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Abstract. The relation between drought severity and drought
impacts is complex and relatively unexplored in the African
continent. This study assesses the relation between reported
drought impacts, drought indices, water scarcity and aridity
across several counties in Kenya. The monthly bulletins of
the National Drought Management Authority in Kenya pro-
vided drought impact data. A random forest (RF) model was
used to explore which set of drought indices (standardized
precipitation index, standardized precipitation evapotranspi-
ration index, standardized soil moisture index and standard-
ized streamflow index) best explains drought impacts on pas-
ture, livestock deaths, milk production, crop losses, food in-
security, trekking distance for water and malnutrition. The
findings of this study suggest a relation between drought
severity and the frequency of drought impacts, whereby the
latter also showed a positive relation with aridity. A relation
between water scarcity and aridity was not found. The RF
model revealed that every region, aggregated by aridity, had
their own set of predictors for every impact category. Longer
timescales (> 12 months) and the standardized streamflow
index were strongly represented in the list of predictors, in-
dicating the importance of hydrological drought to predict
drought impact occurrences. This study highlights the po-
tential of linking drought indices with text-based impact re-
ports while acknowledging that the findings strongly depend
on the availability of drought impact data. Moreover, it em-

phasizes the importance of considering spatial differences in
aridity, water scarcity and socio-economic conditions within
a region when exploring the relationships between drought
impacts and indices.

1 Introduction

Drought events are among the world’s most impactful dis-
asters (Stahl et al., 2016) and are receiving increasing at-
tention across different scientific disciplines because of their
complex links to both natural and socio-economic processes
(Van Dijk et al., 2013; Van Loon et al., 2016a, b). Drought
can be characterized as a slow-onset event whose impacts
build up over time and extend spatially in relation to a range
of contextual factors (Heinrich and Bailey, 2020). For in-
stance, differences in societal and political characteristics
can lead to a different range and magnitude of impacts even
though the intensity and duration of drought are similar
(Savelli et al., 2022). At the same time, catchment charac-
teristics also strongly influence the severity and propagation
of drought events (Van Loon, 2015).

The multifaceted nature of drought drivers, drought detec-
tion and quantification usually rely primarily on the anal-
ysis of climatic and hydrological variables (Kchouk et al.,
2022; Mishra and Singh, 2010; Yihdego et al., 2019). By ex-
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pressing the anomaly with respect to the mean and variabil-
ity in the local climate, drought characteristics can be com-
pared across regions with different climate conditions. In ad-
dition, accumulation periods can be used to account for time
lags and memory encountered in hydrological stores (Su-
tanto and Van Lanen, 2022). The simplest drought indices
only use meteorological data, while others include soil mois-
ture or streamflow data (Yihdego et al., 2019). Meteorologi-
cal and/or soil moisture (agricultural) droughts are often ex-
pressed by the standardized precipitation index (SPI), stan-
dardized precipitation evapotranspiration index (SPEI) and
the Palmer drought severity index (PDSI) (e.g. Baig et al.,
2022; Kamruzzaman et al., 2022; Zhou et al., 2022), while
the standardized streamflow index (SSI), the standardized
runoff index and the standardized groundwater level index
(SGI) can be applied for hydrological drought (Van Loon,
2015). However, the analysis of hydro-meteorological vari-
ables alone may not be sufficient for the identification of the
actual impacts of drought, as the listed drought indices do not
take into account the vulnerability of the system under analy-
sis (Bachmair et al., 2015). To better evaluate and communi-
cate drought risk, it is necessary to establish reliable links be-
tween drought indices and impacts. Linking drought impacts
to drought indices can contribute to drought risk and vulner-
ability assessments, which are useful for the development of
drought monitoring and early warning systems. These sys-
tems inform national and international organizations in pro-
viding timely and relevant assistance.

Due to the projected increase in drought frequency in some
regions around the world (Seneviratne et al., 2021), the prob-
ability of successive drought events might rise, resulting in
increased destabilization, insecurity and resource-based con-
flict in contexts with high vulnerabilities (Peng et al., 2020).
Monitoring and early warning (M&EW) are important mea-
sures to enhance drought resilience. The goal of M&EW is
to provide reliable and timely information on drought con-
ditions (using a wide range of drought indices) to enable a
local community to better prepare and act accordingly (Wil-
hite et al., 2007). However, there is a gap between forecast-
ing an extreme hydro-meteorological event and the under-
standing of its potential impacts, as recognized by the World
Meteorological Organization (WMO, 2015). The assessment
and monitoring of drought impacts are complex, given (1) the
great variety of drought impact categories, (2) their possible
propagation throughout the hydrological and social system,
and (3) the difficulty of drought impact attribution. For Eu-
rope and the USA, drought impact databases have been de-
veloped, namely the European Drought Impact Report Inven-
tory (EDII) (EDC, 2013) and the Drought Impact Reporter
(NDMC, 2005). Unfortunately, a comprehensive and struc-
tured drought impact dataset for the Horn of Africa region is
not available yet.

Several studies explored the links between drought im-
pacts and drought indices. For instance, the qualitative
dataset of EDII has been used to assess the link between

Nat. Hazards Earth Syst. Sci., 23, 2915-2936, 2023

M. R. Lam et al.: Linking reported drought impacts

drought impacts and indices at continental (Blauhut et al.,
2015), national (Stagge et al., 2015) and regional scales
(Bachmair et al., 2015, 2016, 2018). Several methods have
been used to investigate the relationships between drought
impacts and drought indices, such as logistic or linear regres-
sion (Bachmair et al., 2018; Blauhut et al., 2015; Gudmunds-
son et al., 2014; Parsons et al., 2019; O’Connor et al., 2022;
Stagge et al., 2015), correlation analysis (Bachmair et al.,
2016; Ma et al., 2020; Wang et al., 2020), and an ensemble
regression tree approach (random forest) (Bachmair et al.,
2016, 2017; Wang et al., 2020). A multitude of drought in-
dices, mostly SPI and SPEI with accumulation periods rang-
ing between 1 and 24 months, were linked to drought im-
pact categories applicable for the research area, for exam-
ple wildfire activity (Gudmundsson et al., 2014) and agricul-
ture (Parsons et al., 2019). However, according to our knowl-
edge, there are no similar studies with a focus on the Horn of
Africa. Linking drought impacts to drought indices in that re-
gion can provide new insights on the relevant drought impact
categories (e.g., food insecurity, livestock hunger, migration,
diseases, conflicts; Quandt, 2021).

Linking drought impacts with drought indices is regarded
as difficult, as there is often no strong intuitive cut-off within
impact categories during non-drought and drought condi-
tions (Hall and Leng, 2019). For instance, water scarcity
conditions can be the result of anthropogenic actions and
can lead to the same impacts experienced as those during
drought conditions (Van Loon and Van Lanen, 2013). Wa-
ter scarcity is a frequent phenomenon within (semi-)arid re-
gions (Maliva and Missimer, 2012), and it occurs when wa-
ter demand (both societal and ecological water demand) ex-
ceeds water supply (Kimwatu et al., 2021). It often leads to
long-term unsustainable use of water resources (Van Loon
and Van Lanen, 2013). Whereas aridity, based on the ratio of
long-term annual precipitation and potential evapotranspira-
tion rates (UNESCO, 1979), is regarded as a relatively con-
stant value, water scarcity is dynamic in time and related to
both decreases in water availability and increases in water
demand. The simultaneous presence of both water scarcity
(partly driven by anthropogenic causes) and meteorological
drought in an arid region can lead to a difficult attribution
of the impacts experienced. However, the separation of the
causes of impacts is needed to generate reliable informa-
tion to stimulate early actions in the affected sectors during
drought events.

