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Abstract. Central Asia is an area characterized by complex
tectonics and active deformation; the related seismic activity
controls the earthquake hazard level that, due to the occur-
rence of secondary and tertiary effects, also has direct im-
plications for the hazard related to mass movements such as
landslides, which are responsible for an extensive number of
casualties every year. Climatically, this region is character-
ized by strong rainfall gradient contrasts due to the diver-
sity of climate and vegetation zones. The region is drained
by large, partly snow- and glacier-fed rivers that cross or
terminate in arid forelands; therefore, it is also affected by
a significant river flood hazard, mainly in spring and sum-
mer seasons. The challenge posed by the combination of dif-
ferent hazards can only be tackled by considering a multi-
hazard approach harmonized among the different countries,
in agreement with the requirements of the Sendai Frame-
work for Disaster Risk Reduction. This work was carried
out within the framework of the Strengthening Financial Re-
silience and Accelerating Risk Reduction in Central Asia
(SFRARR) project as part of a multi-hazard approach and
is focused on the first landslide susceptibility analysis at a
regional scale for Central Asia. To this aim the most de-
tailed landslide inventories, covering both national and trans-
boundary territories, were implemented in a random forest
model, together with several independent variables. The pro-

posed approach represents an innovation in terms of resolu-
tion (from 30 to 70 m) and extension of the analyzed area
with respect to previous regional landslide susceptibility and
hazard zonation models applied in Central Asia. The final
aim was to provide a useful tool for land use planning and
risk reduction strategies for landslide scientists, practition-
ers, and administrators.

1 Introduction

During the 2 decades spanning between 1988 and 2007, ac-
cording to observed estimates, out of 177 reported disasters
in Central Asia, 13 % were landslides, causing 700 deaths
(Table 1), while in the same period economic losses have
been as high as USD 150 million, including damage to infras-
tructures, settlings, and agricultural and pasture lands, as well
as displacement of the population (GFDRR, 2009). More re-
cent modeled estimates show that in the Central Asia states
an annual average of 3 million persons are affected by earth-
quakes and floods, with an estimated annual average GDP of
USD 9 billion (GFDRR, 2016).

Due to their large size and impact, most of the occur-
ring landslides have profound transboundary implications.
Tajikistan and the Kyrgyz Republic are the countries that
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Table 1. Observed landslide hazard statistics (1988–2007). Source: Risk Assessment for Central Asia and Caucasus (UNISDR, 2009). NA –
not available.

Country No. of disasters per Total no. Deaths per Relative vulnerability
year of deaths year (deaths per year per million)

Kazakhstan 0.05 48 2.40 0.16
Kyrgyz Republic 0.30 238 11.90 2.27
Tajikistan 0.50 339 16.95 2.51
Turkmenistan NA NA NA NA
Uzbekistan 0.15 75 3.75 0.14

have been the most impacted by landslides: in Tajikistan
around 50 000 landslides have been mapped, 1200 of which
threatened settlements or facilities (Thurman, 2011), while
the Kyrgyz Republic has been affected by 5000 landslides,
of which 3500 at various levels of activity occurred in
the southern part of the country (the Fergana Valley area)
(Pusch, 2004; Li et al., 2021). Only in the Kyrgyz Repub-
lic, up to 2017, 784 landslides and 1658 mudflows (also
including loess flows) and flash floods caused 352 victims
(Kalmetieva et al., 2009; Havenith et al., 2015a, 2017).
The Almaty Province in Kazakhstan, the cities of Tashkent
and Samarkand and the Surkhandarya and Kashkadarya
provinces of Uzbekistan, and the Ahal Province of Turk-
menistan are also exposed to landslides (World Bank, 2006).
Given the increased anthropogenic pressures and the impact
of climate change, since the early 1990s several projects have
tried to improve the knowledge on landslide hazards (Thur-
man, 2011) by providing landslide loss estimations, location,
type, triggering and reactivation dates, and inventories and
hazard and risk maps, as well as platforms to retrieve open
disaster risk data and overviews on landslide risk reduction
strategies. Among the regional studies on landslide hazards
providing descriptions, statistics, and inventory maps, it is
worth mentioning the following:

– Disaster Risk Management and Climate Change Adap-
tation in Europe and Central Asia, developed by the
World Bank – Global Facility for Disaster Reduction
and Recovery (Pollner et al., 2010);

– Disaster Risk Reduction: 20 Examples of Good Practice
from Central Asia, developed by the European Union,
International Strategy for Disaster Reduction (ISDR;
European Commission, 2006);

– the Science for Peace Project (983289): Prevention of
Landslide Dam Disasters in the Tien Shan, Ladatsha,
2009–2012, NATO Emerging Security Challenges Di-
vision;

– the Potsdam Research Cluster for Georisk Analysis, En-
vironmental Change and Sustainability (PROGRESS),
German Federal Ministry of Research and Technology
(BMBF);

– the Tian Shan-Pamir Monitoring Program (TIPTI-
MON), German Federal Ministry of Education and Re-
search (BMBF); and

– the M126 International Consortium on Landslides (IPL)
project (funded by the International Consortium on
Landslides): M2002111 detailed study of the internal
structure of large rockslide dams in the Tien Shan,
M2004126 compilation of landslide and rockslide in-
ventory of the Tien Shan Mountain system.

