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Abstract. This paper analyses how the current loss mod-
elling framework that was developed in the 1990s to respond
to Hurricane Andrew market crisis falls short in dealing with
today’s complexity. In effect, beyond reflecting and support-
ing the current understanding and knowledge of risks, data
and models are used in the assessment of situations that have
not been experienced yet. To address this question, we con-
sidered the (re)insurance market’s current body of knowledge
on natural hazard loss modelling, the fruit of over 30 years of
research conducted by (re)insurers, brokers, modelling firms,
and other private companies and academics in the atmo-
spheric sciences, geosciences, civil engineering studies, and
data sciences among others. Our study shows that to success-
fully manage the complexity of the interactions between nat-
ural elements and the customer ecosystem, it is essential that
both private companies in the insurance sector and academia
continue working together to co-build and share common
data collection and modelling. This paper (i) proves the need
to conduct an in-depth review of the existing loss modelling
framework and (ii) makes it clear that only a transdisciplinary
effort will be up to the challenge of building global loss mod-
els. These two factors are essential to capture the interactions
and increasing complexity of the three risk drivers – expo-
sure, hazard, and vulnerability – thus enabling insurers to
anticipate and be equipped to face the far-ranging impacts
of climate change and other natural events.

1 Introduction

The mission of property and casualty (P&C) insurers is to
effectively protect clients’ property and activities while en-
suring the solvency of the company. Though insurers de-

velop ever-increasing products to respond to clients’ specific
needs, P&C insurance in essence consists of two segments,
the (i) retail business for homeowners and car owners and
(ii) commercial business for corporate clients. Insurance pro-
tection goes beyond risk transfer (i.e. the payment of a pre-
mium against future claims); it also encompasses prevention
actions such as reinforcing customers’ risk awareness and
proposing adapted protective solutions. For example, in com-
mercial business, technical risk experts perform on-site visits
to evaluate the state of buildings and identify potential vul-
nerabilities to natural hazards. The objective is to assess how
natural hazards could generate damage either to the build-
ings themselves (e.g. storage warehouses, data centres, shop-
ping centres) or to their contents (e.g. machinery, production
chains, stock) and if such damage could cause business inter-
ruption (e.g. employees/clients/suppliers being unable to ac-
cess the building for N days resulting in a loss of turnover or
profits). Prevention measures like elevating goods or machin-
ery in the event of flooding are then suggested or imposed
post-assessment to reduce the risk and adjust the premium.

In the retail business with its mass of clients, protection ac-
tions have to be taken globally instead of individually. For ex-
ample, after the Great Fire of London in 1666 that destroyed
most of the city’s buildings, made of wood at that time, in-
surance premium rates were lowered for buildings made of
brick to encourage brick constructions instead of wood, thus
reducing the fire risk in London.

To achieve their mission of protection, it is essential for
insurers to identify and quantify the risks associated with
the underwritten policies. All along the P&C insurance value
chain, a vast range of data feed an equally vast range of
models to estimate the losses for the varying probabilities
and magnitudes of all the underwritten risks, be they natural
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hazards, financial, or cyber. These models serve to support
decision-making from the actual underwriting and pricing of
an individual or corporate policy to the setting and optimiza-
tion of the reinsurance programmes at the insurance company
level.

The regulatory environment also plays a significant role in
validating the models (re)insurers use to assess risks and, ul-
timately, better protect the end customer. Regulations require
(re)insurers to notably assess the extreme losses of all their
risks to determine their minimum level of economic capital
to ensure the (re)insurance companies’ solvency in the event
of intensely severe years. The European Solvency II regula-
tion is a case in point. (Re)insurers with Europe-based head-
quarters are required to annually project their losses for a
200-year-return-period shock along with the associated risk
management actions such as the purchasing of reinsurance
coverage. This estimated amount of loss determines the level
of capital (re)insurers have to bear in their owned funds to
resist such a shock if it were to occur in the following year.
The models used to assess this loss require approval, and any
change is thoroughly monitored by regulatory authorities.

