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Abstract. Ground-motion correlation models play a crucial
role in regional seismic risk modeling of spatially distributed
built infrastructure. Such models predict the correlation be-
tween ground-motion amplitudes at pairs of sites, typically
as a function of their spatial proximity. Data from physics-
based simulators and event-to-event variability in empirically
derived model parameters suggest that spatial correlation is
additionally affected by path and site effects. Yet, identify-
ing these effects has been difficult due to scarce data and
a lack of modeling and assessment approaches to consider
more complex correlation predictions. To address this gap,
we propose a novel correlation model that accounts for path
and site effects via a modified functional form. To quantify
the estimation uncertainty, we perform Bayesian inference
for model parameter estimation. The derived model outper-
forms traditional isotropic models in terms of the predictive
accuracy for training and testing data sets. We show that the
previously found event-to-event variability in model parame-
ters may be explained by the lack of accounting for path and
site effects. Finally, we examine implications of the newly
proposed model for regional seismic risk simulations.

1 Introduction

Earthquakes can cause widespread damage to the built en-
vironment, exposing its users to severe and potentially long-
lasting societal stress. Analyzing earthquake-induced conse-
quences is key to enhancing efficient and targeted seismic
risk management strategies. Empirical ground-motion mod-
els (GMMs) are widely used for the prediction of earthquake-
induced ground-motion intensity measures (IMs) at individ-

ual sites. The assessment of consequences to spatially dis-
tributed systems, such as the residential building stock of
an urban area or its road network, additionally requires spa-
tial correlation models to characterize the dependency among
IMs at different sites (Wesson and Perkins, 2001; Lee and
Kiremidjian, 2007).

A predictive spatial correlation model consists of a func-
tional form, one or several dependent variables, and the
model parameters. Early studies, such as Boore et al. (2003),
as well as more recent studies, such as Schiappapietra and
Douglas (2020), use an isotropic model where the correlation
among sites decays exponentially (the functional form) with
increasing Euclidean distance between sites (the dependent
variable). Observations of pairs of IMs from past earthquakes
are used to calibrate these models. The isotropic assump-
tion allows grouping of station pairs with similar distance for
the estimation of model parameters via geo-statistical curve-
fitting techniques.

To alleviate the scarcity of data, some researchers pooled
data from multiple earthquakes and assumed that the same
correlation model parameters apply to different events (e.g.,
Goda and Atkinson, 2010; Esposito and Iervolino, 2011).
Other studies estimated separate models for individual earth-
quakes and reported that the corresponding parameters vary
from one earthquake to another (e.g., Jayaram and Baker,
2009; Goda, 2011). Sokolov et al. (2012) mention that
this event-to-event variability may be caused by site effects
(i.e., stronger correlation amongst sites with similar geo-
logical conditions) and path effects (i.e., stronger correla-
tion amongst sites with similar wave propagation paths).
While the importance of site and path effects became ap-
parent in data from physics-based ground-motion simulators
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(Chen and Baker, 2019), the findings with respect to recorded
ground-motion data differ amongst previous studies. Early
work of Jayaram and Baker (2009) and Sokolov et al. (2012)
found that, for example, the heterogeneity of soil conditions
may influence spatial correlations. Yet, more recent studies
could not find such evidence and suggested accounting for
event-to-event variability via random variables for model pa-
rameters in regional seismic risk analyses (Heresi and Mi-
randa, 2019) or deriving region-specific correlation models
(Schiappapietra and Douglas, 2020).

Identifying explanatory factors by estimating correlation
models from data of individual earthquakes is challenging.
First, the comparison of a single model parameter estimate
per event with a single metric describing a certain aspect of
the region the event was recorded in (such as the heterogene-
ity of soil conditions) suffers from scarcity of data. Estima-
tion of event-specific correlation model parameters requires
data from particularly well-recorded events, of which there
are only a few. Second, the use of an isotropic model and
the condensation to a single parameter estimate per event
may hide path and site effects that are present within the
event data. Third, the estimated model parameters are sub-
ject to varying degrees of estimation uncertainty because
the underlying data sets stem from earthquakes that were
recorded by a different number and layout of seismic net-
work stations. Schiappapietra and Douglas (2021) and Baker
and Chen (2020) aimed to quantify this uncertainty via sim-
ulating data from an assumed “true” model and comparing
the latter to the model estimated from the simulated data us-
ing different estimation techniques. Both studies, however,
used the same isotropic model with an exponential functional
form that has only one model parameter, and Baker and Chen
(2020) reported difficulties in extending the proposed method
to models with more than one parameter.

This study explores novel correlation models that, in ad-
dition to spatial proximity, also account for path and site
effects. In contrast to previous studies, we do so by modi-
fying and extending the functional form and the dependent
variables of the correlation models. The increased complex-
ity of these models calls for a consistent quantification of
the inherent estimation uncertainty, thus complicating the
use of conventional geo-statistical curve-fitting techniques.
To address this, we use Bayesian inference to estimate the
model parameters. While Bayesian inference has been pro-
posed for GMMs in the past (e.g., Moss and Der Kiureghian,
2006; Stafford, 2019), it has not been applied to study spatial
ground-motion correlation.

We present the proposed correlation model in Sect. 2. Sec-
tion 3 introduces the Bayesian inference scheme used to es-
timate the model parameters from the PEER NGA-West2
data set (Ancheta et al., 2014). Using the same data set,
Sect. 4 first compares the proposed correlation models to
event-specific isotropic models by employing a novel met-
ric to quantify the predictive accuracy and then compares
model performance on test data from the 2019 Ridgecrest,

California, earthquake sequence (Rekoske et al., 2020). Fi-
nally, Sect. 5 examines implications of the novel correlation
model for regional seismic risk simulation studies.

2 Spatial correlation models for ground-motion
amplitudes

This study on spatial correlation models builds on empiri-
cally derived GMMs that predict a ground-motion IM at site
i induced by an earthquake rupture k as

lnIMki = µln IM(rupk,sitei)+ δBk + δWki , (1)

where µln IM(·) is the predicted mean lnIM value as a func-
tion of rupture (rup) and site (site) characteristics (Baker
et al., 2021). Amongst others, these typically include earth-
quake magnitude, rupture mechanism, source-to-site dis-
tance, and site-specific geological information. The between-
event and within-event residuals, δBk and δWki , are assumed
to be independent, normally distributed variables with stan-
dard deviations τ and φ, respectively. Empirical GMMs pro-
vide the mean function µln IM(·), as well as the standard devi-
ations τ and φ. For a specific event, the between-event resid-
ual denotes a common deviation from the predicted mean
that is constant for all sites, whereas the within-event resid-
uals vary in space. For this correlation study, we scale the
within-event residual by its standard deviation φ and denote
the scaled within-event residual as Zki = δWki/φ.

