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Abstract. Droughts in Thailand are becoming more severe
due to climate change. Developing a reliable drought mon-
itoring and early warning system (DMEWS) is essential to
strengthen a country’s resilience to droughts. However, for
a DMEWS to be valuable, the drought indicators provided
to stakeholders must have relevance to tangible impacts on
the ground. Here, we analyse drought indicator-to-impact re-
lationships in Thailand, using a combination of correlation
analysis and machine learning techniques (random forest). In
the correlation analysis, we study the link between meteoro-
logical drought indicators and high-resolution remote sens-
ing vegetation indices used as proxies for crop yield and for-
est growth impacts. Our analysis shows that this link varies
depending on land use, season and region. The random for-
est models built to estimate regional crop productivity allow
a more in-depth analysis of the crop- and region-specific im-
portance of different drought indicators. The results high-
light seasonal patterns of drought vulnerability for individ-
ual crops, usually linked to their growing season, although
the effects are somewhat attenuated in irrigated regions. Inte-
gration of the approaches provides new, detailed knowledge
of crop- and region-specific indicator-to-impact links, which
can form the basis of targeted mitigation actions in an im-

proved DMEWS in Thailand and could be applied to other
parts of Southeast Asia and beyond.

1 Introduction

Droughts are one of the costliest natural hazards worldwide
(FAO, 2021). Their frequency and duration are expected to
increase in many parts of the world due to climate change
(IPCC, 2021, 2022; WBG and ADB, 2021). Over the past
few decades, Thailand has already seen a rise in impacts from
a warming world, experiencing increasingly unpredictable
weather, with an alternation of droughts and floods on a 2- to
3-year cycle (Ikeda and Palakhamarn, 2020), causing a wide
range of impacts. This trend is expected to intensify further in
the near future in Southeast Asia, as highlighted by Hariadi
et al. (2023).

One notable recent example is the severe 2020 drought,
which was driven by a shorter monsoon period and a strong
El Niño event (CFE-DMHA, 2022). The drought caused
impacts in water supply, water quality, crop production
and the economy, with an economic loss of THB 46 bil-
lion (USD 1.4 billion, GBP 1.1 billion; Sowcharoensuk and
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Marknual, 2020). Other notable recent droughts include the
2005 event, in which 11 million people in 71 (out of 77)
provinces were affected by water shortages; the 2008 event
where over 10 million people in rural areas were affected
(Ikeda and Palakhamarn, 2020); and the 2015–2016 event,
which affected the upper-middle part of the country the most,
and was so severe that at the Ubol Ratana Dam, in northeast-
ern Thailand, steps were taken to use “dead storage” (i.e. the
last 1 % in the bottom of the reservoir; CFE-DMHA, 2022).
Overall, the National Disaster Relief Centre estimates that
drought events between 1989 and 2017 caused more than
THB 19.1 billion (USD 0.6 billion, GBP 0.5 billion) of dam-
age to the Thai economy, with average annual economic
damages of almost THB 0.6 billion per year (USD 20 mil-
lion, GBP 16 million; NESDC, 2021).

One sector particularly affected by droughts in Thailand is
agriculture (Yoshida et al., 2019); in particular, rice, corn and
other cash crops periodically suffer economic losses (Ikeda
and Palakhamarn, 2020). Thailand is currently the second
largest rice exporter in the world (OECD, 2020), and rice
fields utilise 70 % of Thailand’s total water supply (ICID,
2020). Thailand is also the second biggest sugar exporter,
and the 2020 drought resulted in a 28 % fall in production
(Thammachote and Trichim, 2021). However, drought risk
is also moderated or exacerbated by human activities. Areas
with water reservoirs and extensive irrigation facilities are
more resilient and are impacted less by droughts than rainfed
agriculture and areas without reservoir storage. In the north-
east, higher water demand for rice cultivation during the dry
seasons, combined with limited irrigation infrastructure, ex-
acerbates water scarcity (CFE-DMHA, 2022).

Thirty percent of Thailand’s population work in agricul-
ture, and drought threatens their income and poses food se-
curity issues. Given this considerable impact that droughts
have on Thai society and the expectation of it worsening in
the coming years and decades, there is an urgent need to im-
prove preparedness for and resilience to droughts in the coun-
try (UNDRR and ADCP, 2020). This also aligns with the
priorities of the UNDRR’s (United Nations Office for Dis-
aster Risk Reduction) Sendai Framework for Disaster Risk
Reduction 2015–2030, which aims to achieve a substantial
reduction in disaster risk and the loss of lives, livelihoods and
health, as well as economic, physical, social, cultural and en-
vironmental assets of persons, businesses, communities and
countries over the next 15 years (UNDRR, 2015). One im-
portant aspect of improving drought resilience lies in enhanc-
ing the drought monitoring and early warning (DMEW) ca-
pabilities of a country, in order to detect droughts in their
early stages such that proactive mitigation strategies can be
implemented (Bachmair et al., 2016a).

According to the World Meteorological Organization
(WMO), drought can be defined as a prolonged dry period
in the natural climate cycle (WMO, 2014). Since Wilhite
and Glantz’s study (1985), drought has commonly been cate-
gorised into various types, often differentiating between me-

teorological, hydrological and soil moisture (or agricultural)
droughts, alongside various others. Many drought indices
have been developed for drought monitoring purposes for
these different types of drought over the past few decades
(Lloyd-Hughes, 2014). In this paper, we consider a drought
to be a period drier than normal for that time of year at a given
location and distinct from the impacts it causes. Droughts can
occur without causing any impacts, in which case they are not
a concern for water managers or water users.

Drought impacts (e.g. crop failure, water quality issues,
etc.) are what stakeholders are interested in from a DMEW
point of view. However, impact data are scarce and generally
not routinely monitored. There are significant challenges in
collecting and monitoring drought impacts, including the vis-
ibility of drought impacts, which can be diffuse, delayed and
non-structural (e.g. in comparison to the impacts of flood-
ing). Nevertheless, while impact research is inherently chal-
lenging, it is also pivotal to drought management. While rain-
fall or river flow deficits can help track drought evolution, ul-
timately it is the impacts of drought which are of greatest im-
portance for water managers and other stakeholders. Numer-
ous international initiatives have highlighted that information
on drought impacts is the key “missing piece” of drought
monitoring and forecasting (e.g. Bachmair et al., 2016a), and
some effort has been invested in collating drought impact
data at national or international scales (e.g. in Europe: Eu-
ropean Drought Impact report Inventory (EDII), Stahl et al.,
2016; in the US: Drought Impact Reporter (DIR), Smith et
al., 2014). In an age where there have been huge advances in
real-time hydrometeorological monitoring, better prediction
of impacts would be the single greatest practical advance in
paving the way for improved drought resilience. Understand-
ing the link between drought indicators and impacts is an es-
sential first step to achieve this goal (Bachmair et al., 2016a).