Besides the creation of landslide inventories, a common ap-
proach to assess landslide hazard is the development of land-
slide susceptibility maps (LSMs), which depict the relative
probability of occurrence of a given type of landslide in
a given area, without considering the probability of occur-
rence in time (Brabb, 1984). In other words, LSMs identify
those areas where landslides can occur, based on their ge-
ological, morphological, and climatic characteristics. These
maps have been extensively used as useful tools for land
planning (Cascini 2008; Frattini et al., 2010) and hazard as-
sessment (Corominas et al., 2003). More recently, they have
also been successfully integrated in quantitative risk assess-
ment (Chen et al., 2016) and early warning systems (Segoni
et al., 2018; Tiranti et al., 2019). LSMs have been produced
by applying a wide range of mathematical techniques, from
the most traditional statistic approaches like frequency ratio
(Yilmaz, 2009), discriminant analysis (Carrara, 1983; Trigila
et al., 2013), and logistic regression (Lee, 2005; Duman et al.,
2006; Manzo et al., 2013) to more recent and more advanced
techniques, like artificial neural networks (Tien Bui et al.,
2016; Ermini et al., 2005), machine learning (Catani et al.,
2013), and multi-criteria decision analysis (Akgun, 2012).
Statistical probabilistic models for landslide susceptibility
can overcome the data gaps and allow us to analyze very
wide areas (from basin to national scales) by adopting a ho-
mogeneous methodology and a harmonized dataset (includ-
ing global and local data sources). However, landslide haz-
ard assessment is a complex process, since it needs accurate
knowledge of the topic and appropriate input data (historical
and regional inventories that mainly consist of large prehis-
toric events). In this work the landslide susceptibility analy-
sis was carried out by means of the random forest (RF) ma-
chine learning algorithm, which is credited as one of the most
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advanced and reliable techniques in this field (Catani et al.,
2013; Goetz et al., 2015). This work represents the first land-
slide susceptibility analysis at a regional scale for Central
Asia and was carried out in the framework of the Strength-
ening Financial Resilience and Accelerating Risk Reduction
in Central Asia (SFRARR) project as part of a multi-hazard
approach (Bazzurro et al., 2023). The main challenge of this
work was the creation of a unique LSM of the whole Cen-
tral Asia, which involved the use of a wide range of variables
to account for the features of each country and a high vol-
ume of input data and the development of new approaches to
analyze these data and to take into account possible discrep-
ancies and non-homogeneities. The proposed approach rep-
resents an innovation in terms of resolution and extension of
the analyzed area with respect to previous regional landslide
susceptibility and hazard zonation models applied in Central
Asia (e.g., Nadim et al., 2006; Havenith et al., 2015b; Stan-
ley and Kirschbaum, 2017; Pittore et al., 2018; World Bank,
2020).

2 Study area

Geographically, Central Asia is a vast and diverse region in-
cluding high mountain chains, deserts, and steppes (Fig. 1).
A large portion of the Central Asia countries, especially in
the southern and eastern parts of the region, is occupied by
the mountainous areas of the Dzungaria, Tien Shan, Pamirs,
Kopet Dag, and a small part of western Altai, with peaks
above 7000 m a.s.l (Strom, 2010). These intraplate mountain
systems formed in the Cenozoic between the Tarim Basin
and the Kazakh Shield, as a result of the India–Asia collision
(Molnar and Tapponier, 1975; Abdrakhmatov et al., 1996,
2003; Zubovich et al., 2010; Ullah et al., 2015). This work is
focused on the most inner part of Central Asia, represented
by the territories of Turkmenistan, Kazakhstan, the Kyrgyz
Republic, Uzbekistan, and Tajikistan. Active mountain build-
ing started in the Oligocene (Chedia and Lemzin, 1980) or
even later (Abdrakhmatov et al., 1996), forming a complex
system of basement folds disrupted by numerous thrusts and
reverse faults with a significant amount of lateral offset (Del-
vaux et al., 2001). Several regional fault zones are aligned
along large parts of the mountain belts, and others cross the
orogen in a NW–SE direction, e.g., the Talas–Fergana fault,
which forms a distinct boundary between the western and
central Tien Shan (Trifonov et al., 1992) (Fig. 2).

Mountain ridges, formed mainly by Paleozoic crystalline
rocks, are separated by wide lenticular or narrow, linear inter-
mountain depressions, containing Neogene and Quaternary
deposits, mainly sandstone, siltstone with gypsum interbeds,
and conglomerates (Strom and Abdrakhmatov, 2017). Meso-
zoic and Paleogene deposits are typical of the foothill ar-
eas. Almost every ridge, especially in the Tien Shan, cor-
responds to a neotectonic anticline, and most of the main
river valleys follow intermontane tectonic depressions, which

are linked by narrow deep gorges up to 1–2 km deep (Strom
and Abdrakhmatov, 2018). These mountain systems are the
sources of most of Central Asia’s rivers, which, being fed by
glaciers, snowmelt water, and rain, have deeply incised val-
leys. Such extreme topography along with complex geologi-
cal structure, active tectonics, and high seismicity determine
important landslide predisposing factors, making landslides
the third most prevalent natural hazard in Central Asia, fol-
lowing earthquakes and floods (CAC DRMI, 2009; Havenit
et al., 2017).

2.1 Landslide types in Central Asia

According to the international Cruden and Varnes (1996)
classification, landslide phenomena in Central Asia include
rockslides and rock avalanches, rotational and translational
slides, and mudflows and debris flows (often involving
loess), which are triggered by natural events such as earth-
quakes, floods, rainfall, and snowmelt (Behling et al., 2014,
2016; Golovko et al., 2015; Havenith et al., 2006a, b, 2015a,
b; Kalmetieva et al., 2009; Saponaro et al., 2015a, b; Strom
and Abdrakhmatov, 2017, 2018). Glacial lake outburst flood
phenomena, caused by the breach in natural glacial dams,
often result in large-scale catastrophic mudflows and debris
flows. In Central Asia, landslides more often occur in the
loess zone of contact with other rocks, on clay interlayers
of the Mesozoic and Cenozoic age, reaching a volume from
tens of thousands up to 15–40× 106 m3 (Juliev et al., 2017).
Seismically triggered landslides are very common in tectoni-
cally active mountain regions, such as Tien Shan and Pamirs
(Sternberg, 2006; Hong et al., 2007; Juliev et al., 2017).
According to the literature background, most of the large
mapped mass movements (especially those with a volume of
more than 106 m3) were triggered generally by major (also
prehistoric) earthquakes, possibly in combination with cli-
matic factors, namely snowmelt and heavy rainfall (Havenith
et al., 2003; Strom and Korup, 2006; Strom, 2010; Schlögel
et al., 2011; Strom and Abdrakhmatov, 2017, 2018; Havenith
et al., 2015a, 2016; Behling et al., 2014, 2016; Piroton et al.,
2020). Furthermore, in the past few decades, the number and
intensity of landslides have grown, owing to climate change
and the increase in the anthropic pressure, due to several fac-
tors such as uncontrolled land and water use, the rising of the
water tables (often induced by the increase in irrigation; Ishi-
hara et al., 1990), mining, and excavation activities (Pollner
et al., 2010; Thurman, 2011).

2.2 Large rockslides and natural dams

Numerous rockslides have occurred in the mountains, pro-
ducing hazardous natural phenomena such as long runout
rock avalanches (Fig. 3) and dammed lakes, more than 100
of which still store water (Strom, 2010). These mainly in-
volve the Paleozoic magmatic and metamorphic crystalline
bedrock but also the sandstone and limestone formations.
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Figure 1. Study area’s geographical–geomorphological setting. Lakes’ polygons are from Schiavina et al. (2022), while Multi-Error-
Removed Improved-Terrain Digital Elevation Model (MERIT DEM; Yamazaki et al., 2017) is used as a topographic base.