The joint distribution of the same ground-motion IM at n
spatially distributed sites IMk = (IMk1, . . ., IMkn)

> requires
characterizing the dependence of the corresponding within-
event residuals Zk = (Zk1, . . .,Zkn)

>. The joint distribution
of the latter is assumed to be multivariate normal (Jayaram
and Baker, 2008), e.g., p(zk)=N (0,6). Note that because
each marginal Zki follows a standard normal distribution, the
covariance matrix, 6, is identical to the correlation matrix.
To compute the entries of this matrix we employ a model
ρ(·) that predicts the correlation between two sites i and j
given some dependent variables xi and xj as

[6]ij = ρM
(
xi,xj ;ψM

)
, (2)

where subscript M indicates the chosen functional form of
the model and ψM denotes associated parameters. The mod-
els, which we introduce in the following sections, are defined
for a distance (or dissimilarity) metric d between two sites.
We often denote the correlation model as ρM(d;ψM).

The GMMs and correlation models considered in the
present study are ergodic. As such their predictions do not
depend on the absolute rupture and site locations but only
on their relative positioning (e.g., via a certain source-to-site
distance). It is noted that the parameters of some GMMs vary
between broadly defined regions (e.g., California and Japan).
This is also true for the GMM of Chiou and Youngs (2014)
used in this study. In accordance with Lavrentiadis et al.
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(2022) we still refer to such models as being ergodic. This
contrasts with recently developed, fully non-ergodic models
that use spatially varying coefficients (see Lavrentiadis et al.,
2022, for a recent review) and aim to identify systematic
source, site, and path effects in data-rich regions. We provide
a short qualitative discussion on how our model for path ef-
fects compares with recently developed non-ergodic models
in Sect. 2.2.

2.1 Isotropic model based on Euclidean distance metric

A natural first assumption is that the correlation between sites
decreases as the Euclidean distance between them increases.
If the (projected) Cartesian coordinates of two sites i and j
are denoted by si and sj , then the Euclidean distance between
them is defined as dE,ij = ||si−sj ||2, as illustrated in Fig. 1a.
Because the correlation solely depends on the distance be-
tween sites, the resulting correlation model is isotropic. Fol-
lowing Goda and Hong (2008), and more recently Heresi
and Miranda (2019), we use a γ -exponential function (Ras-
mussen and Williams, 2006, Chap. 4) to describe the decay
of correlation as a function of Euclidean distance:

ρE(dE;ψE)= exp
(
−(dE/`E)

γE
)
, (3)

where γE ∈ (0,2) denotes the exponent and `E ∈ R+ is the
length scale in kilometers. Both parameters are summarized
in the vector ψE = (`E,γE), where the subscript E is used to
simplify notation for the correlation model comparisons that
follow below. Figure 1b illustrates the correlation function
for different parameter combinations. If the exponent is 1,
Eq. (3) simplifies to the exponential function used in many
previous ground-motion correlation studies (e.g., Esposito
and Iervolino, 2011). In that case, 3` corresponds to the dis-
tance at which correlation is lower than 5 % (the so-called
correlation range). As the exponent drops below 1, the corre-
lation for distances shorter than the length scale are weaker
compared to the exponential function, whereas correlations
for longer distances are stronger.

2.2 Accounting for path effects using an angular
distance metric

Besides the Euclidean distance between two sites, their cor-
relation may also depend on their position relative to the
earthquake rupture (due to arriving waves potentially trav-
eling similar propagation paths). In this study we use the epi-
central azimuth θ to characterize this relative position and
assume that correlation between sites decreases as the differ-
ence in their azimuths increases. This difference in epicentral
azimuths is herein called the angular distance dA and illus-
trated in Fig. 1a. The angular distance takes values from 0
to 180◦, where 180◦ indicates two sites that are on opposite
sides of the epicenter. To account for path effects, we use the
following correlation function that was proposed by Padonou
and Roustant (2016) for Gaussian processes on circular do-

mains:

ρA(dA;`A)= (1+ dA/`A)(1− dA/180)180/`A , (4)

where `A ∈ (0,45) is the length scale in degrees. Figure 1c
provides a visual illustration of Eq. (4) for different length
scales. Model A, as introduced above, assigns strong corre-
lation for sites with similar epicentral azimuths regardless of
how close the sites are to each other. To account for spatial
proximity in addition to path effects, we introduce model EA:

ρEA(dE,dA;ψEA)= ρE(dE) · ρA(dA) , (5)

where ψEA = (γE,`E,`A) collects all parameters of the indi-
vidual functions E and A. The multiplicative structure en-
sures that strong correlations are only present if two sites
have similar epicentral azimuths and are close to each other.
Figure 1g illustrates the resulting correlation coefficient from
a reference site to all other sites in a fictitious region. The
comparison with the isotropic model E (Fig. 1f) reveals how
model EA assigns weaker correlations to sites with differing
paths from the epicenter.

Path effects in the context of correlation models for er-
godic GMMs imply stronger correlation between sites that
share a similar wave propagation path. This is different from
non-ergodic models where one tries to identify systematic
and repeatable path effects in areas where multiple events
have been recorded by the same seismic network. In the lat-
ter context, correlation functions are used to establish prob-
abilistic links between stations in the seismic network in or-
der to estimate the systematic path effects. While these func-
tions are typically defined for Euclidean distance and have
a similar functional form as Eq. (3), Kuehn and Abraham-
son (2020) and Liu et al. (2022b) recently proposed varying
the Euclidean length scale, `E, as a function of the epicentral
distance. This also induces path effects that vary spatially in
a more complex manner than only Euclidean distance. Yet,
a quantitative comparison with this approach is non-trivial
because of the fundamental differences between ergodic and
non-ergodic GMMs.