Some of the most commonly used indices in operational
DMEWS are the meteorological standardised indices such
as the Standardised Precipitation Index (SPI; McKee et al.,
1993) and Standardised Precipitation Evapotranspiration In-
dex (SPEI; Vicente-Serrano et al., 2010). However, these in-
dicators based purely on meteorological status are not al-
ways well correlated with drought impacts (Bachmair et al.,
2018), as impacts often occur when precipitation deficits
have propagated through the hydrological cycle to deficits in
soil moisture or river flows, for example. Moreover, precipi-
tation deficit is likely to cause more impacts in water-limited
regions than in regions with abundant water, though water
management practices can counteract this effect to a cer-
tain extent. Drought indices are only meaningful to decision-
makers if the relationship to drought impacts is known, i.e.
understanding the type and magnitude of impacts that can
be expected for different drought index values. For regions
where drought impact data are available, the relationship be-
tween drought indices to drought impacts can be studied (e.g.
Bachmair et al., 2016b; Parsons et al., 2019; Wang et al.,
2020). Where drought impact data are not readily available,
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remote sensing vegetation indices (VIs) can provide a proxy
for drought impacts on vegetation.

VIs are commonly used to monitor the impacts of drought
on vegetation. The Normalised Difference Vegetation In-
dex (NDVI) is one of the most established and widely used
VIs (Tucker, 1979). It exploits the sharp increase in vege-
tation reflectance across the red and near-infrared (NIR) re-
gions of the electromagnetic spectrum, known as the “red
edge”, to detect photosynthetically active plant material and
infer plant stress. However, the Vegetation Condition Index
(VCI), a pixel-based normalisation of NDVI, offers a more
robust indicator for seasonal droughts by minimising spuri-
ous or short-term signals and amplifying long-term trends
(Anyamba and Tucker, 2012; Liu and Kogan, 1996). VCI
has been widely used and has proved to be effective in mon-
itoring vegetation change and signalling agricultural drought
(e.g. Jiao et al., 2016). The Vegetation Health Index (VHI)
is a composite index that combines the VCI and Temper-
ature Condition Index (TCI) – a pixel-based normalisation
of the land surface temperature (LST) – and is also com-
monly used to monitor vegetation stress and drought con-
ditions (Kogan, 1997). VHI incorporates the effect of tem-
perature and is therefore more suitable for monitoring the ef-
fect of drought in species more sensitive to concurrent water
and heat stress. VHI has successfully been used worldwide
to monitor vegetation stress and drought conditions (e.g. Jain
et al., 2009; Singh et al., 2003; Unganai and Kogan, 1998).
Note that these VIs are relative indices that compare current
conditions to the long-term average to measure vegetation
health and therefore are dependent on the environmental and
climatic conditions of the study area. As such, they should be
used in conjunction with information on the drought hazard
situation to distinguish between drought and different haz-
ards on vegetation (e.g. disease, floods, anthropogenic im-
pacts, etc.).

In addition to their use as drought indicators as discussed
above, VIs are often used as proxies for agricultural drought
impacts. The relationship between crop yield and VIs varies
by crop type and location but has been shown to be strong in
many locations. For example, strong correlations were found
between VIs and crop yield in North America (e.g. maize in
Bolton and Friedl, 2013; winter wheat, sorghum and corn in
Kogan et al., 2012), South America (e.g. white oat in Brazil
in Coelho et al., 2020), Europe (e.g. maize in Germany in
Bachmair et al., 2018; cereals in Spain in García-León et al.,
2019), Asia (e.g. sugarcane in India in Dubey et al., 2018),
the Middle East (e.g. paddy rice in Iran in Shams Esfand-
abadi et al., 2022), Africa (e.g. millet and sorghum in the
Sahelian region in Maselli et al., 2000) and Australia (e.g.
wheat in Smith et al., 1995).

Data science and machine learning are fast-moving fields
and are increasingly being used for the study of environmen-
tal science, though still in its infancy (Blair et al., 2019).
Random forest (RF) models have been used to link drought
indicators to drought impacts (e.g. Bachmair et al., 2016b),

including drought impact forecasting with relative success
(Hobeichi et al., 2022; Sutanto et al., 2019). These emerg-
ing techniques within the field of DMEW offer great poten-
tial to move from simply monitoring droughts using indices
to drought impact estimation, which would revolutionise the
early warning aspect of drought mitigation, enabling action
to be taken before impacts occur.

Despite the significance of droughts in Thailand, few pre-
vious studies have analysed the link between drought indices
and drought impacts in the country. Thavorntam et al. (2015)
and Thavorntam and Shahnawaz (2022) looked at links be-
tween SPI and VIs but only at four test sites in the north-
east of Thailand. Prabnakorn et al. (2018) and Khadka et
al. (2021) have both focused on the drought-prone Mun River
basin situated in the northeast of Thailand; both studies have
found that SPEI shows a good correlation with crop yield.
However, no previous study has looked comprehensively at
drought indicator-to-impact links at a national scale in Thai-
land, and to our knowledge none has used machine learning
techniques to estimate drought impacts in the country.

The ambition of this paper was to fill the gap in the liter-
ature on studies investigating the links between drought in-
dicators and impacts at a national scale in Thailand. Specif-
ically, we focused on agricultural drought impacts, consid-
ering different crops and seasons, and compared the rela-
tive utility of traditional statistical methods at high-resolution
(i.e. remote sensing data at provincial scale) vs. lower-
resolution sectoral-specific analyses (i.e. applying machine
learning approaches to regional/provincial yield data) to in-
form improved approaches for national DMEW. The overall
aim was to support agricultural drought management and in-
form targeted action and policy by water resource managers.
To that end, this paper evaluates how relationships between
drought indices and impacts vary according to the time of
year, index, accumulation period length and location in Thai-
land. The approach presented is relevant internationally and
could be replicated in other parts of the world to improve the
management of agricultural droughts and their impacts.

2 Data and methods

2.1 Study area

Thailand is located between 5◦30′ and 20◦30′ N latitudes and
between 97◦30′ and 105◦30′ E longitudes and has an area of
51 million ha, from which 46.5 % is agricultural area (77 %
of which is rainfed). Paddy fields cover 46 % of that culti-
vated area, with around 30 % being irrigated (OAE, 2022).

Most of the country experiences distinct wet and dry sea-
sons, except some parts of the southern region, which expe-
rience a wet and humid climate throughout the year. The av-
erage annual rainfall of the whole country is about 1700 mm,
ranging from 1200 mm in the north and central plain up to
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Figure 1. Map of Thailand showing provinces and regions used in
this study. The provinces are the smaller areas shown within each
of the coloured regions.

2000–2700 mm in the western part of the south and the east-
ern part of the country (ICID, 2020).

Droughts often occur in two distinct periods: between June
and September, as a consequence of the delay in the onset of
rainfall or due to low precipitation during the dry season be-
tween October and May. The occurrence of drought in Thai-
land is increasingly associated with the El Niño–Southern
Oscillation (ENSO) cycle, which brings drier-than-average
rainfall conditions (UNDRR and ADCP, 2020).