In this study, we focus on Kenya. The country is character-
ized by strong gradients in precipitation, aridity, water yield
(i.e. amount of precipitation minus total actual evapotran-
spiration) and water scarcity (Mulwa et al., 2021; Wamucii
et al.,, 2021). Furthermore, recent drought impact reports
are also freely accessible for specific Kenyan counties. The
country has experienced several drought events in the recent
past: for instance, 2008-2011 was classified as a prolonged
severe drought (Mutsotso et al., 2018), and the drought in
20162017 was considered a national disaster (Kew et al.,
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Figure 1. Study area and its main characteristics. (a) Counties considered in this study, (b) distribution of aridity and (c) distribution of

livelihood zones.

2021; Ondiko and Karanja, 2021), with more than three mil-
lion people under food insecurity (Thomas et al., 2020). The
country has also experienced a diverse range of drought im-
pacts such as cattle mortality, wildlife deaths, famine, hu-
man losses and severe food shortages (Ondiko and Karanja,
2021). The presence of drought hazards, drought impacts,
water scarcity and aridity makes this country a suitable study
area to analyse their relations. In this context, the following
main research question is formulated: what is the relation of
drought impacts with drought indices and with water scarcity
under different aridity levels?

It is expected that drought events and impact occurrences
vary between climate zones. We hypothesize that drought
impacts (and therefore the relationship between drought in-
dices and impacts) will differ across regions with different
aridity characteristics in Kenya because of the distinct socio-
economic settings, possibly making arid areas more vulner-
able than more humid areas (Maliva and Missimer, 2012).
Furthermore, it is expected that water scarcity will show a
relation with aridity due to the presence of unreliable water
conditions.

https://doi.org/10.5194/nhess-23-2915-2023

2 Data and methods
2.1 Study area

Kenya is situated in East Africa. Its highest altitudes can be
found in the central highlands (with the highest peak of over
5000 m above sea level observed in Mt. Kenya’s forested wa-
ter tower), and low-lying regions can be found in the east,
northwest and northeast. The country mostly has an arid and
semi-arid climate which comprises about 80 % of the terri-
tory and hosts about one-quarter of the population (FEWS
NET, 2013) of approximately 53 million people (The World
Bank, 2020). Mean annual rainfall is less than 250 mm in
the semi-arid and arid areas and more than 2000 mm in the
mountainous areas. Long rains are experienced from March
to May (MAM), while short rains occur from October to
December (OND) (Ayugi et al., 2020). Medium- to high-
potential agricultural areas are in the highland areas in the
central and western parts of the country (sub-humid and hu-
mid zones) where the population density is 6 times the coun-
try’s average. Farming is the primary livelihood (both sub-
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sistence and commercial) for more than 75 % of the popu-
lation. Less than 4 % are pastoralists who mainly live in the
semi-arid and arid regions which are characterized by poorly
distributed and unreliable rainfall (FEWS NET, 2013).

For this study, six counties have been selected accord-
ing to different aridity levels, livelihood zones and available
drought impact information. Figure 1 presents the counties
considered in this study (Fig. 1a), the aridity (Fig. 1b) and
the livelihood zones (Fig. 1c). Marsabit is an arid county
(arid index 0.03-0.20) in the northern pastoral zone, while
Baringo, Kitui and Kwale are considered semi-arid (arid in-
dex 0.20-0.50). Baringo is located in the western part of
Kenya and encompasses mostly a high-potential agricultural
zone, while Kitui and Kwale are both mostly marginal mixed
farming zones. Nyeri is situated in the central highlands and
encompasses mostly a high-potential agricultural zone. This
study specifically focuses on one district in the Nyeri county,
namely Kieni, because of the availability of drought impact
data provided by the National Drought Management Author-
ity (NDMA). From now on, with Nyeri, we only refer to
the Kieni district. The main livelihood in Kieni is connected
to agropastoral activities (FEWS NET, 2013). Narok mostly
consists of (agro-)pastoral grounds. Both Nyeri and Narok
are regarded as sub-humid regions (arid index 0.50-0.75).

2.2 Data

To study the linkage between drought impacts, drought
indices, water scarcity and aridity, several datasets were
used. In this study, we used reanalysis data to analyse
several hydro-meteorological variables (Sect. 2.2.1), na-
tional drought bulletins for text-based drought impact data
(Sect. 2.2.2) and a gridded water scarcity dataset from Mc-
Nally et al. (2019) (Sect. 2.2.3).

2.2.1 Hydro-meteorological and soil moisture datasets
Precipitation data

Precipitation data are retrieved from the Multi-Source
Weighted-Ensemble Precipitation (MSWEP v2) (Beck et al.,
2019). This is a global gridded precipitation (P) dataset
that takes full advantage of the complementary nature of the
highest-quality gauge-, satellite- and reanalysis-based P es-
timates, available as a function of timescale and location, by
optimally combining them (Beck et al., 2019). MSWEP cov-
ers the period 1979-2020 at 3-hourly temporal and 0.1° spa-
tial resolutions. This dataset is chosen for this analysis based
on its spatial and temporal resolutions and good performance
in capturing spatial and temporal variations in drought con-
ditions (Xu et al., 2019).
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Table 1. Falkenmark index for the water scarcity level.

Category m3 yr_1

per capita
No stress > 1700
Stress 1000-1700
Scarcity 500-1000
Absolute scarcity <500

Soil moisture and potential evapotranspiration data

The Global Land Evaporation Amsterdam Model (GLEAM)
version 3.5a consists of a set of algorithms dedicated to the
estimation of land surface evaporation (also referred to as
evapotranspiration) and root-zone soil moisture from satel-
lite and reanalysis data at the global scale and 0.25° spa-
tial resolution (Martens et al., 2017; Miralles et al., 2011).
The model uses the MSWEP dataset (Beck et al., 2017a),
satellite-observed soil moisture, reanalysis-based air temper-
ature and radiation, and vegetation optical depth (VOD) (Liu
et al., 2011) to produce terrestrial evaporation and root-zone
soil moisture (Martens et al., 2017). The GLEAM model
applies the Priestley—Taylor (PT) equation (Priestley and
Taylor, 1972) to calculate the potential evapotranspiration
(PET) based on observations of the European Centre for
Medium-Range Weather Forecasts (ECMWF), ERA-Interim
surface net radiation and near-surface air temperature (Dee
et al., 2011). GLEAM datasets have been used in multiple
hydro-meteorological applications and recent drought condi-
tion studies in the Horn of Africa (e.g. Javadinejad et al.,
2019; Nicolai-Shaw et al., 2017; Peng et al., 2020). For this
study, the GLEAM PET and root-zone soil moisture data (see
http://www.gleam.eu, last access: 23 July 2022) are used for
the period 2010-2020.