2.3 Accounting for site effects using a soil dissimilarity
metric

We account for site effects via measuring dissimilarities in
local soil conditions following the premise that sites with
similar soil conditions have stronger correlations. We use
vs30, the 30 m time-averaged shear-wave velocity, as a proxy
for the soil conditions, and the distance metric dS is the ab-
solute difference in the two sites’ vs30 values. We choose an
exponential form of the correlation function:

ρS (dS;`S)= exp(−dS/`S) , (6)

where `S ∈ R+ is the length scale (in m s−1). The choice of
using vs30 as a proxy for soil conditions reflects its use in the
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Figure 1. Illustration of the proposed spatial correlation models: distance and dissimilarity metrics (dependent variables) (a) and correlation
coefficients as a function of the corresponding dependent variable for different parameters of individual models E, A, and S (b to d). Soil
conditions in a fictitious 15× 15 km region (e) that are used to illustrate correlation coefficients with respect to the indicated reference site
for the combined correlation models E, EA, and EAS (f to h), where the model parameters are set to their corresponding prior mean values
stated in Table 1.

GMM and its availability in the data sets and case-study re-
gions employed in this study. Other information, such as the
depth to bedrock or simply topographic slope (Kotha et al.,
2020), could be used in a similar fashion. To simultaneously
account for spatial proximity, path, and site effects we intro-
duce correlation model EAS:

ρEAS
(
dE,dA,dS;ψEAS

)
= ρE(dE)

· (wρA(dA)+ (1−w)ρS(dS)) , (7)

where w ∈ (0,1) is a weight parameter and ψEAS =

(γE,`E,`A,`S,w) collects all parameters. To illustrate model
EAS, Fig. 1h plots the predicted correlation coefficient with
respect to the indicated reference site using soil conditions
as shown in Fig. 1e. The model still predicts path effects but
also higher correlation for sites with similar soil conditions
as the reference site.

For model EAS, we explored several combinations of the
individual models E, A, and S. Compared to the model de-
fined in Eq. (7), a decrease in predictive performance was
observed for the case where the individual components are
combined as a weighted sum, whereas the decrease was less
pronounced for a purely multiplicative structure. We also
tried a model with two separate isotropic components E1
(multiplied with component A) and E2 (multiplied with com-
ponent S), while Eq. (7) multiplies the same isotropic com-
ponent E with both A and S. This model had a slightly better

predictive performance but comes at the cost of two addi-
tional parameters. In favor of reduced model complexity, we
decided to proceed with the model specified by Eq. (7).

We note that the herein proposed models focus on corre-
lation of within-event residuals for a single IM at multiple,
spatially distributed sites. In future studies, the models may
be extended to the case of multiple IMs, for example, through
the use of the linear model of co-regionalization as shown in
Loth and Baker (2013) for isotropic models.

3 Bayesian parameter estimation

We follow a Bayesian approach to estimate the parameters of
the correlation models M ∈ {E,EA,EAS}, presented in the
previous section. Given data D, we aim to derive the pos-
terior distribution of the correlation model parameters ψM
using Bayes’ theorem:

p(ψM|D)∝ p(D|ψM)p(ψM), (8)

where p(D|ψM) denotes the likelihood of jointly observing
the data D conditional on a correlation model M with a spe-
cific parameter set ψM, and p(ψM) is the prior distribution
of the parameters. The individual components of Eq. (8) are
introduced in detail in the following sections.
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3.1 Data

We consider ground-motion IM data from the NGA-West2
database (Ancheta et al., 2014). The IMs of interest are
elastic, 5 % damped spectral accelerations Sa(T ) over the
range of periods T ∈ [0.01,6] s, where we consider the
median spectral amplitude over all horizontal orientations
(SARotD50). To compute within-event residuals we use the
GMM of Chiou and Youngs (2014) and mixed-effects re-
gression (Abrahamson and Youngs, 1992). We restrict the
database to consider only ground motions with closest dis-
tance to rupture below 300 km, measured or inferred vs30
values between 180 and 760 m s−1, and a maximum usable
period within the period range of interest. We then consider
all earthquake events with more than 40 stations that satisfy
the above criteria. Besides the computed residuals, zk , we
extract the geo-coordinates ski , the epicentral azimuth θki ,
and vs30,ki from all records, which we collectively denote
as input vector xki . The data from event k are denoted as
Dk = (Xk,zk), where the inputs and residuals of the stations
that recorded event k are summarized in matrix Xk and vector
zk , respectively.

The data set obtained by pooling data from all nk con-
sidered events is denoted as Dtot = {Dk|k = 1, . . .,nk}. For
Sa(1 s) (spectral acceleration at a period of 1 s), the pooled
data set consists of 13 342 records from 128 events. The size
of the data sets becomes smaller for spectral accelerations at
longer periods due to the maximum usable period limit. Ta-
ble A1 lists the number of records and events used for each of
the considered periods. Figure 2 shows the number of station
pairs in bins of Euclidean distance combined with angular
distance (a) and with soil dissimilarity (b). As can be seen in
Fig. 2a there are only a few station pairs available at short Eu-
clidean distances (smaller than 5 km) and angular distances
greater than 60◦, mainly for two reasons: first, this combi-
nation requires data points that have been recorded at short
epicentral distances, which are in general scarce; second, for
a given Euclidean distance it is more likely that a station pair
has small angular distances (i.e., small differences in epicen-
tral azimuths). The number of station pairs available at differ-
ent combinations of Euclidean distance and soil dissimilarity,
shown in Fig. 2b, are more evenly distributed, with relatively
few data points from close-by stations with strongly differing
soil conditions (e.g., dS > 350 m s−1). Low soil dissimilarity
occurs more frequently in this data set, where dS values larger
than 400 m s−1 account for 1.5 % of all station pairs. Addi-
tionally, there is a higher likelihood for close-by stations to
have similar vs30 values.

3.2 Likelihood

For event k, the likelihood, p(Dk|ψM), denotes the joint
probability that correlation model M with parameters ψM
and inputs Xk assigns to scaled within-event residuals zk
computed from the recorded ground-motion IMs as dis-

Figure 2. For the pooled training data set for Sa(1 s): number of
station pairs in joint bins of Euclidean and angular distance in (a)
and number of station pairs in joint bins of Euclidean distance and
soil dissimilarity in (b). Note the logarithmic color scale.

cussed above. This distribution is multivariate normal, so
p(Dk|ψM)=N (0,6). For the pooled data set Dtot, we con-
sider the residuals from distinct events to be independent, so
the likelihood factorizes: p(Dtot|ψM)=

∏
kp(Dk|ψM). The

joint probability of interest is thus analytically tractable. The
correlation model and its parameters ψM define the entries
of the correlation matrix 6.