Figure 1 shows the six regions and 77 provinces that were
used in our analysis. Provinces (changwat) are the primary
local government unit in Thailand. The regions do not have
an administrative character but are commonly used for geo-
graphical and scientific purposes (e.g. Martin and Ritchie,
2020; Sanoamuang and Dabseepai, 2021). The dominant
land cover for each province is shown in Fig. S3 in the Sup-
plement.

In addition to these regions and provinces, in the Results
and Discussion sections, we use “the north” to refer to the
area encompassing regions N, NE, C, W and E, as opposed
to “the south”, comprising only region S.

Regional differences

The northeastern region (NE) consists mainly of the dry Kho-
rat Plateau. Unlike the more fertile areas of Thailand, the NE
has a long dry season, and much of the land is covered by
sparse grasses. The main crops cultivated in this region are
glutinous rice (two harvests), cash crops such as sugar cane
and cassava, and to a lesser extent rubber. This region is the
most prone to drought (LePoer, 1987) and as such is partic-
ularly vulnerable to agricultural droughts, as highlighted by
several studies (e.g. Mongkolsawat et al., 2001; Sa-nguansilp
et al., 2017; Wijitkosum, 2018).

The northern region (N) is a mountainous region and the
most forested region of Thailand. Although it has suffered
from extensive deforestation due to agricultural expansion
over the past few decades, there has been some reforesta-
tion in recent years (RFD, 2022). Many dams and irrigated
croplands are situated in this region.

The western (W) region is characterised by high moun-
tains and steep river valleys. Western Thailand hosts much of
Thailand’s less-disturbed forest areas. The region is home to
many of the country’s major dams.

The eastern (E) region is characterised by short mountain
ranges alternating with small basins of short rivers which
drain into the Gulf of Thailand; fruit is a major component
of agriculture in the area.

The central (C) region is a natural self-contained basin of-
ten termed “the rice bowl of Asia”. A complex irrigation sys-
tem and fertile soil support the cultivation of rice paddies.
It is the most densely populated region of Thailand, with
metropolitan Bangkok on its southern edge (LePoer, 1987).

The southern region (S) is part of a narrow peninsula and
is distinctive in climate, terrain and resources. This region
is characterised by north–south mountain barriers, tropical
forest and the absence of large rivers. It is the wettest region
in Thailand and is not generally considered to suffer from
drought impacts (LePoer, 1987).

2.2 Data

Table 1 lists the data used in this study, with details on the
type of data, spatial resolutions, temporal resolutions, peri-
ods available, post-processing applied in this study and ref-
erences.

From these datasets, the following drought indicators were
calculated.

– Standardised meteorological indicators. This includes
the Standardised Precipitation Index (SPI; McKee et al.,
1993) and Standardised Precipitation Evapotranspira-
tion Index (SPEI; Vicente-Serrano et al., 2010) for accu-
mulation periods of 1–6, 9, 12, 18 and 24 months. For
the SPI, the data were fitted to a gamma distribution,
whereas for SPEI, a generalised logistic distribution was
used, as recommended by the original authors.
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– Vegetation indices (VIs) from remote sensing. The Veg-
etation Condition Index (VCI), Temperature Condition
Index (TCI) and Vegetation Health Index (VHI) were
calculated on a monthly time step following Bach-
mair et al.’s (2018) methodology, which is detailed in
Sect. S1 in the Supplement.

In this study, when the word “indicators” is used on its own,
we refer to both meteorological indicators (SPI and SPEI)
and VIs (VCI, TCI and VHI).

Annual crop yield data (OAE, 2021) are used as a measure
of agricultural drought impacts. Although drought is not the
only factor that can cause crop yield departure, Venkatappa
et al. (2021) have shown that it is the main driver of crop loss
in Thailand.

Spatial and temporal aggregation

To derive the meteorological indicators, we first averaged
the meteorological variables (precipitation and PET) for
each province and then calculated the standardised indica-
tors based on the province-averaged time series. For VIs, we
first derived them at the pixel level for the entire country and
then used a land cover map to differentiate between forest-
and crop-covered pixels. We then calculated province-level
VI averages separately for forests and crops, using the cor-
responding land cover mask. We used monthly time series
for most of our analysis, with the exception of the compar-
ative analysis between VIs and crop yield (described further
in Sect. 2.3.1) where VIs were averaged over the growing
season for each crop.

2.3 Methods

Figure 2 shows a schematic representation of the method-
ological steps involved in this study.

2.3.1 Indicator-to-indicator correlation analyses

For the correlation analysis, data were used at the finer
province resolution.

VIs vs. crop yield

Firstly, a correlation analysis was performed between the
vegetation indices (VIs) and the crop yield data. This was
done to investigate whether the VIs could be used as a proxy
for agricultural impacts, as spatially distributed data on crop
areas were unavailable to accompany the yield data. VIs were
masked using the land cover data to ensure that only areas
covered by cropland were considered. The cropland-masked
monthly VIs were then averaged to the province level, the
time series were filtered to only include the growing sea-
son of the spatially dominant crop within each province,
and an annual average was taken. The growing season was
taken from Lacombe et al. (2017) for Cassava, the FAO
GIEWS (Global Information and Early Warning System on

Food and Agriculture) Country Briefs (FAO, 2021) for paddy
rice, Arunrat et al. (2022) for corn and the FFTC (2015)
for longan. The annual time series for the VIs for each
province was correlated with the yield of the dominant crop
for that province using a Pearson correlation (Pearson, 1920).
The Pearson correlation was selected since it estimates the
strength of normalised covariance between two variables, al-
lowing for insight into how closely related the two variables
are.

Meteorological drought indicators vs. VIs

The Pearson correlation was also used to compare the stan-
dardised indicators (SPI and SPEI) and vegetation indices
(VCI and VHI) for both forest areas and cropland, where
the crop-masked vegetation indices were treated as a proxy
for the agricultural impact. This approach was used to in-
vestigate the effect of meteorological conditions on crops
and forests and identify the most relevant indicators from a
drought monitoring perspective. Monthly crop-masked VCI
values were regressed against time using linear regression,
and the residuals were used to remove linear trends, account-
ing for increased biomass from developments in agricultural
technology and practices. The analysis was done spatially,
making use of province-averaged indicators, and temporally,
by splitting the time series into wet and dry seasons. While
the specific months of these seasons vary across the coun-
try, a general approach was taken with the wet season being
May to October and the dry season November to April, inclu-
sive. Correlation coefficients were calculated between stan-
dardised meteorological indicators for all given accumula-
tion periods and the VIs. For each VI and province, the stan-
dardised meteorological indicator with the largest-magnitude
correlation was identified, and critical values were calcu-
lated by accounting for autocorrelation using Pyper and Pe-
terman’s (1998) methodology.

