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Abstract. Aftershock forecast models are usually provided
on a uniform spatial grid, and the receiver operating charac-
teristic (ROC) curve is often employed for evaluation, draw-
ing a binary comparison of earthquake occurrences or non-
occurrence for each grid cell. However, synthetic tests show
flaws in using the ROC for aftershock forecast ranking. We
suggest a twofold improvement in the testing strategy. First,
we propose to replace ROC with the Matthews correlation
coefficient (MCC) and the F1 curve. We also suggest using
a multi-resolution test grid adapted to the earthquake den-
sity. We conduct a synthetic experiment where we analyse
aftershock distributions stemming from a Coulomb failure
(1CFS) model, including stress activation and shadow re-
gions. Using these aftershock distributions, we test the true
1CFS model as well as a simple distance-based forecast (R),
only predicting activation. The standard test cannot clearly
distinguish between both forecasts, particularly in the case
of some outliers. However, using both MCC-F1 instead of
ROC curves and a simple radial multi-resolution grid im-
proves the test capabilities significantly. The novel findings
of this study suggest that we should have at least 8 % and
5 % cells with observed earthquakes to differentiate between
a near-perfect forecast model and an informationless fore-
cast using ROC and MCC-F1, respectively. While we cannot
change the observed data, we can adjust the spatial grid us-
ing a data-driven approach to reduce the disparity between
the number of earthquakes and the total number of cells. Us-
ing the recently introduced Quadtree approach to generate
multi-resolution grids, we test real aftershock forecast mod-
els for Chi-Chi and Landers aftershocks following the sug-
gested guideline. Despite the improved tests, we find that the
simple R model still outperforms the 1CFS model in both

cases, indicating that the latter should not be applied without
further model adjustments.

1 Introduction

Aftershocks define earthquakes following a large earthquake
(mainshock) closely in space and time. They can be as de-
structive or deadly as the mainshock or even worse. There-
fore, right after the occurrence of a significant earthquake,
an accurate probabilistic forecast of the spatial and temporal
aftershock distribution is of utmost importance for planning
rescue activities, emergency decision making, and risk mit-
igation in the disaster area. In addition to its use for opera-
tional earthquake forecasting to mitigate losses after a major
earthquake, forecasts of the spatial aftershock distribution are
also used to improve understanding of the earthquake trigger-
ing process by hypothesis testing.

The distribution of aftershocks is not uniform but asso-
ciated with the inhomogeneous stress changes induced by
the mainshock (Reasenberg and Simpson, 1992; Deng and
Sykes, 1996; Meade et al., 2017). In particular, the spatial
distribution of aftershocks generally correlates with positive
Coulomb stress changes (King et al., 1994; Asayesh et al.,
2019, 2020b). Numerous models for aftershock forecasting
have already been proposed spanning the range of physics-
based models (Freed, 2005; Steacy et al., 2005; Asayesh
et al., 2020a), statistical models (Ogata and Zhuang, 2006;
Hainzl, 2022; Ebrahimian et al., 2022), hybrid physics-based
and statistical models (Bach and Hainzl, 2012), and ma-
chine learning models (DeVries et al., 2018). Those after-
shock forecasts are usually provided in a discretized 3D
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space around the mainshock, including horizontal distances
from the mainshock rupture, e.g. up to two fault lengths (Hill
et al., 1993) or within 100 km (Sharma et al., 2020). The cell
dimensions in 2D (also referred to as spatial cells) consid-
ered for previous studies are either 2 km× 2 km (Hardebeck,
2022), 5× 5 km, 10× 10 km (Sharma et al., 2020; Asayesh
et al., 2022), or 0.1◦× 0.1◦ (Schorlemmer et al., 2007).

Evaluating aftershock forecast models is a key scientific
ingredient in the process of improving the models. It is de-
sirable to use those forecast models for societal decision
making that have proven their applicability through testing.
A global collaboration of researchers developed the Collab-
oratory for the Study of Earthquake Predictability (CSEP)
(Schorlemmer et al., 2007, 2018). Within this collaboration,
many forecast experiments in various regions of the world
have been implemented and evaluated (e.g. Schorlemmer
and Gerstenberger, 2007; Schorlemmer et al., 2010; Zechar
et al., 2010; Werner et al., 2011; Zechar et al., 2013; Strader
et al., 2018; Savran et al., 2020; Bayona et al., 2021; Bayliss
et al., 2022; Bayona et al., 2022, etc). This group has also
developed community-vetted testing protocols and metrics.
In addition to the CSEP testing metrics, the receiver operat-
ing characteristic (ROC) curve (Hanley and McNeil, 1982)
is widely applied to assess the performance of aftershock
forecasts based on primary physics-based models, including
the Coulomb forecast (1CFS) model, neural network pre-
dictions, and the distance–slip model (Meade et al., 2017;
DeVries et al., 2018; Mignan and Broccardo, 2019; Sharma
et al., 2020; Asayesh et al., 2022). The ROC is based on a bi-
nary classification of test events referred to as observed earth-
quakes. The binary classification evaluation yields a confu-
sion matrix (also called a contingency table) with four val-
ues, i.e. true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). If the model predicts earth-
quakes, TP represents the case where at least one earthquake
occurred, and FP represents the case where no earthquake
occurred. Similarly, in the cases where the model predicts
no earthquake, TN means no earthquake occurred, and FN
means at least one earthquake was observed. The binary pre-
dictions are obtained from the aftershock forecast model us-
ing a certain decision threshold, and values of the confusion
matrix are acquired. The ROC curve is generated by count-
ing the number of TP, FP, FN, and TN, then calculating and
plotting the true positive rate (TPR)

