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Abstract. Statistical analyses of wildfire growth are rarely
undertaken, particularly in South America. In this study, we
describe a simple and intuitive difference equation model of
wildfire growth that uses a spread parameter to control the
radial speed of the modeled fire and an extinguish param-
eter to control the rate at which the burning perimeter be-
comes inactive. Using data from the GlobFire project, we es-
timate these two parameters for 1003 large, multi-day fires
in Peru between 2001 and 2020. For four fire-prone ecore-
gions within Peru, a set of 24 generalized linear models are
fit for each parameter that use fire danger indexes and land
cover covariates. Akaike weights are used to identify the
best-approximating model and quantify model uncertainty.
We find that, in most cases, increased spread rates and ex-
tinguish rates are positively associated with fire danger in-
dexes. When fire danger indexes are included in the models,
the spread component is usually the best choice, but we also
find instances when the fire weather index and burning in-
dex are selected. We also find that grassland cover is pos-
itively associated with spread rates and extinguish rates in
tropical forests, and that anthropogenic cover is negatively
associated with spread rates in xeric ecoregions. We explore
potential applications of this model to wildfire risk assess-
ment and burned area forecasting.

1 Introduction

Although researchers frequently characterize fire in terms of
size (Doerr and Santín, 2016), there are a number of other
parameters that describe unique dimensions of fire behavior.
Spread rates, for instance, are an important parameter for un-
derstanding fire entrapment and burnover risks. When spread
rates are low, nearby individuals have more time to detect
and escape an advancing fire front than when spread rates
are high (Page et al., 2019). Indeed, unexpected and explo-
sive fire growth has been implicated in a large number of fatal
wildfires (Viegas and Simeoni, 2011) and rarely prescribed
fire (Twidwell et al., 2015) accidents. For this reason, nu-
merous models (Sullivan, 2009b, a), policies (Butler, 2014),
technologies (De Vivo et al., 2021), and tools (Jolly et al.,
2019) have been developed to mitigate the risk of high-spread
events to firefighters and the general public. Fire spread rates
are also an important parameter for understanding firefight-
ing effectiveness (Rapp et al., 2021; Finney et al., 2009), and
periods of low spread are often good opportunities for safe
and productive fire suppression. Like fire spread, descriptions
of how and when the length of the burning perimeters reduce
over time can be valuable to decision makers. Much of the
research deals with this parameter indirectly by focusing on
extinguishment in terms of duration (Andela et al., 2019) or
fireline production rates (Fried and Fried, 1996). Although
fire suppression is an important and frequently considered
factor, the length of the burning perimeter may be reduced by
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factors that are unrelated. For instance, the burning perime-
ter may be reduced when a portion of the fire front spreads
into a preexisting fuel break such as previously burned ar-
eas, waterbodies, roads, and inflammable vegetation (Reed
and McKelvey, 2002). Similarly, local weather may differen-
tially control fire spread and extinguishment, leading to sce-
narios where one portion of a fire may be spreading at the
same time as another portion is dying out (Price et al., 2014;
Reed and McKelvey, 2002). Understanding of the dynamics
and relevant factors mediating fire extinguishment can im-
prove fire-related decisions through multiple means such as
reducing redundancies in fireline construction strategies (Wei
et al., 2021) and improving cost-effectiveness with strategic
firefighting positioning (Houtman et al., 2013).

At least part of the reason that fire parameters such as
spread and extinguish rates are overlooked by researchers is
that the relevant data are uncommon. Daily fire growth data
are rare, usually coming from case studies and administrative
records (Taylor et al., 2013), and although fire perimeter data
are occasionally available (Zhong et al., 2016), identifying
which portions of the perimeter are active and inactive can be
a difficult task (Anderson et al., 2009). Where these data are
available, they are subject to fairly high levels of uncertainty
and often contain gaps and errors (Podschwit et al., 2018;
Kolden and Weisberg, 2007). These problems are particu-
larly noticeable in locations that lack the historical records
and technological resources that are more commonly found
in the United States, Canada, and Australia. In South Amer-
ica for example, data regarding fire spread rates are available
from only a few experimental studies (Ray et al., 2005; Bu-
facchi et al., 2017), which may not be representative of the
real-world conditions (Melcher et al., 2016) nor reliably be
extrapolated to other locations. In most cases, information
about real-world fire spread and extinguishment must be de-
rived from satellite data (Andela et al., 2019).

In spite of these problems with data quantity and quality,
we can use available research to develop some intuition re-
garding which environmental factors are likely to be relevant
to Peruvian fire spread and extinguishment. Firefighter en-
trapments in the United States have been typically associated
with rapid fire spread (Page et al., 2019), and this fire param-
eter is both directly (Rapp et al., 2021) and indirectly (Jolly
et al., 2019) associated with low fuel moisture and anoma-
lously high wind speed. Consequently, a number of indexes
have been proposed to estimate the risk of rapidly spread-
ing fire based on the relevant atmospheric conditions. The
energy release component (ERC) and burning index (BI) are
commonly used in the United States to inform firefighting de-
cisions (Jolly et al., 2015; Cullen et al., 2020) and are calcu-
lated from a complex equation of temperature, precipitation,
wind, humidity, cloud cover, fuel, topographic data, and ge-
ographic data (Deeming et al., 1977; Bradshaw et al., 1984).
The spread component (SC) is derived from the ERC and
BI, and provides a measure of idealized fire spread in certain
fuel conditions (Bradshaw et al., 1984). The fire weather in-

dex (FWI) was developed in the 1970s and is the preferred
choice of fire danger index (FDI) in Canada (Van Wagner,
1974; Bradshaw et al., 1984) and is structured somewhat sim-
ilarly to the BI (Fujioka et al., 2008). The Keetch–Byram
drought index (KBDI) measures the water balance of the up-
per soil layers (Littell et al., 2016; Keetch and Byram, 1968)
and was developed to predict forest fire activity in the south-
eastern United States. Although developed for other regions,
these FDIs can sometimes be informative of fire activity in
other locations (Podschwit et al., 2022). Like FDIs, we can
also develop some intuition about the effects of land cover
on fire behavior using information from other locations. For
instance, it is well known that vegetation can influence fire
growth through sheltering of the flames from wind (Mass-
man et al., 2017), and we might predict that forested land
cover would have slower fire spread than non-forested land
cover. It has also been shown that human presence, and by ex-
tension anthropogenic land cover types, can sometimes have
an inhibitory effect on various fire parameters, although the
relationship is complex and non-monotonic (Bistinas et al.,
2013).

