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Abstract. A key component for landslide early warning sys-
tems (LEWSs) is constituted by thresholds providing the
conditions above which a landslide can be triggered. Tra-
ditionally, thresholds based on rainfall characteristics have
been proposed, but recently, the hydrometeorological ap-
proach, combining rainfall with soil moisture or catchment
storage information, is becoming widespread. Most of the
hydrometeorological thresholds proposed in the literature
use the soil moisture from a single layer (i.e., depth or depth
range). On the other hand, multi-layered soil moisture infor-
mation can be measured or can be available from reanalysis
projects as well as from hydrological models. Approaches
using this multi-layered information are lacking, perhaps be-
cause of the need to keep the thresholds simple and two-
dimensional. In this paper, we propose principal component
analysis (PCA) as an approach for deriving two-dimensional
hydrometeorological thresholds that use multi-layered soil
moisture information. To perform a more objective assess-
ment we also propose a piecewise linear equation for the
identification of the threshold’s shape, which is more flexible
than traditional choices (e.g., power law or bilinear). Com-
parison of the receiver operating characteristic (ROC) (true
skill statistic, TSS) of thresholds based on single- and multi-
layered soil moisture information also provides a novel tool
for identifying the significance of multi-layered information
on landslide triggering in a given region. Results for Sicily
island, considering the ERA5-Land reanalysis soil moisture
data (available at four different depth layers), corroborate the

advantages of the hydrometeorological approach gained in
spite of the coarse spatial resolution and the limited accu-
racy of reanalysis data. Specifically, the TSS of traditional
precipitation intensity–duration thresholds is equal to 0.5,
while those of the proposed hydrometeorological thresholds
is significantly higher (TSS= 0.71). For the analyzed region,
however, multi-layered information seems not to be relevant,
as performances in terms of TSS are similar to those obtained
with single-layer soil moisture at the upper depths, namely
0–7 and 7–28 cm, which can imply that in Sicily landslide
phenomena are mainly influenced by soil moisture in most
shallow soil layers.

1 Introduction

The impact of landslides triggered by rainfall is constantly
increasing due to landscape modifications, i.e., urbanization,
deforestation, land changes, and the abandonment of rural ar-
eas (Roccati et al., 2019). Landslides can cause serious dam-
age to man-made structures and land, as well as loss of natu-
ral resources and lives. The role of landslide risk in human
well-being is highlighted by the fact that more than 4800
landslide occurrences were documented from 2004 to 2016,
with over 55 000 reported fatalities at a global scale (Froude
and Petley, 2018). Furthermore, landslides triggered by rain-
fall have been identified as the cause of approximately 90 %
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of fatalities globally (Haque et al., 2016; Sultana, 2020), and,
from an economic point of view, annual losses were esti-
mated to total USD 20 billion (Sim et al., 2022).

Over the last decades, an increasing number of studies also
focused on the potential effects of climate change on land-
slide phenomena (McInnes et al., 2007; Dijkstra and Dixon,
2010; Crozier, 2010), pointing out that there are some unre-
solved issues, such as the abundance, activity, frequency, and
return period of landslides in response to the projected cli-
mate change (Gariano and Guzzetti, 2016; Peres and Cancel-
liere, 2018). In light of these considerations and, after recent
catastrophic landslides worldwide, there is high interest from
scholars and civil protection agencies in the development of
landslide early warning systems (LEWSs), which can serve
as an aid in predicting possible slope movements and thus
as a risk mitigation tool (Roccati et al., 2020; Highland and
Bobrowsky, 2008; Chae et al., 2017).

Landslide-triggering thresholds are a key component of
LEWSs. In general, empirical rainfall thresholds, which re-
late the occurrence of landslides to rainfall event character-
istics such as intensity, duration, total amounts, or a com-
bination thereof, are commonly applied for the majority of
regional LEWSs (Guzzetti et al., 2007, 2008; Segoni et al.,
2018a; Aleotti, 2004). When information on non-triggering
rainfall is also available, thresholds can be determined as the
best classifiers based on the confusion matrix (Berti et al.,
2012; Staley et al., 2013; Peres and Cancelliere, 2014, 2021;
Postance et al., 2018). In the last decade, there has been an
increasing interest in the development of hydrometeorologi-
cal thresholds that consider rainfall characteristics and sub-
surface hydrological variables, such as soil moisture content
and catchment storage information (Uwihirwe et al., 2022;
Mirus et al., 2018a, b; Thomas et al., 2018; Segoni et al.,
2018b; Wicki et al., 2020, 2021; Bogaard and Greco, 2018,
2016; Reder and Rianna, 2021; Marino et al., 2020; Palau
et al., 2021; Conrad et al., 2021). These studies demonstrate
improvements of the prediction performances with the hy-
drometeorological approach, with respect to the traditional
precipitation-based thresholds, even if not all climatic areas
have been explored, so further applications are still useful.
Furthermore, none of the previous studies take into account
the possibility to exploit the information from a soil mois-
ture profile or multi-layered soil moisture information, cor-
responding to several depths or depth ranges. This is most
likely because thresholds have to be kept simple, i.e., two-
dimensional, for being effectively communicated to decision
makers.