To check how much difference there is between SPI and
SPEI and verify that they are different enough to justify using
both indices in our analysis, we compared the two indicators
to determine how much of SPEI can be explained by SPI over
the whole period, each season and each accumulation period,
details of which are given in Sect. S2 of the Supplement.

2.3.2 Simulating crop productivity

Regional random forest (RF) models were used to predict
agricultural impacts (crop yield). RF regression is a machine
learning algorithm that combines predictions from multiple
decision trees to make a more accurate prediction than a sin-
gle tree. The analysis was carried out at regional level by
aggregating all provincial data to the regional level, as data
were too scarce at the provincial level to be able to train the
models at that higher resolution.

As input data to the models, we used SPI, SPEI, VCI and
TCI for each individual month separately. Note that VHI was
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Figure 2. Schematic diagram of the steps involved in this study.

not used here, as it is a combination of VCI and TCI and
is therefore strongly correlated to both. Accumulation peri-
ods of 1–6, 9, 12, 18 and 24 months were used for SPI and
SPEI. All input data were first regressed against time, and
the residuals were used as input to the random forest mod-
els to account for linear trends. Annual crop yield data for a
range of individual crops were used to train the models and
evaluate them.

First, a correlation analysis of all input data against each
crop’s annual yield was carried out with the objective of rank-
ing the indicators in the order of the highest to lowest corre-
lation with crop yield. All indicators were split by month (i.e.
all the Januaries lumped together, all the Februaries, and so
on), and the correlations were ranked by p value.

In a second step, we built the feature set by adding features
(i.e. indicators) in the order of ascending correlation p value,
while maintaining all variance inflation factor (VIF) values
below 5 (to minimise multicollinearity). This means that for
strongly correlated input variables, only the variable with the
strongest correlation with crop yield was used to build the
model.

In the final step, we built the forests to predict crop yield.
A total of 38 individual RFs were built for each combination
of crop and region using the six regions shown in Fig. 1 and
seven crops – cassava, corn S1 (March–October), corn S2
(November–February), mixed corn (corn S1+ corn S2),
paddy rice, second rice and longan. Only combinations that
had more than 50 samples (province yield–year combina-
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Figure 3. Schematic representation of the steps involved to build RF models and associated analysis in this study.

tions) were used, and as a result, corn S1, corn S2 and mixed
corn were removed from region S, and corn S2 was removed
from region E. Figure 3 shows a schematic representation of
the steps involved to build the RF models.

Due to the considerable number of RFs trained and evalu-
ated, the number of trees within each RF was selected using
an automated process by evaluating the mean squared error
for RFs consisting of 50, 100, 1000 and 10 000 trees. The
number of trees that resulted in the lowest mean squared er-
ror was used to train the final model for each region–crop
combination. To enable parameters to be estimated on the
full dataset, estimation of the optimal number of trees and
training of the final model were performed using 5-fold cross
validation.

Finally, using these models, we investigated the relative
importance of features in explaining the variance in crop
yield. The average decrease in Gini impurity resulting from
the exclusion of a certain feature can provide insights into its
relative importance for simulating the target variable. In this
case, indicators with relatively high decreases in Gini impu-
rity resulting from their exclusion were considered important
for the simulation of the productivity of the crop in question.
While RFs were built to predict crop yields, the main focus of
our study was their use to study feature importance to iden-
tify monitoring priorities for different regions and crops.

3 Results

3.1 Correlation analysis: indicator-to-indicator

3.1.1 VIs vs. crop yield

In most provinces, we found that VCI is positively correlated
with crop yield for the dominant crop in that province, and
in the majority of cases that correlation is statistically signif-
icant (p≤ 0.05) (See Fig. 4a). In 13 provinces (out of 77),
VCI is negatively correlated with crop yield (provinces in
blue in Fig. 4a), which suggests VCI is not directly linked
to crop yields in these provinces and may not be suitable
as a proxy for agricultural impacts. In the most northern
provinces, the land cover is highly dominated by dense forest
(Fig. S3), and the limited crop area has a mixture of crops,
which might explain these poor relationships.

VHI is negatively correlated with yields in more provinces
than VCI but has stronger correlation than VCI in some
provinces (Fig. 4b). Figure 4d shows the VI best correlated
with crop yield (for dominant crop) in each province. For
more than 90 % of the provinces, at least one of the VIs
is positively correlated with crop yield. Note that in some
provinces the dominant crop – especially provinces in W, C
and E regions – accounts for less than 50 % of the total cul-
tivated area (Fig. 4c). This can introduce significant noise in
the data, and therefore these results should be treated with
caution and be regarded as a general indication that VIs are a
reasonable proxy for crop yield, rather than an absolute val-
idation. In some cases, there is no obvious reason as to why
the correlation is very different between two neighbouring
provinces which share a similar topography, land cover, cli-
matology and dominant crop type. However, differences in

Nat. Hazards Earth Syst. Sci., 23, 2419–2441, 2023 https://doi.org/10.5194/nhess-23-2419-2023



M. Tanguy et al.: Agricultural drought preparedness in Thailand: indicator-to-impact links 2427

Figure 4. (a) Correlation between VCI and crop yield for the dominant crop in each province, (b) correlation between VHI and crop yield
for the dominant crop in each province, (c) map of the dominant crop in each province and the percentage area of said crop over the total
crop area in each province, and (d) map of VI best correlated with crop yield for the dominant crop in each province.

irrigation or agricultural practices or in the outbreak of pests
and diseases could be contributing factors. Exploring these
factors in future research may provide insights into the ob-
served differences in correlations. Crop yield at field scale
or a high-resolution land cover map, which includes infor-
mation on crop type, would be needed to carry out a robust
validation, but in the absence of such data, we consider that
the strong correlation between VIs and crop yield found in

most provinces provides enough confidence to utilise VIs as
a reasonable proxy for crop yield in subsequent analysis in
this paper.

The following analysis focusses on VCI to simplify the
messaging, but the equivalent plots for VHI can be found
in the Supplement. Note that for this analysis, TCI was not
considered, as its effect is implicit within VHI as described
in Sect. 2.2 above.
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Note that we also use VIs as proxy for forest growth in the
following analysis, but we had no verification data to vali-
date this assumption. However, VIs have shown strong links
to forest health and drought impacts in previous studies (e.g.
Byer and Jin, 2017; Torres et al., 2021). Therefore, we con-
sider the assumption that VIs are good proxies for drought
impacts on forests to be reasonable.

3.1.2 Meteorological indicators vs. VIs

Meteorological drought indicators were then correlated with
VIs to assess the effect of meteorological conditions on crops
and forests and identify the most relevant drought indicator
for impacts on crops and forests. The analysis was divided
between dry and wet seasons.

Dry season

Figure 5 shows the strongest correlation for all the combina-
tions of meteorological indicators vs. VCI for the dry season
(Fig. 5a and b) with the corresponding meteorological indi-
cator (Fig. 5c and d) for crops (Fig. 5a and c) and for forests
(Fig. 5b and d). Strong and statistically significant correla-
tions can be seen for most provinces in the north. Correla-
tions are higher for crops than for forests.