Existing conceptual climate–fire models can also help us
predict how fuel availability and flammability are likely to
mediate fire spread in novel environments. We call ecosys-
tems that are frequently wet and have abundant fuel avail-
able (e.g., forests) climate-limited, and these ecosystems typ-
ically require exceptionally dry periods to permit large fire
growth. On the other hand, we call ecosystems that are fre-
quently dry and have low levels of fuel (e.g., grasslands)
fuel-limited. Unlike climate-limited ecosystems, fuel-limited
ecosystems require above-average antecedent precipitation
to produce fuel loads of sufficient quantity and continuity
to permit large fire growth (Meyn et al., 2007). Indeed, nat-
urally occurring large fires in the Amazon – an unambigu-
ously climate-limited ecosystem – are very rare (Lima et al.,
2012) and require extremely low and sustained moisture to
permit combustion (Cochrane, 2003). When fire does occur
in the Amazon, it is usually intentionally set to clear forest
for agriculture (Cochrane, 2003) and is characterized by low
spread rates (� 1 m min−1) and low flame height (< 0.5 m)
(Cochrane, 2003; Ray et al., 2005; Bufacchi et al., 2017).
In the Peruvian Andes – an ecoregion that is largely un-
forested – precipitation patterns follow a sawtooth pattern
during peak fire years, where precipitation is anomalously
high in the year previous, followed by dry weather during
the peak fire year (All et al., 2017). Similarly, ENSO-related
(El Niño–Southern Oscillation) increases in precipitation in
the Sechura Desert of northern Peru are associated with in-
creased fuel loads and subsequent increases in fire activity
(Block and Richter, 2000). Like conceptual models of fire
activity, satellite-derived estimates of fire spread can also
provide intuition regarding the scale and variability of fire
spread in Peru. In South America, the typical individual fire
is reported to increase in area at a rate of 0.5 km2 per day
and increase radially at a rate of radial spread estimates of
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0.7–0.8 km d−1. These growth estimates do not appear to
vary strongly within South America, but large differences are
found between xeric regions versus humid tropical regions
globally (Andela et al., 2019).

Given that meteorology and land cover are known to be
important influences on fire spread in other locations, we
would like to explore the relevance of these factors to fire
spread and fire extinguishment in Peru, where these rela-
tionships have not been well quantified. To do this, we will
develop a simple difference equation model to summarize
satellite-derived fire growth data. We will then build regres-
sion models to predict the difference equation parameters and
determine if a suite of meteorological and land cover covari-
ates are statistically significant predictors. The intended out-
come of this analysis is to present a relatively simple method
of predicting fire growth based on environmental conditions
that can be applied nearly anywhere globally.

2 Model

The difference equation model begins with two simplifying
assumptions regarding fire growth.

1. Fire spreads at a constant rate, r , from all angles from
an ignition point.

2. After the first time step, a constant length, l, of the fire’s
perimeter is extinguished.

A graphical description of these dynamics for various values
of r and l is shown below (Fig. 1). Note that in this study the
word “growth” is reserved to describe changes in fire area
and “spread” is reserved to describe radial changes in fire.

2.1 Sector length and arc

We hereafter assume that r and l are measured in kilometers
per day. It follows from these assumptions that, on the first
day, the fire is a circle with a radius of r km and 2πr km of
initial burning perimeter. There is no extinguishment of burn-
ing perimeter on the first day. On the second day, the amount
of burning perimeter is reduced by l km, and the fire contin-
ues to spread radially at rate r km d−1. For any l ≥ 2πr , there
is no fire growth on the second day since all of the burning
perimeter is extinguished. The sector arc of burning perime-
ter at the start of the second day is calculated via Eq. (1).

θ2 =
max(2πr − l,0)

r
(1)

The second day’s final burning perimeter length is calculated
from Eq. (2):

S2 = θ2× (2r), (2)

and in general we can calculate the current burning perimeter
length using Eq. (3).

St = θt × (tr) (3)

Moreover, since the sector arc is calculated by taking the sec-
tor length and dividing by the radius, we can see that the sec-
tor arc follows Eq. (4).

θt =
max(St−1− l,0)

r(t − 1)
. (4)

We can now use Eq. (3) to greatly simplify Eq. (4). Namely,
if t > 1, then

θt =
max(θt−1(t − 1)r − l,0)

r(t − 1)
. (5)

If we assume that the fire is not going to be extinguished at
time t , then St−1 ≥ l and Eq. (5) may be further simplified
into the following difference equation (Eq. 6):

θt = θt−1−
l

r(t − 1)
. (6)

An exact solution to the difference equation is produced by
noting

1θt = θt − θt−1 =−
l

r(t − 1)
. (7)

And that for t > 1

θt = θ1+

t∑
n=2

1θn = θ1−
l

r

t∑
n=2

1
(n− 1)

. (8)

The final equation of the sector arc dynamics Eq. (9) is pro-
duced by noting the presence of a harmonic series, Ht−1.

θt = θ1−
l

r
Ht−1 (9)

2.2 Area and duration

The equation representing the burning perimeter can be ma-
nipulated to represent more commonly used wildfire param-
eters such as area and duration. Cumulative burn area over
time can be calculated by noting that each day’s growth can
be represented as a partial annulus (Fig. 1, Eq. 10) and taking
the sum of these daily growth predictions (Eq. 11):

1At = At −At−1 =
θt−1

2
×[(t× r)2− ((t−1)× r)2], (10)

At =

∞∑
n=1

1At =
r2

2

∞∑
n=1

θn−1× (n
2
− (n− 1)2)

=
r2

2

∞∑
n=1

θn−1× (2n− 1). (11)

In practice, only a partial series is required because the fire
will cease to grow at some point in time. The number of
days from ignition until wildfire growth ceases can be de-
rived from Eq. (9), and we can see that the modeled fire will
grow for all t such that θ1r

l
>Ht−1.
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Figure 1. Graphical depiction of modeled fire growth for four pairs of spread rate and extinguish rate parameters. The X and Y dimension
represent the distance from the ignition point at an arbitrary scale.

2.3 Estimation of model parameters from area and
duration

Note in Eq. (9) that if the day 1 burning arc, θ1, is known,
then the dynamics of the burning arc, and by extension the
duration are entirely determined by the ratio of the spread
and extinguish rates, γ = l

r
, a quantity we hereafter refer to

as the relative decay rate. Hence, if a burned area time series
with area (A) and duration (T ) was desired, then estimates of
the spread rate r̂ and extinguish rate l̂ could be obtained by
choosing a γ̂ such that

θ1

HT
≤ γ̂ <

θ1

HT−1
. (12)

Next, a normalizing factor, c, is estimated (Eq. 12) that as-
sumes a spread rate of r = 1 and produces a fire progression
with a known duration via the relative decay rate, γ̂ .

c =
1
2

T∑
n=1

θn−1|γ=γ̂ × (2n− 1) (13)

An estimate of r̂ that produces the desired final area can then
be obtained by using Eq. (11):

r̂ =

√
A

c
. (14)

The difference equation produced from r̂ and l̂ = r̂ γ̂ will
have duration T and final area A.