Streamflow data

Streamflow data are retrieved from the Global Flood Aware-
ness System (GLoFAS) which consists of global gridded re-
analysis river discharge data, with a horizontal resolution of
0.1° at a daily time step and a time period of 1979—present
(Harrigan et al., 2020). It combines the land surface model
runoff component of the ECMWF ERAS global reanalysis
(Balsamo et al., 2009; Hersbach et al., 2020) with a hydrolog-
ical rainfall-runoff channel routing model (Van Der Knijff
et al., 2010; Hirpa et al., 2018) (see http://www.globalfloods.
eu/, last access: 23 July 2023). The GLoFAS dataset was cho-
sen because of limited river discharge observational data in
the study area.

https://doi.org/10.5194/nhess-23-2915-2023
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2.2.2 Impact data from the National Drought
Management Authority (NDMA)

The monthly county early warning bulletins of the National
Drought Management Authority (NDMA) of Kenya were
used to retrieve drought impact data. The NDMA has offices
in the 23 arid and semi-arid lands (ASALs) of Kenya which
are considered vulnerable to drought. The authority performs
sentinel surveillance each month based on rainfall estimates
from the Tropical Application of Meteorology Using Satel-
lite Data and Ground-based Observations (TAMSAT) (Maid-
ment et al., 2014; Tarnavsky et al., 2014) and vegetation and
water status. Food security threats are assessed based on the
following: (1) availability aspects: cropping area and yield
(maize, beans, sorghum, etc.), animal body condition, milk
production, livestock death, and forage conditions; and (2)
access factors: market access and performance, as well as
food availability in the household and market. These data are
fed into web-based software created by the Kenya’s Drought
Early Warning System and sent directly to the county direc-
tor. The director analyses the data against the 3-monthly veg-
etation condition index (VCI-3 month) provided at county
level and on a monthly basis. The VCI is obtained from
an advanced filtering method for the Moderate Resolution
Imaging Spectroradiometer (MODIS) normalized difference
vegetation index (NDVI) at pixel level developed and imple-
mented by the University of Natural Resources and Life Sci-
ences (BOKU) (Klisch and Atzberger, 2016). The MODIS
NDVI data undergo offline smoothing based on the Whit-
taker smoother (Atzberger and Eilers, 2011) to daily NDVI
values and near-real-time filtering based on available obser-
vations within the past 175 d (Atzberger et al., 2014). In ad-
dition, the director calculates the percentage of children un-
der 5 years of age with malnutrition using the mid-upper-
arm circumference (MUAC) colour codes of the United Na-
tions Children’s Fund (UNICEF) against the long-term av-
erage. Lastly, the Food Consumption Score (FCS) is com-
puted based on food frequency and diversity based on a 7d
recall of food consumed at the household level, taking into
account the relative nutritional importance of different food
groups (WFP, 2008). A poor FCS means a lack of vegetable
consumption every day and low consumption of protein-rich
food such as dairy and meat.

2.2.3 Water scarcity

This study has utilized water scarcity (WS) data from Mc-
Nally et al. (2019). The data are a monthly water scarcity
dataset with a spatial resolution of 0.1° for Africa from
March 2018 to the present. The water scarcity dataset is
based on hydrological data from the Famine Early Warning
System Network (FEWS NET) Land Data Assimilation Sys-
tem (FLDAS) and gridded population data from WorldPop
2015. The FLDAS’s Noah 3.6 land surface model is derived
from the Climate Hazards Group InfraRed Precipitation with
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Station (CHIRPS) rainfall data and NASA’s Modern-Era Ret-
rospective analysis for Research and Applications (MERRA-
2) meteorological forcing. The different classes of water
scarcity are defined by the Falkenmark index (Falkenmark
et al., 1989). This index categorizes the amount of renewable
freshwater available for each person per year, as shown in
Table 1. The water scarcity dataset of McNally et al. (2019)
provides monthly water scarcity data despite the yearly val-
ues of the Falkenmark index. For this, McNally et al. (2019)
used the yearly values of the Falkenmark index to classify the
water scarcity on a monthly basis by using a 12-month run-
ning total of the streamflow data. The water scarcity dataset
was aggregated for the whole of Kenya, whereafter monthly
average values per county have been calculated and classified
by the Falkenmark index. More information about the water
scarcity dataset can be found in Appendix A.

2.3 Methods
2.3.1 Drought indices

There are several widely used standardized drought indices
to characterize meteorological, hydrological and soil mois-
ture drought. The standardized precipitation index (SPI), de-
vised by McKee et al. (1993), allows the quantification of
precipitation deficits/surpluses on a range of different accu-
mulation periods. The SPI is calculated by summing daily
MSWERP precipitation over n months (termed accumulation
periods) obtaining a monthly temporal resolution. Monthly
precipitation values are then ranked and their percentiles cal-
culated. The number of zeros is taken into consideration fol-
lowing recommendations from Stagge et al. (2015). There-
after, the values are standardized to a normal distribution
with values between —3 and 3 by ranking, so without fit-
ting a parametric statistical distribution (as tested by Stagge
etal., 2015, and others). This is justifiable in our case because
the distribution is already approximately normal. Finally, the
gridded SPI values are spatially aggregated to county resolu-
tion by averaging the SPI values of all grid cells per county to
match the spatial resolution of the recorded impacts. Nega-
tive values of the drought indices indicate dryer than average
conditions, while positive values indicate wetter than aver-
age conditions. An area is considered in drought when the
drought index is below 0. A similar procedure is used in the
calculation of the indices mentioned below.

The standardized precipitation evapotranspiration index
(SPEI) is similar to SPI (Vicente-Serrano et al., 2010), but
instead of precipitation it uses the difference between pre-
cipitation and potential evapotranspiration as input (Begueria
et al., 2014). Thus, it provides a water balance and does not
have the zero precipitation problems encountered by SPIL
SPEI incorporates the effects of potential evapotranspiration,
which depends strongly on the temperature. The standard-
ized soil moisture index (SSMI) is based on mean monthly
GLEAM root-zone soil moisture content. Finally, the stan-
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dardized streamflow index (SSI) is based on mean monthly
GloFAS discharge values (Nalbantis, 2008). A mask is cre-
ated with mean monthly discharge values above 1m3s!.
This mask is then used for the calculation of the SSI. The
SSI and SSMI are often used to take into account drought
propagation through the hydrological cycle and are therefore
able to better represent catchment memory compared to the
SPI and SPEI. For more information on the calculation of the
drought indices used, we refer to the paper of Odongo et al.
(2023).

All the four drought indices (SPI, SPEI, SSMI and SSI) are
calculated on a monthly timescale at the original grid scale
with an accumulation period of 1, 3, 6, 12 and 24 months.
The drought indices are calculated for the period 1980-2020.
However, for investigating drought index—impact relation-
ships, we use drought indices between July 2013 and 2020
in accordance with the availability of drought impact data.
In this study, the SPI and SPEI represent meteorological
drought, as they are based on precipitation and evapotran-
spiration anomalies. SSMI represents soil moisture drought,
while SSI represents hydrological drought, as they are based
on soil moisture and streamflow anomalies respectively (Yi-
hdego et al., 2019). We also used SPI and SPEI with longer
accumulation periods as a proxy for soil moisture and hy-
drological drought (Dai et al., 2020; Seneviratne et al., 2012;
Wanders et al., 2017).

2.3.2 Drought impact data

This research gathered drought impact data from the Na-
tional Drought Management Authority (NDMA) for the
above-specified counties in Kenya from July 2013 to Decem-
ber 2020 (https://www.ndma.go.ke/, last access: 23 January
2023). The NDMA was established by the Kenyan govern-
ment in 2016 with the aim to set up and operate early warn-
ing drought systems and to develop drought preparedness
strategies and contingency plans (Barrett et al., 2020). Their
website provides monthly county early warning bulletins as-
sessing food security in 23 regions using socio-economic and
biophysical factors. These text-based impact reports provide
the input for the impact categories considered in this study.
The impact categories are based on the available information
from the NDMA and can therefore be regarded as categories
of socio-economic relevance for Kenya.