3.3 Prior distributions

We chose weakly informative prior distributions for the pa-
rameters based on guidance provided in Kuehn and Stafford
(2021) and Liu et al. (2022b) and assume that their joint dis-
tribution, p(ψM) in Eq. (8), is factorizing. The prior distri-
butions and the corresponding prior mean, as well as the 5 %
and 95 % quantiles, are stated in Table 1. Note that some pri-
ors are defined on a scaled version of the parameter to ac-
count for its corresponding domain. For instance the expo-
nent γE is defined for a range from 0 to 2, which means to
get samples of this parameter we first sample from a beta
distribution, defined from 0 to 1, and multiply the obtained
samples by 2.

3.4 Posterior distribution

The posterior distribution, p(ψM|D) in Eq. (8), is not analyt-
ically tractable, and thus we use Markov chain Monte Carlo
(MCMC) sampling for Bayesian inference. MCMC is a se-
quential sampling algorithm that is often used in Bayesian
statistics to draw samples from a certain target posterior
(Neal, 1993). Specifically, we employ the No-U-Turn Sam-
pler (Hoffman and Gelman, 2014) as implemented in the
software library NumPyro (Phan et al., 2019). We get nr =

4000 sampled parameter sets ψM,r from the posterior distri-
bution through four independent chains and 1000 warm-up
steps each. Additional implementation details can be found
in the supplementary online repository (Bodenmann, 2022).

In the following we discuss the estimated parameters by
first focusing on isotropic models E that are derived from
data Dk of a single event k, so-called event-specific models.
Then we expand the discussion to the case where parameters
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Table 1. Prior distributions for the parameters ψ and corresponding means and the 5 % and 95 % quantiles (q0.05 and q0.95).

Parameter Domain Distribution Mean q0.05 q0.95

γE (–) (0,2) p(γE/2)= Beta (α = 2,β = 2) 1.0 0.3 1.7
`E (km) R+ p(`E)= InvGamma (α = 2,β = 30) 30.0 6.3 84.0
`A (◦) (0,45) p(180/`A− 4)= Gamma (α = 2,β = 0.25) 18.2 7.8 33.3
`S (m s−1) R+ p(`S)= InvGamma (α = 2,β = 100) 100.0 21.0 284.6
w (–) (0,1) p(w)= Beta 0(α = 2,β = 2) 0.5 0.1 0.9

are estimated from the pooled training data Dtot, so-called
pooled models, where we also include the combined models
EA and EAS. The upcoming paragraphs focus on the spectral
acceleration at a period of 1 s, Sa(1 s).

3.4.1 Event-specific models

Event-specific correlation models have parameters estimated
from data of an individual event. Figure 3 illustrates the joint
posterior distributions of the parameters ψE estimated sepa-
rately for three events with an increasing number of records.
The top row shows the individual samples ψE,r obtained via
MCMC and an estimated kernel density for illustrative pur-
poses. The bottom row shows the correlation model evalu-
ated using all sampled parameter sets ψE,r.

The results shown in Fig. 3 illustrate differences in the
three event-specific models, but they also highlight the un-
certainty involved in estimating correlation model parame-
ters from data of individual earthquakes. As pointed out in
the Introduction, this estimation uncertainty complicates the
identification of factors that could explain the variability in
event-specific correlation models. In Sect. 4.1 we will com-
pare the predictive accuracy of such event-specific models to
the predictive accuracy of pooled models as introduced in the
following.

3.4.2 Pooled models

Pooled models are derived by combining data from multiple
individual earthquakes. In contrast to event-specific models,
we use the same parameters to describe correlations of data
from all events.

Table 2 summarizes the posterior parameters of correlation
models E, EA, and EAS, all inferred from the pooled train-
ing data Dtot. First, we note that the angular length scale, `A,
of models EA and EAS is around 20◦. As can be seen from
Fig. 1c, this means that two sites whose epicentral azimuths
differ by more than 90◦ are essentially uncorrelated. Sec-
ond, the length scale applied to the Euclidean distance, `E,
is longer for models EAS and EA compared to the isotropic
model E, while the exponent γE is similar for all three mod-
els. Thus, sites with similar azimuthal difference and located
on similar soil are correlated over longer Euclidean distances.

For models EAS and E, Fig. 4 illustrates the predicted cor-
relation as a function of Euclidean distance, dE, for the three

soil dissimilarities, dS, of 10, 100 and 400 m s−1, and at three
increasing angular distances, dA, of 5, 30, and 60◦. The solid
line indicates the function evaluated with the mean poste-
rior parameters, and the shaded area indicates the interval
between the 95 % and 5 % quantiles of all sampled functions
from the posterior. The isotropic model E depends solely on
Euclidean distance, so the predicted correlation is identical in
all three panels (a–c). The comparison of this pooled model E
to the event-specific isotropic models shown in Fig. 3 reveals
the reduction in estimation uncertainty obtained by pooling
data from multiple events. For model EAS, on the other hand,
we observe increased uncertainty for larger angular distances
and short Euclidean distances, which reflects the low amount
of data available at such combinations (see Fig. 2). By com-
paring model EAS in panels (a) and (b), we observe that in-
creasing the angular distance from 5 to 30◦ has roughly the
same effect as increasing the soil dissimilarity from 10 to
400 m s−1. For the plotted range of Euclidean distance, the
isotropic model E is similar to model EAS at small angular
distances. This is because most data at short distances have
small azimuthal differences.

Table A1 in Appendix A presents the parameters of model
EAS for “Sa” at eight additional periods, while Fig. A1
provides similar plots as Fig. 4 for Sa(0.3 s) and Sa(3 s).
Compared to Sa(1 s), the weight parameter, w, decreases for
longer periods, which means the model assigns more weight
to the site-effect term (i.e., the term that accounts for soil dis-
similarities), compared to the path-effect term (i.e., the term
that accounts for angular distances). We further discuss the
relative importance of site and path effects in Sect. 4.2.

4 Comparison of model performance

We next evaluate the three models in terms of their predic-
tive accuracy on test data from either an individual event or
multiple events. Given the posterior parameters of model M
inferred from training data, Dtrain, we compute the logarith-
mic posterior predictive density (LPPD) of test data, Dtest,
as

LPPDM(Dtest;Dtrain)= ln
∫
p(Dtest|ψM)

p(ψM|Dtrain) dψM ≈ ln
1
nr

nr∑
r=1

p(Dtest|ψM,r), (9)
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Figure 3. Isotropic model E estimated separately for Sa(1 s) and for three events with increasing number of records: (a)–(c) posterior
distributions of the parameters and (d)–(f) predicted correlation coefficients as a function of Euclidean distance for all posterior parameter
samples.