Sound and adaptive risk assessment and management are
built over time through a continuous reassessment of insur-
ers’ understanding of the “known knowns”, what we know
we know; the “known unknowns”, what we know we do not
know; and the “unknown unknowns”, what we do not even
know we do not know (Girard, 2009). This reassessment pro-
cess induces a knowledge cycle: data continuously support
the current understanding and knowledge of a risk, that is,
what we know we know. On the basis of this understanding,
models are also built to support assessing situations that have
yet to be experienced such as extreme events, that is, what we
know we do not know. However, the occurrence of unknown
unknowns triggered by natural and organizational issues that
insurers either ignore or have yet to understand points to a
pressing need to upgrade data collection, modelling meth-
ods, and tools to perpetually enhance the view of risk and
further insights for the decision-making process.

Prior to focusing on the scientific and technical advances
made to keep refining what we know about the risk drivers,
exposure, hazard, and vulnerability and how to increase in-
surers’ preparedness for the unknown, it is important to recall
how the reassessment process engendered the natural hazard
loss modelling framework from the outset.

2 Natural hazard modelling: a brief overview

2.1 The co-influence of the (re)insurance market and
natural hazard modelling

The actual assessment of natural-event-related costs has
greatly evolved over the past 30 years. At first, so-called
catastrophe models focused on the modelling of extreme
losses to assess the risk of a portfolio (i.e. large ensembles of

insured buildings). Before the 1990s, catastrophe modelling
consisted in extrapolating the loss experience to estimate ex-
treme losses. This loss experience was usually limited and
recorded as a total amount of loss per event and per insurer
or per event and for the whole (re)insurance market. The data
were thus too coarse to capture the three risk drivers’ individ-
ual impact on the losses: the exposure (e.g. if the exposure is
located in a more/less risky area), the hazard itself (e.g. what
portion of the losses are generated by a storm surge versus
wind in the case of a tropical cyclone), and the vulnerabil-
ity (e.g. how effective the flood defences or building codes
are). As a result, while the data and the resulting modelling
failed to take into account individual effects when assessing
extreme losses, it did reflect the state of what was known by
insurers and public authorities at that time.

Hurricane Andrew in 1992 and its unexpected impact
constituted a game changer for modelling natural-hazard-
generated losses (Grossi et al., 2005; Mitchell-Wallace,
2017). According to McChristian (2012), before Hurricane
Andrew, the loss assessment for an event of that strength was
USD 4 to USD 5 billion. This is 3 times lower than Hurri-
cane Andrew’s actual loss at USD 15 billion. Insurers under-
estimated their exposure as well as their exposure’s vulner-
ability to such an event. McChristian (2012) also indicates
that though past experienced losses were adjusted to reflect
current macro-economic trends, they failed to capture the in-
creasing population over coastal areas. In the aftermath of
Hurricane Andrew, a collective realization grew for the need
to both separately characterize the three drivers of the risk –
exposure, hazard, and vulnerability – and model their inter-
connections. Catastrophe modelling therefore evolved from
a statistical extrapolation to a framework divided into four
components as shown in Fig. 1: one component per risk
driver (exposure, hazard, and vulnerability) and one compo-
nent that contains the insurance policies’ financial conditions
and their modelling.