Figure 2. Geological map of the study area. Geological formation data are from the United States Geological Survey (USGS) (see Persits et
al., 1997, for the legend), including faults from the Active Faults of Eurasia Database (AFEAD) (Styron and Pagani, 2020).
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Although according to Strom (2010), many of the exist-
ing dammed lakes should be considered stable, catastrophic
outburst floods that occurred in the 20th century empha-
size the high potential hazard of landslide natural blockages.
Havenith et al. (2015a) report a catalogue of large to gi-
ant landslides (having volumes exceeding > 107 m3) in the
Tien Shan area, showing information such as location, time
of occurrence, volume, and thickness. Regarding the vol-
umes of these rockslides, these range from 50× 103 m3 to
10 km3 (Strom and Korup, 2006; Strom and Abdrakhmatov,
2018). Many of these phenomena, though not all, were trig-
gered by earthquakes with M > 6 and have dammed a river
valley (some of the dams have been naturally or artificially
breached).

2.3 Landslide in soft rocks and loose deposits

Rotational landslides mostly occur in loose unconsolidated
Quaternary deposits and in soft and semi-hard rock layers in
Mesozoic–Cenozoic sediments, represented mainly by layers
of clays, claystones, siltstones, sandstones, marls, limestone,
gypsum, and conglomerates, with intercalated clays (Roess-
ner et al., 2004; Kalmetieva et al., 2009) (Fig. 4). These
phenomena can create river dams, but they rarely are long-
living dams, since usually they are small, and their bodies
are eroded quickly even if they block a river channel (Strom
and Korup, 2006).

The loess landslides occur quite regularly (on a yearly ba-
sis) in the regions, presenting an almost continuous and lo-
cally very thick (> 20 m) cover of this material, generally at
mid-mountain altitude (900–2300 m) and mainly along the
border of the Fergana Basin (the Kyrgyz Republic, Uzbek-
istan, and Tajikistan) and on the southern border of the Tien
Shan in Tajikistan (Fig. 4).

Loess flow landslides and debris flows, involving the elu-
vial slope cover, represent a relevant hazardous phenomenon
in the mountainous regions of Kazakhstan, in the area of Al-
maty, near the southern border with the Kyrgyz Republic, in
the Altai area (Medeu and Blagovechshenskiy, 2016), around
the Fergana Basin, all along the border between Tajikistan
and the Kyrgyz Republic, and around the Tajik Depression.
Landslides occurring in Quaternary loess units of up to 50 m
thick are characterized by very rapid avalanche-like mass
movements, which can reach several meters per second (of-
ten representing a combination of rotational slides and dry
flows, resulting in long runout zones; World Bank, 2008).
Typically, pure loess landslides have a volume of hundreds
up to 1 million cubic meters and appear as clusters (Roess-
ner et al., 2005). From recent history it appears that pure (or
quasi-pure) loess slides and flows are particularly dangerous
because of their high velocity and long runout which, in turn,
can generate a great destructive power and more severe dis-
asters than other types of mass movements of similar size
(Havenith et al., 2015a; Behling et al., 2014, 2016). If fail-
ure also affects underlying materials (mostly Mesozoic and

Cenozoic soft rocks), the volume of these mixed slides can
exceed 10× 106 m3.

These kinds of landslides are particularly deadly and can
be triggered by a combination of long-term slope desta-
bilization factors (e.g., rainfall and snowmelt) and short-
term triggers (e.g., seismic shocks). Even though earthquake-
triggered loess slides and flows are far less frequent than
rainfall-triggered ones, they have caused much larger disas-
ters in recent history, such as those triggered, respectively,
by the July 1949 Khait and the January 1989 Gissar earth-
quakes. The number of active debris flow basins in Kaza-
khstan is over 300 with registered cases of more than 600 de-
bris flows of different geneses (80 % of which are represented
by heavy-rainfall-triggered debris flows, while the glacial de-
bris flows make up about 15 % of the total).

3 Materials and methods

3.1 Landslide databases

To implement the adopted susceptibility models, the largest,
most accurate, and most updated landslide inventories were
used (Fig. 5). These were compiled by several authors by
means of decades of field surveys, remote sensing, and geo-
physical analysis in the study area.

Hereafter we report their description in detail (Table 2):

– The Tien Shan landslide inventory (Havenith et al.,
2015a) represents the largest inventory in the study
area. Compiled by means of field surveys, remote
sensing data interpretation, and geophysical surveys, it
comprises the rockslides of the previous inventory to-
gether with other smaller landslides in soft sediments
(Havenith et al., 2006a; Schlögel et al., 2011) for a total
of 3462 landslide polygons, also including information
on landslide length and area.

– The rockslides and rock avalanches of Central Asia
(Strom and Abdrakhmatov, 2018) is a large inven-
tory including 860 polygons of large-scale (≥ 1 Mm3)
rockslides and rock avalanches, covering Central Asian
countries (except for Turkmenistan and Altai) plus
the Chinese Tien Shan and Pamirs and the Afghan
Badakhshan. Compiled through decades of fieldwork
and analysis of aerial and satellite imaging, it also com-
prises information on landslide morphometric parame-
ters (runout, area) and 126 polygons on possible land-
slide bodies, dammed lakes, and head scarps. Quantita-
tive characteristics (area, volume, runout, etc.) for about
600 cases are provided as well.

– The multi-temporal landslide inventory for a study area
in southern Kyrgyz Republic derived from RapidEye
satellite time series data (2009–2013) (Behling et al.,
2014, 2016; Behling and Roessner, 2020) is a semi-
automated spatiotemporal landslide inventory for the
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Figure 3. Examples of large rockslide features in Central Asia. Helicopter view of the Usoi landslide scarp, triggered by the 1911 earth-
quake, Tajikistan (a) (after Strom, 2010); the Khait rock avalanche (b) (after Havenith et al., 2015a); and helicopter view of the Ananevo
landslides (c) (after Havenith et al., 2015a).

Figure 4. Examples of landslides in soft rocks and loose deposits. Picture of the Kamar landslide (a) and the Beshbulak landslide (b) (after
Niyazov and Nurtaev, 2013). Examples of loess slides and mixed loess–soft landslides in the NE Fergana Valley: Kochkor-Ata landslide
failure in spring 1994 (c) (after Roessner et al., 2005) and field photo of the Kainama landslide (d) (after Behling et al., 2016).

period from 1986 to 2013, covering 2500 km2 in the
Fergana Valley rim in the southern Kyrgyz Repub-
lic. This inventory includes 2052 landslide polygons
mapped from multi-sensor optical satellite time series
data, together with information on spatiotemporal land-
slide activity patterns (area and year of trigger).