For crops, we find high correlations between VCI and
SPEI of a relatively short accumulation period during the dry
season, suggesting that short droughts affect crops the most.
The fact that SPEI is generally more highly correlated with
crop production than SPI highlights the important link be-
tween the evaporative demand and impact on crops.

For forests, we observe a very clear north–south split, with
positive correlations in the north and negative in the south.
A positive correlation between VCI and the meteorological
indicators suggests that a deficit in water availability (as in-
dicated by negative SPI or SPEI) leads to a decline in veg-
etation growth (reduced VCI). In contrast, a negative cor-
relation suggests that such a deficit leads to an increase in
vegetation growth. This second scenario may seem coun-
terintuitive, but it can occur in energy-limited environments
where water is not the limiting factor. In such cases, short-
duration droughts (i.e. periods drier than usual for the time of
year) can stimulate increased vegetation growth, as droughts
in energy-limited environments are often associated with in-
creased radiation (i.e. energy) due to decreased cloud cover.
This is discussed further in Sect. 4.3.

Except in the south, the best-correlated accumulation pe-
riod is generally longer for forests than for crops. Forests are
impacted by droughts that are longer in duration than those
affecting crops.

Wet season

Figure 6 shows the highest correlation for all the combina-
tions of meteorological indicators with VCI for the wet sea-
son (Fig. 6a and b) with the corresponding meteorological

indicators (Fig. 6c and d) for crops (Fig. 6a and c) and for
forests (Fig. 6b and d). The maximum correlation is, in gen-
eral, lower for the wet season than for the dry season, which
indicates that the impact of meteorological droughts on crops
and forests is less severe during the wet season.

A clear difference between crops and forests can be ob-
served. Whereas crops suffer some negative impact from
meteorological drought (positive correlations), even during
the wet season, forest growth seems to benefit from short
droughts (negative correlations in most provinces, with short
accumulation periods ranking first in many provinces).

The figures corresponding to Figs. 5 and 6 for VHI can be
found in the Supplement (Figs. S4 and S5).

3.2 Simulating crop productivity

3.2.1 Model performance

The ability of RFs to simulate crop yield in Thailand var-
ied across the country and between different crops. Cassava
productivity was simulated well, and RFs were able to ex-
plain variance in the data across the country, apart from in
the S region where the lack of cassava being grown in this
region made approximating the relationships between indi-
cators and impacts difficult (Fig. 7a). The variance in cas-
sava yield data explained by the indicators also varied across
the country, with more variance explained in the E and NE
regions than the W region.

Indicators were also able to explain more than 33 % of the
observed variance in corn (S1, S2 and mixed) yield in the N
region and S region for corn S2 (Fig. S6). Furthermore, the
amount of variance in paddy rice yield data explained by the
RF models only exceeded 33 % in the N region (Fig. 7b). In
total, variance explained exceeded 33 % for five crops in the
N region, one crop (cassava) in the NE region, no crops in
the W region, one crop (cassava) in the C region, two crops
in the E region and no crops in the S region.

3.2.2 Feature importance

RF models also allow us to investigate the relative impor-
tance of features (i.e. indicators) in explaining the variance
in crop yield by calculating the average decrease in Gini im-
purity from the exclusion of individual features, as described
in Sect. 2.3.2. To ensure the feature importance were repre-
sentative of the variation observed within the crop yield data,
only RFs that explained > 33 % of the variance observed in
the crop productivity data were selected for analysis. This re-
sulted in the feature importance of nine RFs being presented
here.

Figure 8 shows feature importance in each region for all
available crops aggregated, whereas Fig. 9 presents the fea-
ture importance in each region for a single crop (cassava),
and finally Fig. 10 shows feature importance for five distinct
crops in region N only. Figure S6 in the Supplement also
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Figure 5. For the dry season, maximum correlation (all combinations of meteorological indicators with VCI) for each province for (a) crops
and (b) forests and the corresponding meteorological indicator and accumulation period for each province for (c) crops and (d) forests.

shows the feature importance in two regions for the various
types of corn.

Long accumulation periods are assigned relatively high
importance in the N region compared to other regions
(Fig. 8). This agrees with regional differences observed in
cassava feature importance, where SPI24 had the highest
mean decrease in impurity (i.e. feature importance) in the
cassava model for region N (Fig. 9). Furthermore, 22 SPI in-
dicators (different accumulation periods and different times

of year) were used in the N region RFs, more than any other
indicator (11 SPEI, 10 VCI, 6 TCI; Fig. 10). For corn S1,
S2 and mixed corn, SPI consisted of 5/9, 5/9 and 4/8 of the
indicators used to simulate crop yield, respectively. In con-
trast, just 3/10 features used in the cassava model were SPIs;
the remaining features were a combination of SPEI, TCI and
VCI. Differences in accumulation periods of the most impor-
tant indicators were also observed between crops. Whereas
the corn models (all types) had many long-accumulation-
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Figure 6. For the wet season, maximum correlation (all combinations of meteorological indicators with VCI) for each province for (a) crops
and (b) forests and the corresponding meteorological indicator and accumulation period for each province for (c) crops and (d) forests.

period indicators, cassava included eight indicators covering
just 1 month, demonstrating the importance of short-term ef-
fects on cassava production. Paddy rice also exhibits high
importance for several indicators of short accumulation peri-
ods. However, in contrast to cassava, 5/10 features selected
by the model for paddy rice yield simulation were SPIs.

Mean decreases in impurity for cassava models appear to
exhibit seasonality in the NE and E regions, with a focus on
October–March in the NE region, and August–January in the

E region (Figs. 9 and S6). However, seasonality is less evi-
dent in the N and C regions. Seasonality is also observed in
the correlation coefficients between cassava yields and me-
teorological indicators in the NE and E regions (Fig. S7).
Figure S7 shows that meteorological indicators accumulated
between October and April exhibit the highest correlation co-
efficients in the NE region, agreeing with the results from the
RF analysis. In contrast, the highest correlation coefficients
occur for indicators calculated from data in February–July in

Nat. Hazards Earth Syst. Sci., 23, 2419–2441, 2023 https://doi.org/10.5194/nhess-23-2419-2023



M. Tanguy et al.: Agricultural drought preparedness in Thailand: indicator-to-impact links 2431

Figure 7. Amount of variance explained in cassava (a) and paddy
rice (b) productivity data by the random forest models.

the E region. This period is only covered by a single indicator
in the RF model, assigning relatively low importance for es-
timating cassava yields. This may be due to crop yields being
more sensitive to floods in region E, supported by the strong
negative correlations between meteorological indicators and
cassava yields during August–December (Fig. S7). This is
also consistent with findings from Venkatappa et al. (2021),
who found that floods caused more damage than droughts to
crops in the eastern region.