TPR=
TP

TP+FN
, (1)

against the false positive rate (FPR)

FPR=
FP

FP+TN
, (2)

based on different detection thresholds. The area under the
ROC curve (AUC) is then used to evaluate and compare the
predictions. The AUC value ranges from 0 to 1, with 0.5 (di-

agonal ROC) corresponding to random uninformative fore-
casts. Thus a model with AUC> 0.5 is better than a random
classifier, while a model with AUC< 0.5 shows the opposite
behaviour.

Recently, the ability of 1CFS models to forecast after-
shock locations has been questioned by using the ROC curve
in comparison to various scalar metrics, distance–slip and
deep neural network (DNN) models (Meade et al., 2017;
DeVries et al., 2018; Mignan and Broccardo, 2019; Sharma
et al., 2020; Asayesh et al., 2022). These studies showed that
several alternative scalar stress metrics, which do not need
any specification of the receiver mechanism, and a simple
distance–slip model as well as DNN are better predictors of
aftershock locations than 1CFS for fixed receiver orienta-
tion. One possible reason for the low performance of 1CFS
might be that the ROC curve shows misleading performance
for negatively imbalanced datasets, i.e. samples with more
negative observations (Saito and Rehmsmeier, 2015; Jeni
et al., 2013; Abraham et al., 2013).

Parsons (2020) set up an experiment to understand the use-
fulness of ROC by testing a 1CFS model with areas of both
positive and negative stress changes. He compared it with
an uninformative forecast model that only assumes positive
stress changes everywhere, hereby referred to as the refer-
ence (R) model. He concluded that ROC favours the forecast
models that provide all positive forecasts instead of the mod-
els that try to forecast both positive and negative earthquake
regions. Here, we perform a similar experiment to analyse
potential solutions for improving testability.

In this paper, we provide two methods that can be used
together to improve differentiation among competing mod-
els to the highest standards. First, instead of ROC, we pro-
pose to use a curve based on the Matthews correlation co-
efficient (MCC) (Matthews, 1975) and F1 score (Sokolova
et al., 2006) referred to as the MCC-F1 curve for aftershock
testing. MCC is considered a balanced measure not affected
by the imbalanced nature of the data because it incorporates
all four entries of the confusion matrix in contrast to TPR and
FPR, thereby improving the capability of the MCC-F1 curve.
Secondly, we propose to change the representation of the af-
tershock forecast models. The single-resolution grids are not
appropriate to capture the inhomogeneous spatial distribution
of the observed earthquake, thereby increasing the disparity
in the number of spatial cells to be evaluated and the num-
ber of observed earthquakes. The huge disparity in the data is
known to cause the test to be less meaningful (Button et al.,
2013; Bezeau and Graves, 2001; Khawaja et al., 2023a). We
propose using data-driven multi-resolution grids to evaluate
the forecast models.

We use the same synthetic experiment that showed the in-
ability of AUC before to demonstrate that the MCC-F1 curve
improves the discrimination between the 1CFS and R mod-
els. Furthermore, we show for the same case that a radial
grid (or circular grid), as a simple case of a multi-resolution
grid, improves the discriminating capability of both ROC and
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MCC-F1 curves. Using this experimental setup, we also ex-
plore the limits of testability for ROC and MCC-F1 in terms
of the minimum quantity of the observed data required to
evaluate the models, which can be used as a guideline to eval-
uate forecast models. Finally, having a quantitative guideline
available for better testing, we conducted case studies to eval-
uate the 1CFS and R forecasts for the 1999 Chi-Chi (Ma
et al., 2000) and 1992 Landers (Wald and Heaton, 1994) af-
tershock sequences. For that purpose, we use a recently pro-
posed hierarchical tiling strategy called Quadtree to generate
data-driven grids for earthquake forecast modelling and test-
ing (Asim et al., 2022).

Section 2 discusses in detail the MCC-F1 curve and multi-
resolution grids used in the synthetic experiment presented in
Sect. 3 and the real applications for the Chi-Chi and Landers
earthquakes discussed in Sect. 4.