In the present work, we propose an approach that al-
lows taking into account the multi-layer soil moisture infor-
mation within hydrometeorological thresholds while keep-
ing these two-dimensional thanks to a statistical technique
named principal component analysis (PCA) (Jolliffe, 2002).
This technique allows us to find the linear combination be-
tween soil moisture at different depth layers which retains
as much as possible the information content of the multi-

ple layers together, capitalizing on the presence of correla-
tion between the soil moisture at different depths. The pro-
posed approach is also intended to test whether multi-layer
soil moisture information may provide better predictive per-
formance than the single-layer one by comparing the rela-
tive prediction performances in terms of receiver operating
characteristic (ROC) indices, such as the well-known true
skill statistic (TSS). We carry out our investigation using
observed precipitation in combination with ERA5-Land re-
analysis soil moisture data, available at four different depth
layers with a 0.1◦× 0.1◦ (∼= 9 km) resolution (Hersbach et
al., 2020). Recent studies proved that the main climate vari-
ables (i.e., soil moisture, temperature, precipitation) obtained
from third-generation atmospheric and reanalysis datasets
(i.e., ERA5 project) have a reasonable accuracy in reproduc-
ing in situ measurements (Dorigo et al., 2011; Li et al., 2020;
Beck et al., 2021), though accuracy issues still remain signif-
icant. The case study of the Sicily region is used to test the
proposed methodology.

The paper is organized as follows. First, the procedure
for the dataset creation and description of the methodol-
ogy leading to the proposed approach to implement multi-
layer soil moisture data in hydrometeorological thresh-
olds are presented in the “Material and methods” section.
Then, the “Study area” section describes the relevant fea-
tures of the study area, namely the Sicily island (south-
ern Italy). Next, the results and discussion concerning the
performance obtained in correspondence with all identified
rainfall-triggering thresholds are presented in the “Results
and discussion” section. Finally, conclusions are drawn in the
last section.

2 Materials and methods

2.1 Dataset construction

The construction of the rainfall and landslide events dataset
is a key step that involves different types of data (i.e., ob-
served landslides, rainfall events, and reanalysis data of soil
moisture). As schematically illustrated in Fig. 1, in the first
step the FraneItalia project (Calvello and Pecoraro, 2018) is
employed to collect information regarding the observed land-
slides, as it is a thorough spatiotemporal inventory of histor-
ical landslides that have impacted the Italian territory since
2010, including both occurrences that resulted in fatalities
and occurrences that did not.

The first classification criterion by the FraneItalia catalog
is based on the number of landslides triggered by the same
rainfall event in a given geographic area. Specifically, single
landslide events (SLEs) and areal landslide events (ALEs)
are distinguished for records referring to single or multiple
landslides, respectively. Both SLEs and ALEs are then cate-
gorized into one of three classes in relation to their impacts,
in order to track whether a landslide occurrence resulted in
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Figure 1. Schematization of the procedure followed for dataset construction.

casualties or missing people (C1, very severe), injured peo-
ple and evacuations (C2, severe), or no one was physically
harmed (C3, minor). The data on occurrence location, the
date the landslide occurred, the source of information, and
the number of landslides for ALEs are further details that
have also been included in the catalog, together with the on-
set and duration of the landslide occurrence and its conse-
quences.

Thanks to this accurate level of detail, it is possible to fil-
ter only the landslide events triggered by rainfall, which are
precisely those to take into consideration in our study.

The CTRL-T (Calculation of Thresholds for Rainfall-
induced Landslides-Tool) code (Melillo et al., 2018) is subse-
quently used for the identification of the rainfall events that
were more likely to be responsible for the observed slope
failures. Specifically, CTRL-T automatically and objectively
reconstructs rainfall events and the triggering conditions re-
sponsible for the failure using a set of adjustable parameters
to account for different morphological and climatic settings.
Briefly, the tool consists of distinct modules with specific
purposes. Among these, one module operates the reconstruc-
tion of rainfall events in term of duration (D, in h) and cu-
mulated event rainfall (E, in mm) using a continuous hourly
rainfall time series and setting several climate and spatial pa-
rameters such as the warm period in a year (CW), the cold pe-
riod in a year (CC), the resolution of the rain gauge (GS), the
instrumental sensitivity of the rain gauge and the minimum
value exceeding which the isolated hourly measurements are
considered relevant (ER), and the radius of the buffer to as-
sign each landslide to the closest rain gauge (RB). Further-
more, in order to account for seasonality (i.e., different evap-
otranspiration rates in different periods of the year), addi-

tional rainfall parameters can be set by the user, namely the
dry interval separating isolated rainfall measurements (P1);
the time periods used to remove irrelevant amounts of rain-
fall, (P2), and (P3); and the minimum dry period separating
two rainfall events (P4). The readers are referred to Melillo
et al. (2018) for more detailed information on these parame-
ters. A further module instead performs the selection of the
rain gauge representative for the landslide. Once the maxi-
mum allowed distance between a landslide and a rain gauge
is defined as a circle of radius RB specified by the user, if
more than one rain gauge is located within the circle, then the
rainfall events from each rain gauge are weighted based on
the rain gauge–landslide distance and the rainfall event char-
acteristics (cumulated rainfall and duration). More specifi-
cally, given the multiple rainfall conditions (MRCs) that are
most likely responsible for the slope failures as pair of rain-
fall event duration (DL) and cumulated event rainfall (EL),
or a set of two or more pairs, each MRC is assigned a weight
to select the representative rain gauge and the rainfall con-
ditions associated with the landslide. The weight is propor-
tional to the inverse square distance between the rain gauge
and the landslide (d−2), the cumulated rainfall (EL), and the
rainfall mean intensity (ELD

−1
L ):

w = f (d,EL,DL)= d
−2E2

LD
−1
L . (1)

Thus, among all the identified MRCs, those with the highest
weights w are defined as the maximum probability rainfall
conditions (MPRCs), and these reconstructed rainfall condi-
tions were assumed as the triggering rainfall events. Lastly,
Fig. 2, depicts how the duration of a triggering rainfall event
is defined. Specifically, when a landslide occurs during a dry
period the whole event that preceded it is considered as a trig-
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Figure 2. Sketch illustrating how the duration of a triggering rainfall
event is defined (adapted from Peres et al., 2018).

gering rainfall event; otherwise, just the rainfall that occurred
before the landslide occurrence is taken into account.