– The EMCA landslide catalog Central Asia (Pittore et
al., 2018), which includes 3129 points, mostly covers
the western and northern Kyrgyz Republic as well as
Tajikistan’s Region of Republican Subordination. The
catalogue is a summary (point locations) of the docu-
mented landslides between 1954 and 2009 (Kalmetieva

https://doi.org/10.5194/nhess-23-2229-2023 Nat. Hazards Earth Syst. Sci., 23, 2229–2250, 2023
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Figure 5. Map of the adopted landslide inventory. Basemap source: Esri, Maxar, Earthstar Geographics, and the GIS User Community.

et al., 2009), which are collected by the Central Asian
Institute for Applied Geosciences through geological
surveys (field campaigns) on single sites close to urban
areas.

– The Tajikistan landslide database is provided by the
Institute of Water Problems, Hydropower, Engineering
and Ecology of Tajikistan (IWPHE), which includes
2822 landslide polygons and 114 landslide-prone areas
(with information on length and area).

– The Uzbekistan landslide inventory is provided by the
Institute of Seismology of the Academy of Science of
Uzbekistan (ISASUZ) and the State Monitoring Service
of the Republic of Uzbekistan for hazardous geological
processes, which covers the Tashkent–Kashkadarya re-
gion and the Akharangan Valley. It comprises a 49-point
inventory (including location, type, volume, length, and
date of triggering) and a polygon inventory digitized for
this project from the maps in Juliev et al. (2017) (includ-
ing a total 324 landslide polygons).

– The Kazakhstan landslide inventory is provided by the
Institute of Seismology Limited Lability Partnership
(LLP) of Kazakhstan, covering mainly the Tien Shan
area at the border with the Kyrgyz Republic and a small
part of the western Altai, including 254 point shapefiles
with information on type, area and volume, and trigger-
ing date.

– Part of the Global Landslide Catalogue (GLC)
(Kirschbaum et al., 2015), which covers the Kyrgyz Re-

public and Tajikistan, includes 15 landslide points with
a description on landslide size and type, triggering date,
and triggering and factor. The GLC has been compiled
since 2007 at NASA’s Goddard Space Flight Center
and considers all types of mass movements triggered by
rainfall, which have been reported in the media, disaster
databases, scientific reports, or other sources.

3.2 Random forest (RF) model

To generate the landslide susceptibility maps in this work,
the random forest model (RF) was used. RF is a nonpara-
metric and multivariate machine learning technique, which
was proposed by Breiman (2001) and first used in landslide
susceptibility analysis by Brenning (2005). Since then, it has
rapidly gained widespread consolidation through much re-
search and case studies, as it is considered a relatively pow-
erful approach in classification, regression, and unsupervised
learning (Lagomarsino et al., 2017). Among the advantages
of using the RF algorithm, there is the possibility of using nu-
merical and categorical variables at the same time, without
assumption about the statistical distribution of their values.
Furthermore, RF is acknowledged to be capable of implic-
itly handling the multicollinearity of variables, identifying
the uninfluential (or the detrimental) ones (Breiman, 2001;
Brenning, 2005). RF also automatically performs a valida-
tion by building a receiver operating characteristic curve
(ROC curve) and calculates the relative area under the curve
(AUC). AUC is widely used as a quantitative indicator for
the predictive effectiveness of susceptibility models: it can
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range from 0.5 (completely random predictions) to 1.0. This
model, by means of the bootstrapping technique, also calcu-
lates the out-of-bag error (OOBE) for each variable. This pa-
rameter measures the relative error that would be committed
if a given variable is excluded from the RF classifier. OOBE
can be used to assess the relative importance of each inde-
pendent variable, thus representing a powerful tool to inter-
pret the results and to rank the variables according to their
importance (Catani et al., 2013). RF contains a series of bi-
nary tree predictors, which are generated by using a random
selection of the input data (the independent variables which
in LSM studies are a set of physical parameters represent-
ing the predisposing factors), in order to split each binary
node (yes/no) and to perform a classification of the target-
dependent variable (in LSM studies, the presence or absence
of landslides). Some of the observations are used for inter-
nal testing to evaluate the predictive capability of each pre-
dictor tree. This information is used to iterate the procedure
hundreds of times by growing other random trees (hence the
name random forest) and to iteratively adjust the prediction
effectiveness. Once the best predictor tree is identified, it is
applied to the whole study area to define the LSM. Another
important key point of RF is that it has a great predictive per-
formance and runs fast by summarizing many classification
trees, and this is particularly useful when dealing with large
numbers of data.

3.3 Selection of independent variables

As independent variables, 20 “basic parameters” were se-
lected in all five countries, based on the available data and
according to the ones most widely adopted in the litera-
ture (Catani et al., 2013; Reichenbach et al., 2018). Many
of these are DEM-derived products (e.g., elevation, aspect,
slope, slope curvature, flow accumulation, stream power in-
dex, topographic wetness index, topographic position index).
It must be considered that the resolution of the susceptibility
maps depends on the resolution of the input data. Therefore,
it was decided to use pixels corresponding to the MERIT
DEM (Yamazaki et al., 2017) resolution (about 90 m at the
Equator and 70 m at 40◦ latitude). In addition, the DEM it-
self was used as a reference map so that the other parame-
ters were processed to have a perfect overlapping. Therefore,
the resulting landslide susceptibility maps will also be per-
fectly overlapping to it. The variables such as lithology and
soil type were rasterized with this resolution by choosing the
most frequent value in a reference window. The 20 basic pa-
rameters used are listed below, including a brief description:

– MERIT DEM and DEM-derived products. This includes
aspect, slope gradient, total curvature, profile curvature,
planar curvature, flow accumulation, topographic wet-
ness index (TWI), stream power index (SPI), and topo-
graphic position index (TPI).

– Lithology. This is derived from the geological map of
the former Soviet Union made by the USGS (Persits et
al., 1997).

– Soil-type map. This is taken from the Digital Soil Map
of the World (DSMW) database (Copernicus land use;
https://land.copernicus.eu/, last access: 27 July 2022).

– Distance from faults. It is the minimum distance, in me-
ters, between each landslide and the nearest fault. The
fault database is derived from the AFEAD catalogue
(Styron and Pagani, 2020) and was modified after Poggi
et al. (2023a).

– Distance from roads. It is the minimum distance, in me-
ters, between each landslide and the nearest road. The
road database is derived from Scaini et al. (2023).

– Distance from rivers. It is the minimum distance, in
meters, between each landslide and the nearest river.
The river network database is derived from Coccia et
al. (2023).

– Distance from hypocenters. It is the minimum distance,
in meters, between each landslide and the nearest earth-
quake hypocenter with a magnitude greater than 6.5
(following the methodology adopted by Havenith et
al., 2015a). The hypocenter database was provided by
Poggi et al. (2023a).