The heading of the early warning bulletins provides infor-
mation on the drought phase classification, according to the
following levels: “normal”, “alert”, “alarm”, “emergency”
and “recovery”. This classification is based on biophysical
variables, such as SPI and VCI, and socio-economic indica-
tors of food security (Mwangi et al., 2022). Only the bulletins
mentioning the phases “alert”, “alarm” or “emergency’” were
considered for this analysis. Furthermore, the early warning
bulletins provide information about the severity of drought
by categorizing the state of the monitored biophysical and
socio-economic indicators. This categorization is in general
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related to the following five levels: very good, normal, mod-
erate, severe and extreme conditions. We converted this in-
formation into binary data by assigning a value of 0 to very
good and normal conditions and a value of 1 to moderate,
severe and extreme conditions. This study defines a drought
impact as a negative or adverse effect on the economic, envi-
ronmental or social level which is experienced under drought
conditions (Erian et al., 2021). The following impact cate-
gories were considered:

pasture (i.e. livestock migration pattern, quality and
quantity of pasture, livestock body condition)

livestock deaths

milk production

food insecurity (based on the Food Consumption Score,
FCS)

crop losses

trekking distance to gather water for households

malnutrition.

The Jaccard similarity coefficient for binary values, first
developed by Paul Jaccard in 1901 (Jaccard, 1912), was used
to measure the similarities between the occurrence of drought
impact categories (Niwattanakul et al., 2013). It measures the
size of intersection of two binary sets divided by the size
of the union. The equation for Jaccard similarity, comparing
two impact category datasets represented by A and B, is as
follows:

|AN B|
[AUB|’

Jaccard(A, B) = (D)

The Jaccard coefficient ranges from O to 1, whereby 0 in-
dicates no similarity between the impact category datasets
and 1 indicates complete similarity. To conduct a signifi-
cance test, we followed Chung et al. (2019) and utilized their
R package named “jaccard”. In this test, we checked if the
p value was below 0.05 to determine statistical significance.

2.3.3 Random forest modelling

A machine learning algorithm, known as the classification
type of random forest (RF), has been used to assess the
drought indices best linked to drought impacts for regions
with the same aridity level. RF is a powerful tool for devel-
oping a predictive model and is a fairly new technique for
linking drought indices with impacts but showed high po-
tential in the studies of Bachmair et al. (2016, 2017). The
RF algorithm, proposed by Breiman (2001), constructs mul-
tiple random independent decision trees as an ensemble to re-
duce the risk of overfitting (this study used 1000 trees). Each
tree is constructed on boot-strapped fixed-size sub-samples
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of the data, and predictions are made by averaging. Approx-
imately two-thirds of the training dataset is used for build-
ing a tree, while one-third is not used, called the out-of-bag
(OOB) data. This generates an additional estimate of perfor-
mance, namely the OOB error which is a method to measure
the prediction error in the random forest. The predictor vari-
ables are the drought indices as mentioned in Sect. 2.3.1, and
the response variables are the binary time series of reported
drought impacts derived from the monthly early warning bul-
letins of the NDMA.

The drought impact datasets were clustered according to
aridity levels: Marsabit (arid); Baringo, Kwale and Kitui
(semi-arid); and Narok and Nyeri (sub-humid). For each of
these regions, a RF model was constructed for each drought
impact category. In order to validate the model, a training
dataset and test dataset were constructed with a proportion of
75 % and 25 % of the original dataset. The training datasets
were balanced using a synthetic minority oversampling tech-
nique (SMOTE) and randomized under-sampling (RUS), as
the RF algorithm is sensitive to class imbalances. The caret
package in RStudio (version 6.0-93) was used to conduct the
RF model analyses (Kuhn, 2008). The “variable importance”
function (varImp) of this package was used to determine the
importance of a predictor variable for the model to make ac-
curate predictions. Specifically, the prediction accuracy of
the OOB data is recorded for each tree, which is also done
after permuting each predictor variable. The difference in ac-
curacy between the two models is then averaged over all trees
and normalized by the standard error (Kuhn, 2008; Liaw and
Wiener, 2002).

The predictive power of the RF models was assessed in
two ways. First, the overall model performance on the train-
ing set was evaluated based on a 10-fold cross-validation.
Therefore, for each model run, the training dataset was split
into 90 % for training and 10 % for prediction. This allows
the evaluation of the performance of the RF model on unseen
data excluded from model fitting. As model performance
metrics, we computed the OOB error rate and the accuracy.
The OOB error ranges from 0 % to 100 %, with lower val-
ues indicating better model performance. Lower values of the
OOB error indicate better model performance, as it implies
that the model is making more accurate predictions on un-
seen data. Second, the RF model was fitted to the test dataset
to see how the model would perform on unseen and unbal-
anced data. The following model performance metrics were
used to see how the RF model performed on the test set: pre-
cision, recall, the F1 score and the “area under the ROC (re-
ceiver operating characteristic) curve” (AUC) (Hanley and
McNeil, 1982). Precision refers to the ratio of correctly pre-
dicted impacts to the total predicted impacts, whereas recall
is the ratio of correctly predicted impacts to the total impacts
that should have been predicted. The F1 score is a combina-
tion of recall and precision, whereby higher F1 scores indi-
cate more accurate prediction on both the positive and nega-
tive classes. The AUC describes whether the model was able
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to predict the occurrence and non-occurrence of impacts cor-
rectly. The AUC ranges from O to 1 with higher values in-
dicating better model performance. We validated the results
of the RF model by conducting a point-biserial correlation.
The point-biserial correlation coefficient measures the direc-
tion and strength of a relationship between a continuous and
categorical variable (Essen and Akpan, 2018). The results of
this analysis will not be discussed in detail but are included
in Appendix C.

3 Results
3.1 Drought indices and drought impacts

To illustrate the relationship between drought impacts and
drought indices, a timeframe from 2016 to 2020 is chosen.
Table 2 presents the share of each drought impact category
(in %) with respect to the total number of drought impacts
per county. Most drought impacts were reported in Marsabit
and Kitui, while Baringo and Nyeri reported the lowest num-
ber of impacts. Pasture and milk production are the most re-
ported drought impacts across the counties, with values be-
tween 17.8 % and 31.8 %. It is noticeable that Nyeri has the
highest share in pasture-related impacts: pasture impacts are
29.6 % and milk production impacts are 31.8 % of the total
impacts for Nyeri. The least reported drought impacts are on
crop losses, livestock deaths and food insecurity with average
values of 3.1 %, 7.8 % and 10.1 % respectively. Impacts re-
lated to malnutrition are the highest in Baringo (17.8 %) and
Marsabit (16.9 %), while Nyeri has by far the lowest num-
ber of malnutrition impacts (6.8 %). Baringo has the high-
est share of impacts concerning trekking distance for water
(20.0 %), while Nyeri has the lowest percentage (9.1 %).

A time series of the drought indicator SPEI for different
accumulation periods (1, 3, 6, 12 and 24 months) and a time-
line with drought impacts are presented for Marsabit and Ny-
eri in Fig. 2 for the time period 2016-2020. We choose to
visualize the drought impacts and SPEI time series of those
counties because of their contrasting aridity levels. Specifi-
cally, Marsabit represents an arid region, while Nyeri is clas-
sified as sub-humid. Similar figures for the other counties
are included in the Supplement (Figs. S1-S4). It is notice-
able that Marsabit experienced more extreme drought (in fre-
quency and intensity) than Nyeri: SPEI-03 with a value of
—2.22 in November 2018 was the most extreme drought for
Marsabit, while SPEI-12 with a value of —1.90 in April 2017
was the most extreme drought for Nyeri. SPEI-24 indicates
that Marsabit experienced a multiyear drought from January
2016 to May 2019. The drought of 2016-2017 is very visible
for both counties. In addition, there was a drought at the end
of 2018 and 2019 which is more pronounced for Marsabit
than for Nyeri. Regarding the drought impacts, Marsabit re-
ported drought impacts (N = 124) from March 2016 until
December 2020 with the exception of the periods between
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Table 2. Total number of reported drought impacts between 2016 and 2020 and the share of drought impact categories (%) for each county.