Table 2. Parameters for the different correlation models estimated from the pooled training data set for Sa(1 s). Stated quantities are the mean
and the 5 % and 95 % quantiles from the posterior samples.

Model γE (–) `E (km) `A (◦) `S (m s−1) w (–)

E Mean 0.40 16.0 – – –
5 %, 95 % quantiles 0.38, 0.42 14.7, 17.4 – – –

EA Mean 0.35 21.3 23.5 – –
5 %, 95 % quantiles 0.33, 0.36 19.2, 23.5 20.8, 26.7 – –

EAS Mean 0.41 29.8 20.5 169 0.70
5 %, 95 % quantiles 0.38, 0.43 27.0, 32.8 17.8, 23.6 106, 251 0.62, 0.77

where ψM,r is the rth sample from the posterior
p(ψM|Dtrain) obtained via MCMC (Gelman et al., 2014). A
higher value of this metric indicates a model that is more
compatible with the data, in the sense of predicting higher
probabilities of observing the given test data. By marginal-
izing over the posterior distribution of the parameters, the
LPPD takes into account the uncertainty associated with pa-
rameter estimation. Because LPPD quantifies the joint pre-
dictive density (see Sect. 3.2), it is particularly useful in the
context of spatial correlation models. To compare the models
we use the relative difference between the LPPD of a model
M and the LPPD of a certain baseline model BL:

Rel. difference=
LPPDBL−LPPDM

LPPDBL
. (10)

Note that the LPPD is negative (log-scale), thus a positive rel-
ative difference indicates that model M has higher predictive
accuracy (higher LPPD) than the baseline model BL. The
baseline model differs for the different conducted analyses
and is specified in the corresponding sections. We performed
three analyses in which we consider different test data sets,
while the training data always stem from the NGA-West2
database as described in Sect. 3.1. The first two analyses ex-
amine the in-sample performance. Specifically, we first focus
on Sa(1 s) and compare the performance of pooled models
E and EAS (estimated in Sect. 3.4.2) to the performance of
event-specific isotropic models E (estimated in Sect. 3.4.1)
on data from individual events. Then we analyze the perfor-
mance of the pooled models on the entire training data set
to examine the relative importance of site and path effects in
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Figure 4. Posterior correlation models EAS and E for Sa(1 s) as a function of Euclidean distance and soil dissimilarity plotted at three angular
distances: (a) 5◦, (b) 30◦, and (c) 60◦. The shaded area indicates the interval between the 95 % and 5 % quantiles of all sampled functions
from the posterior.

correlation of Sa(T ) at different periods T . In the third anal-
ysis, we compare out-of-sample performance of the herein
proposed correlation models for Sa(1 s) on data not used for
training.

4.1 Comparing event-specific and pooled models

As stated in the Introduction, previous studies found that the
parameters of an isotropic correlation model estimated from
data of different events vary from earthquake to earthquake.
To examine this event-to-event variability, we compute for
each event k (i) the predictive accuracy LPPDM(Dk;Dtot)

of pooled models M ∈ {E,EAS} and (ii) the predictive accu-
racy LPPDE(Dk;Dk) of the corresponding isotropic event-
specific model.

To illustrate the aforementioned LPPD metrics, we first
use 125 records from the Hector Mine earthquake in Fig. 5.
The frequency histograms indicate the log-likelihoods com-
puted for individual samples from the posterior distribution
of the model parameters, lnp(Dk|ψM,r). The X values in-
dicate the final LPPD metric which is computed from the
histogram values as specified in Eq. (9).

We see that the event-specific model E has the largest vari-
ance in log-likelihood values, as the model parameters are
more uncertain due to limited data, and some sampled pa-
rameter values give low probability of observing the data
(i.e., low log-likelihoods). For most realizations, however,
the event-specific model E outperforms the pooled model E
for the given event, as would be expected. By computing the
LPPD metric using Eq. (9) we marginalize over the posterior
parameters, and the resulting LPPDs of both models are sim-
ilar, with the event-specific model performing slightly bet-
ter. We also see that the pooled model EAS has a higher
predictive accuracy than both the pooled and event-specific
isotropic models E.

Figure 6 extends the above comparison to all events in the
training data by comparing the LPPDs of pooled model E

Figure 5. Log posterior predictive density (LPPD) for data from
the Hector Mine earthquake event of models E and EAS estimated
from the pooled data set, as well as model E with parameters esti-
mated only from data of that event. The histograms show the log-
likelihood of the data conditional on samples from the posterior pa-
rameters, lnp(Dk |ψM,r ).

(panel a) and pooled model EAS (panel b) for each event
to the LPPD of the corresponding event-specific isotropic
model E using the relative difference metric specified in
Eq. (10). The event-specific model E serves as a baseline
in computing the relative difference. Thus a positive relative
difference indicates that the pooled model predicts the data
from that event with higher accuracy than the corresponding
event-specific isotropic model.

Figure 6a reveals that the pooled model E has worse
predictive accuracy than the event-specific model for most
events, with the exception of some events with fewer than
200 records. The exceptions are explained by the increased
estimation uncertainty when using sparse data from solely
one event, as discussed above. The better predictive accuracy
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of event-specific models points to event-to-event variability
in model parameters when using isotropic correlation models
that are only based on Euclidean distance.

On the other hand, Fig. 6b shows that the predictive ac-
curacy of the pooled model EAS is, for most events, higher
than the event-specific isotropic model. This is despite the
increased number of parameters (and associated estimation
uncertainty) and highlights the benefit of accounting for path
and site effects in correlation models. It also indicates that the
event-to-event variability in correlation model parameters is
at least partially explained by the lack of accounting for such
effects. Finally, we note that the earthquake magnitude does
not seem to affect the relative comparison in LPPDs, neither
for model E nor for model EAS.