– Peak ground acceleration (PGA). Four kinds of PGA
maps according to different return times (475 and
1000 years) and different materials (soil layers and
bedrock) to which it refers were created (Poggi et al.,
2023b).

In addition to these basic parameters, in this study it was de-
cided to use five parameters related to the propensity of the
territory to be affected by precipitation (Fig. 6). These param-
eters were obtained from the ERA5 database (https://www.
ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, last
access: 27 July 2022).

Rainfall distribution maps have been used to differentiate
the study area based on the rain rate and the distribution of
anomalous rainfall events, since more rainy areas are more
likely to experience landslide events than those that are less
rainy. At the same time, a rain event with a low probability
of occurrence can likely trigger a landslide even in less rainy
areas, so the probability of some extreme rainfall events was
calculated as well. These data span from 1981 to 2020 and
have a 1 h temporal resolution (summarized to daily reso-
lution for this work) and a spatial resolution of 0.25◦. The
first parameter is the mean annual precipitation (MAP) map,
where, for each pixel, the mean annual precipitation was cal-
culated (Fig. 6). Other maps (named Sigma maps) have been
calculated by the spatialization of the approach described in
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Figure 6. Rainfall maps from the ERA5 database (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5). (a) Rainfall
amounts corresponding to 3 standard deviations for 1 d rainfall, (b) rainfall amounts corresponding to 3 standard deviations for 7 d rain-
fall, (c) rainfall amounts corresponding to 1.5 standard deviations for 30 d rainfall, and (d) rainfall amounts corresponding to 1.5 standard
deviations for 120 d rainfall. Basemap source: Esri, USGS, NOAA.

Martelloni et al. (2012). In detail, for each rain gauge (repre-
sented by the pixels of ERA5 maps in this work) the rain val-
ues corresponding to a given standard deviation for several
cumulative intervals are defined (e.g., the rain values corre-
sponding to 2 standard deviations of the distribution of 3 d
cumulative rainfall):

– Sigma 3–1 d. These rainfall values correspond to 3 stan-
dard deviations of daily cumulative rainfall. They range
from 0 to 62.2 mm (Fig. 6a).

– Sigma 3–7 d. These rainfall values correspond to 3 stan-
dard deviations of the 7 d cumulative rainfall. They
range from 0 to 271.9 mm (Fig. 6b).

– Sigma 1.5–30 d. These rainfall values correspond to 1.5
standard deviations of the 30 d cumulative rainfall. They
range from 0 to 563.1 mm (Fig. 6c).

– Sigma 1.5–120 d. These rainfall values correspond to
1.5 standard deviations of the 120 d cumulative rainfall.
They range from 70 to 1778.8 mm (Fig. 6d).

The sigma parameters represent the probability of having a
given rainfall amount over a defined time interval. In this
work, four intervals were selected (1, 7, 30, and 120 d) to
consider both short and long rain events that can lead to the
triggering of surficial or deep-seated landslides, respectively.
For 1 and 7 d the maps of the rainfall values corresponding
to 3 standard deviations over the mean rainfall were selected
to verify if short and very intense rainfall (with a very low
probability of occurrence) could influence the slope stabil-
ity in the study area. Regarding the 30 and 120 d interval,
rainfall values corresponding to 1.5 standard deviation were
calculated in order to assess the influence of longer and less
intense rainfall on slope stability.
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3.4 Model optimization

3.4.1 Independent variable optimization

The LSM was defined using the whole study area, instead
of processing each country individually. This choice allowed
us to overcome the boundary effects associated with the use
of independent countries. In addition, a buffer of 10 km was
considered around the whole area to avoid deformation due
to boundary effects. These choices were helpful in reducing
distortions and improving the quality of the results but also
led to a huge number of data to be processed. Since the same
resolution of the DEM was used for susceptibility assess-
ment, the whole area was divided into about 1.07× 109 cells,
and for each cell 26 condition factors and 1 dependent vari-
able were defined; this led to about 2.89× 1010 data to be
processed. In order to reduce the processing time and avoid
computational problems due to the huge number of data and
the width of the study area, large flat areas were filtered and
not considered in the modeling process, since landslides gen-
erally take place along slopes (some exceptions to this state-
ment in the area are represented by landslide around the flat
Caspian Sea area; Pánek et al., 2016). For Turkmenistan no
landslide database was available, so it was decided to train
and test the model only with the other four countries to obtain
the best predictor model for the available data. The trained
model was then applied to the whole study area, including
Turkmenistan, to define the LSM.

3.4.2 Landslide inventory harmonization

Regarding the dependent variables, the landslide inventory
was created by merging the data described in Sect. 3.1. As
a result, this landslide dataset was quite heterogenous; hence
an initial control and homogenization phase was necessary.
In this framework the landslide data were checked to verify
the presence of overlapping polygons or topological errors,
which were removed. Since some landslide inventories were
composed solely of points, these were mapped only as “land-
slide points”; a 100 m buffer was created around them in or-
der to include them in the model. However, when the points
refer to large landslides, which are frequent in the study area,
it is possible that a part of the body of these landslides is still
outside the perimeter achieved with the buffer. To avoid clas-
sifying these areas as non-landslide points, it was decided to
create an additional buffer of 1 km around points, used as a
mask where the non-landslide points were not to be selected.
This process reduced the probability of pixel misclassifica-
tion (e.g., landslide points regarded as non-landslide points)
during the training of the model. All the points inside the
1 km buffer were only considered during the model appli-
cation. Some landslide-prone areas were also present in the
input inventories; since these were not real landslides but
landslide-prone zones, these areas were not used to train the
susceptibility model but were used in the validation of the

results. This optimization procedure, schematized in Fig. 7,
allowed us to define an input dataset of 1.08× 108 points
(along with 27 variables for each point) to be used to define
the susceptibility model.

3.4.3 Tree number optimization

A further optimization of the model was performed by the
evaluation of the out-of-bag classification error, i.e., the vari-
ation in the misclassification probability with the number of
grown classification trees. The classification error initially re-
duces with the increasing of classification trees, then it turns
to be stable, so the definition of the optimal number of clas-
sification trees is required to avoid the use of an overgrown
forest with an excessive number of trees (hence with high
computational load and time) and without any advantage for
the model (Fig. 8).