The occurrence of natural disasters, in particular those
with a strong impact on the (re)insurance market, contin-
ues to feed research insofar as the research is in turn inte-
grated into the hazard and vulnerability components of the
loss modelling framework every 2 to 5 years. This is how
the successive 1999 occurrence of the two extreme European
winter windstorms Lothar and Martin triggered the introduc-
tion of the serial clustering effect into modelling the fre-
quency of European winter windstorms (Mitchell-Wallace,
2017). The serial clustering effect refers to the higher prob-
ability that two extreme winter windstorms occur in a short
period of time, under particular atmospheric conditions (Vi-
tolo et al., 2009; Pinto et al., 2013; Priestley et al., 2017).
Prior to these windstorms, the assumption used to calculate
the occurrence probability of European winter windstorms
followed the Poisson distribution and thus failed to allow
for the increased probability of successive events. As shown
by Priestley et al. (2018), the clustering effect has a signifi-
cant impact on the estimation of yearly aggregated losses and
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Figure 1. Loss modelling framework composed of four components. A simulation engine is used to intersect the exposure information
with the catalogue of hazard events and apply the damage ratio characterized with the vulnerability curve, function of hazard, and building
characteristics. This operation leads to a loss, gross of any financial insurance conditions. The application of the financial conditions is
performed in the financial module.

therefore on the sizing and the wording of reinsurance cover
policies.

Within the reinsurance market, the use of catastrophe mod-
els – developed internally or licensed through third-party
vendors – has grown in the aftermath of Hurricane Andrew.
For insurers to cede their risk, they must provide their expo-
sure information to reinsurers so that they can conduct a loss
assessment prior to estimating the reinsurance premium cor-
responding to the accepted risk. Today, catastrophe models
continue to be used primarily to set reinsurance programmes
(i.e. total capacity and pricing).

The implementation of regulation has prompted insurers
to use catastrophe models, mainly licensed by third-party
vendors, as tools to assess the risk, define the risk appetite,
and set the solvency capital requirement. For example, the
Solvency II regulation implemented in Europe in 2016 re-
quires (re)insurers with Europe-based headquarters to an-
nually assess their loss for a 200-year-return-period shock.
(Re)insurers conduct this assessment for all the risks they
are exposed to. They then aggregate these estimated losses
to determine the total potential loss and the economic cap-
ital they have to bear in their owned funds. To achieve this
assessment, (re)insurers have two options: either to use the
so-called standard formula, calibrated on market exposure
and at a relatively coarse granularity, or to develop an inter-
nal view of their risk that requires regulator approval. Most
(re)insurers choosing to develop their own view of natural
hazard risk use one or several models licensed to third-party
vendors; others develop their own suite of models. Model
evaluation becomes a necessary activity for assessing the
model’s strengths and limitations and leads to gaining in un-
derstanding and in taking ownership of the model. When
(re)insurers opt for using third-party models, adjustments

may be defined and applied to the models’ loss estimation
to address identified limitations (e.g. a non-modelled peril
such as storm surge induced by windstorms). (Re)insurance
companies also invest in the development of in-house mod-
els either on scopes where no third-party vendors model is
available or to gain in flexibility and transparency.

In the past few years, both the scope and the use of catas-
trophe models have evolved. Indeed, to estimate the insur-
ance premium of an average risk, insurers are now as inter-
ested in capturing small frequent events as they are in captur-
ing large rare ones. In the hazard module, the full spectrum of
events (i.e. moderate–intense, frequent–rare events) is con-
sidered. In the vulnerability module, vulnerability curves
cover the entire range of hazard intensity. As for the mod-
elling scope, catastrophe models also exist for human-made
perils such as cyber threats and terrorism. To reflect this evo-
lution, we will use the terms “natural hazard models” and
“natural hazard modelling” as this allows for greater preci-
sion regarding the model’s targeted scope and reaffirms the
use of these models for purposes other than the analysis of
extreme events.

2.2 Natural hazard modelling framework

The loss modelling framework is composed of four compo-
nents, namely exposure, hazard, vulnerability, and financial
components (Fig. 1). The description below provides a brief
introduction. Greater detail on the different components can
be found in Mitchell-Wallace (2017).