4.2 Pooled model performance for Sa at other periods

Whereas the previous results considered within-event residu-
als of Sa(1 s), this section expands the discussion to different
periods T . We again use the NGA-West2 data set to esti-
mate parameters of pooled models for residuals at nine pe-
riods between 0.01 s and 6 s and evaluate the corresponding
LPPD for the entire training data set, LPPDM (Dtot;Dtot).
To enable a comparison across periods we additionally com-
pute the predictive accuracy of an independent model (i.e.,
no correlation between within-event residuals). For the train-
ing data set with n records the latter is computed as LPPDI =∑n
i lnp(zi), where each individual scaled within-event resid-

ual zi follows a standard normal distribution.
Figure 7a compares the resulting LPPD values in terms of

their relative difference to the baseline LPPD of the indepen-
dent model using Eq. (10). For the considered periods, all
three models have increased predictive accuracy compared
to the independent model. The major part of the benefit in
LPPD stems from the isotropic model E, although account-
ing for path and site effects (models EA and EAS) leads to
further increases in LPPD. Figure 7b focuses on the relative
difference of model EA and EAS compared to the baseline of
the isotropic model E. Interestingly, for T ≤ 0.3 s the LPPD
of model EAS is very similar to the LPPD of model EA. This
indicates that, for short periods, additionally accounting for
site effects (as measured with model EAS) adds only a minor
benefit compared to model EA which only accounts for path
effects. For longer periods, however, the site effects become
more important. For model EA, Fig. 7b shows larger LPPD
for T ≤ 0.1 s compared to longer periods. Further studies
are needed to assess whether this indicates more pronounced
path effects at shorter periods or whether the chosen func-
tional form in Eq. (4) captures path effects better for shorter
periods.

4.3 Out-of-sample model performance

We use recorded ground-motion data from the 2019 Ridge-
crest, California, earthquake sequence (Rekoske et al., 2020)

Table 3. In- and out-of-sample performance in terms of relative dif-
ference (Eq. 10) in LPPD of pooled models E, EA, and EAS to the
baseline LPPD of an independent model for the training and test
data sets.

Relative difference in LPPD (%)

In-sample Out-of-sample
Model (NGA-West2 Dtot) (Ridgecrest D̃1)

E 9.42 8.32
EA 9.96 8.73
EAS 10.47 10.32

to compare the performance of the herein proposed corre-
lation models on data not used for training, i.e., Dtest 6⊂

Dtrain. Specifically, we compute the within-event residuals
of Sa(1 s) using the regionalized ergodic GMM developed
by Liu et al. (2022a). This GMM has been derived using
the NGA-West2 database and a subset of 9554 records from
81 earthquakes of the Ridgecrest data set. The latter sub-
set serves here as the first test data set denoted as D̃1. The
second test data set, D̃2, consists of data from three events
with magnitudes 5.4, 6.4, and 7.1 that were not used to fit
the GMM. For more details on the ground-motion data and
model the reader is referred to Rekoske et al. (2020) and Liu
et al. (2022a).

The out-of-sample performance is first assessed via the
LPPD of the test set D̃1 obtained with the pooled correlation
models E, EA, and EAS from Sect. 3.4.2. Table 3 shows the
resulting relative difference in the LPPDs to the LPPD of an
independent model and compares the values to the in-sample
performance on the training set. The in-sample values are
identical to the results shown in Fig. 7 at period T = 1 s. For
the test set D̃1 the increase in LPPD of the model EAS is sim-
ilar to the in-sample LPPD, whereas the increase in models E
and models EA is more than 1 % point smaller. The compari-
son of models EA and EAS reveals that the additional gain in
predictive accuracy obtained from accounting for site effects
is larger for the test data (Ridgecrest) than for the training
data (NGA-West2).

For the three events in the second test data set, D̃2, Fig. 8
shows the computed within-event residuals in the top row and
the relative difference in LPPD compared to the correspond-
ing independent model in the bottom row. Similar to Fig. 5,
the histograms show the log-likelihood of the different mod-
els conditional on samples from the posterior distributions
of parameter values, whereas the X marks the marginalized
LPPD. For all three events, model EAS has a higher predic-
tive accuracy than the isotropic model E.

5 Implications for regional seismic hazard and risk

Figure 9a shows the configuration of a simplified case study
to assess the implications of the different correlation models

https://doi.org/10.5194/nhess-23-2387-2023 Nat. Hazards Earth Syst. Sci., 23, 2387–2402, 2023



2396 L. Bodenmann et al.: Path and site effect in ground-motion correlation

Figure 6. Relative difference in log posterior predictive density (LPPD) of pooled models E (a) and EAS (b) to the LPPD of event-specific
models E as a function of the available number of records and magnitude. Each point represents one event in the considered data set, and the
coloring indicates the event’s magnitude. The relative difference is computed using Eq. (10), and positive values indicate higher predictive
accuracy (higher LPPD) of the pooled model for this event compared to the corresponding event-specific model E.

Figure 7. For within-event residuals of Sa(T ) at different periods T from the NGA-West2 data set: relative difference (Eq. 10) in log posterior
predictive density (LPPD) of pooled models E, EA, and EAS to (a) the LPPD of the independent model and (b) the LPPD of pooled model
E.

for regional seismic risk simulations. Four 5× 5 km subre-
gions are located in the San Francisco Bay Area, Califor-
nia, subjected to a M6.25 rupture on the Hayward fault. As a
first visual comparison of the estimated models E and EAS,
Fig. 9b and c show maps of computed correlation coefficients
from the indicated reference site to all other sites. According
to model EAS, sites in subregion two are essentially uncor-
related to the reference site, while model E predicts a corre-
lation between 50 % and 60 %.

Next, the four subregions are gridded into individual sites
with a spacing of 3 arcsec (approximately 90 m). The quan-
tity of interest is the proportion of sites, a, within one or
several subregions, where the Sa(1 s) jointly exceeds a cer-
tain threshold value sa, which we denote as random variable
ASa(1 s)>sa. While regional seismic risk is typically quanti-
fied in terms of fatalities, financial losses or downtime, the
joint distribution of Sa values is a major component in the un-
derlying workflow and an important driver of such regional
seismic risk metrics (Weatherill et al., 2015). As such, the
presented results provide initial, but certainly not complete,

information on potential implications of the proposed corre-
lation model for regional seismic risk simulation.