3 Application

3.1 Data and preprocessing

GlobFire data (Artés et al., 2019) were clipped to the bound-
aries of Peru and disaggregated into four ecoregions as de-
fined from the 2009 Nature Conservancy assessment1. Each
ecoregion is approximately similar in terms of climate and
vegetation. Regional variability in fire detection probabili-

1https://geospatial.tnc.org/datasets/
b1636d640ede4d6ca8f5e369f2dc368b/about, last access: 17
June 2022
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Figure 2. Map of the Peruvian ecoregions considered in this study,
with 2001–2020 GlobFire centroids of large, multi-day fires over-
laid.

ties were lessened by limiting our study to large and long-
duration events, which are likely to be detected regardless
of forest cover and atmospheric conditions. Hence, incidents
that were smaller than 405 hectares or incidents that report-
edly burned for 1 d were removed from the main analysis.
The spatially explicit growth maps produced from GlobFire
were converted into spatially inexplicit burned area time se-
ries and the centroid of the final perimeter recorded. Sum-
mary statistics of the incidents disaggregated by ecoregion
are reported in Table 1, and a map of the incident locations is
shown in Fig. 2.

Five fire danger indexes (FDIs) are calculated using ERA5
reanalysis for 2001–20202: the burning index (BI), energy re-
lease component (ERC), spread component (SC) (Bradshaw
et al., 1984), fire weather index (FWI), and Keetch–Byram
drought index (KBDI) (Littell et al., 2016). The raw values
were converted into a score by subtracting the mean and di-
viding by the standard deviation calculated from 2001–2020
data. Additionally, land cover data came from the GlobCover
dataset (Arino et al., 2007)3. GlobCover data use satellite
measurements to classify land cover globally into one of 22
categories at a 300 m resolution. GlobCover data were used
to characterize the general composition of land cover within
the burned area of wildfires.

The FDI values for each incident were extracted on the
reported ignition date of the fire and at the incident cen-
troid. The number of pixels within the final burn perimeter
from each land cover type was recorded, reclassified using
Table (2), and converted into percentages.

2https://www.wfas.net/data/SAR/, last access: 29 April 2022
3http://due.esrin.esa.int/page_globcover.php, last access: 20

May 2022

3.2 Estimation of model parameters

For each incident, the spread rate (r) and the extinguish rate
(l) are estimated using the burned area time series derived
from GlobFire. Specifically, for each burned area time series,
the values of r and l that minimized the root mean square
error (RMSE) were identified using the Nelder–Mead opti-
mization algorithm (Nelder and Mead, 1965). To increase the
likelihood that the global optimum was identified, 1000 ini-
tial best guesses of the model parameters were obtained by
using a normal distribution with a standard deviation of 1
to jitter the estimates produced with the methods described
in Sect. 2.3. The optimization routine was run for each of
the 1000 best guesses, and the run producing the lowest root
mean square error was assumed to be the global optimum.
The correlation of these two parameters was explored using
two methods. Firstly, the spearman correlations of the spread
rate and extinguish rate estimates were calculated for each
ecoregion. Secondly, a quadratic model that predicted the ex-
tinguish rate from the spread rate was fit using least-squares
regression.

3.3 Statistical modeling

An initial set of 24 generalized linear models were consid-
ered for each ecoregion and model parameter. The 24 can-
didates were produced by considering all linear combina-
tions of FDIs and land cover covariates such that at most
one variable from each variable category was used. The gen-
eralized linear model assumed an inverse link and gamma
density function. The gamma distribution was selected be-
cause it, like the model parameters, is defined over a semi-
infinite support and, when compared to the lognormal or in-
verse Gaussian distribution, provided a superior goodness of
fit. The goodness of fit of the gamma density function4 was
verified via visual inspection of Q–Q plots with a 95 % si-
multaneous confidence band (see Appendix A) and was cal-
culated using the distrMod package (R Core Team, 2013).
The inverse function was selected because it is the canonical
link function for the gamma distribution (Faraway, 2016).
The best models were selected using Akaike weights (Wa-
genmakers and Farrell, 2004), which represent the probabil-
ity that a model candidate was the true best-approximating
model from the original set of 24 models. Akaike weights
are calculated from a commonly used model selection crite-
rion, Akaike information criterion (AIC), but have the added
benefit of gauging the level of model uncertainty with proba-
bilities, which are easier to interpret than the raw AIC values.
The out-of-sample performance of the best-approximating
models were estimate using a 3-fold cross validation. Each
fire event for each region was placed into one of three folds
according to the year in which the fire event occurred: 2000–

4Q–Q plots of the lognormal and inverse gamma distribution
were omitted to keep the paper concise but can be requested from
the corresponding author.
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Table 1. Regional sample size plus quartiles for both fire size (km2) and duration (days). The summary statistics calculated from the data
without size-based filtering are reported in the parentheses.

Ecoregion Sample size Size Duration

Min Q1 Q2 Q3 Max Min Q1 Q2 Q3 Max

Xeric 38 (342) 4.13 (0.41) 4.81 (0.92) 5.96 (1.41) 9.51 (2.54) 65.70 2 (2) 5 (3) 8 (5) 10 (7) 21 (21)
Andean 252 (1395) 4.11 (0.41) 4.83 (0.70) 6.49 (1.40) 10.76 (2.98) 69.33 2 (2) 5 (3) 6 (4) 9 (6) 24 (24)
Dry forest 50 (277) 4.25 (0.43) 5.01 (0.71) 7.09 (1.42) 14.50 (3.31) 289.44 3 (2) 5 (3) 7 (5) 10.75 (7) 18 (18)
Amazon 663 (5772) 4.14 (0.41) 4.88 (0.70) 6.34 (1.16) 9.05 (2.12) 91.52 2 (2) 7 (3) 9 (5) 13 (7) 40 (40)

Table 2. Reclassification of GlobCover data.