4 Discussion

4.1 Spatial variation in indicator-to-impact
relationships

The correlation analysis showed that in most of the provinces
in region N (Figs. 5c and 6c), SPI is more correlated with
crop yield than SPEI, whereas SPEI dominates in the rest
of the country during both the wet and dry seasons. This,
combined with the high importance placed on SPI features
by the RF models in region N (Figs. 8 and 9), demonstrates
the strong relationship between SPI and crop yield, partic-
ularly compared to other parts of the country. Region N is
one of the most irrigated areas of Thailand together with re-
gion C (FAO, 1999; Varawoot, 2016). A region’s dependence
on irrigation (and therefore water storage) seems to result in
(i) a lack of variation in indicator importance across differ-
ent seasons, (ii) an importance of long accumulation periods
(when storage gets depleted) and (iii) SPI being more im-
portant than SPEI to explain drought impacts. This last point
could be explained by the fact that low precipitation in re-
gion N leads to the actual evapotranspiration (AET) to be
water limited (i.e. AET < PET), meaning SPEI may be less
closely linked to agrometeorological conditions. However,
this is also the case for region W and C, and to lesser extent
NE as well, where precipitation is also low, but in these other

regions, SPEI’s importance is generally dominant (Fig. 5c).
Therefore, it is likely that the dominant importance of SPI
in region N is linked to the reliance of agriculture on water
storage for irrigation in this region, particularly for corn S2,
which is planted in the dry season and relies heavily on irriga-
tion (Fig. 10). Therefore, a deficit in rainfall (and consequent
depleted storage) will have a strong impact on crop yield.
For regions where rainfed crops dominate, shorter droughts
can cause impacts, and SPEI becomes a stronger explana-
tory variable, given the effect of the increased evaporative
demand. This was observed in regions E and NE, where SPEI
indicators had high importance, whereas in regions N and C,
SPI and TCI were more important for understanding the im-
pacts of droughts on cassava yield. These results agree with
previous studies which found strong relationships between
SPEI and crop yield in the Mun River basin located in the
NE region (Khadka et al., 2021; Prabnakorn et al., 2018).

Region N was the only region where we successfully built
RF models for five crops (cassava, corn S1, corn S2, mixed
corn, paddy rice). This was due to a combination of a lack
and/or low quality of yield data, limited crop area, relation-
ships being too complicated (with factors other than drought
affecting crop yield), or indicators not being related to im-
pacts in other regions. The comparison of the feature impor-
tance for these five models in the N region provides insight
into the differences between crops. Both short- and long-
duration droughts are important for all the crops simulated,
demonstrated by the presence of indicators with 1- to 12-
month accumulation periods for each crop. However, there
was a higher prominence of short-accumulation-period in-
dicators for cassava than other crops, particularly corn (all
types). Cassava has the longest crop calendar (12 months),
therefore having a higher chance of experiencing drought
during the growing period. Other crops have shorter cycles
compared to cassava (4–5.5 months for paddy rice, 4 months
for both corn S1 and S2). Also, cassava is the least water-
demanding crop of the list (irrigation requirement of around
20 m3 t−1 in the wet season and 65 m3 t−1 in the dry sea-
son, Gheewala et al., 2014). This explains the compara-
tively lower importance of long-accumulation-period indi-
cators for cassava (Fig. 10), given the decreased reliance
on water storage, especially compared with the most water-
intensive crops, such as paddy rice (irrigation requirement of
520 m3 t−1 during the wet season and 1140 m3 t−1 in the dry
season) and corn S2 (irrigation requirement of 850 m3 t−1 in
the dry season). Whereas SPI were important for simulating
productivity of corn and paddy rice in the N region, SPEI,
TCI and VCI were more important in simulating cassava pro-
ductivity than in other crops. These differences in results be-
tween regions and crops demonstrate the importance of hav-
ing region- and crop-specific policies, actions and indicators
for drought monitoring.
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Figure 8. Heatmap displaying the relative feature importance (impurity decrease) of each indicator used in the random forest models (for
all crops) for each region. Each row corresponds to a different indicator, with the y axis representing the indicator and the length of the bar
representing the accumulation period. The x axis indicates the time of year (month) when the indicator is the most relevant for predicting
crop yield. For instance, spi6Mar in the NE region represents SPI with a 6-month accumulation period for March, and the bar covers October
to March (i.e. the 6-month period ending in March). The bars are shaded darker for indicators that are more important in the models. Unlike
Figs. 9 and 10, which show only one crop per subplot, this figure includes all crops that can be modelled in each region. Region N has five
models (cassava, corn S1, corn S2, mixed corn, and paddy rice models), while Region NE, region C and region E have one, one and two
models, respectively. The number of rows (i.e. indicators) in each subplot is a consequence of the number of models in each region and the
number of variables in each model. The thickness of the lines is a result of the number of indicators displayed for each region and has no
meaning attached to it. Finally, note that different crop models within a region can use the same indicators, leading to some indicators being
repeated and having multiple rows within the same region (e.g. vciDec in region N).

4.2 Temporal- and crop-specific variation in
indicator-to-impact relationships

When we look at seasonal differences, we observe that SPI
a has higher correlation with yield during the wet season,
whereas SPEI is generally more correlated during the dry
season (Figs. 5c and 6c). This suggests the importance of ac-
counting for both temperature and evapotranspiration in dry
season monitoring. We also observe that the highest correla-
tions are for longer accumulation periods in the wet season
compared to the dry season. This might be because longer
wet season accumulation periods also include the informa-
tion of the preceding dry season. The N region paddy rice
RF model exhibited the high importance of indicators accu-

mulated for the second half of the year (Fig. 10). Rice can
be harvested twice or even three times per year in certain
regions. The main rice crop cycle has its growing season be-
tween June and December, a large part of which occurs dur-
ing the wet season. The RF model for paddy rice in region N
exhibits high importance during this period (Fig. 10).

The RF models show spatial variations in the strength of
relationships between crop yields and different accumulation
periods, with longer accumulations assigned higher impor-
tance in region N, compared to other regions (Figs. 8 and
9), and this is also evident in the correlation analysis plot
(Fig. S7). This might partly be explained by the presence
of major dams in that region, which can mitigate the effect
of short droughts (LePoer, 1987). The comparison of feature
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Figure 9. Heatmap displaying the relative feature importance (impurity decrease) of each indicator used in the random forest models for
cassava for each region. Each row corresponds to a different indicator, with the y axis representing the indicator and the length of the bar
representing the accumulation period. The x axis indicates the time of year (month) when the indicator is the most relevant for predicting
crop yield. For instance, spi6Mar in region NE represents SPI with a 6-month accumulation period for March, and the bar covers October to
March (i.e. the 6-month period ending in March). The bars are shaded darker for indicators that are more important in the models. Unlike
Fig. 8, each subplot here shows only cassava models for each region. However, the number of indicators can still differ between models
due to the feature selection process that eliminates highly correlated indicators, which may vary between regions. The number of rows (i.e.
indicators) in each subplot reflects the number of variables in each model, and the thickness of the lines is a result of the number of indicators
displayed for each region and has no meaning attached to it.

importance for cassava and paddy in region N (Fig. 9) sup-
ports the idea that different indicators and periods are impor-
tant for each crop.