County Baringo Kitui Kwale Marsabit Narok Nyeri
Number of impacts 45 93 50 124 51 44
Pasture (%) 17.8  30.1 28.0 20.2 25.5 29.6
Livestock deaths (%) 11.1 5.4 6.0 9.7 9.8 4.6
Milk production (%) 222 226 26.0 18.6 27.5 31.8
Food insecurity (%) 4.4 10.8 10.0 15.3 3.9 159
Crop losses (%) 6.7 1.1 4.0 2.4 2.0 2.3
Trekking distance water (%) 20.0 15.1 12.0 16.9 17.7 9.1
Malnutrition (%) 17.8  15.0 14.0 16.9 13.7 6.8

March and December 2018 and between November 2019 and
August 2020. Nyeri reported drought impacts (N = 44) from
February 2017 until September 2019 with only one impact
reported between November 2017 and January 2019.

Taking the 2016/2017 drought as an example, the drought
impacts reported in Marsabit are between March 2016 and
February 2018 and highly overlap with negative SPEI-12 be-
tween April 2016 and March 2018. Reported drought im-
pacts for Nyeri are between February 2017 and March 2017
and correspond most with negative SPEI-12 values, occur-
ring from October 2016 until April 2018. In general, drought
impacts show alignment with SPEI-12 but not with SPEI val-
ues based on other accumulation periods. The majority of the
analysed impacts occurred after the onset of drought identi-
fied with accumulation periods shorter than 12 months.

We also explored the relation between reported drought
impacts by using the Jaccard similarity for binary values. The
results are shown in Table 3, whereby those closer to 1 mean
that the datasets are more similar to each other than those
closer to 0. Pasture and milk production have the highest sig-
nificant Jaccard similarity of 0.63, while crop losses are not
much related to any other impact category (< 0.20). Trekking
distance for water shows a significant Jaccard similarity of
0.50 with pasture and 0.47 with milk production. Other im-
pact categories show a Jaccard similarity below 0.40.

3.2 Drought impacts and water scarcity

The degree of water scarcity per year (in number of months)
across the counties is visualized in Fig. 3a. The analysis is
performed for the period of March 2018 to December 2020
due to the length of the WS dataset. Kitui and Marsabit have
experienced no water stress since March 2018, while Nyeri
experienced stress, scarcity and absolute scarcity during 6
out of 10 months in 2018 and all months of 2019. Baringo,
Kwale and Narok did also experience stress and scarcity con-
ditions (respectively 2, 4 and 2 months out of 10 for 2018 and
4, 0 and 4 months out of 12 for 2019) but with a lower fre-
quency than Nyeri.

Figure 3b shows the number of months with drought im-
pacts during 2018 and 2020 in relation to the degree of water
scarcity. Nyeri experienced 9 months with drought impacts
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between March 2018 and 2020, of which 6 months had abso-
lute water scarcity and 3 months a stress situation. Kitui and
Marsabit experienced 14 months with drought impacts but
did not experience any degree of water scarcity. Baringo had
6 months with drought impacts, of which half of the months
showed stress situations.

3.3 Random forest to link drought impacts and
drought indices

The performance of the random forest (RF) models per im-
pact category is shown in Table 4. The regions are aggregated
by their aridity levels: Marsabit is classified as arid; Baringo,
Kitui and Kwale are semi-arid; and Narok and Nyeri are sub-
humid regions. The performance of the RF model has been
evaluated by looking at the OOB data and accuracy, while
precision, recall, the F1 score and the AUC are used as per-
formance metrics for the test dataset.

The AUC values as performance metrics for the test
dataset range from 0.50 to 1.00. The performance of the mod-
els for the drought impacts on pasture, livestock deaths and
milk production for the arid and sub-humid regions had the
best fit, with AUC values ranging from 0.76 to 1.00. Mod-
els developed for the drought impact of malnutrition had the
worst fit, with all AUC values below 0.60. In general, the
models related to the arid and sub-humid regions performed
better than the models of the semi-arid region with an excep-
tion of the model developed for crop losses (AUC of 0.75).
It is noticeable that the model of the arid region in relation to
food insecurity had very high performance values (F1 score
of 1.00 and AUC of 1.00), which is also the case for the
sub-humid regions in relation to trekking distance for wa-
ter (F1 score of 0.75 and AUC of 0.92). We will only discuss
the variable importance metrics of the RF models (1) that
performed relatively well on the test dataset because it is im-
portant that the model can predict drought impacts based on
unseen data (not used for model training) and (2) for which
the results were similar to the results of the point-biserial cor-
relation (Appendix C). The last column of Table 4 indicates
if the model is discussed in terms of variable importance.

Figures 4, 5 and 6 show the top five drought indices which
are best linked with the drought impact categories. As shown
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Figure 2. A time series of the drought index SPEI for different accumulation periods (1, 3, 6, 12 and 24 months) and a timeline with drought
impacts for Marsabit (arid) and Nyeri (sub-humid). The coloured dots indicate the type of impact occurrence. Negative values of SPEI
indicate dryer than normal periods (red), while positive values indicate wetter than normal (blue).

Table 3. The correlation between the impact categories, as measured by the Jaccard similarity. The coefficients that are statistically significant
(p value < 0.05) are marked with asterisks, following the methods proposed by Chung et al. (2019).

Impact category Pasture  Livestock deaths ~ Food insecurity ~ Milk production — Trekking distance water =~ Malnutrition
Livestock deaths 0.23*

Food insecurity 0.39* 0.27*

Milk production 0.63* 0.23% 0.42*

Trekking distance water 0.50* 0.26* 0.29 0.47*

Malnutrition 0.41 0.20 0.27 0.34 0.34

Crop losses 0.15 0.04 0.00* 0.11 0.11 0.11

in Fig. 4a, pasture impacts for the arid region tend to be re-
lated to shorter drought anomalies (6 months) than the sub-
humid regions (24 months). Furthermore, SSI and SPI are the
best predictors for pasture impacts in the arid region, while
SPEI and SPI are the best predictors for the sub-humid re-
gions. For livestock deaths (Fig. 4b), the situation is reversed:
longer accumulation periods (12-24 months) are designated
to the arid region, while shorter accumulation periods are re-
lated to the sub-humid regions (3—12 months). SPEI and SPI
are the best predictors for livestock deaths in the arid region,
while SST and SSMI are the best predictors for the sub-humid
regions. Especially SSI-03 seems to be a strong predictor
(importance of 19.05) for livestock deaths in the sub-humid
region. Milk production in the arid region tends to be most
related to accumulation periods of 12 months in relation to a
range of drought indices, namely SSMI, SSI, SPEI and SPIL.
In the sub-humid regions, SSI is the best predictor for milk
production with accumulation periods between 3—24 months
(Fig. 5a). For the semi-arid regions, long accumulation peri-
ods (12-24 months) are associated with crop losses, whereby
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SSMI is the most prominent predictor. For the sub-humid re-
gions, shorter accumulation periods (1-12 months) are asso-
ciated with crop losses, whereby SPI and SPEI are the most
prominent predictors (Fig. 5b). The results show that food
insecurity for the arid region can be predicted well with a
range of drought indices (Fig. 6), which are SPEI, SSI, SPI
and SSMI, with a more or less stable accumulation period of
12 months. Trekking distance for water for the sub-humid re-
gions can mainly be predicted by SSI with an accumulation
period of 6 months (Fig. 6).