3.5 Model training

Once all the data were prepared and organized, the algorithm
to create the landslide susceptibility maps was developed. A
crucial step in LSM analysis is the approach used to sample
the variables to train and validate the model. As in any other
statistical procedure, the size of the dataset influences the re-
sults; therefore the higher the number of samples to perform
the statistical calibration and validation of the model, the
more reliable the obtained results are. To avoid a generalized
hazard overestimation, Catani et al. (2013) demonstrated that
a random sampling improves the predictive capability of the
map, and the susceptibility model should also be trained and
validated with respect to information about non-landslide lo-
cations. Regarding the proportion between the calibration
and validation dataset samples, it is common practice to split
them according to a 70 / 30 ratio. Therefore, using Esri Ar-
cGIS Pro software, all the variables were sampled pixel by
pixel, after which, with the MATLAB software, from the to-
tal of the sampled points, all the points within a landslide
and a same amount of randomly chosen non-landslide points
were extracted. This input dataset was divided into two parts:
70 % of the data (calibration dataset) were used for the train-
ing phase and the remaining 30 % (validation dataset) for the
testing phase. The selection and division were randomly re-
peated five times in order to assess the stability of the model
to the variation in the training and testing datasets, hence,
to verify the absence of overfitting issues. Each one of these
datasets was created to be equally composed by pixels within
a known landslide and pixels outside a landslide.

All these data were then used to train and test the algo-
rithm created to predict the landslide susceptibility of the
whole area. The best predictor model identified in the train-
ing phases was then applied to all the available data (also for
Turkmenistan and for the 1 km buffer area around the point-
object landslides) for the development of the susceptibility
map on the whole Central Asia area. The results obtained
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Figure 7. Workflow describing the landslide database harmonization procedure. In gray: sample points for RF, pink: landslide points, blue:
100 m buffer, yellow: 1 km buffer, red: sample points identified as VarDip= 1, green: sample points identified as VarDip= 0, bold black line:
landslide body, and VarDip= dependent variable.

Figure 8. Example of out-of-bag classification error. The error is
stable using 100 or more trees.

from the application of the aforementioned methodology are
the susceptibility map, the receiver operating characteristic
(ROC) curves with their area under the curve (AUC) values,
and the histogram of the importance of variables. ROC and
AUC are used to verify the quality of the landslide suscep-
tibility model, both by a graphical and analytical approach.
Due to the high volume, variety, values, and heterogeneity of
the data a specific algorithm was created for this work, which
was set to be able to perform several activities:

– reading and properly formatting the input data and then
dividing them between independent and dependent vari-
ables;

– automatically and randomly selecting locations associ-
ated with landslides or outside landslides to create the
training and test datasets;

– identifying the best predictor and evaluating its perfor-
mances by the calculation of the misclassification prob-
ability of the values calculated by the model;

– evaluating the overall performances of the model by
means of ROC and AUC;

– identifying the importance of the parameters in land-
slide susceptibility; and

– applying the model to the whole study area, calculat-
ing the probability of classification (landslide or non-
landslide) of each pixel, and extracting of the final map
in raster format.

The algorithm was set to work in classification mode; e.g., for
each pixel a value (1 or 0) is assigned to identify the presence
or absence of a landslide (dependent variable), along with
the values of the independent variables. Using these data, the
RF model identifies the best association of independent vari-
ables linked to the presence or absence of landslides (land-
slide susceptibility prediction model). The prediction model
is then applied to all the pixels of the investigated area, and
the probability of each pixel to be classified as a landslide
(or non-landslide) pixel is evaluated. These probability val-
ues are those used to create the landslide susceptibility maps.
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Figure 9. Confusion matrix for the four countries where the model
was trained.

It must be noted that the landslide inventories adopted to train
the RF rarely reported the type of landslide, so the LSMs
must be considered not related to a specific type of landslide.

3.6 Model validation

To verify the quality of the susceptibility models, besides
the AUC value previously reported, a confusion matrix for
the four countries where the model was trained was created
(Fig. 9). In each matrix the predicted landslide classes are
compared with the ground truth to verify the presence of sig-
nificant misclassification error. In all the matrices the value
1 represents the presence of landslides, and the value 0 rep-
resents the absence of landslides. The numbers in each cell
represent the number of pixels classified in that combination
of 0 and 1, according to this scheme (the first number repre-
sents the predicted class and the second number the ground
truth):

– 0–0 (true negative). Pixels outside any landslides are
correctly identified as no-landslide pixels by the model.

– 1–1 (true positive). Pixels inside a landslide are cor-
rectly identified as landslide pixels by the model.

– 0–1 (false negative). Pixels inside a landslide are
wrongly identified as no-landslide pixels by the model.

– 1–0 (false positive): Pixels outside any landslides are
wrongly identified as landslide pixels by the model.

The 0–0 and 1–1 combinations represent well-classified pix-
els (blue cells in Fig. 8), while 0–1 and 1–0 represent mis-
classification error (light red cells in Fig. 8). Since this ma-
trix needs some ground-truth parameters (true classes), it can
be applied only where the presence or absence of landslides
is known. For this reason, in this work, this matrix was cal-
culated considering only the test dataset. A further control
of the results was made using the areas prone to landslides
identified in the landslide inventories used.

Table 3. Landslide susceptibility class intervals, corresponding
area, and percentage with respect to CA.

Susceptibility Landslide Corresponding Corresponding
class spatial area (km2) percentage

probability of CA (%)
interval

Null 0–0.05 2 889 481.2 87.8
Very Low 0.05–0.25 94 674.7 2.9
Low 0.25–0.35 85 294.1 2.6
Medium 0.35–0.45 87 528.5 2.7
High 0.45–0.6 99 689.8 3
Very High 0.6–1 31 436.4 1

4 Results

4.1 Susceptibility map

In the map presented in the following Figs. 10 and 11, the
susceptibility values, ranging from 0 to 1, were classified
into five classes (Table 3). Here the corresponding extension
and percentage of the study area are also reported, showing
that the most frequent susceptibility class for the whole study
area is the null class (= 87.8 %; landslides generally do not
occur in flat areas), followed by low and medium classes.
Only the 4 % of the Central Asian territory is represented by
areas with high and very high landslide susceptibility (Ta-
ble 3). In Fig. 12, the susceptibility maps of five selected ar-
eas are displayed to better show the details of the suscep-
tibility assessment and its comparison with mapped land-
slides in different geomorphological contexts of the study
area. From these details it is possible to ascertain the high
usefulness of the landslide susceptibility map realized by ap-
plying the random forest model, which, mainly based on the
hydro-geomorphological properties, can establish the degree
of susceptibility even in areas where there is no awareness of
the predisposition to instability due to the absence of reported
landslides.

In particular, the following can be observed:

– Figure 12a shows the area north of the city of Denau, in
the southeast of Uzbekistan, which is characterized by
a high susceptibility, despite the almost total absence of
mapped landslides.