As shown in Fig. 1, the last step for the dataset set-up con-
sists of the association of soil moisture data to the begin-
ning of each rainfall event, both triggering and non-triggering
ones. In this regard, the ERA5-Land reanalysis dataset is
used. It provides the volume of water ϑ [m3 m−3] at four
distinct soil depths levels (i.e., 0–7, 7–28, 28–100, and 100–
289 cm). The ERA5-Land soil moisture data are provided at
the hourly scale as grid data with a horizontal resolution of
0.1◦× 0.1◦. Thus, being at the same temporal resolution of
rainfall time series, the soil moisture values representative of
the closest cell to the rain gauge that recorded the rainfall
event are associated, without delay, to the considered event.

2.2 Principal component analysis

Principal component analysis (Jolliffe, 2002) is a multivari-
ate technique that analyzes a data table in which observations
are described by several intercorrelated quantitative depen-
dent variables to extract the important information from the
table and to represent it as a set of new orthogonal variables
called principal components (Abdi and Williams, 2010).

Precisely, the data are transformed according to a new co-
ordinate system having the x axis, known as the first princi-
pal axis, characterized by the highest data variation. Along
the successive axes (e.g., the second principal axis, the third
principal axis, and so on), the data are characterized by in-
creasingly lower variation. Each succeeding principal com-
ponent explains the maximum amount of variance feasible
with the requirement that it is orthogonal to the previous prin-
cipal components. In practice, identifying the eigenvalues
and eigenvectors of the covariance matrix is the formal math-
ematical equivalent of solving the PCA problem. The direc-
tion along which the data have the highest variance is the
eigenvector, while the related eigenvalue is a quantification
of the variance in the data along the corresponding eigenvec-
tor. Accordingly, the first principal component is the eigen-
vector with the greatest eigenvalue, followed by the eigen-
vector with the second-highest eigenvalue, and so on. Thus,

the so computed principal components are employed for the
projection of the data into the new coordinate space (Kherif
and Latypova, 2019).

Practically, in our study, θ (Eq. 2) represents the soil mois-
ture data table for which to compute the principal compo-
nents, specified as an n-by-p matrix. Rows correspond the
total number n of the considered rainfall events (i.e., obser-
vations), and the number of columns to the four depths levels
at which the initial soil moisture data are provided (i.e., vari-
ables).

θ =


ϑ11 ϑ12 ϑ13 ϑ14
ϑ21 ϑ22 ϑ23 ϑ24
...

...
...

...

ϑn1 ϑn2 ϑn3 ϑn4

 (2)

A instead represents the principal component loadings (i.e.,
coefficients) table, specified as a p-by-p matrix. The rows of
matrix A are called the eigenvectors, and these specify the
orientation of the principal components relative to the origi-
nal variables.

A=


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 (3)

Thus, the principal components (Si) for the generic ith row
are given by a linear combination of the variables θ and A,
namely

Si1 = a11ϑi1+ a12ϑi2+ a13ϑi3+ a14ϑi4, (4)
Si2 = a21ϑi1+ a22ϑi2+ a23ϑi3+ a24ϑi4, (5)
Si3 = a31ϑi1+ a32ϑi2+ a33ϑi3+ a34ϑi4, (6)
Si4 = a41ϑi1+ a42ϑi2+ a43ϑi3+ a44ϑi4, (7)

with i = 1, . . .,n.
In matrix notation, the transformation of the original vari-

ables to the principal components is written as

S= θA. (8)

2.3 Thresholds’ identification

First, we identify the traditional rainfall intensity–duration
power-law thresholds. The ID threshold has the form of a
power law I = αD−β , where I [mmh−1] represents the rain-
fall intensity, i.e., the average precipitation rate over the con-
sidered period; D [h] represents the duration of the rainfall
event; α is the intercept parameter; and β is the slope param-
eter. After reconstructing the rainfall events with the method-
ology explained for the dataset creation, and after calculating
the main variables (i.e., mean rainfall intensity and duration),
an optimization tool (i.e., the MATLAB® particle swarm op-
timization toolbox) is used with the aim to search for the
best possible α and β curve parameters able to maximize the
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Table 1. Confusion matrix for ROC analysis.

Observed landslide

Landslide (P) No landslide (N)

Predicted Landslide Landslide TP FP
No landslide FN TN

true skill statistic (TSS) index objective function (Eq. 11),
which is based on the confusion matrix or the receiver op-
erating characteristics (ROCs). The confusion matrix is ex-
pressed in terms of the count of true positives (TPs), true neg-
atives (TNs), false positives (FPs), and false negatives (FNs)
(Peirce, 1884) (Table 1).

As a function of the variables reported in Table 1, the three
reference standard ROC indices – namely, true positive rate,
false positive rate, and true skill statistic – are listed below
(Eqs. 9–11):

TPR=
TP

(TP+FN)
, (9)

FPR=
FP

(TN+FP)
, (10)

TSS= TPR−FPR. (11)

The highest performances correspond to TSS= 1 when the
model produces no false or missing predictions.

Afterwards, the analysis is focused on the identification
of the hydrometeorological threshold trough a novel para-
metric equation that represents the lower boundary between
triggering and non-triggering rainfall events on the basis of
the mean rainfall intensity and the reanalysis of soil moisture
values. In this context, we propose a piecewise linear equa-
tion as a reliable relationship able to well classify the events
on the semi-log plane:

I =


y0, ϑ < x0
y1− y0

x1− x0
(ϑ − x0)+ y0, x0 ≤ ϑ ≤ x1

y1, ϑ > x1

, (12)

where I and ϑ correspond to rainfall intensity and to soil
moisture values, respectively. This parametric form of the
threshold has been devised based on the visual inspection of
the scatter plot of triggering and non-triggering events (i.e.,
heuristically) and corroborated by comparison with other re-
lationships proposed in the literature – specifically, the power
law and the simple bilinear (as opposed to a linear or more
complex power or high-degree polynomial) (Uwihirwe et al.,
2022; Thomas et al., 2019; Mirus et al., 2018b). x0, x1, y0,
and y1 are the threshold’s parameters that must be estimated.
In this regard, these parameters are computed by adopting the
same objective function and optimization procedure as those
used for the identification of the parameters of the power-law
ID threshold, i.e., the TSS objective function (Eq. 11) and

the MATLAB® particle swarm global optimization toolbox.
Therefore, Eq. (12) is used to derive the hydrometeorological
thresholds employing single- and multi-layer soil moisture
data, respectively. Specifically, the mean rainfall intensity (I )
and the soil moisture at each of the four depth levels (ϑ1, ϑ2,
ϑ3, ϑ4) available from the ERA5-Land reanalysis data are
used for the single-layer approach, while the mean rainfall
intensity (I ) together with the first principal component of
soil moisture, i.e., the linear combination of soil moisture at
the four depths corresponding to the minimum information
loss (highest explained variance), are used for the multi-layer
approach. The TSS values obtained in the applications con-
sidering soil moisture, both single- and multi-layered, (here-
inafter indicated as TSSpar) are being compared to one an-
other, as well as to the TSS value obtained for the power-law
ID threshold (hereinafter TSSpl).

3 Study area

The study area selected for our study is the island of Sicily
(southern Italy, 37.75◦ N, 14.25◦ E) which, with an area of
∼ 25700 km2, is the largest island of the Mediterranean Sea.
A hilly morphology (62 %) dominates the landscape in the
island, while the rest is characterized by a mountainous and
flat morphology, especially in the eastern part of the island
around Catania. The terrain average elevation is about 400 m
above sea level, ranging from 0 to 3320 m on the peak of the
Etna volcano. Geologically, the Sicily island arose during the
Neogene, when the European and African plates converged.
Thus, Sicily stands out for its complex geological and litho-
logical features which, cooperatively with anthropic activi-
ties (e.g., changes in land use, management of forest), have
generated a wide range of different types of soil (Venturella,
2004).

The climate is warm-temperate, with hot and dry summers,
especially on the southern coasts, and higher and more fre-
quent precipitation during the colder winter months, in the
mountainous internal areas (Pumo et al., 2019). Mean an-
nual precipitation ranges between 700 and 800 mm, and au-
tumn and winter are the rainiest seasons. The most severe
rainfall events frequently hit the eastern side of the island
and, specifically, the eastern side of the Etna volcano and the
flanks of the Peloritani mountains, with the greatest precipi-
tation peaks on the Ionian side (Gariano et al., 2015). On the
other hand, south Sicily is distinguished by lower precipita-
tion than the mean values recorded in the rest of the region,
since it is located at a lower height and is exposed to the hot
and dry African winds (Alecci and Rossi, 2007).

Figure 3 shows the geographical context of Sicily, the rain
gauge locations for the period 2009–2018 (Distefano et al.,
2022), and the observed landslide locations. In more de-
tail, 207 landslide events were retrieved by the FraneItalia
database from 2010 to 2018 and, for each of them, longitude–
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Figure 3. Elevation map of the study area (Sicily region), showing
the location of the rain gauges and landslide occurrences (credit to
http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais, last
access: 13 January 2023, and ESRI, 2020).

latitude coordinates (WGS84 datum), together with the initi-
ation time, were retrieved.

Concerning the observed rainfall measurements, we con-
sulted the data provided by the regional water observatory
(Osservatorio delle Acque, OdA), the SIAS (Sicilian Agro-
meteorological Information Service), and the Regional Civil
Protection Department (DRPC), namely the three main gaug-
ing networks installed in Sicily.

This enabled an hourly time series to be reconstructed for
the precipitation over the period 2009–2018. As previously
explained in Sect. 2.1, using these continuous rainfall time
series, the rainfall events were identified using the CTRL-T
research code. For the calibration of these regional param-
eters required by CTRL-T, we referred to a previous appli-
cation of the algorithm to the Sicily island (Melillo et al.,
2015). Specifically, according to this approach, the dry pe-
riod (no rain) has been set equal to 48 h (P4,warm) between
April and October (warm season, Cw), while it has been set
equal to 96 h (P4,cold) from November to March (cold sea-
son, Cc). Indeed, in line with Köppen (1936) and Trewartha
(1968), it is reasonable to assume that in Sicily, due to the
Mediterranean climate, the warm period is longer than the
cold one. The rain gauge sensitivity GS has been set equal to
0.2 mm, while the rain gauge search radius RB has been es-
tablished equal to 16 km. Table 2 summarizes adopted values
for mentioned CTRL-T parameters.

4 Results and discussion

4.1 Principal component analysis

An explorative analysis was carried out, to investigate the
correlation between the four soil moisture depths (ϑ1, ϑ2, ϑ3,
ϑ4). The plot shown in Fig. 4 represents the correlation ma-
trix between all pairs of variables, together with the Pearson’s
correlation coefficients.

Overall, all the four soil moisture depths are related to each
other. Specifically, the diagonal subplot between the upper

two depth levels ϑ1 and ϑ2 has the highest correlation, with
a Pearson correlation coefficient equal to 0.85. This suggests
that PCA can be adopted in order to find out the linear com-
bination expressing the correlation between the involved soil
moisture variables.