2 Alternate evaluation approach

2.1 Matthews correlation coefficient and F1 curve
(MCC-F1)

The binary classification evaluation leads to a confusion ma-
trix with four entries. Several metrics are available to rep-
resent the confusion matrix as a single value to highlight
the performance, with AUC related to the ROC curve being
one of the most used metrics. However, performance evalu-
ation is challenging for imbalanced datasets where the num-
ber of positive and negative labels differ significantly (Davis
et al., 2005; Davis and Goadrich, 2006; Jeni et al., 2013;
Saito and Rehmsmeier, 2015; Cao et al., 2020). Aftershock
forecast evaluation is one of those cases where we usually
have much fewer spatial cells occupied with earthquakes than
empty cells. Cao et al. (2020) discussed the flaws of numer-
ous performance evaluation metrics and proposed a curve
based on MCC (Matthews, 1975) and F1 (Sokolova et al.,
2006), which was recently used by Asayesh et al. (2022)
for evaluating aftershock forecasting for the 2017–2019 Ker-
manshah (Iran) sequence.
F1 is the harmonic mean of precision, TP/(TP+FP), and

recall (also referred to as TPR, Eq. 1) and is expressed as

F1 =
2TP

2TP+FP+FN
, (3)

ranging between 0 and 1 from worst to best, respectively. F1
does not consider TN and provides a high score with increas-
ing TP.

MCC considers all four entries of the confusion matrix si-
multaneously, computed as

MCC=
(TP ·TN)− (FP ·FN)

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

, (4)

and provides an optimal evaluation measure that remains un-
affected by the imbalanced nature of the dataset. It varies be-
tween−1 and 1, where−1 represents the opposite behaviour

of the classification model, while 0 shows random behaviour
and 1 refers to perfect classification. It is commonly used in
many other research fields as a benchmark evaluation mea-
sure (e.g. Dönnes and Elofsson, 2002; Gomi et al., 2004; Pe-
tersen et al., 2011; Yang et al., 2013, etc).

MCC and F1 are usually reported for a single decision
threshold. To obtain a curve, MCC and F1 are computed for
all possible decision thresholds and then combined as MCC-
F1 curve after re-scaling MCC to the range between 0 and 1.
MCC-F1 curve can visualize the performance of different
classifiers across the whole range of decision thresholds. The
re-scaled MCC between 0 and 1 means that 0.5 corresponds
to random classification (Cao et al., 2020).

Similar to AUC of ROC curve, the performance of the
MCC-F1 curve is quantified by the MCC-F1 metric. Since
MCC simultaneously takes into account all four entries of
the confusion matrix, the value of MCC does not monotoni-
cally increase across all the decision thresholds, unlike TPR
and FPR. Instead, it will decrease for the thresholds that do
not provide optimal performance. Thus, we use the best clas-
sification capability of a forecast model to quantify the per-
formance of the MCC-F1 curve. The point of the best perfor-
mance for (MCC, F1) is (1, 1), and the point of the worst per-
formance is (0, 0). The best performance of a forecast model
will be the nearest point to (1, 1). The Euclidean distance of
all the points of the MCC-F1 curve from (1, 1) is calculated
as

Di =

√
(Xi − 1)2+ (Yi − 1)2, (5)

to compute the MCC-F1 metric using

MCC−F1 metric= 1−
min{D}
√

2
. (6)

The value of MCC-F1 metric also varies between 0 and 1,
with 1 referring to the best performance. Additionally, the
MCC-F1 curve can provide information about the best de-
cision threshold, which can be helpful for using aftershock
models for operational purposes.

2.2 Multi-resolution grids for testing aftershock
forecasts

The reliability of the testing models for any type of dataset
is primarily associated with the sample size (Button et al.,
2013; Bezeau and Graves, 2001). Recently, Khawaja et al.
(2023a) conducted a statistical power analysis of the spatial
test for evaluating earthquake forecast models. Keeping in
view the disparity in the number of spatial cells in gridded
forecasts and the number of observed earthquakes, they sug-
gested using data-driven multi-resolution grids to enhance
the power of testing.

The distribution of aftershocks is inhomogeneous and
clustered in space, leading to numerous earthquakes in one
cell in high seismicity regions, while there are many empty
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cells in areas of low activity. In the binary classification ap-
proach, it does not matter how many earthquakes are in a
single cell. It counts as one whether one or multiple earth-
quakes occurred when evaluating the forecast model. Usu-
ally, aftershock evaluation is an imbalanced problem be-
cause high-resolution gridding is applied everywhere, with
fewer cells containing observed earthquakes. Therefore, we
explored non-uniform discretizations (hereafter referred to as
multi-resolution grids) to evaluate the forecast models.

