfully identi-
fied the different degrees of fire hazard. The model results
change according to the most influential variables that can
change over time and space, such as meteorological data, bio-
physical data and human pressure on the landscape.

By using k.LAB, a modeler can reutilize the model at any
point in time, including calculating the fire hazard in real
time or in future scenarios. For example, we have run the
model with future data for 2050 assuming forest manage-
ment does not change. It has been analyzed how, due to ex-
treme temperatures and the stress that they will place on veg-
etation, the probability of wildfires will be higher in a large
part of Sicily and, therefore, new areas will be affected. The
easy adaptation of the BN models together with k.Explorer
visualization facilities by the stakeholders simplifies the in-
corporation of new data in the future to test different land
management alternatives.

As the fire hazard model was incorporated into the k.LAB
modeling environment, this new model was able to interact
and connect with existing models (Villa et al., 2017). Thus,
we overlapped the future fire hazard with ecosystem services
that had already been developed and published by scien-
tific researchers. We chose the ecosystems that are directly
affected by fire such as pollination, soil retention, outdoor
recreation, biodiversity and carbon mass.

5 Conclusions

Models informing environmental decisions are usually devel-
oped in isolation, are self-contained, and have results mostly
accessible only to code owners and their collaborators. How-
ever, in a globalized world with increasingly complex and
intertwined problems, it is key to connect knowledge and de-
velop methods that can identify integrated solutions (Balbi et
al., 2022). The application of appropriate and reliable risk as-
sessment techniques is key to understanding and potentially
preventing future damage, but so is making this knowledge
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accessible to stakeholders. This study combines the power
of artificial intelligence and, in particular, machine learning,
knowledge representation and machine reasoning to model
the risk of fire to ecosystem services in Sicily, the largest is-
land in the Mediterranean Sea. We used the k.LAB technol-
ogy, which provides a common platform to make data and
models interoperable and accessible to non-technical users
(Balbi et al., 2022).

In this study, we integrated historical fire data from 2007
to 2020 and other explanatory variables to identify the ar-
eas at the highest risk of fire in present and future scenarios.
We developed a data-driven model using a Bayesian network
(BN) classifier. Model analysis demonstrates that the BN al-
gorithm applied to the historical wildfire data and their real-
time variables achieves a high range of predictive accuracy.
Despite the limitations identified such as the resolution of
meteorological data or the ability to detect small wildfires,
the findings reveal the usefulness of the method, including
the possibility of rerunning the model at different time steps
and spatial scales statically or dynamically.

The fire risk spatial results are easily accessible through a
web browser and can be used freely by land managers and
stakeholders. This can help to create new prevention guide-
lines or focus on the risky areas. Moreover, the model gives
scientists and land managers indications about the variables
that mostly affect fire probability and how this environmental
risk can be mitigated.
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