The rupture scenario is taken from the UCERF2 earth-
quake rupture forecast (Field et al., 2008). We use Open-
SHA (Field et al., 2003) to compute the mean lnSa value
at all sites, as well as the between- and within-event stan-
dard deviations, τ and φ, from the GMM of Chiou and
Youngs (2014). The vs30 values, illustrated in Fig. 9a, are
obtained from Thompson (2022). Then we sample scaled
within-event residuals z from the posterior predictive dis-
tribution p(z|Dtot) and multiply them with the within-event
standard deviation φ to get samples of δW . For δB we sam-
ple from a zero-mean normal distribution with standard de-
viation τ . Finally, we obtain sampled ground-motion fields
by summing the mean lnSa value and the sampled resid-
uals using Eq. (1) and compute a sample of ASa(1 s)>sa by
counting the number of sites where the simulated ground-
motion field exceeds a certain threshold value sa. We com-
pute site-specific thresholds such that they have an identical
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Figure 8. For the three earthquakes in the second test set from the 2019 Ridgecrest sequence: the spatial distribution of scaled within-event
residuals zk of Sa(1 s) (a–c) and the relative difference (Eq. 10) in log posterior predictive density (LPPD) of pooled models E and EAS to
the baseline LPPD of the independent model (d–f).

Figure 9. Map of the case study area used for regional risk as-
sessment and the considered M6.25 rupture on the Hayward fault:
(a) soil conditions, quantified via vs30, and correlation coefficient
from the indicated reference site to all other sites obtained with pos-
terior mean parameters of model E (b) and model EAS (c). Num-
bered boxes indicate the subregions of interest (blue areas are wa-
ter).

10 % probability of being exceeded in the considered sce-
nario.

Note that the above process requires realizations of z from
each sampled parameter set from the posteriorψM,r obtained
via MCMC. This sampling from the posterior predictive
distribution is computationally expensive because, for each
ψM,r , it requires the evaluation of a novel covariance matrix
and a subsequent sampling from the corresponding multivari-
ate normal. Thus, we first explore whether it is sufficient to
use the mean values from the posterior distribution of each
parameter to build one covariance matrix and generate all

samples from that corresponding multivariate normal. Fig-
ure 10 compares the resulting exceedance probability curves
for the proportion of sites in subregion two where Sa(1s),
induced by the considered scenario rupture, jointly exceeds
the specified thresholds. To calculate the exceedance proba-
bility curves, we used the posterior parameters from model
EAS because this model has more parameters and increased
estimation uncertainty compared to model E (as shown in
Fig. 4). We observe that the exceedance probability curves
obtained via both approaches are visually identical. The same
comparison for the other subregions produced the same find-
ings. This indicates that the less expensive approach of using
the mean posterior parameters is sufficient for these regional
risk estimates.

We used the posterior mean parameters of model E and
model EAS to compute exceedance probability curves for
the proportion of sites within the different subregions where
Sa(1 s) jointly exceeds the 10 % exceedance probability
thresholds. Figure 11 shows results for subregions one and
two (top row) and subregions three and four (bottom row).
Experiments with different fixed threshold values did not
change the conclusions.

In subregions with differing epicentral azimuth values and
heterogeneous soil conditions (top row), the isotropic model
E predicts stronger correlations and thus heavier tailed dis-
tributions (i.e., higher probabilities of jointly exceeding the
threshold value at a high proportion of sites). This is es-
pecially apparent if subregions one and two are combined
(Fig. 11c), where the probability of jointly exceeding the
threshold value at least at 40 % of all sites is 9.5 % for model
E and only 5.5 % for model EAS. If subregions three and four
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Figure 10. Exceedance probability curves for the proportion of sites
a in subregion two where Sa(1 s) jointly exceeds the site-specific
thresholds, obtained via sampling from the posterior predictive dis-
tribution of model EAS (dashed line) and sampling conditional on
the mean values of the posterior parameter distributions (solid line).

Figure 11. Exceedance probability curves for the proportion of
sites a in the considered subregions where Sa(1 s) jointly exceeds
a threshold value sa: for subregions one and two separately (a, b)
and for one and two combined (c) using a threshold value of 0.75 g,
as well as for subregions three and four using a threshold value
of 0.25 g (d–f) .

are combined (Fig. 11f), the exceedance probability curves
from both models are similar because these subregions are
located at similar azimuths from the epicenter and the as-
signed correlation coefficients are similar for both models
(see Fig. 4a). For subregion four (Fig. 11e), the curve ob-
tained via model EAS has slightly heavier tails compared to
the one of model E, which may be explained by the homoge-
neous soil conditions in this subregion (see Fig. 9).

Figure B1 in Appendix B compares the results for Sa(1 s)
(shown in Fig. 11) to results obtained for Sa(0.3 s) and
Sa(0.6 s). This comparison aligns well with our discussion
on the relative importance of site and path effects in Sect. 4.2,
and we refer to Appendix B for a brief discussion.

6 Conclusions

This study explored the role of spatial proximity, local site
effects, and path effects on spatial correlations of recorded
ground-motion intensity measures. The motivation for this
work came from the substantial event-to-event variability
found in the correlation model parameters estimated in previ-
ous studies, as well as questions as to whether such variabil-
ity was due to event-specific characteristics or due to model
and estimation uncertainty. Site and path effects are qualita-
tive contributors to spatial correlations but were not captured
by the isotropic correlation models used in previous studies:
thus, our focus is on the path and site effects to explain the
observed model parameter variability.

We proposed a novel correlation model, EAS, that ac-
counts for path and site effects in addition to spatial prox-
imity. The EAS model assigns decreasing correlation coeffi-
cients for sites with increasing Euclidean distance, increas-
ing angular distance, and increasing soil dissimilarity. These
three model components reflect the role of spatial proximity,
path effects, and site effects, respectively, on spatial ground-
motion correlations. Compared to an isotropic model, the
proposed model has increased complexity and more param-
eters (five instead of one or two for the isotropic model). To
account for this increase in model complexity, we employ
Bayesian inference to estimate the parameters, and we as-
sume that the same parameters describe the correlation for
all events in the considered ground-motion database (i.e., a
pooled model).

For each event in the NGA-West2 training data set, we
then computed the predictive accuracy of the proposed EAS
model, as well as of two isotropic models E, where the pa-
rameters of one model were estimated from the pooled data
set, and the others exclusively consider data from that spe-
cific event. For most events, we found that the event-specific
models E have higher predictive accuracy then the pooled
model E, thus confirming the presence of some event-to-
event variability in correlation model parameters. However,
the pooled model EAS outperforms the event-specific mod-
els E for the majority of events and, especially, for the well-
recorded events. This indicates that the event-to-event vari-
ability in estimated isotropic model parameters found in pre-
vious studies is an apparent variability due to estimation un-
certainty and the lack of accounting for site and path effects
rather than a true variability. Data from the 2019 Ridgecrest
earthquake sequence were then used to compare the mod-
els in terms of their out-of-sample performance. The results
showed a higher predictive accuracy for model EAS com-
pared to the isotropic model E, further highlighting the bene-
fit of accounting for site and path effects in correlation mod-
els.