Multi-resolution grids can reduce the imbalance between
cells with earthquakes and empty cells by densifying the
grid in active areas while coarsening it in more quiet re-
gions. Asim et al. (2022) proposed using data-driven multi-
resolution grids for modelling and testing forecast models,
where the resolution is determined by the availability of seis-
micity. However, in our case, the observed data are not sup-
posed to be known when a model is created. Alternatively,
the multi-resolution grids can be created based on any pre-
viously established information that can potentially relate to
the spatial distribution of aftershocks, e.g. (i) the area with
increased Coulomb stress (Freed, 2005; Steacy et al., 2005),
(ii) the value of the induced static shear stress (DeVries et al.,
2018; Meade et al., 2017), or (iii) the distance from the
mainshock rupture (Mignan and Broccardo, 2020; Felzer and
Brodsky, 2006).

In this study, we used distance from a mainshock to de-
termine the resolution of the grid. The simplest option to cre-
ate a 2D multi-resolution grid, replacing the single-resolution
grid in the synthetic experiment discussed in Sect. 3, is to
create a radial grid (Page and van der Elst, 2022). For this
purpose, we only need discretizations in radius δr and angle
δα to determine the size of each cell. An example is shown
in Fig. S1 in the Supplement.

For the real cases with an extended and curved mainshock
rupture, we used the Quadtree approach to create spatial grids
for representing the earthquake forecast models. Asim et al.
(2022) discussed some alternative approaches to acquire spa-
tial grids, finally finding Quadtree to be the most suitable
approach to generate spatial grids for generating and test-
ing earthquake forecast models. Quadtree is a hierarchical
tiling strategy in which each tile is recursively divided into
four subtitles. The recursive division continues until a de-
sired grid of the spatial region is achieved. Each tile is rep-
resented by a unique identifier called quadkey. The first tile
represents the whole globe, referred to as the root tile. At
the first level, it is divided into four tiles, with dividing lines
passing through the Equator and prime meridian, represented
by quadkeys of 0, 1, 2, and 3, respectively. At the second
level, each of the four tiles is further subdivided into four
tiles. The quadkey of new tiles is obtained by appending the
relative quadkey of each tile with the quadkey of the parent
tile. The number of times a tile is divided is called the zoom
level (L). A single-resolution grid is obtained if all the tiles
have the same zoom level. However, to achieve a data-driven
multi-resolution grid, the tiling process can be subject to cer-

tain criteria, such as the number of earthquakes, the value
of Coulomb stress, and/or the distance from the mainshock
to achieve a multi-resolution grid. A reference to the codes
for generating Quadtree spatial grids is provided in the data
availability section.

3 Synthetic tests

We replicated a similar experiment as Parsons (2020) to anal-
yse potential test improvements using MCC-F1 and multi-
resolution grids. For this purpose, we first computed the
1CFS and R models. We used a vertical right lateral strike-
slip rupture with a 10 km-by-10 km dimension in the NS di-
rection to create the 1CFS model. Based on “Ellsworth B”
empirical magnitude–area relation (WGCEP, 2003), this area
relates to an earthquake with a moment magnitude of 6.2
(WGCEP, 2003). We used the PSGRN+PSCMP tool of
Wang et al. (2006) to determine the 1CFS by considering
uniform slip on the fault plane obtained from the moment–
magnitude relation provided by Hanks and Kanamori (1979).
We resolved the stress tensors on a regular grid with 1 km
spacing in the horizontal directions covering the region up to
100 km from the mainshock epicentre. For our analysis, we
used a depth of 7.5 km at each grid point to calculate 1CFS,
assuming that aftershock mechanisms equal the mainshock
mechanism. In contrast, the R model assumes an isotropic
density decay in all directions as a function of distance (d)
from the fault plane of the mainshock according to c · d−2,
with c being a constant. This decay mirrors the decay of the
static stress amplitudes. The earthquake rate (λ) based on
a forecast model is given by λ= λ0 ·Model ·A ·H(Model)
(Hainzl et al., 2010). Here, λ0 is a normalization constant, A
is the cell area, andH(Model) is the Heaviside function with
H(Model)= 1 for Model> 0 and 0 else. The correspond-
ing λ for 1CFS and R models are shown in Fig. 1a and b,
respectively.

We used the 1CFS clock advance model to simulate syn-
thetic aftershock distributions in response to positive and
negative stress changes. We generated catalogs with up to
N = 500 synthetic aftershocks. In the first step, all generated
aftershocks directly stem from the 1CFS model, allowing
earthquakes only to occur only in the regions with a positive
stress change. The AUC of the ROC curves is then computed
for both 1CFS and R models. However, such a perfect com-
bination of forecast and observation is not realistic because
multiple factors can cause earthquakes in the negative stress
regions, such as secondary stress changes due to afterslip or
aftershocks (Cattania et al., 2014), the oversimplification of
mainshock slip geometry (Hainzl et al., 2009) and dynamic
triggering (Hardebeck and Harris, 2022), etc. Thus, we con-
sidered this mismatch by sampling one, two, and more events
out of total aftershocks in the negative stress regions (referred
to as shadow earthquakes – SEs) and repeated the computa-
tion of AUC for both forecast models.
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Figure 1. The forecast is created for the synthetic experiment to assess the usefulness of the receiver operating characteristic (ROC) curve in
differentiating the two forecast models. (a) Coulomb forecast model, calculated for a spatial grid of 10× 10 km at a depth of 7.5 km for the
analysis. (b) A reference model with probability decaying as a function of distance (c · d−2) from the fault plane.