The preliminary step, required when PCA is performed, is
to center the data on the mean values of each variable, namely
by subtracting the mean. This step allows the cloud of data
to be centered on the origin of the principal components, but
it affects neither the spatial relationships of the data, nor the
explained variance along the variables. At this stage, it was
possible to proceed with PCA and, according to Eqs. (4)–(7),
the four principal components of soil moisture were defined
as follows:

Si1 = 0.65ϑi1+ 0.58ϑi2+ 0.47ϑi3+ 0.15ϑi4, (13)
Si2 =−0.54ϑi1− 0.04ϑi2+ 0.63ϑi3+ 0.55ϑi4, (14)
Si3 = 0.37ϑi1− 0.29ϑi2− 0.39ϑi3+ 0.79ϑi4, (15)
Si4 =−0.38ϑi1+ 0.76ϑi2− 0.48ϑi3+ 0.23ϑi4. (16)

The loading values of each principal component are intended
as the weights aij (Eq. 3); therefore, the higher the value of
the weight, the larger the contribution of a variable to the
component associated with the weight. The sign of a load-
ing indicates whether a variable and a principal component
are positively or negatively correlated. Here, although overall
slightly large loadings correspond to the first principal com-
ponent, none of the four variables has a strong relationship
with a particular principal component.

Figure 5a shows the scree plot representing the total per-
centage of variance explained by each of the four principal
components. The chart reveals the decreasing rate at which
variance is explained by additional principal components.
Figure 5b represents a grouped bar plot indicating the esti-
mated loadings corresponding to each of four principal com-
ponents as reported at Eqs. (13)–(16).

Because dimensionality reduction is a goal of PCA, sev-
eral criteria can be considered for determining how many
principal components should be examined and how many
should be ignored (Rencher, 1998). A few of the criteria that
can be considered include the following: (i) ignore principal
components at the point at which the next principal compo-
nent offers little increase in the total explained variation; (ii)
ignore the last principal component whose explained varia-
tions are all roughly equal; (iii) include all principal compo-
nents up to a predetermined total explained variation. In our
study, the third criterion was applied considering a threshold
value of 75 %. Therefore, only the first principal component
was considered as it guaranteed the desired explained varia-
tion of about 75 %.

4.2 Threshold identification

CTRL-T tool reconstructed 144 landslide events out of the
207 landslides retrieved by the FraneItalia database. Four dif-
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Table 2. CTRL-T parameters for the reconstruction of the rainfall events used in the present study.

GS [mm] ER [mm] RB [km] P1 [h] P2 [h] P3 [h] P4 [h]

Cw Cc Cw Cc Cw Cc Cw Cc

0.2 0.2 16 3 6 6 12 1 1 48 96

Figure 4. Correlation matrix between the four soil moisture level depths (ϑ1, ϑ2, ϑ3, ϑ4). Each off-diagonal subplot contains a scatterplot
of a pair of variables with a least-squares reference line, the slope of which is equal to the displayed Pearson correlation coefficient. Each
diagonal subplot contains the distribution of a variable as a histogram.

Figure 5. (a) Total variance explained by each principal component; (b) estimated loadings for each principal component Si .
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Figure 6. Panel showing four different triggering rainfall events. For each of them the precipitation time series together with the soil moisture
time series (ϑ1, ϑ2, ϑ3, ϑ4) are reported, as well as the first principal component of soil moisture S1 and the timing of each landslide.

ferent triggering rainfall events, representing a range of trig-
gering conditions, were selected within the database, and the
precipitation time series together with the soil moisture time
series are plotted in Fig. 6.

As expected, the upper two soil moisture layers are those
that are most similar to precipitation trends, as well as the
first principal component of soil moisture S1, computed us-
ing Eq. (13). Overall, a greater variability in soil moisture
values can be observed in correspondence with ϑ1 and ϑ2,
which assume maximum values about equal to 0.4 in corre-
spondence with all the analyzed triggering rainfall events.

First, the power-law ID threshold maximizing TSS was
identified (Fig. 7). In particular, the plot shows the triggering
events as red points, while the non-triggering events, since
there are a very large number, are better represented by a
color map indicating the relative frequency of non-triggering
rainfall events, following a plotting technique inspired by
Leonarduzzi et al. (2017).

Figure 7. Traditional power-law threshold on the log–log plane be-
tween observed mean rainfall intensity (I ) and duration (D).
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Figure 8. Parametric thresholds on the semi-log plane between mean rainfall intensity and soil moisture at the four distinct depths: (a) ϑ1
0–7 cm; (b) ϑ2 7–28 cm; (c) ϑ3 28–100 cm; (d) ϑ4 100–289 cm.

For this threshold a TSSpl = 0.50, corresponding to a
TPRpl = 0.76 and FPRpl = 0.26, is obtained. Figure 8 shows
the obtained thresholds when the mean rainfall intensity and
the soil moisture at each of the four depth levels are consid-
ered. As can be seen, especially in correspondence with the
upper two depths (i.e., 0–7, 7–28 cm), the triggering rainfall
events are located, for the most part, on the upper right side
of the graph, suggesting that the equation proposed for the
identification of the thresholds (Eq. 12) well fits this trend.
Furthermore, at all depths taken into consideration, there is a
noticeable clustering of the highest relative frequency values
of non-triggering rainfall events below the related parametric
threshold. All four identified thresholds have better perfor-
mance than the ID threshold. Specifically, higher TSS values
were obtained for the first two depths, with a TSSpar equal to
0.71, while significantly lower values of TSSpar (0.61 and
0.54) are obtained with the third and fourth soil moisture
level, respectively.

Moving to the multi-layer approach, the optimal paramet-
ric threshold identified using the mean rainfall intensity and

first principal component of soil moisture is presented in
Fig. 9. In this case, a TSSpar = 0.71 was obtained.

Table 3 summarizes the TSS values in correspondence
with the analyzed thresholds, together with the values of pa-
rameters (Eq. 12) estimated for the parametric thresholds.