GlobCover value New value

Post-flooding or irrigated croplands (or aquatic) Anthropogenic
Rainfed croplands
Mosaic cropland (50 %–70 %) vegetation (grassland/shrubland/forest) (20 %–50 %)
Mosaic vegetation (grassland/shrubland/forest) (50 %–70 %)/cropland (20 %–50 %)
Artificial surfaces and associated areas (urban areas > 50 %)

Closed to open (> 15 %) broadleaved evergreen or semi-deciduous forest (> 5 m) Forest
Closed (> 40 %) broadleaved deciduous forest (> 5 m)
Open (15 %–40 %) broadleaved deciduous forest/woodland (> 5 m)
Closed (> 40 %) needleleaved evergreen forest (> 5 m)
Open (15 %–40 %) needleleaved deciduous or evergreen forest (> 5 m)
Closed to open (> 15 %) mixed broadleaved and needleleaved forest (> 5 m)

Mosaic forest or shrubland (50 %–70 %)
Closed to open (> 15 %) broadleaved forest regularly flooded
Closed (> 40 %) broadleaved forest or shrubland permanently flooded
Closed to open (> 15 %) grassland or woody vegetation on regularly flooded or waterlogged soil
Mosaic grassland (50 %–70 %) Grassland
Closed to open (> 15 %) shrubland (< 5 m)
Closed to open (> 15 %) herbaceous vegetation
Sparse (< 15 %) vegetation

2006, 2007–2013, and 2014–2020. Each fold was used as a
test set once and used as a training set twice (Hastie et al.,
2009). The average RMSE (Eq. 15) and symmetrical mean
absolute percent error (Eq. 16) were used to measure out-of-
sample model performance. All calculations were performed
in the R programming environment (R Core Team, 2013).

RMSE=

√√√√1
n

n∑
i=1
(yi − fi)

2 (15)

sMAPE=
200
n

n∑
i=1

|yi − fi |

yi + fi
(16)

3.4 Sensitivity analysis

Because size-based filtering of wildfire events can effect the
results of statistical analyses (Podschwit and Cullen, 2020),
the main analysis was also repeated without filtering and

compared to the original analysis to describe the conse-
quences of this methodological choice. Specifically, changes
to the structure of the best-approximating model and changes
in Akaike weights were identified.

4 Results

4.1 Difference equation parameters and performance

Overall, mean fire spread rates were approximately a
0.5 km d−1, but this quantity varied by ecoregion. The mean
spread rates were highest in the Andean and dry forest ecore-
gions and were lowest in the Amazon ecoregion. The mean
extinguish rates were usually near 2 km d−1, but like spread
rates, this quantity varied by ecoregion. The mean extinguish
rate was highest in the dry forest ecoregion and lowest in
the Amazon ecoregion (Fig. 3). The gamma distribution pro-
vided a high-quality parametric approximation of the distri-
bution of observed spread rates (Fig. A1) and a slightly lower

Nat. Hazards Earth Syst. Sci., 23, 2607–2624, 2023 https://doi.org/10.5194/nhess-23-2607-2023
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Figure 3. Histograms of the spread rates and extinguish rates
(in kilometers per day) disaggregated by ecoregion. Maximum-
likelihood estimates of the gamma distribution are overlaid. The
mean, standard deviation, estimated shape, and estimated rate pa-
rameters are reported in the upper right of each panel.

quality approximation of the distribution of extinguish rates
(Fig. A2).

The spread rate and extinguish rate were highly correlated
with one another. Spearman correlation coefficients ranged
from 0.91 in the dry forest ecoregion to 0.96 in the Amazon
and xeric ecoregions. The observed relationship between the
two parameters was well described using a quadratic model
(Fig. 4).

In both absolute and relative terms, the difference equa-
tions approximated the observed burned area time se-
ries across all ecoregions well. The lowest median RMSE
(0.54 km2) was seen in xeric ecoregion, whereas the high-
est median RMSE was seen in dry forests (0.76 km2). Simi-
larly, the lowest symmetric mean absolute percentage error
(sMAPE) was observed in the xeric ecoregion (20.36 %),
and the highest sMAPE was observed in the dry forests
(23.25 %). In terms of RMSE, the difference equation model
did particularly well on fires smaller than 10 km2 and fires
less than 3 weeks in duration (Fig. 5). However, when
sMAPE was instead considered, there was little difference

Figure 4. Scatterplots of the observed relationship between spread
rate and extinguish rate (in kilometers) disaggregated by ecoregion.
Least-squares fit of quadratic model and spearman correlation coef-
ficient are reported in the upper left of each panel.

in performance between small short-duration fires and large
long-duration fires.

4.2 Best-fitting parameter models

In the xeric ecoregion, the best-approximating model of
spread rates predicted that fire would grow faster as FWI in-
creased and as the percent of anthropogenic cover decreased,
but the relationships were only weakly statistically signifi-
cant. In the Andean ecoregion, a strongly significant positive
relationship between fire spread rates and the SC was ob-
served. The best-approximating spread model in the dry for-
est ecoregion did not include any FDI or land cover variables.
In the Amazon ecoregion, the best-approximating model of
spread assumed a positive relationship with SC and a positive
relationship with percent grassland land cover. In the Ama-
zon ecoregion, the effect of the SC on fire spread and the
effect of grassland cover on fire spread were very strongly
significant (Table 3).

In the xeric and dry forest ecoregions, the best-
approximating extinguish rate models did not include any
covariates. In the Andean ecoregion, the best-approximating
model reported a strongly significant and positive relation-

https://doi.org/10.5194/nhess-23-2607-2023 Nat. Hazards Earth Syst. Sci., 23, 2607–2624, 2023
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Table 3. Summary of spread parameter generalized linear models for each ecoregion. Summary including formula, Akaike weight, and
significance level.

Ecoregion −
1
µ Dispersion AIC weight P value

FDI Land cover

XERIC −1.87+ 0.20×FWI− 1.85× percent.anthro 0.43 0.17 . .
ANDEAN −1.87+ 0.17×SC 0.33 0.23 **
DRY FOREST −1.68 0.50 0.11
AMAZON −2.86+ 0.14×SC+ 1.05× percent.grass 0.30 0.89 *** ***

P values greater than 0.10 are interpreted as not significant (ns), P values less than 0.1 are interpreted as weakly significant (.), P values less than 0.05
are interpreted as significant (*), P values less than 0.01 are interpreted as strongly significant (**), and P values less than 0.001 are interpreted as very
strongly significant (***).

Figure 5. Boxplots of root-mean square error estimates calculated
from best-fit difference equation predictions and GlobFire observa-
tions. Root-mean square error estimates are disaggregated by size,
duration, and ecoregion. Sample size is reported above the boxplots,
and outliers have been removed for visualization purposes.

ship between SC and the extinguish rate. In the Amazon
ecoregion, extinguish rates were predicted to increase with
the SC and percent grassland land cover; both covariates
were very strongly significant (Table 4).