3.1 Test using ROC

1CFS shows a slightly better AUC value than the R model
in the case of perfect data. However, the AUC value for the
1CFS model starts decreasing with adding earthquakes into
the shadow regions due to increasing FNs, which eventually
reduces TPR, leading to decreased AUC. ROC curves gen-
erated for single synthetic catalogs are shown in Fig. 2a, vi-
sualizing that there is no clear distinction between the per-
formance of the 1CFS (red curves) and R (blue curve) mod-
els if there is a slight imperfection in the 1CFS forecast in-
duced by SEs. To quantify the outcome of ROC, we repeated
the same experiment 100 times for different synthetic cata-
logs and present the resulting distribution of AUC values in
Fig. 2b. Ideally, there should be a clear separation between
the AUC values of the (almost) true 1CFS model and the
rather uninformative R model. However, Fig. 2b shows that
with three SEs in the observed catalogue, the distributions
start to overlap and keep increasing with increasing SEs,
showing that an uninformative forecast model can outper-
form a1CFS model unless the latter perfectly represents the
data. This result is in accordance with the findings of Par-
sons (2020), highlighting the inability of the ROC to per-
form meaningful testing in this synthetic scenario. Further-
more, the ROC curve tends to provide an inflated overview
of the performance for negatively imbalanced datasets be-
cause changes in the number of FP have little effect on FPR
(Eq. 2).

3.2 Test using MCC-F1

We repeated the analysis with the MCC-F1 curve for the
same experiment. Figure 2c visualizes the performance of
the MCC-F1 curve for the 1CFS model (red) against the R
model (blue), showing clear differentiation between the two
forecasts. The performance of the 1CFS model with intro-
duced imperfections is also shown (dim red) for SEs 1 to 7.
Visually, the MCC-F1 curves are more distinct than the ROC
curves. We repeated the experiment 100 times and quantified
the performance of MCC-F1 by showing the distribution of
the MCC-F1 metric in Fig. 2d. The figure shows that MCC-
F1 improved the testing capability in differentiating between
the 1CFS model and R forecast.

3.3 Test using a multi-resolution grid

We repeated the experiment using a radial multi-resolution
grid described in Sect. 2.2. In particular, we created a ra-
dial grid with the same number of spatial cells as the single-
resolution grid, aggregated the1CFS and R forecasts on this
grid, and repeated the synthetic experiment. Khawaja et al.
(2023a) showed that a forecast can be aggregated on another
grid without affecting its consistency. A sample radial grid is
shown in Fig. S1. The corresponding results for both mod-
els using ROC and MCC-F1 curves are visualized in Fig. 3a
and c, respectively. Using a multi-resolution grid, both ROC
and MCC-F1 can provide distinctive curves for the 1CFS
and R forecasts with up to seven SEs. We repeated the fore-
cast evaluation 100 times with different synthetic catalogs
and show the distribution of the resulting AUC and MCC-F1
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Figure 2. ROC and MCC-F1 curves calculated for the Coulomb model (1CFS) and the less informative reference model (R) against the
same synthetic aftershock simulations. The solid red curves show the 1CFS results for aftershocks in perfect agreement with the Coulomb
model, while the dotted lines present cases with up to seven earthquakes, so-called shadow earthquakes (SEs), falling into cells with negative
1CFS. The blue curve refers to the R model, where the aftershock probability is a simple function of the distance (d) from the mainshock
hypocentre (si = cd

−2
i

), where c is a constant. (a) Examples of ROC curves for a single distribution of aftershocks with up to seven SEs.
(b) Distribution of AUC of the ROC values for 100 different aftershock simulations for each SE number. Note that the blue curve corresponds
to the inverse cumulative distribution function of AUC for the R model, while the red curves refer to the cumulative distribution function of
AUC for the Coulomb model. In this way, the separation between the corresponding distributions of the two models can be easily visualized.
(c, d) Corresponding results for the MCC versus F1 curves and the MCC-F1 distributions.

values in Fig. 3b and d, respectively. ROC and MCC-F1 can
clearly differentiate between the 1CFS and uninformative R
forecasts when evaluated using a multi-resolution grid. The
separation of the AUC and MCC-F1 distributions is best for
synthetics perfectly in line with 1CFS. The separation is re-
duced by introducing imperfections in the 1CFS model in
the form of SEs. However, the range of the AUC and MCC-
F1 values remains distinct for both forecasts up to seven SEs,
indicating that the multi-resolution grid has helped to im-
prove the testability of the aftershock forecast models. We
can also see that using MCC-F1 in combination with a multi-
resolution grid provides the most distinctive test results.