Overall, the results relative to the hydrometeorological
thresholds corroborate other studies showing their better pre-
dictive performance when compared to the traditional ID
threshold. For the specific case study of Sicily, thresholds
based on multi-layered soil moisture information have sim-
ilar predictive performances to thresholds based on single-
layered information. This points out that the two shallowest
depth layers are of the greatest relevance for landslide trig-
gering in Sicily. This may not be the case for other case study
areas, and the proposed approach of comparing multi- vs.
single-layer information allows us to define which layers of
soil are most relevant in controlling landslide triggering in a
given region.

https://doi.org/10.5194/nhess-23-279-2023 Nat. Hazards Earth Syst. Sci., 23, 279–291, 2023
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Table 3. TSS values in correspondence with each analyzed scenario and parameters (x0, y0, x1, y1) estimated for the parametric thresholds.

Parametric TPRpar FPRpar TSSpar x0 y0 x1 y1
threshold

Iϑ1 0.84 0.14 0.71 −0.33 27.23 0.38 0.09
Iϑ2 0.84 0.14 0.71 0.05 5.73 0.39 0.02
Iϑ3 0.73 0.12 0.61 −0.03 6.98 0.40 0.02
Iϑ4 0.79 0.25 0.54 −0.08 6.82 0.35 0.09
IS1 0.85 0.14 0.71 −0.12 3.28 0.23 0.02

Figure 9. Parametric threshold on the semi-log plane between ob-
served mean rainfall intensity (I ) and first principal component of
soil moisture (S1).

5 Conclusions

In this study, a framework based on PCA aimed at introduc-
ing multi-layer soil moisture information within hydrome-
teorological threshold identification has been proposed. Our
investigation, relative to Sicily, corroborates previous stud-
ies showing higher performances for hydrometeorological
thresholds compared to the traditional ID power-law thresh-
olds. Specifically, a significant improvement of performances
was found with hydrometeorological thresholds, leading to
TSS values of up to 0.71, which were much higher than those
obtained with the traditional approach (TSS= 0.50). The
application of PCA to soil moisture data at various depths
turned out to be a valuable approach to include multi-layer
soil moisture information while keeping the thresholds two-
dimensional, though for the case study region, multi-layer
information seemed not so relevant, as performances corre-
sponding to the two uppermost layers are similar to those
corresponding to the PCA combination of all four layers.
Comparison of prediction performances relative to thresh-
olds based on multi- versus single-layer soil moisture in-
formation provides a mean to assess which soil depth in-
tervals retain the most relevant information for improving

thresholds’ predictive performances. This represents a strate-
gic tool supporting decision-making in LEWSs development.
Finally, it is worth mentioning that our investigation consid-
ered ERA5-Land soil moisture data, whose actual use for
landslide prediction is limited by the fact that they are made
available with a delay of some weeks from real time. How-
ever, this delay is expected to be significantly reduced in the
near future in light of the increasing computational capabil-
ities. In this regard, the valuable improvements, gained de-
spite the inherent uncertainty of reanalysis data, further en-
courage the installation of monitoring networks for direct in
situ soil moisture measurements with enhanced spatial and
temporal resolutions, as with these observations even higher
improvements are to be expected. Future developments of
this research will consider other geographical regions in or-
der to further explore the role of multi-layer soil moisture.

Data availability. The FraneItalia landslides catalog is available
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R., Malet, J.-P., Auflič, M. J., Andres, N., Poyiadji, E., Lamas, P.
C., Zhang, W., Peshevski, I., Pétursson, H. G., Kurt, T., Dobrev,
N., García-Davalillo, J. C., Halkia, M., Ferri, S., Gaprindashvili,
G., Engström, J., and Keellings, D.: Fatal landslides in Europe,
Landslides, 13, 1545–1554. https://doi.org/10.1007/s10346-016-
0689-3, 2016.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo,
G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara,
G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flem-
ming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S.,
Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The
ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–
2049, https://doi.org/10.1002/qj.3803, 2020.

Highland, L. M. and Bobrowsky, P.: The landslide Handbook – A
guide to understanding landslides, US Geol. Surv. Circ., 1–147,
https://doi.org/10.3133/cir1325, 2008.

ISPRA – Istituto Superiore per la Protezione e la Ricerca Ambi-
entale: Annali idrologici Storici, http://www.bio.isprambiente.it/
annalipdf/, last access: 16 January 2023.

Jolliffe, I. T.: Principal component analysis for special types of
data, Springer, New York, 338–372, https://doi.org/10.1007/0-
387-22440-8_13, 2002.

Kherif, F. and Latypova, A.: Principal component analysis,
Mach. Learn. Methods Appl. to Brain Disord., 209–225,
https://doi.org/10.1016/B978-0-12-815739-8.00012-2, 2019.

Köppen, V. P.: Das geographische System der Klimate, in: Hand-
buch der Klimatologie, Band 5, Teil C, edited by: Köppen, W.
and Geiger, R., Berlin, Gebrüder Bornträger, 44 pp., 1936 (in
German).

Leonarduzzi, E., Molnar, P., and McArdell, B. W.: Predictive per-
formance of rainfall thresholds for shallow landslides in Switzer-
land from gridded daily data, Water Resour. Res., 53, 6612–6625,
https://doi.org/10.1002/2017WR021044, 2017.

Li, M., Wu, P., and Ma, Z.: A comprehensive evaluation of soil
moisture and soil temperature from third-generation atmospheric
and land reanalysis data sets, Int. J. Climatol., 40, 5744–5766,
https://doi.org/10.1002/joc.6549, 2020.

Marino, P., Peres, D. J., Cancelliere, A., Greco, R., and Bogaard,
T. A.: Soil moisture information can improve shallow landslide
forecasting using the hydrometeorological threshold approach,
Landslides, 17, 2041–2054, https://doi.org/10.1007/s10346-020-
01420-8, 2020.

McInnes, R., Jakeways, J., Fairbank, H., and Mathie, E.: Land-
slides and Climate Change: Challenges and Solutions, in: Pro-

ceedings of the International Conference on Landslides and Cli-
mate Change, Ventnor, Isle of Wight, UK, 21–24 May 2007,
CRC Press, https://doi.org/10.1201/NOE0415443180, 2007.