Cassava models for regions NE and E exhibit importance
during October–March (Fig. 9), which overlaps with the dry
season. Cassava is usually planted in April–June, and its
yield is known to be sensitive to water stress in early stages
of growth, corresponding to root initiation and bulking (Con-
nor et al., 1981; Okogbenin et al., 2013; Oliveira et al., 1982).
This seasonal pattern is not seen as clearly for regions N and
C and is most probably explained by the fact that these two
regions rely heavily on irrigation as opposed to regions NE
and E, which are mainly rainfed.

Paddy rice’s critical period for drought stress – which will
have a severe effect on crop yield – is the early stages of
germination, the seedling stage and also the flowering period
(Farooq et al., 2012; Kadam et al., 2017; Mishra and Panda,
2017; Yang et al., 2019). However, it should be noted that
this effect varies significantly depending on the specific crop

variety, and the increasing adoption of drought-resistant va-
rieties mitigates the impacts. The RF model for paddy rice
in region N (Fig. 10) shows important features overlapping
with these critical periods, in particular the early stage of the
germination and seedling.

The critical period for drought for corn (all types) is in the
early period of the growing season, with water stress after
the anthesis (flowering) having no significant impact on crop
yield (Pradawet et al., 2023). However, no distinct season-
ality is observed in feature importance for corn in region N
(Fig. S6), with a high prominence of long accumulation pe-
riods, despite corn being grown within mostly one season.
This most likely reflects the dependence on irrigation of this
crop in region N. However, in region E, which is dominated
by rainfed crops, feature importance is concentrated around
this critical period (June–October, Fig. S6).

We were not able to build RF models able to simulate lon-
gan productivity. The lack of model skill could be due to sev-
eral factors. Firstly, unlike the other crops studied here, lon-
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Figure 10. Heatmap displaying the relative feature importance (impurity decrease) of each indicator used in the random forest models for
five different crops in region N. Each row corresponds to a different indicator, with the y axis representing the indicator and the length of the
bar representing the accumulation period. The x axis indicates the time of year (month) when the indicator is the most relevant for predicting
crop yield. For instance, spi5Sep for mixed corn represents SPI with a 5-month accumulation period for September, and the bar covers May
to September (i.e. the 5-month period ending in September). The bars are shaded darker for indicators that are more important in the models.
Unlike Fig. 8, each subplot here only shows the model for a single crop in region N. The number of rows (i.e. indicators) in each subplot
reflects the number of variables in each model, and the thickness of the lines is a result of the number of indicators displayed and has no
meaning attached to it.

gan is a tree, and the effect of drought might be more com-
plex. Secondly, longan is not grown extensively in compar-
ison to the other crops, and the resulting lack of data might
make it hard to identify patterns. And finally, longan trees
are particularly sensitive to drought during the flowering and
early fruit development stages (Menzel and Waite, 2005),
which coincides with the dry season in Thailand, making this
crop completely reliant on irrigation for production (Spreer

et al., 2013). Irrigation mitigates the effects of drought, mak-
ing it more difficult to model direct effects of meteorological
droughts on crop production.

For the crops where it was possible to build an RF model,
the analysis of the temporal variation in feature importance
and the indicator-to-impact relationships provide insights
into critical periods of the year for early warning of impacts
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and relevant accumulation periods. Specifically, these are pe-
riods of interest when dry conditions could lead to impacts.

4.3 Crop vs. forest

Clear differences in how drought impacts crops versus nat-
ural vegetation (forest) were observed. Firstly, a geographic
distinction between the north (regions N, NE, W, C and E)
and the south (region S) and secondly, temporal differences
between wet and dry seasons suggest that drought manage-
ment will be different between regions and the time of year.
The summary of these differences can be found in Table 2,
which also indicates the most relevant drought indicator to
be used in a DMEW context for each land use type, season
and region.

For forests in the north, droughts during the dry season
will limit vegetation growth. This is in line with previous
studies on dendrochronology, which have found that mois-
ture availability in the pre-monsoon season is the predom-
inant climatic factor controlling vegetation growth of tree
species in tropical Southeast Asia, though there are impor-
tant differences between species (e.g. Buckley et al., 1995;
Rakthai et al., 2020; Sano et al., 2008). Generally, the in-
dicator showing the highest correlation with impacts is for
the longer accumulation period for forests than for crops,
suggesting that shorter droughts will have impacts on crops,
whereas only longer droughts will affect forests. The higher
resilience to droughts of forests compared to crops is at least
partially explained by the deeper root systems of forest trees,
allowing them to extract water from deeper layers of the soil
(Bréda et al., 2006; Schenk and Jackson, 2002).

During the wet season in the north and year round in the
south, forests do not suffer from drought (negative correla-
tion), and short droughts might even contribute positively
to vegetation growth. Roebroek et al. (2020) produced a
global distribution of hydrologic controls on forest growth.
For Thailand, the forest growth in the south is mainly energy
limited (solar radiation), rather than water limited. Hence
short droughts, which are associated with increased radiation
(due to decreased cloud cover), can have a beneficial effect
on the forest.

The north of Thailand is a mixture of water-limited areas
(water is the limiting factor for vegetation growth) – which
explains the negative effect of droughts during the dry sea-
son – and oxygen-limited areas (when growth is limited by
the availability of oxygen by the root, often due to flooding),
which in Thailand is typical during the wet season. This ex-
plains the positive effect that short droughts have on forests
during the wet season in the north (less flooding).

For crops, droughts have a negative impact both in the dry
and wet seasons, though the effects during the dry season
are stronger. The correlation could only be derived in the
north, as the south is dominated by forested areas. Although
SPEI shows the highest correlation with crop yields in most
cases in the north, SPI is more prominent in region N. This,

combined with the relatively high correlation between SPI
and crop yields in region N during the wet season (Fig. S7),
explains the higher importance placed on SPI compared to
SPEI in the RF results. This can be explained by the higher
dependency on storage and irrigation in region N than in the
rest of the country.

4.4 Limitations

Though this study provides important new insight into the
relationship between drought indicators and drought impacts
in Thailand, some limitations should be acknowledged.

Firstly, there are limitations due to the imperfect nature of
the data. By averaging VIs at a province level and correlating
these values with crop yield from the dominant crop within
that region, we inevitably introduce some noise, especially in
provinces with a varied range of cultivated crops. However,
a detailed map of crop distribution was not available. There-
fore, the simplified approach taken here of using a land cover
mask differentiating cropland from forests (but with no dis-
tinction between crops) was the best approach possible with
the available data.

In addition, the time series available to carry out our anal-
ysis are short (15 years), which makes them more susceptible
to noise, and also means that fewer drought events are avail-
able to learn from. Nevertheless, the study period (1984–
2019) does include some of the major recent drought events
such as 1990–1993, 1997, 2005, 2008 and 2015–2016.