4 Discussion

4.1 Data sources and methods

This study used the water scarcity dataset of McNally et al.
(2019) which is based on regional streamflow data and popu-
lation data from WorldPop 2015. This dataset has never been
validated in the Horn of Africa, which could be a limitation
of this research. In addition, different hydrological datasets
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(a) Water scarcity over March 2018 and 2020. (b) Water scarcity and drought impacts.
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Figure 3. The degree of water scarcity per year (March 2018-2020) across the counties (a) and months with drought impacts in relation to
water scarcity (b) (McNally et al., 2019).

Table 4. RF performance metrics: the performance of the RF model is tested by looking at the OOB data (%) and the accuracy, while
precision, recall, the F1 score and the AUC are computed as performance metrics for the performance of the RF model on the test dataset
(25 %). The last column indicates the variables that are discussed, determined by two criteria: (1) the performance of the RF model on the
test dataset and (2) the similarity with the point-biserial correlation.

Performance RF ‘ Performance test set Discussed
Aridity level  Impact category OOB (%) Accuracy ‘ Precision  Recall F1 AUC
Arid Pasture 14.81 0.87 0.89 089 0.89 0.89 Vv
Livestock deaths 7.81 0.88 0.50 1.00 0.67 1.00 i
Milk production 22.00 0.84 0.83 071 077 0.76 Vv
Food insecurity 11.11 0.89 1.00 1.00 1.00 1.00 Vv
Crop losses 9.21 0.89 1.00 033 050 0.51
Trekking distance water 26.79 0.77 0.50 0.50 050 0.52
Malnutrition 32.00 0.70 0.60 075 0.67 0.54
Semi-arid Pasture 12.93 0.90 0.82 095 0.88 0.54
Livestock deaths 12.07 0.86 0.69 0.65 0.67 0.58
Milk production 2222 0.74 0.33 0.17 022 0.58
Food insecurity 13.83 0.86 0.25 0.11 0.15 0.64
Crop losses 9.02 0.90 0.20 025 022 0.5 Vv
Trekking distance water 37.50 0.67 0.50 0.60 0.55 0.61
Malnutrition 32.43 0.66 0.60 055 057 052
Sub-humid Pasture 6.25 0.92 0.93 1.00 0.96  0.96 Vv
Livestock deaths 1.19 0.98 0.50 0.67 057 094 i
Milk production 19.64 0.82 0.90 082 0.86 091 Vv
Food insecurity 18.33 0.80 0.17 033 022 053
Crop losses 5.00 0.94 0.00 000 NA 0.64 4
Trekking distance water 12.12 0.83 1.00 060 075 092 Vv
Malnutrition 29.63 0.72 0.37 043 040 0.50
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were used for the water scarcity dataset and the calculation of
the SSI. However, despite some inconsistencies between the
datasets, both are following the same pattern, which justifies
drawing conclusions based on the water scarcity dataset. The
comparison between streamflow data of the water scarcity
dataset and SSI-01 is included in Appendix B. Furthermore,
the computation of the meteorological drought indices (SPI
and SPEI) and the WS dataset is based on different satellite-
based precipitation products, MSWEP and CHIRPS respec-
tively. The two datasets showed good performances on a
global level (Beck et al., 2017b) and more specifically for
East Africa (Cattani et al., 2021). Notwithstanding the slight
underestimation of the MSWEP data compared to CHIRPS
data over East Africa, both precipitation products showed
considerable agreement (Cattani et al., 2021), thereby jus-
tifying the simultaneous use of both products.

Drought impact data have been generated by analysing
the monthly county-specific reports of the NDMA. This data
source had some missing months, between 4 and 8 months,
depending on the county, and mainly at the beginning of
the period (between July 2013 and December 2014). Despite
these missing months, there is still a robust and reliable time-
line of drought impact data available for more than 90 % of
the considered period. In addition, the bulletins were itera-
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tively checked by several NDMA employees to ensure the
reliability of drought impact data. Despite the great effort
and very valuable drought impact data information from the
NDMA, this study stresses the need for an impact database
for Africa such as the already existing databases EDII (EDC,
2013) and DIR (NDMC, 2005) for Europe and the USA re-
spectively. Future research can explore how to build an im-
pact database with enhanced quality in terms of higher spa-
tial and temporal resolutions, more impact categories, and
more quantitative information on the impact. To build such
a database for historical events, systematically blending and
fusing impact data coming from different sources need to
be explored (Majani et al., 2022). Sources that can possibly
complement the NDMA bulletins range from global repos-
itories such as the Emergency Events Database (EM-DAT)
(Guha-Sapir et al., 2017) or the Disaster Inventory System
(DesInventar; https://www.desinventar.net/, last access: 23
January 2023), drought appeals from humanitarian organiza-
tions such as the Kenya Red Cross Society, index-insurance
claims submitted to insurance companies, or digital media
reports.

We used a random forest technique in combination with
the point-biserial correlation analysis to link drought im-
pacts with drought indices. However, other literature used
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Figure 6. Drought indices best linked with food insecurity for the arid region (Marsabit) and the drought indices best linked with trekking

distance for water for the sub-humid regions (Narok and Nyeri).

other techniques such as the Pearson correlation (Wang et al.,
2020), Spearman correlation (Ma et al., 2020) and logistic re-
gression (Bachmair et al., 2017; Blauhut et al., 2015; Stagge
et al., 2015). Using RF to link drought indices with drought
impacts is a fairly new technique but has been done several
times before (e.g. Bachmair et al., 2016, 2017; Wang et al.,
2020). These studies indicated a potential of using RF for
drought M&EW. Our study further validates these findings,
as the performance metrics were good for several drought
impact categories, and all the discussed models in terms of
“variable importance” showed similarities to the results of
the point-biserial correlation (Appendix C). However, there
were differences in the predictive power of the RF model
among the drought impact categories and the regions. This
could be related to (1) data availability (e.g. data on impacts
related to malnutrition) as the RF model is sensitive to data
availability (Bachmair et al., 2016) and (2) potential varia-
tions in the link between drought impacts and indices across
the counties, which could result in decreased accuracy when
counties are aggregated.

4.2 Relations with aridity

The majority of the NDMA drought impact data focuses
on livestock and pasture, effectively capturing the primary
livelihood activity within the considered counties. Marsabit
and Kitui had the highest number of reported drought im-
pacts, while Baringo and Nyeri had the least number of re-
ported drought impacts. This suggests that drought impacts
are linked with aridity because Marsabit and Kitui contain
larger areas classified as (semi-)arid than Baringo and Ny-
eri. Also, socio-economic circumstances likely play a role,
as acute and chronic food insecurity, poverty, lack of eco-
nomic development, limited access to basic social services,
and low education levels are the highest among households
in the ASALs (FEWS NET, 2013).

Maliva and Missimer (2012) stated that arid areas will
have more extreme drought due to global warming, which
will increase the potential evapotranspiration (Seneviratne
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et al., 2021; Wang et al., 2022). However, this study can-
not link the frequency and intensity of drought events with
different aridity levels because of the short timeframe (ap-
prox. 7 years) analysed. The analysis of longer time series
could indicate not only if there are changes in drought sever-
ity, area and frequency but also if there is a long-term shift to
a more arid climate (Xu et al., 2021). This could be interest-
ing follow-up research, whereby aridity conditions could be
analysed in relation to drought occurrences.

4.3 Water scarcity and drought impacts

According to the water scarcity dataset, most drought im-
pacts occurred at times without water stress (Fig. 3b), with
the exception of Nyeri. These findings contrast with the text-
based drought impact data on distance from water sources
(i.e. trekking distance for water) from the NDMA bulletins,
which could be used as a proxy for water stress conditions.
Increased distance from water sources was reported in the
arid (Marsabit) and sub-humid (Nyeri) regions during most
of the months when meteorological and hydrological drought
conditions occurred (Fig. 2). It is noticeable that Marsabit has
more reported drought impacts on trekking distance for wa-
ter (16.9 %) than Nyeri (9.1 %) (Table 2), while Nyeri has
more months with water scarcity than Marsabit, which has
zero months with water scarcity (Fig. 3a).