For the spread models, the Akaike weights – the proba-
bility that the true best-approximating model was selected
from the 24 candidates – ranged from 0.11 in the dry for-
est ecoregion to 0.89 in the Amazon ecoregion (Table 3).
For the extinguish rate models, this probability ranged from
0.10 in the xeric ecoregion to 0.35 in the Amazon ecoregion

(Table 4). The probability that the true best-approximating
spread model contained both a land cover and FDI covariate
ranged was 0.43 in the dry forest ecoregion, 0.54 in the An-
dean ecoregion, 0.68 in the xeric ecoregion, and> 0.99 in the
Amazon. The probability that the true best-approximating
extinguish model contained both a land cover and FDI co-
variate was lower and ranged from 0.36 in the dry forest
ecoregion, 0.45 in the Andean ecoregion, 0.47 in the xeric
ecoregion, and 0.88 in the Amazon ecoregion (Fig. 6).

The spread rate estimates produced from the best-
approximating generalized linear models were expected to
get within about 0.3 to 0.4 of the best-fitting spread rate
estimates, but this performance varied by ecoregion. The
best model performance was seen in the Amazon ecoregion,
and the worst model performance was seen in the dry for-
est ecoregion, but the variability in RMSE estimates was not
high. Similar results were observed in terms of relative per-
formance. The spread rate estimates produced from the best-
approximating generalized linear model were expected to get
within 40 % to 60 % of the true spread rates, and when con-
sidering the sMAPE, the best model performance was again
observed in the Amazon ecoregion, and the worst model per-
formance was observed in the dry forest ecoregion (Table 5)

Model performance was slightly less in the extinguish
rate models than in the spread rate models. The best-
approximating generalized linear models were expected to
get within about 1.3 to 2.6 of the best-fitting spread rate
estimates. The best model performance was observed in
the Amazon ecoregion, and the worst model performance
was observed in the dry forest ecoregion. Similar patterns
were observed when considering the sMAPE. The best-
approximating generalized linear models were expected to
get within 70 % to 100 % of the true spread rates, with the
best performance being observed in the Amazon ecoregion
and the worst performance being observed in the dry forest
ecoregion (Table 6).

The effects of fire weather and land cover varied dramat-
ically across ecoregions. In the xeric ecoregion, large FWI
values were characterized with noticeably larger, faster grow-
ing, and longer duration fires compared to small FWI values.
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Table 4. Summary of extinguish rate generalized linear models for each ecoregion. Summary including formula, Akaike weight, and signifi-
cance level. P values greater than 0.10 are interpreted as not significant (ns), P values less than 0.1 are interpreted as weakly significant (.),
P values less than 0.05 are interpreted as significant (*), P values less than 0.01 are interpreted as strongly significant (**), and P values
less than 0.001 are interpreted as very strongly significant (***).

Ecoregion −
1
µ Dispersion AIC weight P value

FDI Land cover

XERIC −0.56 1.79 0.10
ANDEAN −0.64+ 0.09×SC 1.16 0.11 **
DRY FOREST −0.53 1.87 0.15
AMAZON −1.15+ 0.07× SC+ 0.53× percent.grass 1.09 0.35 *** ***

Figure 6. Bar plots of Akaike weights – the probability that each model candidate is truly the best-approximating model – for each ecoregion
and parameter. Models that contain both an FDI and land cover covariate are colored purple, those that contain only a FDI are colored red,
those that only contain a land cover variable are colored blue, and the intercept-only models are colored grey.

High anthropogenic cover was associated with much smaller,
slower spreading, and shorter duration fires compared to ar-
eas with low anthropogenic cover. Models that included fire
weather and land cover had no detectable advantage over
models that used no covariates at all in the dry forest ecore-
gions. In the Andean ecoregion, increases in the SC tended
to result in slightly larger and faster growing fires, but the
predicted fire duration was nominally smaller in the highest
fire danger scenario considered. In the Amazon ecoregion,
high SC values were characterized by increases in expected
fire size and spread rate and slight decreases in fire duration.

Increases in grassland cover were predicted to increase fire
size and spread rates and decrease fire duration (Fig. 7).

4.3 Sensitivity analysis

Repeating the analysis without filtering could change the
model structure and uncertainty for both the spread and ex-
tinguish models. When the size-based filtering was omit-
ted from the model fitting procedure in the xeric ecoregion,
the best-approximating spread model changed from one that
used FWI and anthropogenic land cover as covariates to one
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Table 5. Estimated performance of spread rate models as calculated from 3-fold cross validation. Each row reports the test years defining
each fold.

XERIC ANDEAN DRY FOREST AMAZON

RMSE sMAPE n RMSE sMAPE n RMSE sMAPE n RMSE sMAPE n

2000–2006 0.23 52.70 5 0.30 54.33 54 0.32 46.69 8 0.21 36.45 170
2007–2013 0.22 31.94 7 0.32 43.81 73 0.42 78.88 8 0.22 44.70 225
2014–2020 0.48 50.61 26 0.39 44.62 126 0.45 47.93 34 0.38 46.53 268
Average 0.31 45.08 0.34 47.59 0.40 57.83 0.27 42.56

Table 6. Estimated performance of extinguish rate models as calculated from 3-fold cross validation. Each row reports the test years defining
each fold.

XERIC ANDEAN DRY FOREST AMAZON

RMSE sMAPE n RMSE sMAPE n RMSE sMAPE n RMSE sMAPE n

2000–2006 1.19 88.99 5 1.58 100.36 54 2.26 80.25 8 1.00 59.66 170
2007–2013 1.39 56.32 7 1.82 77.12 73 2.87 131.29 8 1.12 80.44 225
2014–2020 2.71 78.65 26 2.31 79.72 126 2.56 92.56 34 1.66 75.28 268
Average 1.77 74.65 1.90 85.73 2.56 101.37 1.26 71.79

that used the SC and grassland cover as covariates. In the An-
dean ecoregion, the same changes in methodology changed
the best-approximating spread model from one the used the
SC only to one that used the BI and grassland cover as covari-
ates. In the dry forest, these changes in methodology resulted
in a best-approximating spread model that used the burning
index when previously no covariates were used in the best-
approximating spread model. The most modest changes were
observed in the Amazon ecoregion, where the same set of co-
variates were used regardless if filtering was applied or not,
although the effect that these covariates had on spread rates
were sensitive to these changes in methodology (Table 7).

Similarly, the structure of the extinguish rate models
were also sensitive to the choice to apply size-based fil-
tering. When the size-based filtering was applied, the best-
approximating extinguish rate model in xeric and dry forest
ecoregions used no covariates, but when the size-based fil-
tering was not applied, the best-approximating models used
the SC and BI, respectively. As with the spread models, in
the Andean region the best-approximating model used the
spread component when size-based filtering was used and
used the BI and grassland cover when size-based filtering
was not used. Lastly, the robustness to choices in filtering
methodology that were observed in the spread models for the
Amazon ecoregion were likewise observed when considering
the extinguish rate models (Table 8).

