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S1 Model details and prior distributions for the statistical models

This document provides more details on the priors chosen for the models. The choice of prior distribution is mostly conven-
tional. We use Gaussian and log-Gaussian distributions with relatively large variances, so that the posterior distributions are
not sensitive to the priors. This has been tested by sensitivity analyses in which prior distribution standard deviations were de-
creased or increased by an order of magnitude in comparison to the values present here. For the shape parameter and Gaussian
process kernel parameter priors the values were either halved or doubled. These tests showed that using a narrower prior for the
shape parameter had the largest impact on posterior distributions. Also using a narrower prior for the random walk parameters
in the Spline model and for the Gaussian process kernel parameters affected the posterior distributions of the location and scale
parameter to some extent. However, setting the priors wider did not have any noticeable impact on the posterior distributions,
which supports our original prior choices. We note that for the parameters of the Gaussian process kernel, a more informative
prior has to be used due to identifiability problems. This is a typical feature in spatial models. In the spline model, similar
regularizing effect comes from the choice of number of spline knots.

More specifically, for Separate model, we used weakly informative Gaussian priors for the three GEV parameters with the
following specifications:

yi ~ GEV (1,04,&;)

115 ~ N(800,100002) s
i ~ N(200,100002)1 5, 50, (

& ~ N(0,0.5)

In Common model, tide gauge specific GEV parameters are assumed to come from the same joint Gaussian distribution. We
therefore need to define hyper-priors for six additional parameters and the corresponding hyper parameters in our model:

Yi ~ GEV (1i,04,&)

220 N(N#ﬂ U;2L)

o~ N(to,07)

£~ N(MS’UE)

fou ~ N(800,10000%) (S2)
Op ~ N(10072002)1{0u>0}

e ~ N(250,1000%)

0o ~ N(20,100%)1 ¢, 0y

&, ~ N(0,0.5?)

&, ~1og N(log(0.05),0.52)

Posterior means and basic summary statistics of the posterior distributions of the hyper parameters for the Common model
are shown in Table S1.

Table S1. Statistics for the posterior estimates of the hyperparameters of Common model.

Mean  SEmean  StD 2.5% 25% 50% 75% 97.5% Neft Rhat
B 793.06 0.61 48.84 69391 76290 79290 823.38 888.89 647553
o, 166.19 0.48 40.51 105.79 137.51 159.74 187.24 265.55 7175.01
po  208.02 0.17 1243 18436 200.17 207.78 215.82 23394 5548.52
o, 3728 0.17 11.28  20.52 29.38 35.60 4294 64.98  4184.71
e -0.16 0.00 0.02 -0.21 -0.18 -0.16 -0.15 -0.11  2479.67
o¢ 0.04 0.00 0.01 0.02 0.03 0.03 0.04 0.07 1977.66
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In Spline, we used penalised cubic B-splines with first order random walk priors for the spline coefficients, expressed (e.g.)
for the spline coefficients of p as «; = aj_1 +uy, j > 1, where u; ~ N(0,72) and a7 o< const. Let B denote K x L matrix,
where K is the number of stations and L = 12 the number of B-spline basis functions. Spline model is expressed as

yi ~ GEV (p,04,&;)

1= Ba

o=Bg

£~ N(Hfagg)

ai ~ N(1000,10000%)

B1 ~ N(200,10002) (S3)
OéjNN(Oéj_l,Tgé), ]:2,,L
BjNN(ijlng)v J:2a7L
Tas s S N(0,100%) (7. 50
pe ~ N (0,0.5%)

o¢ ~ log N (log(0.05),0.5?)

Statistics of the posterior distributions for the spline model hyper parameters estimates are shown in Table S2.

Table S2. Statistics for the posterior estimates of the hyper parameters of Spline model.

Mean SEmean StD 2.5% 25% 50% 75% 97.5% Nefr Rhat
To 140.84 0.53 33.68 8890 117.33 136.18 159.76 219.18 4020.51 1
T8 40.07 0.31 15.10 19.03  29.48 37.28 47.60 7642 2305.17 1
pe  -0.16 0.00 002 -020 -0.17 -0.16 -0.14 -0.11  2117.97 1
O¢ 0.04 0.00 0.01 0.01 0.03 0.03 0.04 0.07 1737.15 1

For the GP model we use squared exponential kernel K based on distance d described earlier. The model specification is the
following:

yi ~ GEV (pi,04,6;)

p~ GP(my, Koy, pu))
o ~GP(mo, K(ao,po))
&~ N(ug,0%)

m,, ~ N(800,100002)

a,, ~ log N (log(40),0.5%)
pyu ~ log N (log(100),0.12)
M, ~ N(200,10002)

a, ~ log N (log(30),0.5?)
po ~ log N (log(100),0.12)
e ~ N(0,0.52)

o¢ ~log N (log(0.05),0.5?)

(§4)

Statistics of the posterior estimates of the Gaussian process parameters are given in table S3.



Table S3. Statistics for the posterior estimates of the hyper parameters of GP model.

Mean  SEmean  StD 2.5% 25% 50% 75% 97.5% Neff Rhat
my,  822.87 0.61 54.10 71545 788.74 823.25 857.78 929.28 7853.80 1
a, 113.52 0.27 22.81  178.00 9745 11042 12635 167.53 7335.41 1
Pu 106.16 0.13 9.85 88.34 99.25 105.74 11228 127.14 5418.45 1
me  214.07 0.21 16.64 180.75 203.65 213.61 22449 24779 6158.97 1
Qo 33.11 0.14 9.04 19.36 26.85 31.69 37.96 53.99  4232.81 1
Po 104.09 0.16 1041  85.38 96.81 10348 110.75 126.08 4082.79 1
s -0.16 0.00 0.02 -0.20 -0.18 -0.16 -0.14 -0.11  2126.22 1
o¢ 0.04 0.00 0.01 0.01 0.03 0.03 0.04 0.07 2192.81 1