The exposure component contains the insurance portfo-
lio’s information: the buildings’ locations and their key phys-
ical properties (e.g. structure, occupancy, year of construc-
tion). The hazard component contains a synthetic catalogue
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of several tens of thousands of events that represent the range
of possible and plausible events for a given natural hazard
(e.g. Asia typhoon, US ground shaking, European severe
convective storms), ranging from small frequent events to
extreme rare events. Each event is characterized by a foot-
print (i.e. the maximum intensity over event duration) and an
annual occurrence probability. The vulnerability component
is composed of vulnerability curves that translate the haz-
ard’s intensity into a building damage ratio. Ideally, there is
one vulnerability curve for every combination of a building’s
physical properties. Finally, the financial component contains
the insurance contract’s financial data: the sum insured cor-
responding to the coverage (building, content, business inter-
ruption) and the deductibles and limits, as well as the coin-
surance programmes or reinsurance treaties, if any.

For every event of the hazard component and for every
building in the insurance portfolio, the three-step loss mod-
elling process consists in the following:

1. intersecting the building’s location with the event foot-
print to obtain the location’s hazard intensity value;

2. factoring in the hazard intensity value and the building’s
physical properties and using the vulnerability curve re-
flecting the building’s characteristics to derive the cor-
responding damage ratio;

3. applying the damage ratio to the insured value of the
building, as specified in the financial module, to provide
a loss amount prior to applying the financial conditions
to the loss amount to obtain the ultimate loss borne by
the insurance company.

The primary outputs of natural hazard models are exceedance
probability distributions representing the probability of ex-
ceeding a certain amount of loss. Two distributions are com-
monly used: the one for the annual maximum loss – occur-
rence exceedance probability (OEP) – and the one for the
annual aggregated loss – aggregate exceedance probability
(AEP). The annual average loss (AAL) is also frequently
used for budget planning for instance. Analyses of building
losses are aggregated at granularities going from the build-
ing level to the portfolio level to characterize the probability
of exceeding an amount of loss. This granularity is set as a
function of an analysis objective, i.e. policy underwriting or
portfolio management.

The loss modelling process is supported by a platform
that contains (i) the data of each component stored in a
specific format (e.g. CSV or netCDF file, digital precision)
and (ii) the code functions that process data and estimate
the losses. Until the early 2010s, the loss modelling process
could only be performed on proprietary platforms. Launched
in 2010, the Oasis1 initiative’s ambition is to provide an
open-source loss modelling platform to further transparency

1https://oasislmf.org/our-modelling-platform (last access:
12 January 2023)

and to expand the use of natural hazard modelling beyond the
(re)insurance market.

From a business perspective, integrating such a process
into daily operational activities requires the runtime to take
no more than a few hours. As an example of volumes at stake,
assuming we have a catalogue of around 30 000 events and
a portfolio of 5 million buildings, there will be 150 billion
computations to run and as many data to temporarily store in
a constrained information technology (IT) environment with
limited storage space and a memory limit. To keep to the ex-
pected runtime and given the volumes considered, the loss
modelling platform is to be rationalized and optimized, even
if it results in a drop of formatting flexibility and data preci-
sion within the four components.

Today’s IT computational constraints make it necessary to
downgrade the quality and sophistication of the researchers’
modelling to obtain results within an acceptable period. This
compromises the assessment that could be attained and en-
genders a precision gap between what research produces and
the derivative data ultimately integrated into the loss mod-
elling framework. For example, the severity of natural events
is captured in the hazard component through the use of haz-
ard footprints defined as the maximum hazard value (e.g.
wind speed, flood depth, peak ground acceleration) at each
grid cell of the considered area over the duration of the
event. The information relative to the event’s duration and to
the hazard value’s evolution over time however is lost, even
though both of these parameters affect the damage assess-
ment of a building.

The four-component loss modelling framework makes it
easier to identify the areas where, component by component,
a more in-depth investigation is needed to refine data collec-
tion and modelling. The next section focuses on three of the
loss modelling framework’s components, highlighting where
(i) thorough and systematic data collection needs to be put
in place and (ii) the loss modelling framework requires in-
vestment to upgrade it and tailor it to respond to insurers’
business needs.