Not only could the model structure change based on
whether or not size-based filtering was applied but also the
level of model uncertainty could be sensitive to this decision.
Specifically, AIC weights of the best-approximating models
tended to be much higher when the size-based filtering was
not applied compared to when it was. In other words, the

probability that the model that was identified as best truly
was the best-approximating model was higher when size-
based filtering was not used. The only exception to this trend
was observed in the extinguish rate models for the dry forest
ecoregion, where the AIC weight was 0.15 when size-based
filtering was applied versus 0.11 when size-based filtering
was not applied (Tables 7–8).

5 Discussion

5.1 Difference equation validity

All models are approximations of the real world, and the rel-
evant question to ask is whether the models can provide use-
ful information (Anderson and Burnham, 2004). With this
in mind, we argue that the difference equation model pre-
sented in this paper has a number of advantages over other
approaches used to model fire growth. Firstly, the model is
simple, requiring estimation of only a few parameters. The
difference equation model is therefore vastly easier to im-
plement than other commonly used spread models that re-
quire complex data inputs and subjective decisions regarding
initialization parameters (Sullivan, 2009b, a). The model pa-
rameters are also easily interpreted and are directly related
to the underlying fire processes. Although alternative differ-
ence equation models exist that could adequately represent
observed fire growth (Podschwit et al., 2018), the interpre-
tation of the model parameters in these alternative models is
cumbersome because they were not originally developed to
represent fire growth.

Most importantly, these difference equations approxi-
mated the observed fire growth data well (Fig. 5). Although
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Table 7. Summary of spread parameter generalized linear models for each ecoregion as fit without using size-based filtering. Summary
including formula, Akaike weight, and significance level. P values greater than 0.10 are interpreted as not significant (ns), P values less than
0.1 are interpreted as weakly significant (.), P values less than 0.05 are interpreted as significant (*), P values less than 0.01 are interpreted
as strongly significant (**), and P values less than 0.001 are interpreted as very strongly significant (***).

Ecoregion −
1
µ Dispersion AIC weight P value

FDI Land cover

XERIC −3.76+ 0.36×SC+ 0.47× percent.grass 0.36 0.42 *** ns
ANDEAN −3.49+ 0.26×BI+ 0.67× percent.grass 0.37 0.97 *** ***
DRY FOREST −3.17+ 0.28×BI 0.54 0.26 **
AMAZON −3.69+ 0.12×SC+ 0.86× percent.grass 0.29 0.98 *** ***

Table 8. Summary of extinguish parameter generalized linear models for each ecoregion as fit without using size-based filtering. Summary
including formula, Akaike weight, and significance level. P values greater than 0.10 are interpreted as not significant (ns), P values less than
0.1 are interpreted as weakly significant (.), P values less than 0.05 are interpreted as significant (*), P values less than 0.01 are interpreted
as strongly significant (**), and P values less than 0.001 are interpreted as very strongly significant (***).

Ecoregion −
1
µ Dispersion AIC weight P value

FDI Land cover

XERIC −1.01+ 0.13×SC 1.10 0.15 **
ANDEAN −1.01+ 0.10×BI+ 0.20× percent.grass 0.97 0.30 *** **
DRY FOREST −0.96+ 0.12×BI 1.59 0.11 *
AMAZON −1.04+ 0.06×SC+ 0.19× percent.grass 0.91 0.57 *** ***

the RMSE deteriorated in large long-duration fires, the rel-
ative performance was quite good (Fig. 5) and is a ten-
dency that is not unique to this model in any event (Pod-
schwit et al., 2018). The fact that the spatial distribution of
predicted spread rates conformed to previously known pat-
terns of fire spread adds to the credibility of these models.
Specifically, that the lowest spread parameter rates were ob-
served in the Amazon ecoregion is largely consistent with
existing research (Ray et al., 2005; Cochrane, 2003; Andela
et al., 2019), as is the fact that faster spread rates were ob-
served in ecoregions that are largely non-forested (Massman
et al., 2017; Andela et al., 2019). Because the burned area
estimates were derived from satellite instrumentation, some
unburned islands were inevitably treated as burned (Kolden
and Weisberg, 2007), and as is commonly reported in other
data (Short, 2014), GlobFire data were observed to some-
times classify spatially distinct fire events as a single fire. In
aggregate, these biases should result in models that overesti-
mate individual fire spread rates; however, the mean spread
estimates from the Amazon ecoregion at least (0.44 km d−1)
did not dramatically differ from published ground-based es-
timates (Ray et al., 2005). It should be noted that the model
parameters for each fire were estimated as to minimize the
RMSE and did not account for other measures of good-
ness of fit. Consequently, the modeled growth curve some-
times extended beyond the observed duration of fire, so that
although the growth curve matched the observations well,
the estimates of eventual burned area and duration from the

model were too large. This fact is important to keep in mind
when interpreting the slight decrease in duration associated
with high FDI values in the Amazon and Andean ecoregions
(Fig. 7). Because of these occasional counterintuitive predic-
tions, we recommend that these models primarily be used
to estimate spread rates and that predictions of duration and
eventual burned area be used with caution. Although the es-
timates of spread rates could be useful proxies for burnover
risk and suppression effort for most ecoregions, the Ama-
zon may be somewhat of an exception. In the Amazon, the
slow fire spread rates, low flame heights (Cochrane, 2003;
Ray et al., 2005; Bufacchi et al., 2017), and sparse settle-
ment suggest that explosive fire growth poses a practically
non-existent threat to humans. Still, the Amazon should only
very rarely have naturally occurring fire (Lima et al., 2012;
Cochrane, 2003), and the spread model predictions might
find use as a tool to identify when and where fire occurrence
is at all possible.