– Figure 12b shows the city of Istaravshan in detail, in the
northwest of Tajikistan, where there are not any known
landslides, but a high susceptibility has been obtained in
the surrounding mountain relief.

– In Fig. 12c there is a close-up of the city of Dushanbe,
the capital of Tajikistan, where close to roads and inhab-
ited centers a high landslide susceptibility is observed.
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Figure 10. Landslide susceptibility map of Central Asia. Basemap source: Esri, USGS, NOAA.

Figure 11. Details of the landslide susceptibility map with the overlapping landslide polygons (in black). In the top left is the detailed area
with respect to the Central Asian territory. Basemap source: Esri, USGS, NOAA.
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Figure 12. Details of the landslide susceptibility map. (a) The city of Denau, Uzbekistan; (b) the city of Istaravshan, Tajikistan; (c) the city of
Dushanbe, the Kyrgyz Republic; (d) Lake Issyk-Kul, the Kyrgyz Republic; and (e) the eastern area of the Kyrgyz Republic. Black polygons
represent landslide areas from the adopted landslide inventories. Basemap source: Esri, USGS, NOAA.

– The shores of Lake Issyk-Kul in the Kyrgyz Republic,
shown in Fig. 12d, are generally flat areas, with a low
or null landslide susceptibility apart from in the central
zone.

– Finally, Fig. 12e shows the western area of the Kyrgyz
Republic in detail, where a high landslide susceptibility
is observed along the slopes adjacent to the river net-
work.

4.2 The Fergana Valley mountainous rim

The Fergana Valley spreads across eastern Uzbekistan, the
southern Kyrgyz Republic, and northern Tajikistan (Fig. 13).
It is one of the largest intermountain depressions in Central
Asia, located between the mountain systems of the Chatkal–
Kuraminsk ranges in the north and Turkestan–Alai in the
south. The two main rivers, the Naryn and the Kara Darya,
flow into the valley and unite, forming the Syr Darya. In this
area landslides represent one of the major natural hazards
due to their frequent (seasonal) occurrence across large ar-
eas: in fact, they are particularly concentrated in a range of
altitudes between 700 and 2000 m along the topographically
rising rim below its transition into higher mountainous ter-

rain (Roessner et al., 2000, 2004, 2005; Behling et al., 2014,
2016). This region is quite densely populated, and landslides
lead almost every year to damage of settlements and infras-
tructure and loss of human life (Schloegel et al., 2011; Piro-
ton et al., 2020). In this area landslide activity is caused by
complex interactions between tectonic, geological, geomor-
phological, and hydrometeorological factors (Havenith et al.,
2015a, b). In the Fergana Valley rim, mass movements are
often characterized by deep and steep scarps, and they mo-
bilize weakly consolidated sediments of the Tertiary or Qua-
ternary age, including loess deposits (Piroton et al., 2020).
These kinds of landslides are particularly deadly and can be
triggered by a combination of long-term slope destabilization
factors (e.g., rainfall and snowmelt) and short-term triggers
(Danneels et al., 2008). Slope landslide susceptibility was an-
alyzed in this area using the previously mentioned method-
ologies. Figure 13 shows the particulars about the landslide
susceptibility map obtained for the Fergana Valley, while
Fig. 14 reports the histogram of the area occupied by each
susceptibility class.

It can be observed that the most frequent susceptibility
class in the Fergana Valley area is the null class, which covers
an area of about 20 743 km2, i.e., 36 % of the valley. The very
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Figure 13. Details of the landslide susceptibility map obtained for the Fergana Valley. Basemap source: Esri, USGS, NOAA.

Figure 14. Frequency histogram of susceptibility classes obtained
for the Fergana Valley mountainous rim. On each bar the corre-
sponding area in km2 is reported.

low and low classes occupy, respectively, an area of 681 km2

(1.2 %) and 5431 km2 (9.4 %). The medium class instead ex-
tends for about 8608 km2, namely 15 % of the total. The high
class instead extends for about 16 395 km2, i.e., 28.5 % of the
total, and finally, the remaining 9.9 % of the national terri-
tory, i.e., about 5683 km2, is classified in the very high class.

4.3 Trained model performances and conditioning
factor relevance

RF was initially trained setting 1000 trees to be grown. After
the first run, the analysis of the out-of-bag error revealed that

the misclassification probability reduced significantly with a
forest of 150 trees and then reduced slightly up to 500 trees,
then it turned to be stable, so the optimal number of trees
was set equal to 500 and used for all the simulations. As de-
scribed above, the model was run five times to verify its sta-
bility, and the AUC values ranged from 0.93103 to 0.93144
(Fig. 15), with a mean value of 0.93122 and a standard devi-
ation of 0.00015. The low variance of the AUC values con-
firmed the stability of the model and its applicability to the
whole area. As we can see in the ranking of the susceptibility
parameters, reported in Fig. 16, soil type, lithology, eleva-
tion, the distance from roads, and hypocenters play a crucial
role in landslide susceptibility, since they are the five most
influencing factors (for the four countries where the model
was trained). Rainfall parameters are also important in the
obtained landslide susceptibility, particularly in the 1 d rain-
fall value that shows the highest importance among the rain-
fall parameters. Also, the PGA maps are a relevant factor,
while TWI and slope curvature are less important parame-
ters. The average AUC value of the models is 0.93122, in-
dicating their very good quality. Such high AUC values can
indicate the presence of overfitting issues, but this hypothesis
can be discarded, since the random variable resulted without
any importance in landslide susceptibility (negative OOBE
value).

5 Discussion

The main issue affecting the utilized random forest model
is the need for an adequate training dataset to properly cal-
ibrate the predictor model. The first step of the work has

Nat. Hazards Earth Syst. Sci., 23, 2229–2250, 2023 https://doi.org/10.5194/nhess-23-2229-2023



A. Rosi et al.: Comprehensive landslide susceptibility map of Central Asia 2245

Figure 15. ROC curve and relative AUC value for each model run
(test samples).