The discrepancies between the increased distance from
water sources and the water scarcity index could be explained
by the fact that the streamflow data used for developing the
WS dataset were calculated without taking into account the
presence of reservoirs, located mainly in the central-western
areas of Kenya (Lehner et al., 2011; Mulwa et al., 2021).
In addition, the WS dataset uses population data as a proxy
for water demand. Since the population density has high val-
ues in central-western counties and low values for the ASAL
counties, which host only 25 % of the population, although
they cover about 80 % of the territory of Kenya (FEWS
NET, 2013), it is not surprising that the WS index is higher
for central-western counties than for ASAL counties. How-
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ever, low population density does not imply low water stress:
pastoral and agricultural livelihoods are predominant in the
ASAL counties and are highly dependent on water availabil-
ity (FEWS NET, 2013). In addition, the “pulses” (i.e. dry
cereals) for the densely populated areas located in central-
western counties are mainly supplied by the ASAL counties,
resulting in high water consumption by the latter. Finally, wa-
ter scarcity is also shaped by political choices, public policies
and social order (Savelli et al., 2021; Van Loon and Van La-
nen, 2013). These factors were not accounted for in the de-
velopment of the WS dataset.

In summary, the WS dataset is apolitical, does not take
reservoirs into account and is highly dependent on popula-
tion density, which is not a true reflection of water demand.
Despite these limitations, interesting conclusions can still be
drawn. The WS dataset suggests that water resources were
sufficient to meet the water demand in the arid and semi-
arid regions of Kenya during drought events. However, wa-
ter insecurity in the ASAL regions was high during periods
of drought (FEWS NET, 2017), possibly due to inefficient
water management, for example poor maintenance of water
supply systems (related in turn to corruption and poverty)
(Bellaubi and Boehm, 2018; Jenkins, 2017; Mulwa et al.,
2021). The sub-humid central-western counties, on the other
hand, could have experienced water scarcity during periods
of drought due to the high population density and hence
the high pressure on available water resources. However,
in reality, they experienced little water stress thanks to the
presence of reservoirs that buffered the drought conditions
(FEWS NET, 2017). This shows that water scarcity can be
reversed through the wise usage of the available water re-
sources (Phillip, 2013).

4.4 Drought indices and the random forest model

The results show that linking drought indices with drought
impacts is region-specific, as confirmed by many other stud-
ies (Bachmair et al., 2015, 2016, 2018; Blauhut et al., 2015;
Ma et al., 2020; Parsons et al., 2019; Stagge et al., 2015;
Wang et al., 2020). For instance, shorter accumulation pe-
riods were found for pasture at Marsabit (SSI-06), while
longer accumulation periods were found for Narok and Ny-
eri (SPEI-24). This lag suggests the presence of water buffers
in Narok and Nyeri, damming the sub-annual fluctuations in
water availability and therefore generating less influence on
the impact category pasture (Mulwa et al., 2021). In contrast,
livestock deaths are linked with long accumulation periods in
Marsabit (SPEI-12) and short accumulation periods in Nyeri
(SSI-03). Differences in the relationships between drought
impacts and drought indices imply a link with human activ-
ities, as they may delay or speed up impact occurrence. As
confirmed by Xu et al. (2019), human activities can interfere
with natural processes and therefore influence the drought
propagation time between meteorological and hydrological
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drought. This calls for more research on water management
practices in relation to drought indices and drought impacts.

Regarding the drought indices, various drought indices are
marked as the most optimal indicators: SSI is found in re-
lation to pasture (arid region), livestock deaths (sub-humid
regions), milk production (sub-humid regions) and trekking
distance for water (sub-humid regions), while SSMI is found
in relation to milk production (arid region) and crop losses
(semi-arid regions). It is noticeable that SSI gives a possi-
ble link with water-dependent activities, while SSMI shows
a possible link with agricultural practices. It is expected that
SSI and SSMI would show a memory in relation to SPI and
SPEI because of the propagation through the hydrological
cycle, introducing a lag between meteorological, soil mois-
ture and hydrological drought (Seneviratne et al., 2012; Wan-
ders et al., 2017; Wang et al., 2016). Therefore, the time
length and duration of SPI and SPEI can be used to ex-
press soil moisture and hydrological drought. In general, a
I-month timescale is considered a meteorological drought,
3—6 months a soil moisture drought and 12 months a hydro-
logical drought (Dai et al., 2020). This link is partly visi-
ble by looking at the drought indices in relation to the ac-
cumulation periods. For instance, SSI-06 is the best match
for trekking distance for water, which indicates hydrological
drought. The best links after SSI-06 are SPEI and SPI with a
24-month timescale, also indicating the presence of a hydro-
logical drought.

Studies that linked drought impacts with drought in-
dices are mainly focused on Europe (Bachmair et al.,
2015, 2016, 2018; Blauhut et al., 2015; Parsons et al., 2019;
Stagge et al., 2015) and recently China (Ma et al., 2020;
Wang et al., 2020). Comparisons with these studies are quite
difficult due to the different socio-economic and climatic cir-
cumstances. As studied by Bachmair et al. (2018), SPI and
SPEI with an accumulation period of 3 and 4 months showed
the highest correlation for the impacts on crops in Germany.
This is consistent with the results found in relation to crop
losses for the sub-humid regions, whereby SPI-03 and SPEI-
03 are the best match. However, it is not consistent with the
results found for the semi-arid regions, whereby the accu-
mulation periods are quite high (24 months). As stated in
the study of Bachmair et al. (2018), an accumulation period
of 1 month was found to have a notably lower correlation
with drought impacts and was often non-significant, which
is also confirmed by the results of this study. A reasonable
explanation for this is that the occurrence of impacts lags be-
hind the occurrence of drought. Another study of Bachmair
et al. (2016) showed that SPI and SPEI with longer accu-
mulation periods (12-24 months) are best linked to impact
occurrence in the UK when using the RF model. In general,
this matches with the results of this study, whereby SPI-12,
SPEI-12, SPI-24 and SPEI-24 are often present in the top
five drought indices best linked with the drought impact cat-
egories, thereby linking the occurrence of drought impacts
with the presence of hydrological drought. Our results indi-
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cate that impacts associated with different types of drought
have different response times, as confirmed by the distinct
differences in drought indices and impact linkage patterns.

This study did not directly account for short- and/or long-
term drought adaptation strategies applied in the ASAL re-
gions, although these strategies could influence the drought
impact—index relationship. Drought adaptation strategies can
be related to (1) structural interventions for increasing the
water availability (e.g. construction of reservoirs), (2) sus-
tainable land management practices (e.g. inter-cropping,
agroforestry and drought resistant crops), (3) pasture and
livestock management (e.g. livestock restocking and im-
proved varieties of grass), and (4) livelihood diversification
(Kenya, 2016; Mude et al., 2007; Njarui et al., 2020; Opiyo
et al., 2015; Parry, 2016; weADAPT, 2023). Such adapta-
tion measures can increase the resilience of the communities
(Nyberg et al., 2020). This could also explain the differences
in the optimal drought indices found among the investigated
areas, as the level of preparedness can prolong or reduce the
occurrence of drought impacts, resulting in a better fit with
drought indices with longer accumulation periods. In the past
years, Kenya has experienced several drought events. This
can influence the extent of adaptation measures taken and
therefore the resilience against droughts which affects the
impacts. It is therefore recommended to link adaptation mea-
sures to drought impacts and indices in order to analyse spa-
tial differences and to map fluctuations over time.