3.4 Recommendation for testing aftershock models

The usefulness of a testing metric has been discussed in the
context of the quantity of the observed data in many stud-
ies for different fields of research (e.g. Bezeau and Graves,
2001; Kanyongo et al., 2007; Liew et al., 2009; Button et al.,
2013; Mak et al., 2014; Sham and Purcell, 2014, etc). Par-
ticularly in the context of earthquake forecast evaluation,
Khawaja et al. (2023a) proposed that reducing disparity in
the number of spatial cells and the number of observations
increases the statistical power of the tests. Keeping this in
view, we used our experimental setup to provide a guideline
about the minimum quantity of data required for meaning-
ful evaluation of forecasts in terms of binary occurrences
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Figure 3. Same as Fig. 2 but for a radial test grid.

and non-occurrences. We used the 1CFS model to simu-
late catalogs with different earthquake numbers but a fixed
number of cells containing earthquakes (also referred to as
active cells). In particular, we controlled the number of spa-
tial cells that receive earthquakes by simulating one after-
shock after the other on the same square grid with a total
of 1600 cells until the desired number of cells receive earth-
quakes. This allows us to control the disparity in the testing.
We repeated the experiment 100 times for every case, and re-
sults are recorded as a distribution of AUC value and MCC-
F1 metric. Since 1CFS is a seismicity-generating model, it
is a perfect model and should outperform the R model. To
quantify the separation between the 1CFS and the R distri-
butions, we calculated the difference between the 1 % quan-
tile of the 1CFS values and the 99 % quantile of the R val-
ues, i.e.1=1CFS1 %

−R99 %. Both distributions are signif-
icantly separated if 1> 0. We repeated this calculation for
different numbers of active cells. Figure 4 shows the result
as a function of the percentage of active cells, i.e. cells with
at least one earthquake. The figure shows that if we compare
a perfect forecast model with an uninformative model, we
should have at least 3 % of active cells for differentiating the

two forecast models in terms of ROC and MCC-F1. The im-
balanced data with a class ratio of more than 97 : 3 in favour
of the negative class does not ensure accurate testing, even if
one model is perfect and the other is uninformative.

In reality, there is no perfect forecast model available. To
address this, we repeated the experiment with added imper-
fections by randomly adding earthquakes in 10 cells with
negative stress changes. In this case, our analysis shows that
one needs approximately 5 % and 8 % active cells to differ-
entiate between the two models using MCC-F1 and ROC,
respectively. These values represent a minimum test require-
ment that should be met for meaningful testing of earthquake
forecast models for observed data using the discussed binary
testing metrics. Because we cannot control the number of ob-
served earthquakes, we can only ensure this requirement by
adapting multi-resolution grids accordingly.

4 Real case studies

After highlighting the importance of using multi-resolution
grids for testing the aftershock models using a simple radial
grid based on a synthetic experiment, we evaluated the after-
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Figure 4. Separation of the distributions of the 1CFS and R model
as a function of the number of cells containing observed earth-
quakes, measured by the difference between the 1 % quantile of
1CFS and the 99 % quantile of the R model. Both distributions
overlap for negative values (below the horizontal dashed line). Thus,
the values need to be above this line for meaningful testing.

shock models for real aftershocks of the 1999 Chi-Chi and
1992 Landers earthquakes. In this case, we used the Quadtree
approach to create spatial grids for representing the earth-
quake forecast models.

We generated three single-resolution grids and one multi-
resolution grid around the mainshock region within a dis-
tance of 100 km from the fault. The three single-resolution
grids are zoom level 14 (L14), zoom level 13 (L13), and
zoom level 12 (L12). Grid L12 contains the least number
of bigger cells, L13 has 4 times more cells of half dimen-
sion, and L14 has 16 times more cells with quartered dimen-
sions. However, we trimmed those cells along the boundary
that falls outside of 100 km. To consider the testing in a 3D-
space, we considered depth bins of 2, 4, and 8 km for L14,
L13, and L12, respectively. For creating the multi-resolution
grid, we keep the resolution to L14 within 10 km of the fault
zone, L13 from the radius of 10 to 60 km, and L14 outside
60 km, along with their respective depth bins.