3 Current challenges in modelling natural hazards

The (re)insurance market’s current body of knowledge on
natural hazard loss modelling results from over 30 years of
research involving private companies like (re)insurers, bro-
kers, and modelling firms and academic researchers in at-
mospheric sciences, geosciences, civil engineering studies,
and data sciences, to name but a few disciplines (Ward et
al., 2020). The learning curve has been steep, closely linked
to the increase in computer power (e.g. enabling the develop-
ment and implementation of millions of possible climatic or
seismic scenarios) and the collection of increasingly granular
observational data (e.g. hazard, claims, geocoded exposure).
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3.1 Exposure component

Through an increasing use of natural hazard models, insurers
have realized that both data quality and data completeness
reduce uncertainty in modelling. Over the past 5 to 10 years,
insurers have significantly improved the collection process of
information characterizing their exposure, namely the coor-
dinates of the location of the buildings as well as the build-
ings’ physical properties. As mentioned previously, exposure
data in the loss modelling process are used (i) to estimate the
hazard’s severity at the location of the building and (ii) to
select the suitable damage curve. The more precise the ex-
posure data, the more accurate the loss evaluation will be.
However, as some elements are particularly difficult to obtain
at the time of underwriting individual insurance, the system-
atic extraction and completion of the data remain a challenge,
and any missing information needs to be completed once the
policy is underwritten either in the exposure database or at a
later stage in the modelling.

The increasing volume and precision of geographical in-
formation captured by satellites have allowed for the devel-
opment of performant geocoding tools supporting the com-
pletion of exposure databases. With an address, it is possible
to obtain the geolocation, the structure of the building, the
number of floors, and even the roof type, all critical drivers
of damage for different perils (Ehrlich and Tenerelli, 2013;
Castagno and Atkins, 2018; Kang et al., 2018; Schorlem-
mer et al., 2020). This progress in characterizing buildings’
properties along with geolocations has been a major advance-
ment, enabling insurers to visualize and analyse their accu-
mulation with regards to natural hazard risk.

When critical information is missing in an exposure
database, assumptions are made by using either other data
sources to complete the exposure database (e.g. exposure dis-
aggregation to fill in buildings’ geolocation) or generic vul-
nerability curves defined as the weighted average of specific
vulnerability curves in the loss modelling process. Any omis-
sion regarding the properties of a building’s construction in-
duces an uncertainty in that given building’s exposure that
can be quantified through sensitivity tests that assess varying
combinations of a building’s construction properties and the
resulting impact on losses. The impact of inferring the ge-
olocation might however be greater, depending on the peril
in question, for example flood and severe convective storms.
Testing the impact on losses of a disaggregation scheme re-
quires running the model using several versions of disaggre-
gated portfolios, which is inconceivable today notably be-
cause of runtime constraints. The disaggregation technique
could also provide a solution to modelling the impact of nat-
ural hazard on movable exposure. Today, motor and marine
exposures are modelled like building exposure. The geoloca-
tion used is the car owner’s address or the vessel’s home port
as specified in the policy contract. Disaggregating the motor
or marine exposure multiple times would give different vehi-
cle locations and hence capture a range of potential losses.

3.2 Hazard component

An ever-growing number of data on the hazard component
have been made accessible, refined, and maintained. A mul-
titude of types of data, from observations to model simula-
tions or a mixture of both, substantially support the develop-
ment of hazard catalogues and their validation. Hazard mod-
elling sets out to characterize, via a hazard event catalogue,
the full spectrum of severity and frequency of hazards in a
specific geographical area. A review of hazard modelling ap-
proaches by peril can be found in Ward et al. (2020). Beyond
the perpetual enhancement necessary to complete and refine
the view of the risk and to adapt to an ever-evolving environ-
ment, uncertainties persist in being only partially quantified
due to (i) IT constraints and (ii) the information loss perpet-
uated by simplifying assumptions to derive data compiled in
the loss modelling framework. Resolving these two sources
of uncertainties would enable insurers to heighten their un-
derstanding of risk and make sounder business decisions.