Melillo, M., Brunetti, M. T., Peruccacci, S., Gariano, S. L., and
Guzzetti, F.: An algorithm for the objective reconstruction of
rainfall events responsible for landslides, Landslides, 12, 311–
320, https://doi.org/10.1007/s10346-014-0471-3, 2015.

Melillo, M., Brunetti, M. T., Peruccacci, S., Gariano, S. L., Roccati,
A., and Guzzetti, F.: A tool for the automatic calculation of rain-
fall thresholds for landslide occurrence, Environ. Modell. Softw.,
105, 230–243, https://doi.org/10.1016/j.envsoft.2018.03.024,
2018.

Mirus, B. B., Becker, R. E., Baum, R. L., and Smith, J. B.: In-
tegrating real-time subsurface hydrologic monitoring with em-
pirical rainfall thresholds to improve landslide early warning,
Landslides, 15, 1909–1919, https://doi.org/10.1007/s10346-018-
0995-z, 2018a.

Mirus, B. B., Morphew, M. D., and Smith, J. B.: De-
veloping Hydro-Meteorological Thresholds for Shallow
Landslide Initiation and Early Warning, Water, 10, 1274,
https://doi.org/10.3390/W10091274, 2018b.

Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to present,
Copernicus Climate Change Service (C3S) Climate Data Store
(CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2021.

Palau, R. M., Hürlimann, M., Berenguer, M., and Sempere-Torres,
D.: Towards the use of hydrometeorological thresholds for
the regional-scale LEWS of Catalonia (NE Spain), EGU Gen-
eral Assembly 2021, online, 19–30 April 2021, EGU21-8221,
https://doi.org/10.5194/egusphere-egu21-8221, 2021.

Peirce, C. S.: The numerical measure of the success of predic-
tions, Science, 4, 453–454, https://doi.org/10.1126/science.ns-
4.93.453-a, 1884.

Peres, D. J. and Cancelliere, A.: Derivation and evalua-
tion of landslide-triggering thresholds by a Monte Carlo
approach, Hydrol. Earth Syst. Sci., 18, 4913–4931,
https://doi.org/10.5194/hess-18-4913-2014, 2014.

Peres, D. J. and Cancelliere, A.: Modeling impacts of climate
change on return period of landslide triggering, J. Hydrol., 567,
420–434, https://doi.org/10.1016/j.jhydrol.2018.10.036, 2018.

Peres, D. J. and Cancelliere, A.: Comparing methods for de-
termining landslide early warning thresholds: potential
use of non-triggering rainfall for locations with scarce
landslide data availability, Landslides, 18, 3135–3147,
https://doi.org/10.1007/s10346-021-01704-7, 2021.

Peres, D. J., Cancelliere, A., Greco, R., and Bogaard, T. A.: In-
fluence of uncertain identification of triggering rainfall on the
assessment of landslide early warning thresholds, Nat. Hazards
Earth Syst. Sci., 18, 633–646, https://doi.org/10.5194/nhess-18-
633-2018, 2018.

Postance, B., Hillier, J., Dijkstra, T., and Dixon, N.: Comparing
threshold definition techniques for rainfall-induced landslides: A
national assessment using radar rainfall, Earth Surf. Proc. Land.,
43, 553–560, https://doi.org/10.1002/ESP.4202, 2018.

Pumo, D., Carlino, G., Blenkinsop, S., Arnone, E., Fowler, H.,
and Noto, L. V.: Sensitivity of extreme rainfall to temperature
in semi-arid Mediterranean regions, Atmos. Res., 225, 30–44,
https://doi.org/10.1016/j.atmosres.2019.03.036, 2019.

Reder, A. and Rianna, G.: Exploring ERA5 reanalysis potential-
ities for supporting landslide investigations: a test case from

Nat. Hazards Earth Syst. Sci., 23, 279–291, 2023 https://doi.org/10.5194/nhess-23-279-2023

https://doi.org/10.1016/j.geomorph.2014.10.019
https://doi.org/10.1007/s00703-007-0262-7
https://doi.org/10.1007/s10346-007-0112-1
https://doi.org/10.1007/s10346-007-0112-1
https://doi.org/10.1007/s10346-016-0689-3
https://doi.org/10.1007/s10346-016-0689-3
https://doi.org/10.1002/qj.3803
https://doi.org/10.3133/cir1325
http://www.bio.isprambiente.it/annalipdf/
http://www.bio.isprambiente.it/annalipdf/
https://doi.org/10.1007/0-387-22440-8_13
https://doi.org/10.1007/0-387-22440-8_13
https://doi.org/10.1016/B978-0-12-815739-8.00012-2
https://doi.org/10.1002/2017WR021044
https://doi.org/10.1002/joc.6549
https://doi.org/10.1007/s10346-020-01420-8
https://doi.org/10.1007/s10346-020-01420-8
https://doi.org/10.1201/NOE0415443180
https://doi.org/10.1007/s10346-014-0471-3
https://doi.org/10.1016/j.envsoft.2018.03.024
https://doi.org/10.1007/s10346-018-0995-z
https://doi.org/10.1007/s10346-018-0995-z
https://doi.org/10.3390/W10091274
https://doi.org/10.24381/cds.e2161bac
https://doi.org/10.5194/egusphere-egu21-8221
https://doi.org/10.1126/science.ns-4.93.453-a
https://doi.org/10.1126/science.ns-4.93.453-a
https://doi.org/10.5194/hess-18-4913-2014
https://doi.org/10.1016/j.jhydrol.2018.10.036
https://doi.org/10.1007/s10346-021-01704-7
https://doi.org/10.5194/nhess-18-633-2018
https://doi.org/10.5194/nhess-18-633-2018
https://doi.org/10.1002/ESP.4202
https://doi.org/10.1016/j.atmosres.2019.03.036


N. Palazzolo et al.: Hydrometeorological thresholds for landslide prediction 291

Campania Region (Southern Italy), Landslides, 18, 1909–1924,
https://doi.org/10.1007/S10346-020-01610-4, 2021.