5.2 Effects of meteorology and land cover on fire
development

That fire spread was generally predicted to be higher dur-
ing meteorological conditions that are considered conducive
to fire spread is expected. And although the identification
of the SC – which is interpreted as an estimate of idealized
fire spread (Bradshaw et al., 1984) – as the best FDI in the
Andean ecoregion is not surprising given that the ecoregion
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Figure 7. Expected daily burned area time series for each ecore-
gion under low fire danger (20th percentile of relevant FDI), normal
fire danger (median value of the relevant FDI), and high fire danger
(80th percentile of relevant FDI) conditions and at two extremes of
the relevant land cover covariate.

is generally non-forested, the fact that this same relation-
ship was observed in the Amazon ecoregion was noteworthy.
One might not predict that an FDI that was largely related
to wind would be a useful proxy for fire spread in heavily
forested and tropical ecosystems, where an FDI that instead
measured sustained drought might be expected to perform
better (Cochrane, 2003). However, the SC is computed not
only from wind but also from the moisture content of the
smaller fuel size classes (Bradshaw et al., 1984), and it is
therefore plausible that the SC was selected because, unlike
the BI or ERC, it was a proxy of fuel moisture of lighter
fuels that are characteristic of the Amazon’s understory lit-
ter layer (Cochrane, 2003). These results also suggest that
decision makers should reconsider their preferential use of
other FDIs over the SC (Jolly et al., 2019), as the latter was
the apparent best predictor of fire spread in multiple ecore-
gions (Tables 3–4). The lack of a strong relationship between
FDIs and fire spread in the dry forest and the weak relation-
ship in the xeric ecoregion may also seem surprising. One
explanation for this apparent lack of correlation in these two
ecoregions is that the elevated human habitation in these lo-

cations relative to other portions of Peru reduces the effects
of meteorology on fire spread, which is a phenomenon that
has been observed in the United States (Syphard et al., 2017).
Indeed, in the xeric ecoregion, anthropogenic cover had a
weakly significant negative effect on fire spread (Table 3),
suggesting that nearby human presence may inhibit wildfire
activity. Anthropogenic effects were less plausible explana-
tory variables in the Andean and Amazon ecoregions, which
have relatively sparse human habitation5, and the covariates
used in the best-approximating models of these ecoregions
reflect this fact (Tables 3, 4). Another explanation might sim-
ply be that the small sample size did not permit the selection
of complicated models, and in fact when size-based filtering
was not performed, the BI was observed to have a significant
and positive effect on fire spread in the dry forests. Grassland
cover was a positive and very strongly significant predictor
of fire spread in the Amazon (Table 7), which, as mentioned
in the previous subsection, conforms with existing research
regarding the global variability in fire spread rates (Andela
et al., 2019), as well as research regarding the effects of veg-
etation of fire spread (Massman et al., 2017). Overall, the
results from the original model fitting and sensitivity anal-
ysis suggest that, in general, fire spread is enhanced during
dry windy conditions and can sometimes be exaggerated in
grassland environments (Tables 3, 7).

In ecoregions where covariates were relevant, the pre-
dicted relationships between the extinguish rates and the en-
vironment were sometimes counterintuitive. For instance, in
the Andean and Amazon ecoregions, extinguish rates were
positively related to FDIs, suggesting that drier conditions
were conducive to fire extinguishment. The relationships be-
tween fire danger and extinguish rates are not easily dis-
missed, as they are strongly significant (Table 4), and in the
Amazon at least, we have fairly high confidence that the
model is the best out of the 24 candidates (Fig. 6). However, a
satisfactory explanation for this counterintuitive result can be
arrived at by (1) revisiting the original mathematical model,
(2) observing the correlations between the two parameters,
and (3) understanding that the counterintuitive results may
arise from constraints imposed by the model structure rather
than real-world relationships. Consider that, as described at
the beginning of Sect. 2.3, the duration of the fire is con-
trolled by the relative decay rate, which is the ratio of the
spread rate and extinguish rate. This implies that the spread
rate is approximately proportional to the extinguish rate, with
a harmonic number as the scalar. We further note here that the
harmonic number scalar is a function of the fire’s duration.
We can then envision two ways that high covariance between
the spread rates and extinguish rates might arise. First, if the
variability in the duration is not too large, then the harmonic
number scalars will not strongly vary, and spread rates will

5https://sedac.ciesin.columbia.edu/data/set/
grump-v1-population-density/maps?facets=region:southamerica,
last access: 11 July 2023
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be approximately proportional to extinguish rates. Second, if
the average fire duration is large enough, then the harmonic
number scalars will also not strongly vary. In any event, the
mean and variance of the fire duration distributions resulted
in spread rates and extinguish rates with high covariance,
as is evidenced from the high spearman correlation coeffi-
cients and the strong fit of the quadratic models (Fig. 4). It is
then not surprising that similar models would independently
arise when estimating model fit from two parameters that are
so closely correlated. Indeed, in the Amazon ecoregion, we
can see that the exact same covariates are used in the ex-
tinguish rate model and the spread rate model (Tables 3, 4)
and that the direction of these effects is the same. Because
the same covariates are unlikely to be sufficient explanations
for the two contradictory processes of fire spread and fire ex-
tinguishment, we will note here that we believe that although
some of the relationships observed here reflect the real world,
others are likely the result of constraints created from the
difference equation model. Specifically, the fact that spread
rates are positively correlated with high fire danger and grass-
land cover is both consistent with (1) ones intuition about
how the environment should interact with fire and (2) exist-
ing research in other locations. On the other hand, it does not
seem likely that conditions that enhance fire spread also has-
ten fire extinguishment, and we think that the relationships
between extinguish rates and the environment are better ex-
plained as model artifacts.

In aggregate, the spread rate and extinguish rate models
produce fire progressions that are plausible. In all but the
dry forest region, increases in FDIs produce larger and faster
growing fires. Moreover, the effects of land cover are like-
wise believable. In the xeric ecoregion it would make sense
that – given the destructive effects of fire to human health
and economic activity (Stephens et al., 2014) – human pres-
ence would have an inhibitory effect on fire. Similarly, given
that forest vegetation can inhibit fire growth (Massman et al.,
2017), it is reasonable to predict larger and faster grow-
ing fires in grassland cover. The negative relationship be-
tween FDIs and duration should not be accepted uncritically,
although potential explanations could exist. In fragmented
landscapes, it is conceivable that fire size is constrained by
available fuels and that increased fire danger merely has-
tens the consumption of these fuels. That is, fire size may
be fixed due to fuel discontinuity, and increased fire danger
just hastens the inevitable outcome in these circumstances.
Still, fragmentation is likely an unsatisfactory explanation
for much of Peru, and like the relationship between extin-
guish rates and FDIs, we should also not discount the pos-
sibility that the predicted relationship between fire duration
and FDIs might be better explained as a model artifact rather
than a real-world causal relationship.

5.3 Future work

The results and methods in this paper provide a template for
forecasting fire growth from environmental covariates. When
a fire ignition is reported, estimates of the spread rate and
extinguish rate can be calculated from environmental data,
which would permit estimates of risk. Because the spatial
domain of the GlobFire data covers the entire world, the
methods described here can be readily applied to other ecore-
gions, which would be particularly useful to locations with-
out access to sophisticated fire spread modeling capabilities.
Although predictions from these models describe a time se-
ries of expected fire growth conditional on meteorological
and land cover conditions, it is often the statistical extremes
that are the most destructive and dangerous (Stephens et al.,
2014; Viegas and Simeoni, 2011). These extreme events of-
ten occur in unique conditions (Slocum et al., 2010; Barbero
et al., 2015a), and their relative position in the statistical dis-
tribution of fire sizes means that these events are some of
the hardest to predict (Fig. 5). For this reason, future work
should further validate the predictive performance of these
models to determine what additional information and meth-
ods are required to best predict the times when these extreme
fires occur.