Uncertainties in the hazard component come from the
input data and the modelling parameters used to generate
the stochastic event catalogue. For example, Kaczmarska et
al. (2018) quantify how in changing flooding parameters the
loss estimates are impacted. Winter et al. (2018) go a step
further, notably in identifying and quantifying uncertainties
present in the production of the hazard event catalogue. Such
an analysis requires first running the production of the haz-
ard catalogue several times to test different sets of parame-
ters and secondly running the loss simulation engine multiple
times. Including the quantification of uncertainties is costly
in terms of both computer power and runtime but should be
systematized as a modelling best practice.

As mentioned in Sect. 2.2, however, the information rela-
tive to an event’s duration and to the hazard value’s evolution
is lost when generating the event’s footprint, i.e. the maxi-
mum value of hazard intensity over the duration of the event.
In (re)insurance policies, an event’s duration is a metric used,
within the hours clause, to specify that the (re)insurer will
cover all the financial losses accumulated in a defined num-
ber of hours, varying depending on the peril. If financial
losses are still recorded surpassing the defined number of
hours, this will be counted as a second and separate event and
activate a double reimbursement from the reinsurer. Accord-
ing to how the reinsurance programme is defined, the insurer
may have to pay additional fees to obtain cover for the sec-
ond event. Analysing the impact of the hours clause on the
final loss would therefore be beneficial for the (re)insurance
market. The loss modelling framework must evolve to allow
for more flexibility and more completeness.

3.3 Vulnerability component

When a natural event occurs, damage results from the rup-
ture of one or several of the building’s components, the level
of the rupture depending on the hazard’s severity and the

https://doi.org/10.5194/nhess-23-251-2023 Nat. Hazards Earth Syst. Sci., 23, 251–259, 2023



256 M.-S. Déroche: An insurer’s perspective on natural hazard risk modelling

components’ vulnerability. In the aftermath of the event, re-
construction costs are assessed based on the current mate-
rial prices and labour costs. However, in post-disaster situa-
tions, reconstruction costs may be significantly higher due to
a post-event demand surge and inflation. This effect is called
post-loss amplification (PLA) and is modelled using a sig-
moid function whose calibration remains difficult as (i) it has
been observed subsequent to very extreme events and (ii) re-
construction costs or claims available in the historical record
include the PLA effect. As the PLA may have a substantial
impact on the ultimate amount of loss paid by insurers, fur-
ther research is needed to analyse and model this effect.

Systematic data collection of damage information and its
associated hazard magnitude is therefore vital to characterize
the impact of natural hazards on buildings and to improve
the calibrations not only of the buildings’ destruction rate
but also of the reconstruction costs in the vulnerability com-
ponent. New technologies such as drones and satellites pro-
vide alternative ways to access impacted areas to collect de-
tailed and granular measurements within a few hours or days
of an event’s occurrence (Chesnel et al., 2007; Kakooei and
Baleghi, 2017). While there has been a substantial increase in
the availability of observational data over the past 2 decades
(Yu et al., 2018), further investments should be made to sys-
tematically collect (i) the event’s level of hazard severity at
the building’s location (i.e. values of the relevant hazards’
variables leading to the building’s damage), (ii) the building’s
level of damage and the prevention measures if any (concur-
rently recording all relevant information on the building it-
self), and (iii) the level of associated repair costs (including
information on loss adjustments and economic metrics such
as post-event inflation). This data collection effort should be
a joint public- and private-sector undertaking to build up core
common knowledge.