Secondly, some limitations come from the methods we
have used. Different factors can cause a trend (e.g. climate
change, policy change, improvement in agricultural prac-
tice, etc.). However, we have applied a simple detrending
approach (linear regression), which assumes that the trend
is linear. In addition, the short length of the record makes it
difficult to identify any trend. Another methodological lim-
itation is our use of correlations to link drought indicators
to drought impacts. Correlations can only explain linear re-
lationships. However, the reality can be more complex, es-
pecially when looking at precipitation, where both extremes
(droughts and floods) can have similar effects on crop yield
loss. RFs are powerful tools for producing predictive mod-
els from data, but they are considered “black boxes”, since
they do not explicitly extract the relationships between in-
put features and the predicted outcomes. However, RFs can
aid in the interpretation of the model through the analysis
of feature importance, which identifies the most influential
variables in making predictions. In addition, we only con-
sider drought indicators and VIs as input variables, but many
other factors can influence crop yield, such as floods, low
temperature, disease, policy changes, farming practices, etc.
This might also partially explain the relatively low perfor-
mance of some of the RF models. Lastly, another limitation
of using data-driven models such as RFs is the need for a
large amount of data needed to train the model effectively. In
our study, we had a relatively short period of data available,
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Table 2. Summary of main findings on the relationship between drought indicators and drought impacts, as well as differences between land
cover, region and season. North: regions N, NE, W, C and E; south: region S.

Crop Forest

North South North South

Dry
season

Droughts have a strong negative
impact.
The most correlated indicator is
mostly SPEI, except for region
N, where SPI is more prominent,
with short-to-medium
accumulation periods.

No data (crop area
too limited)

Droughts have a negative impact.
The most correlated indicator is
mostly SPEI (some SPI), with
medium-to-long accumulation
periods.

Droughts have a positive
impact.
The most correlated
indicator is SPEI, with a
short accumulation
period.

Wet
season

Droughts have a negative impact,
though it is less strong than in the
dry season.
The most correlated indicator is
a combination of SPI and SPEI,
with different lengths of
accumulation periods.

No data (crop area
too limited)

Droughts have a positive impact
in most of the north, except in
region N, where they have a
negative impact.
The most correlated indicator is
mostly SPEI, with short accumu-
lation periods (except in region
N: SPI with long accumulation
period).

Droughts have a positive
impact.
The most correlated
indicator is SPEI, with
short accumulation
periods.

which limited the amount of data available for training the
models. As a result, the models may not have been able to
accurately capture the full range of conditions that could oc-
cur in the real world. For example, for species such as longan,
which are more susceptible to long drought events, the lim-
ited instances of these events in our training data may have
affected the model’s ability to accurately predict impacts.

4.5 Future work

In this study, we used RF models primarily to analyse the
relationships between drought indicators and impacts and to
identify the relative importance and timing of relevant indi-
cators for impacts on crops and forests. While the main fo-
cus of our analysis was on feature importance, our analysis
also demonstrated the potential of RFs to simulate unseen
data, which suggests they could be used for impact predic-
tion. With further work, such as addressing the limitations
discussed above, these models could be used for DMEWSs,
support and compensation schemes, long-term planning, etc.

Furthermore, alternative methods could be explored and
compared with the ones used here. Simpler approaches could
provide simpler interpretation, such as the logistic regression
(model diagnosis and equifinality/extrapolation). Due to the
linear additive nature of logistic regression, it can be used
to identify thresholds at which drought impacts are expected
(Bachmair et al., 2016b; Parsons et al., 2019). However, for
that same reason, it can only account for the probability of
impacts increasing as conditions get drier or wetter, not both.
Given that Thailand suffers from both floods and droughts,
more complex models capable of capturing this non-linearity
would be more suitable.

The RF models developed here offer promising results
but could be compared to more sophisticated approaches.
Machine learning/deep learning algorithms (artificial intel-
ligence, AI) and Bayesian inference techniques are currently
two rapidly developing areas of research and are increasingly
used in environmental science. AI is very effective in find-
ing patterns and connections within large volumes of multi-
source spatio-temporal information, while Bayesian models
are well suited for modelling complex spatio-temporal vari-
ations and capturing uncertainties. Shen et al. (2019) used a
deep learning technique (artificial neural network) to build
a drought monitoring model in China, whereas Bouras et
al. (2021) developed a crop yield forecasting tool based on
eXtreme Gradient Boost (XGBoost) in Morocco. Salakpi et
al. (2022), on the other hand, used a dynamic hierarchical
Bayesian approach for forecasting vegetation conditions in
Kenya. With the burgeoning of new and increasingly com-
plex methods, an assessment of the most suited approach in
the context of DMEWS would be highly valuable.

5 Conclusions

In this study, we used a combination of traditional statis-
tical approaches and machine learning techniques to anal-
yse the relationship between drought indicators and drought
impacts on vegetation and crops. These approaches are rel-
atively novel in environmental science, particularly in the
Southeast Asian context, bridging the gap between hazard
and vulnerability by incorporating observed drought impact
data.
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Firstly, we carried out a correlation analysis to study the
link between meteorological drought indicators (SPI and
SPEI at different accumulation periods) and remote sensing
vegetation indices (VCI and VHI) used as a proxy for crop
yield and forest growth. Our analysis shows that these links
in Thailand vary greatly depending on the land use (crops
vs. forests), season (wet vs. dry) and geographical region, as
does the type of droughts (short vs. long duration, with or
without high temperature), which causes the most damaging
impacts. Some of the main findings are that droughts have
a negative effect on crops during both wet and dry seasons,
though the lengths of the droughts having the most impact
differ between seasons (shorter droughts during the dry sea-
son). Results also highlighted that short droughts can have a
beneficial effect on forest growth in the wettest areas of the
country and during the wet season.

Secondly, we built a series of random forest models to es-
timate crop productivity for each crop and region separately.
This allowed a more in-depth analysis of the importance of
the different drought indicators in a crop-specific way. The
analysis of feature importance has teased out seasonal pat-
terns of feature importance for individual crops, often linked
to their growing season, though the presence of irrigation
systems in some of the regions (regions N and C) removes
some of that seasonality. This new knowledge about the im-
portance of specific drought indicators to predict drought im-
pacts for targeted crops and regions could be used to improve
drought monitoring and early warning systems in Thailand,
particularly for the agricultural sector, which is both eco-
nomically important to Thailand as well as vulnerable to the
drought, as it will allow tailored monitoring of the most rel-
evant indicators for individual crops/regions. The best indi-
cators to monitor vary in space and time, as well as by land
use and crop type. The work presented in this paper can pro-
vide guidance and inform water managers of the best indica-
tor to use spatio-temporally, which ultimately will contribute
to increasing Thailand’s resilience to and preparedness for
droughts. Furthermore, the methodology can be replicated in
other areas of the world to help build this knowledge in other
countries aiming to increase their resilience to droughts.
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