This study contributes to the ongoing debate about the
operational needs for drought monitoring by linking multi-
ple drought indices to reported drought impacts. Our results
show the best drought index for a given impact. This can be
combined with other socio-economic and environmental data
to provide enough inputs for the construction of drought im-
pact forecasting, which is useful for stakeholders and deci-
sion makers (Heinrich and Bailey, 2020; Stagge et al., 2015).
In addition, this research takes the first step in exploring the
link between drought and water scarcity and aridity, which
is valuable information for the existing literature database on
drought and its impacts. However, it is recommended to val-
idate the results in other areas and on finer spatial scales,
whereby the influence of human activities on drought prop-
agation and water scarcity can be analysed. Besides this, re-
search would benefit from a refinement of the water scarcity
dataset in order to better represent human influences on water
scarcity conditions.

5 Conclusions

There is an urgent need to develop early warning systems
to mitigate the adverse consequences of drought, thus reduc-
ing its human and financial costs. However, there is still no
full understanding of the relation between drought impacts
and drought indices in Africa. This continent struggles with
water scarcity and the presence of arid regions, which pos-
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sibly influence the relation between drought hazard and im-
pacts. This paper aimed to fill this knowledge gap by explor-
ing the link between drought impacts, drought indices, water
scarcity and aridity with a focus on Kenya.

The arid region of Marsabit had the most severe drought
and the highest number of drought impacts over a time-
frame from 2016 to 2020. Nyeri, classified as a sub-humid
region, had lower frequencies and intensities of drought and
reported the least number of drought impacts. This indicates
that drought impacts are linked with drought severity and
that the occurrence of drought impacts are related to arid-
ity. The skewed spatial distribution of drought impacts could
be related to the fragile socio-economic conditions in the
ASALs of Kenya which makes this region more vulnerable to
drought than the sub-humid region of central-western Kenya.
Water scarcity as derived by the WS dataset was not found to
be related to aridity, while this was expected because arid re-
gions are often facing limited water resources. In contrast,
Marsabit (arid) did not experience any water scarcity during
the analysed timeframe (March 2018 and 2020), whilst Ny-
eri (sub-humid) did. In addition, most drought impacts oc-
curred at times without water stress (except for Nyeri) even
when increased distance from water sources was reported
as a drought impact, which can be used as a proxy for wa-
ter stress conditions. Reasonable explanations for this can be
found in the water scarcity dataset which is apolitical, does
not take reservoirs into account and is highly dependent on
population density.

With a random forest model, a link between drought im-
pacts and drought indices was made. The results indicated
that every region, aggregated on aridity, had their own set
of predictors for every impact category. Region dependency
was found by other studies as well. In relation to drought
impacts on pasture, anomalies were shorter (6 months) for
the arid region of Marsabit than for the sub-humid regions
of Narok and Nyeri (24 months). For the impacts on live-
stock deaths reversed results were found: shorter accumula-
tion periods were found for Narok and Nyeri (3—12 months),
while longer accumulation periods were present in Marsabit
(12-24 months). Drought indices with longer timescales
(> 12 months), indicating a hydrological drought, were of-
ten found to match best with the drought impact occurrences.
The differences in linkages could be related to water manage-
ment practices, natural characteristics and climatic circum-
stances.

The predictive ability of indices heavily depends on the
spatial and temporal resolution of drought impact data.
Therefore, this study stresses the need of systematic drought
impact data collection around the world following the ex-
ample of the NDMA in Kenya. In addition, we recommend
looking at finer spatial resolutions to capture the regional dif-
ferences in human influences on water scarcity and drought
impacts. Studying similar research areas and validating the
results of this study on smaller scales will expand the knowl-
edge base on drought and impacts and will substantiate the
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conclusions of this study. This study analysed the link be-
tween drought indices and text-based impact reports with a
focus on the African continent, which has never been stud-
ied before. The integration of regional predictions on drought
impacts will contribute to the development of early warning
systems for droughts which will help communities to better
prepare and act accordingly, therefore reducing vulnerability
and increasing resilience to drought and impacts.

Appendix A: Detailed explanation of the water scarcity
dataset

The water scarcity index from McNally et al. (2019) is based
on outputs from the FEWS NET Land Data Assimilation
System (FLDAS), which is a custom instance of the National
Aeronautics and Space Administration (NASA) Land Infor-
mation System (LIS). The FLDAS’s Noah 3.6 land surface
model is driven by the Climate Hazards Group InfraRed Pre-
cipitation with Station (CHIRPS) rainfall data and NASA’s
Modern-Era Retrospective Analysis for Research and Ap-
plications (MERRA-2) meteorological forcing. This model
partitions rainfall inputs into surface and subsurface runoff
(i.e. baseflow), soil moisture storage, and evapotranspiration.
Surface runoff is the precipitation in excess of infiltration and
saturation capacity of the soil, while subsurface runoff is the
drainage from the bottom soil moisture layer caused by grav-
ity. The total runoff is routed though the river network with
the Hydrological Modeling and Analysis Platform version 2
(HyMAP-2) river routing scheme. The definitions of catch-
ments are based on boundaries defined by the U.S. Geolog-
ical Survey (USGS) Hydrological Derivatives for Modelling
Applications (HDMA) database. A Pfafstetter code, based on
an hierarchical numbering system, is given to the catchments.
For the water scarcity index, Pfafstetter level 6 basins are
used in order to represent the relatively local nature of water
supplies. Two population datasets are used as a proxy for wa-
ter demand, namely the WorldPop 2015 dataset and the Eu-
ropean Commission’s Joint Research Center’s (JRC) Global
Human Settlement (GHS) data. To classify the amount of wa-
ter scarcity, the Falkenmark index is used. The Falkenmark
index thresholds are specified annually, while monthly data
are required for the routinely updated maps of water scarcity.
Therefore, a 12-month running total of the streamflow from
the current and 11 previous months is used, whereby the
Falkenmark index (based on yearly values) can still be used
on a monthly resolution. The population estimates are aggre-
gated to Pfafstetter basin level 6, whereafter the 12-month
total spatially aggregated streamflow (m?) is divided by the
population to produce an estimate of cubic metres per person
(McNally et al., 2019).
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Appendix B: The hydrological datasets: the streamflow
data sources

Different hydrological datasets were used for the water
scarcity dataset and the calculation of the SSI. The SSI index
is based on data from GloFAS, while streamflow data for the
water scarcity dataset are based on outputs from the FLDAS.
If there are any discrepancies between the datasets, incor-
rect conclusions could be made. To compare the two differ-
ent datasets, SSI-01 is plotted with the streamflow anoma-
lies of the water scarcity dataset for Marsabit and Nyeri
(Fig. B1). The streamflow anomalies are based on the 1982—
2016 FLDAS historical record, while SSI is based on the pe-
riod between 1980 and 2010. Despite some irregularities be-
tween the datasets, both are following quite the same pattern.
This suggests that it is reasonable to compare the results from
the two different hydrological datasets.
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Figure B1. Water scarcity (WS) and SSI-01 between March 2018 and 2020.

Appendix C: Point-biserial correlation

In order to validate the results of the RF model in relation
to variable importance, a point-biserial correlation was con-
ducted. It is used to measure the relationship between a bi-
nary and a continuous variable. Table C1 shows the results
of the point-biserial correlation: only the top five drought in-
dices with the strongest correlation are included. The minus
sign indicates a negative correlation between the two vari-
ables.
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