A point of attention is the need for data collectors to co-
ordinate and use the same damage scale to avoid duplicating
and overlapping datasets that are incomparable. Research ini-
tiatives dedicated to gathering various data sources already
exist at the country level. One such example is the HOWAS
database for flood damage in Germany (Kreibich et al., 2017;
Kellermann et al., 2020). Could this type of work be ex-
tended to the whole of Europe or even more globally? The
PERILS2 initiative is worth mentioning as it is an exam-
ple of the (re)insurance market’s claims data collection ini-
tiative. When an event’s loss estimation exceeds a defined
threshold, the PERILS organization collects claims from the
(re)insurers taking part in the consortium. While these data
are aggregated at the CRESTA3 level, the initial estimates
of the loss ratios are fundamental to establish the market’s
loss benchmarks and derive market vulnerability curves for
instance.

2https://www.perils.org/ (last access: 12 January 2023)
3https://www.cresta.org/ (last access: 12 January 2023).

While the challenges set out in this section indicate how to
improve what we know we do not know, they also highlight
the potential limitations of the current loss modelling frame-
work and its simulation platform. The shortcomings of the
current loss modelling framework herein described point to
the need for an in-depth review of the framework to improve
and increase insurers’ understanding of natural hazard risk,
particularly in an ever more connected environment that is
described in the next section. From an insurer’s perspective,
in a context of growing focus on natural hazard impacts, data
collection, modelling flexibility, and transparency have be-
come core strategic elements to enhance and gain confidence
in natural hazard risk assessment. To achieve modelling flex-
ibility and transparency, the loss modelling framework will
require in-depth changes to absorb the high number of data
and to incorporate uncertainty quantifications. If tackled col-
lectively, data collection, especially relating to damages and
claims, could contribute to better city planning and more ef-
fective prevention measures that would in turn increase soci-
ety resilience.

4 Future challenges and further needs

Since the building of the loss modelling framework in the
1990s, clients have become more interconnected (Gereffi et
al., 2001), and the correlations between natural hazards and
regions have also become better understood and quantified
(Steptoe et al., 2018; Zscheischler et al., 2020; Tilloy et
al., 2020). This section explores three elements that would
advance natural risk assessment and would support insurers
in their ambition to more accurately project and plan out their
business activities insofar as natural hazards are concerned.

4.1 Introducing a fifth component to quantify
uncertainty

As stated in previous sections, the assessment of uncertainty
all along the modelling chain constitutes the loss modelling
framework’s notable shortcoming and the one that requires
further investigation. To a certain extent, uncertainty is inher-
ent to modelling and is partly captured in the loss modelling
framework today through (i) the primary uncertainty, that is
the assumptions and the simulation of the hazard catalogue,
and (ii) the secondary uncertainty, that is the damage and loss
assessment.

A prerequisite in understanding the uncertainties embed-
ded in the modelling process is comparing and evaluating
the models themselves. To date, models are however insuffi-
ciently transparent to perform such a comparison. This points
to a need for more transparency. In parallel, to move forward,
it is fundamental to systematically quantify these uncertain-
ties to change both how we communicate them and how we
manage them. This will enable insurers to take ownership
of uncertainties’ management and provide insurers with a
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tool to ensure ongoing model enhancements (Thompson and
Warmink, 2016; Doyle et al., 2019).

Incorporating the quantification of uncertainties in the loss
modelling framework does make it more costly in terms of
computer power and runtime. In light of the rapid evolution
of IT, computer power and runtime should nonetheless not be
an issue for long. The question will then be how to implement
a comprehensive uncertainty quantification scheme. While
Beven et al. (2018) suggest a framework to deal with epis-
temic uncertainty in natural hazard modelling, recent work
like that of Noacco et al. (2019) and KC et al. (2020) has been
carried out to address quantifying uncertainty with appropri-
ate methods and tools. Could we not introduce a specific “un-
certainty component” that, combining the multiple datasets
from the different components, would deal with an ensemble
of models and propagate the quantification all along the loss
modelling process?