We used variable slip models for 1999 Chi-Chi (Ma et al.,
2000), and 1992 Landers (Wald and Heaton, 1994) earth-
quakes provided in the SRCMOD database (http://equake-rc.
info/srcmod/, last access: December 2022) maintained by
Mai and Thingbaijam (2014). We added the 1992 Big Bear
earthquake slip (Jones and Hough, 1995) to the Landers slip
model. For each slip model, we calculated the static stress
tensor on the grid points of our target region (up to 100 km
from the mainshock rupture plane). For this purpose, we
again used the PSGRN+PSCMP tool (Wang et al., 2006) to
calculate the coseismic stress changes in a layered half space
based on the CRUST 2.0 velocity model (Bassin, 2000).

The aftershock models for both earthquakes are aggre-
gated on the four 3D grids. We calculated the 1CFS

model for receiver mechanisms identical to the mainshock
mechanism, namely strike= 5◦ (330◦), dip= 30◦ (89◦), and
rake= 55◦ (180◦) for Chi-Chi (Landers). To visualize, the
forecast for 3D cells around 7.5 km is displayed after nor-
malizing by the cell volume in Figs. 5 and 6 for Chi-Chi and
Landers, respectively. The non-normalized1CFS models for
Chi-Chi and Landers are provided in Figs. S2 and S3, respec-
tively.

In both cases, we selected earthquakes that occurred
within the 1 year after the mainshock with horizontal dis-
tances of less than 100 km to the mainshock fault. For the
Chi-Chi earthquake, we used the International Seismological
Centre (ISC) catalogue. The aftershock data for Landers are
acquired from the Southern California Earthquake Data Cen-
ter (SCEDC) (Hauksson et al., 2012). To account for the gen-
eral catalogue incompleteness, we used a magnitude cutoff of
Mc = 2.0 for Landers (Hutton et al., 2010) and Mc = 3.0 for
Chi-Chi. The number of aftershocks that participated in the
evaluation for the gridded forecasts is 2944 for Chi-Chi with
a depth range of up to 48 km, while it is 13 907 for Landers
with a depth range of up to 32 km.

For Chi-Chi, the percentage of active cells (positive class)
is 0.75 %, 3.8 %, 12 %, and 5 % for grids L12, L13, L14,
and multi-resolution, respectively. Similarly, for Landers, we
have 1.2 %, 4 %, 12.8 %, and 10.3 % cells with earthquakes
for grids L12, L13, L14, and multi-resolution, respectively.
We can see that uniformly reducing the resolution can re-
duce the imbalanced nature of data. For the L12 grid, the
minimum percentage of active cells is achieved, according to
our analysis in Sect. 3.4. However, with uniformly decreas-
ing the resolution, we may lose important information near
the fault plane. Thus, a multi-resolution grid, also fulfilling
the requirement, can be considered a better trade-off between
the details provided by the model and less imbalanced data.

As can be seen in Fig. 5, numerous aftershocks of the
Chi-Chi earthquake occurred in the negative stress regions
of the CF model; therefore, 1CFS is not supposed to per-
form well. Sharma et al. (2020) reported the AUC= 0.476
for the CF model using 1-year aftershock data evaluated for a
5 km× 5 km gridded region around the Chi-Chi mainshock.
Table 1 provides our results of the performance in terms of
ROC and MCC-F1 for Chi-Chi aftershock forecasts using the
four different grids. The AUC values are in a similar range
for the different Quadtree grids, i.e. AUC for L12, L13, L14,
and multi-resolution is 0.452, 0.415, 0.394, and 0.437, re-
spectively. The AUC for the R model is 0.705, 0.765, 0.794,
and 0.768 using the L12, L13, L14, and multi-resolution
grids. It shows that the relative ranking of the forecast models
remains the same for different grids, which is not surprising
given the fact that many observed earthquakes occurred in
the negative stress regions of the Coulomb model. The MCC-
F1 metric for the L12, L13, L14, and multi-resolution grids
is 0.367, 0.303, 0.253, and 0.261, respectively. The MCC-
F1 metric for the reference model is 0.486, 0.373, 0.288,
and 0.366 for the L12, L13, L14, and multi-resolution grids.
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Figure 5. Colour-coded Coulomb stress changes (in units of MPa) for the Chi-Chi earthquake along the master fault aggregated on 3D grids
of (a) L12, (b) L13, (c) L14, and (d) multi-resolution grid.

The relative ranking of the forecast models also remains the
same based on the MCC-F1 metric.

Figure 6a–d show that aftershocks also occurred in the
negative stress regions of 1CFS model in the Landers case.
The performance in terms of ROC and MCC-F1 for Lan-

ders aftershock forecasts is computed and provided in Ta-
ble 1. The1CFS forecast model shows AUC values of 0.502,
0.508, 0.549, and 0.491 for grids L12, L13, L14, and
multi-resolution. While the MCC-F1 metric yielded values
of 0.390, 0.349, 0.311, and 0.371 for the L12, L13, L14, and
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Figure 6. Coulomb stress changes (MPa) for the Landers earthquake along the master fault aggregated on 3D grids of (a) L12, (b) L13,
(c) L14, and (d) multi-resolution grid.

multi-resolution grids. The R model outperforms the 1CFS
model again.