Future work might include additional covariates into these
models to further improve predictive performance and by ex-
tension improve fire-related decisions. In addition to those
explored in this paper, there are numerous other FDIs that
could be included that might better model fire spread (Lit-
tell et al., 2016; Meyn et al., 2007; Barbero et al., 2015b).
Firefighting-related covariates could be used to forecast the
effects various suppression strategies would have on fire be-
havior, and various ocean temperature indexes could be in-
cluded to account for ENSO-related effects on weather that
modulate fire spread (Chen et al., 2011; Block and Richter,
2000). Forest structure and composition is a highly com-
plex and important variable to consider when estimating fire
growth but was not thoroughly investigated in this analy-
sis for practical purposes. A South American forest contain-
ing native species versus one that is dominated by eucalyp-
tus (Galizia et al., 2021) might burn much differently even
though both could be characterized as forested (Cruz et al.,
2021). Projected climatic and land use changes could be used
to provide longer-term forecasts of fire risk and inform deci-
sions such as firefighting staffing and training programs, as
well as inform land management decisions. The spread rates
and extinguish rates would clearly differ between planned
and unplanned fires, but differentiating between these two
types of fires was not attempted in this study due to the diffi-
culty in making this categorization from satellite data.

In addition to exploring additional covariates, the differ-
ence equation could be modified to better describe the com-
plexity of fire progression. For instance, the assumption of
uniform growth in all directions is an oversimplification, and
it is worth exploring what performance improvements might
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arise from permitting different spread rates at the head and
flank of the fire. We will note here that such an approach
would immediately create at least two issues. Firstly, such a
model would require the estimation of the partial perimeter
of an ellipse, which does not have a convenient closed-form
solution like is seen when circular fire growth is assumed.
This could be solved numerically, but a second issue arises
from the uncertainty about which segment of the ellipse’s
burning perimeter is extinguished at each time step. That is,
the progression of a fire in which the head fire is extinguished
first may be much different from one in which the flanks are
first extinguished. One potentially acceptable solution to this
problem might be considering a best- and worst-case pro-
gression scenario. The majority of fire spread typically oc-
curs over only a few days of a fire (Wang et al., 2017), and
therefore the day-to-day variation in fire spread is an impor-
tant variable for assessing burnover risk and, by extension,
firefighting decision making. Other parameterizations might
then add greater realism by allowing spread rates or extin-
guish rates to change over a fire’s lifetime or by introducing
covariates to explain day-to-day changes in spread rates or
extinguish rates. Although future investigations might suc-
cessfully overcome these challenges, we quickly found that
this task presented serious computational difficulties that
were avoided with the simpler methods described in this pa-
per.

Given the high covariance of the two difference equa-
tion parameters and sometimes counterintuitive results, fu-
ture work should also explore the necessity of forecasting
extinguish rates from environmental data or if the extinguish
rates may simply be inferred from predicted spread rates in-
stead (Fig. 4). The model inputs are subject to uncertainty,
and future work might investigate what the consequences of
this uncertainty might be. For example, land cover estimates
change over time, and areas that were once forested may be-
come unforested, and vice versa. Hence, it is possible that
some of the land cover data are corrupted, and crosscheck-
ing the results using other datasets can ensure that the results
are robust. Similarly, although using meteorological informa-
tion at the ignition date was a methodological convenience,
it may not be representative of the conditions that occurred
during the largest growth days. Although we determined that
the level of temporal autocorrelation in the FDIs was reason-
ably high enough to justify using data at the ignition date, this
uncertainty in the data inputs should be investigated further.
We would like to note that performance was best in the Ama-
zon, where most of the data were available, and performance
was most variable in the ecoregions with the least data. We
further note here that more complex models were permitted
when size-based filtering was not performed. Both of these
result suggest a need for continued data collection, so that
sufficient amounts of data are available to produce reliable
estimates of performance and that important relationships be-
tween fire and the environment are able to be identified.

6 Conclusions

In this paper, we developed a simple and intuitive difference
equation model of fire growth that can be estimated using
globally available satellite data. The difference equation was
based on two parameters: the spread rate and the extinguish
rate. We described the statistical distribution of these two
parameters for four ecoregions in Peru using gamma distri-
butions. We also built generalized linear models to predict
these parameters using FDI and land cover as covariates. We
found that FDIs – specifically SC, FWI, and BI – were useful
predictors of fire spread and extinguishment in Peru. In gen-
eral, when FDIs were used to predict these two parameters,
we found that the SC was usually the best choice. However,
model uncertainty was frequently high, and the identifica-
tion of which FDI was best was sensitive to methodologi-
cal choices regarding size-based filtering of fires. Compared
to other regions, model confidence was particularly high in
the Amazon ecoregion and low in the dry forest ecoregion.
In addition to FDIs, land cover was also a useful predic-
tor in some contexts. Specifically, anthropogenic cover had a
weakly significant and negative effect on spread rates in the
xeric ecoregion, and grassland cover had a positive and often
very strongly significant effect on spread and extinguish rates
in several contexts. Counterintuitive relationships were ob-
served between extinguish rates and FDIs, where increased
fire danger increased extinguish rates. These relationships
were explained by the fairly strong correlation of the two
model parameters and were concluded to be model artifacts
rather than representing real-world causal relationships. We
argue that the methods presented here, although simple and
able to be improved upon, are a promising method of fore-
casting fire spread risk when sophisticated fire modeling ca-
pabilities are unavailable or impractical.
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Appendix A: Q–Q plots

Figure A1. Q–Q plots of spread rate parameters disaggregated by ecoregion. The dashed lines show the 95 % and median simultaneous
confidence band.

Figure A2. Q–Q plots of extinguish rate parameters disaggregated by ecoregion. The dashed lines show the 95 % and median simultaneous
confidence band.
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Code availability. All code used to produce figures, re-
sults, and derived data are available through figshare at
https://doi.org/10.6084/m9.figshare.23674185.v1 (Podschwit,
2023a), https://doi.org/10.6084/m9.figshare.23673306.v1 (Pod-
schwit, 2023b), https://doi.org/10.6084/m9.figshare.23673393.v1
(Podschwit, 2023c), and http://doi.org/10.6084/m9.figshare.
23673465.v1 (Podschwit, 2023d).
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