4.2 Supply chain modelling

With globalization, clients around the world have become
increasingly interconnected and dependent on each other
within so-called global value chains (Gereffi et al., 2001;
Baldwin and Lopez-Gonzalez, 2015; Phillips, 2018). This
dependency became apparent with the 2011 floods in Thai-
land when Thailand’s brutal interruption of microprocessor
production led to a halt in global production; a global short-
age of microprocessors; and consequently, a loss in benefits
for companies producing chips, hard disc drives, and other
electronic devices (Chopra and Sodhi, 2014; Haraguchi and
Lall, 2015).

From an insurer’s perspective, suppliers defaulting in their
deliveries due to the occurrence of a natural hazard is not in-
surable, as it is not quantifiable with the current modelling
that fails to capture this connection between suppliers and
their client producers. Supply chain data have improved (Ti-
wari et al., 2018; Beorchia and Crook, 2020) and need to
be analysed further and incorporated into natural hazard loss
modelling. This could provide a source of opportunities for
insurers to deliver new services to customers while contin-
uing to contribute to advancing research in visualizing and
measuring the levels of complexity (volume, direction, and
intensity of interconnections).

The interconnections between hazards or between clients
have yet to be captured even in the latest loss modelling
framework. It remains siloed by hazard and region and omits
supply chain information. Failing to integrate these interac-
tions may result in instilling a bias in our understanding of
the underlying risk. A deeper review of the loss modelling
framework is to be conducted to reflect on this new and com-
plex reality.

4.3 Forward-looking scenario: modelling the future of
natural hazard risks

Natural hazard models have been primarily developed to
overcome the limited historical loss record and to assess ex-
treme losses driven by exposure, hazard, and vulnerability in
the present. They are now envisaged as tools to assess the
future of natural hazard risks, in particular in the context of
climate change.

To perform this analysis, insurers need not only to project
the plausible future scenarios of hazard events (e.g. in the
case of climate change impact studies, information provided
by climate model simulations) but also to project the evolu-
tion of exposure and vulnerability. In this context, the two
most pressing questions global insurers need to respond to
are (i) how to gather future projections of population growth
or decline and/or wealth worldwide and (ii) how will build-
ing codes evolve.

Cremen et al. (2022) perform a thorough review of the
available literature and provide initial answers to these ques-
tions. Such a review is particularly enlightening to enhance
the simple initial assumptions that were made, especially for
exposure growth and vulnerability. Furthermore, as vulnera-
bility is a crucial element in adapting to climate change im-
pacts, further investigations on the implementation of pre-
vention measures and the quantification of the resulting risk
reduction are needed.

Finally, while this forward-looking analysis is necessary,
its outcomes should be taken with great caution. As Fiedler
et al. (2021) highlight, uncertainty around future exposure,
hazard, or vulnerability projections is significant and com-
pounds the uncertainty already present in the loss modelling
framework.

5 Conclusion

To date, models have evolved through the incorporation of
new information, without ever undergoing an in-depth trans-
formation. Modifications have stemmed from the observa-
tion of the growing number of interconnections – and mutual
impacts – at multiple levels: between insured customers and
their suppliers and interactions and cross-impacts between
the disasters causing natural phenomena. Though this make-
do approach has served in the past, it no longer suffices. In
today’s world where complex intrinsic interconnections exist
between natural hazards, exposure, and vulnerability, mod-
els fail to fully reflect this reality. They are in want of an in-
depth transformation. Only after such a transformation will
they convey and advance the new level of understanding in-
surers need to cultivate and enable the design and testing of
new products and protection mechanisms.

As said in Baum (2015), “threats are rarely completely un-
known or unquantifiable”. Sometimes what we do not know
is already present in the data or the model, but it has yet to
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be understood or analysed. We propose reflecting on how to
bring together a transdisciplinary research team composed
not only of IT, data sciences, and geosciences but also of civil
engineering, urban planning sciences, and socio-economic
sciences to investigate the opportunities to build global loss
models for natural hazards that would deal with the complex-
ity of the interactions of both natural elements and the cus-
tomer ecosystem. This would enable insurers to better antici-
pate the needs of their customers while being better equipped
to cope with not only uncertainty but also the unknown.
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