One reason for the failure of the 1CFS model could be
our simplistic calculations of1CFS, assuming the same rup-
ture mechanism for the mainshock and all aftershocks. How-
ever, variable aftershock mechanisms are usually observed.
One way of dealing with this is to calculate the Coulomb
stress on optimally oriented planes (OOPs), which maximize
the total stress consisting of the background stress field and

the mainshock-induced stresses. Thus, we have repeated the
analysis also for OOPs, assuming a background stress field
with its orientation and strength. Here, we set the orientation
of the principal stress components so that the mainshock was
optimally oriented to the background stress field. Further-
more, we use a differential stress of 3 MPa (σ1 = 1, σ2 = 0,
and σ3 =−2 MPa), which agrees with the average stress drop
of interplate earthquakes (Allmann and Shearer, 2009). The
corresponding results are provided in Table 1 (in brackets),
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Table 1. Evaluation of aftershock forecast models for the Chi-Chi and Landers earthquakes based on AUC values and MCC-F1 for four grid
resolutions. The main 1CFS result refers to stress changes calculated for the mainshock mechanisms, while the corresponding results for
optimally oriented planes (OOPs) are provided in brackets.

Grids Chi-Chi (AUC) Chi-Chi (MCC-F1) Landers (AUC) Landers (MCC-F1)

1CFS R 1CFS R 1CFS R 1CFS R

L12 0.452 (0.670) 0.705 0.367 (0.496) 0.486 0.502 (0.670) 0.805 0.390 (0.481) 0.53
L13 0.415 (0.695) 0.765 0.303 (0.427) 0.373 0.508 (0.738) 0.809 0.349 (0.445) 0.385
L14 0.394 (0.733) 0.794 0.253 (0.314) 0.288 0.549 (0.810) 0.820 0.311 (0.443) 0.310
Multi-res. 0.437 (0.649) 0.786 0.261 (0.326) 0.366 0.491 (0.704) 0.809 0.371 (0.484) 0.489

showing similar outcomes, indicating that the 1CFS model
is not better than the R model for the Chi-Chi, but it is com-
parable with the R model for the Landers aftershock forecast.

Thus, changing grids does not particularly favour the
1CFS forecast model, and we are confident that the fore-
cast evaluation, in these cases, is not particularly affected by
the imbalanced nature of the dataset as feared in most eval-
uations based on ROC for highly imbalanced datasets. For
improvements, the basic 1CFS forecast model needs to be
based on more sophisticated approaches, such as consider-
ing, for example, secondary triggering, fault structure, seis-
mic velocity, and heat flow. (Cattania et al., 2014; Asayesh
et al., 2022, 2020a; Hardebeck, 2022). In the future, we in-
tend to conduct a thorough re-evaluation of models based on
different stress scalars (Sharma et al., 2020), after improving
the imbalanced nature of the test data by harnessing the con-
venience of multi-resolution grids following the guidelines
of this study.

5 Conclusions

Coulomb stress changes (1CFS) are computed for a gridded
region by taking into account the complexities of a fault in
the aftermath of a mainshock to determine the regions with
increased or decreased seismicity. The aftershock forecasts
are evaluated using the ROC curve, and many studies show
that 1CFS is under performing. However, it is also known
that ROC is not effective for evaluating the datasets where
the negative class is in higher proportion compared to the
other. In this context, we conducted a synthetic experiment to
understand the usefulness of the ROC and find its weakness
in differentiating between a perfect forecast and an uninfor-
mative forecast. We proposed using the Matthews correlation
coefficient (MCC) and F1 curve instead of ROC to evaluate
the forecast models and found it to be better in distinguish-
ing between the two models using the same experiment. We
further explored that the quantity of observed earthquakes
affects the capability of the test. Our analysis shows that at
least 5 % and 8 % of cells need to have recorded earthquakes
to meaningfully evaluate the forecast models using MCC-
F1 and ROC, respectively. The lower threshold for MCC-F1

again proves the superiority of MCC-F1 over ROC. Since we
cannot control the observed data, we should adjust the spa-
tial grid representing the forecast models according to the
data to reduce the disparity in the data. We also demonstrate
the use of the Quadtree approach to generate data-driven
multi-resolution grids to evaluate the aftershock forecasts for
earthquakes of Chi-Chi and Landers following the suggested
guidelines. The outcome of evaluating these aftershock fore-
casts suggests that changing of the spatial grid for testing
does not favour the outcomes of the test in the favour of any
model; rather, reducing disparity makes the testing outcome
more reliable.

Code availability. The Quadtree grids can be created using a soft-
ware package called pyCSEP (Savran et al., 2022), and the codes
to generate radial grid and to reproduce the results of this paper
are available on https://doi.org/10.5281/zenodo.8191948 (Khawaja
et al., 2023b).
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