Rencher, A. C.: Multivariate statistical inference and applications,
Wiley-Interscience, ISBN 10 0471571512, 1998.

Roccati, A., Faccini, F., Luino, F., Ciampalini, A., and Turconi,
L.: Heavy rainfall triggering shallow landslides: A susceptibil-
ity assessment by a GIS-approach in a Ligurian Apennine catch-
ment (Italy), Water, 11, 605, https://doi.org/10.3390/w11030605,
2019.

Roccati, A., Paliaga, G., Luino, F., Faccini, F., and Turconi, L.:
Rainfall threshold for shallow landslides initiation and analysis
of long-term rainfall trends in a mediterranean area, Atmosphere,
11, 1367, https://doi.org/10.3390/atmos11121367, 2020.

Segoni, S., Piciullo, L., and Gariano, S. L.: A review of the re-
cent literature on rainfall thresholds for landslide occurrence,
Landslides, 15, 1483–1501, https://doi.org/10.1007/s10346-018-
0966-4, 2018a.

Segoni, S., Rosi, A., Lagomarsino, D., Fanti, R., and Casagli, N.:
Brief communication: Using averaged soil moisture estimates
to improve the performances of a regional-scale landslide early
warning system, Nat. Hazards Earth Syst. Sci., 18, 807–812,
https://doi.org/10.5194/nhess-18-807-2018, 2018b.

SIAS – Servizio Informativo Agrometeorologico Siciliano (Sicilian
Agro-meteorological Information Service): Dati meteorologici
(Meteorological data), SIAS [data set], http://www.sias.regione.
sicilia.it/, last access: 16 January 2023.

Sim, K. B., Lee, M. L., and Wong, S. Y.: A review of landslide
acceptable risk and tolerable risk, Geoenviron. Disast., 9, 3,
https://doi.org/10.1186/s40677-022-00205-6, 2022.

Staley, D. M., Kean, J. W., Cannon, S. H., Schmidt, K.
M., and Laber, J. L.: Objective definition of rainfall
intensity-duration thresholds for the initiation of post-fire de-
bris flows in southern California, Landslides, 10, 547–562,
https://doi.org/10.1007/s10346-012-0341-9, 2013.

Sultana, N.: Analysis of landslide-induced fatalities and injuries
in Bangladesh: 2000–2018, Cogent Soc. Sci. 6, 1737402,
https://doi.org/10.1080/23311886.2020.1737402, 2020.

Thomas, M. A., Mirus, B. B., and Collins, B. D.: Iden-
tifying Physics-Based Thresholds for Rainfall-Induced
Landsliding, Geophys. Res. Lett., 45, 9651–9661,
https://doi.org/10.1029/2018GL079662, 2018.

Thomas, M. A., Collins, B. D., and Mirus, B. B.: Assessing
the Feasibility of Satellite-Based Thresholds for Hydrologi-
cally Driven Landsliding, Water Resour. Res., 55, 9006–9023,
https://doi.org/10.1029/2019WR025577, 2019.

Trewartha, G. T.: An introduction to climate, 4th edn., McGraw-
Hill, New York, 408 pp., ISBN 10 0070651523, 1968.

Uwihirwe, J., Riveros, A., Wanjala, H., Schellekens, J., Sperna
Weiland, F., Hrachowitz, M., and Bogaard, T. A.: Poten-
tial of satellite-derived hydro-meteorological information for
landslide initiation thresholds in Rwanda, Nat. Hazards Earth
Syst. Sci., 22, 3641–3661, https://doi.org/10.5194/nhess-22-
3641-2022, 2022.

Venturella, G.: Climatic and pedological features of Sicily, Boc-
conea, 17, 47–53, 2004.

Wicki, A., Lehmann, P., Hauck, C., Seneviratne, S. I., Waldner, P.,
and Stähli, M.: Assessing the potential of soil moisture mea-
surements for regional landslide early warning, Landslides, 17,
1881–1896, https://doi.org/10.1007/s10346-020-01400-y, 2020.

Wicki, A., Jansson, P.-E., Lehmann, P., Hauck, C., and Stähli, M.:
Simulated or measured soil moisture: which one is adding more
value to regional landslide early warning?, Hydrol. Earth Syst.
Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021,
2021.

https://doi.org/10.5194/nhess-23-279-2023 Nat. Hazards Earth Syst. Sci., 23, 279–291, 2023

https://doi.org/10.1007/S10346-020-01610-4
https://doi.org/10.3390/w11030605
https://doi.org/10.3390/atmos11121367
https://doi.org/10.1007/s10346-018-0966-4
https://doi.org/10.1007/s10346-018-0966-4
https://doi.org/10.5194/nhess-18-807-2018
http://www.sias.regione.sicilia.it/
http://www.sias.regione.sicilia.it/
https://doi.org/10.1186/s40677-022-00205-6
https://doi.org/10.1007/s10346-012-0341-9
https://doi.org/10.1080/23311886.2020.1737402
https://doi.org/10.1029/2018GL079662
https://doi.org/10.1029/2019WR025577
https://doi.org/10.5194/nhess-22-3641-2022
https://doi.org/10.5194/nhess-22-3641-2022
https://doi.org/10.1007/s10346-020-01400-y
https://doi.org/10.5194/hess-25-4585-2021

	Abstract
	Introduction
	Materials and methods
	Dataset construction
	Principal component analysis
	Thresholds' identification

	Study area
	Results and discussion
	Principal component analysis
	Threshold identification

	Conclusions
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