We then used a case study to explore the implications
of using the different correlation models for regional seis-
mic risk simulations. First, we found that generating corre-
lated ground-motion samples using the mean values from the
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posterior distribution of each parameter instead of sampling
from the posterior predictive distribution produces ground-
motion fields with practically equivalent distributions. This
is helpful because it is much less computationally expen-
sive to use mean parameter values. Second, we saw that
the isotropic model E predicts substantially stronger cor-
relations than model EAS in regions with heterogeneous
soil conditions and varying epicentral azimuths. This may
lead to an overestimation of regional seismic risk tails (low-
probability, high-consequence events), particularly in regions
located close to the earthquake source.

The proposed model and analysis could benefit from some
further study. This could include a refined model parame-
terization to consider an azimuth metric that accounts for
finite-fault effects or to consider other metrics of dissimi-
larity in site conditions. The refined EAS model could also
be tested on more complex risk analysis problems to fur-
ther understand the practical impact of these refinements.
Despite those opportunities for further study, the proposed
EAS model form and the proposed techniques for evaluating
model performance should be of general use for analysts in-
terested in studying and improving the prediction of spatial
correlations in ground motions.

Appendix A: Posterior correlation models for Sa at
other periods

Table A1. Parameters for correlation model EAS estimated for Sa at nine periods from the pooled training data set with indicated number of
records, nr, and events, ne. Stated quantities are the mean (m.) and the 5 % and 95 % quantiles from the posterior samples.

T nr ne `E (km) γE (–) `A (◦) `S (m s−1) w (–)

m. Quantiles m. Quantiles m. Quantiles m. Quantiles m. Quantiles

0.01 13 898 134 16.4 (14.9, 17.9) 0.36 (0.34, 0.38) 24.9 (21.6, 28.6) 171 (107, 256) 0.84 (0.80, 0.88)
0.03 13 898 134 16.9 (15.4, 18.5) 0.36 (0.35, 0.38) 25.6 (22.1, 29.3) 186 (115, 279) 0.84 (0.80, 0.88)
0.06 13 898 134 16.6 (15.2, 18.2) 0.35 (0.34, 0.37) 24.4 (21.4, 27.8) 190 (124, 277) 0.84 (0.80, 0.88)
0.10 13 897 134 16.3 (14.8, 17.9) 0.34 (0.32, 0.36) 23.3 (20.5, 26.5) 190 (116, 290) 0.88 (0.84, 0.92)
0.30 13 891 134 15.1 (13.6, 16.6) 0.34 (0.32, 0.36) 26.1 (22.4, 30.5) 200 (117, 316) 0.85 (0.80, 0.89)
0.60 13 846 134 25.6 (23.2, 28.3) 0.37 (0.35, 0.39) 24.2 (20.8, 28.0) 223 (129, 341) 0.73 (0.65, 0.80)
1.00 13 342 128 29.8 (27.0, 32.8) 0.41 (0.38, 0.43) 20.5 (17.8, 23.6) 170 (106, 251) 0.70 (0.62, 0.77)
3.00 7997 66 42.1 (37.4, 47.2) 0.46 (0.43, 0.49) 18.5 (14.6, 22.8) 358 (252, 483) 0.50 (0.40, 0.60)
6.00 5558 41 70.2 (60.1, 81.7) 0.49 (0.45, 0.54) 17.3 (12.9, 22.5) 372 (228, 537) 0.54 (0.42, 0.65)

This appendix provides additional results for the pooled
model EAS. Table A1 shows the parameters of the proposed
correlation model EAS for Sa at nine periods, which are also
available in the Supplement (Bodenmann, 2022). Figure A1
compares models EAS and E for Sa(0.3 s) and Sa(3 s).

Figure A1. Posterior correlation models EAS and E for Sa(0.3 s)
(a–c) and Sa(3 s) (d–f) as a function of Euclidean distance and soil
dissimilarity plotted at three angular distances: (a, d) 5◦, (b, e) 30◦,
and (c, f) 60◦. The shaded area indicates the interval between the
95 % and 5 % quantiles of all sampled functions from the posterior.
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Figure B1. Exceedance probability curves for the proportion of
sites a in the considered subregions where Sa(T ) jointly exceeds
a threshold value sa. Solid and dashed lines plot results for models
E and EAS, respectively, while the colors indicate different peri-
ods T ∈ {0.3,1,3} s. Thresholds are computed such that at each site
there is a 10 % probability that sa is exceeded for the rupture sce-
nario shown in Fig. 9a.

Appendix B: Case study results for Sa at other periods

Figure B1 compares the results for Sa(1 s) (shown in Fig. 11)
to results obtained for Sa(0.3 s) and Sa(0.6 s). For subregions
one and two (panel c), the difference in the exceedance prob-
ability curves from models E and EAS are smaller for the
longer period of 3 s due to site effects becoming more impor-
tant than path effects; i.e., the decrease in correlation because
of differing epicentral azimuths is less pronounced. For sub-
region four (panel e), the curves from models E and EAS
are practically identical for Sa(0.3 s), while model EAS has
slightly heavier tails for longer periods due to the homoge-
neous soil conditions.

Code and data availability. The code for Bayesian inference, the
post-processing, and the case study application is available at
https://doi.org/10.5281/zenodo.7124213 (Bodenmann, 2022). The
PEER NGA-West2 data set is available at https://ngawest2.berkeley.
edu/ (last access: 20 April 2022; Ancheta et al., 2014). To compute
residuals we used the code from Baker and Chen (2020) available at
https://github.com/bakerjw/spatialCorrelationEstimation/ (last ac-
cess: 25 April 2022; Baker and Chen, 2020). The data set from
the 2019 Ridgecrest earthquake sequence (Rekoske et al., 2020)
is available at https://www.strongmotioncenter.org/specialstudies/
rekoske_2019ridgecrest/ (last access: 11 May 2022; Rekoske et al.,
2019). The ergodic GMM employed for this data set has been pro-
vided to us by the authors of Liu et al. (2022a).
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