been the homogenization of the landslide data; the landslide
inventory that was used was created starting from differ-
ent sources, hence, with quite non-homogeneous data (e.g.,
in some cases the whole landslide perimeter was available,
while in other cases only a point representing the source
area of each landslide was provided, without info about the
landslide dimension or propagation distance; more in gen-
eral there were few or no data about the landslide type or
triggering causes). The lack of some data about the land-
slides, or the partial or complete lack of landslides as in
Kazakhstan and Turkmenistan, could lead to the underesti-
mation of the real landslide hazard of the studied countries,
since some points could have been wrongly classified (e.g.,
they have been regarded as no-landslide areas, but it was pos-
sible that a not-reported landslide was present). Furthermore,
not all the adopted landslide inventories included informa-
tion regarding the landslide types, leading to the creation of
a general landslide susceptibility map, where all the types of
landslides are considered. The created maps have been val-
idated only using the available landslide dataset, providing
good results and highlighting the good prediction capabil-
ity of the model. In any case, an in situ validation in some
sample areas can help to verify the quality of the results. As
previously stated, for Turkmenistan there was no landslide
inventory available to train the RF model; therefore the cor-
responding LSM was obtained applying the model trained for
the other four countries. The lack of landslide data did not al-
low any validation of the result or estimation of the quality of
the susceptibility map of Turkmenistan. Furthermore, apply-
ing the model developed for the other countries, the same
importance of the conditioning factors (e.g., the indepen-
dent variables) was assumed. For these reasons, the landslide
susceptibility map for Turkmenistan is more uncertain than
those evaluated for the other four countries. Among the con-

ditioning factors used, soil type, distance from roads, and dis-
tance from hypocenters resulted in being the most influenc-
ing factors in slope stability, while planar curvature resulted
in a high variability of its importance. These parameters have
hence been more deeply analyzed to understand how they
influence landslide susceptibility. According to the partial-
dependency plots (Fig. 17), which show how the values of
each conditioning factor influence the landslide susceptibil-
ity, the soil types more related to landslides are Lithosols and
Cambisols, low-thickness soils limited in depth by a contin-
uous coherent and hard rock layer, located in steeply slopes,
with more than 30 % of slope gradient. While the classes that
have the lowest importance score are Fluvisols (young soils
in alluvial deposits), Xerosols (mainly arid clay), and Cher-
nozems (soils rich in organic matter), each is situated in flat
to hilly areas, with less than 30 % of slope gradient. Dis-
tance from roads, as expected, is important for low values,
since the importance score is maximum for distances close
to 0, and it decreases exponentially with the increasing of the
distance. A similar behavior can be noted with the distance
from hypocenters, meaning that areas close to hypocenters
(within a radius of about 25 km) can more easily experience
landslide phenomena in the case of future earthquakes. The
partial-dependency plot of planar curvature showed that the
variability highlighted in Fig. 16 is in fact not so relevant,
since the range of the importance score is quite limited (val-
ues ranging from 0.4992 to 0.5008). In addition, it is pos-
sible that negative values of planar curvature have a higher
importance score than 0 values or positive values, meaning
that concave slopes are more prone to landslides than plain
or convex surfaces.

6 Conclusions

In this work a new landslide susceptibility assessment of
Central Asia was carried out as part of a multi-hazard ap-
proach in the framework of the Strengthening Financial Re-
silience and Accelerating Risk Reduction in Central Asia
(SFRARR) project. Over 13 000 landslide elements were im-
plemented in a random forest model to create a unique map
in order to avoid boundary effects and obtain a more ho-
mogeneous and higher-resolution susceptibility map with re-
spect to previous works. The approach used also allowed us
to identify the most relevant landslide-predisposing factors:
soil type and distance from roads and hypocenters. The size
and heterogeneity of the study area required the use of many
input variables (some of them never used before in landslide
susceptibility assessment) and the elaboration of a high vol-
ume of data, as well as the adoption of specific procedures to
account for the presence of heterogeneities and uncertainties
in the input data (such as the presence of polygon and point
landslides). The main limitation of the work is related to the
absence of data about the type and geometry of several land-
slides; in the future a better input landslide inventory could
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Figure 16. Variable importance in landslide susceptibility for the four countries where the model was trained. From the five model runs, the
results were averaged and displayed in this image, with the error bars showing the maximum and the minimum value obtained.

Figure 17. Partial-dependence plots.

help get to different susceptibility maps for different land-
slide types. Another limitation is due to the absence of any
information about the presence or absence of landslides in
Turkmenistan, which did not allow any clear validation of
the results for this country.

The results provide a useful tool for landslide scientists,
practitioners, and administrators involved in land use plan-
ning activities and risk reduction strategies in Central Asia.

Code and data availability. The landslide susceptibility model
data are not yet available, but they will be provided upon re-
quest by the World Bank. The landslide susceptibility model
was implemented by using the cited landslide inventory maps,
published by the following authors: Behling et al. (2014,
2016), Behling and Roessner (2020), Havenith et al. (2015a),
Kirschbaum et al. (2015), Pittore et al. (2018), and Strom and
Abdrakhmatov (2018). Other data implemented in the model,
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such as MERIT DEM, geological formations, the Active Fault
Database, the soil-type map, and rainfall maps, are available
from Yamazaki et al. (2017), Persits et al. (1997), Styron and
Pagani (2020), and https://doi.org/10.5281/zenodo.3939050 (Buch-
horn et al., 2020). The full ERA5-Land dataset is available at
https://doi.org/10.24381/cds.68d2bb30 (Muñoz-Sabater, 2019b)
and https://doi.org/10.24381/cds.e2161bac (Muñoz-Sabater,
2019a). The databases on infrastructures, river networks, PGA,
and other landslide inventories were provided by the SFRAAR
project partners: RED (Risk, Engineering + Development – Pavia,
Italy), OGS (National Institute of Oceanography and Experimental
Geophysics, Seismological Research Center, Trieste, Italy), IW-
PHE (Institute of Water Problems, Hydropower, Engineering and
Ecology, Dushanbe, Republic of Tajikistan), ISASUZ (Institute of
Seismology of the Academy of Science of Uzbekistan, Tashkent,
Uzbekistan), the State Monitoring Service of the Republic of
Uzbekistan for tracking dangerous geological processes, and LLP
(Institute of Seismology of the Science Committee of the Republic
of Kazakhstan, Almaty).
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93–106, 2012.

Bazzurro, P. et al.: Strengthening Financial Resilience and Acceler-
ating Risk Reduction in Central Asia – the SFRARR project. The
SFRARR probabilistic flood hazard assessment, in preparation,
2023.

Behling, R. and Roessner, S.: Multi-temporal landslide in-
ventory for a study area in Southern Kyrgyz Repub-
lic derived from RapidEye satellite time series data
(2009–2013), V.1.0. GFZ Data Services [data set],
https://doi.org/10.5880/GFZ.1.4.2020.001, 2020.

Behling, R., Roessner, S., Kaufmann, H., and Kleinschmit, B.:
Automated spatiotemporal landslide mapping over large areas
using rapideye time series data, Remote Sens. 6, 8026–8055,
https://doi.org/10.3390/rs6098026, 2014.

https://doi.org/10.5194/nhess-23-2229-2023 Nat. Hazards Earth Syst. Sci., 23, 2229–2250, 2023

https://doi.org/10.5281/zenodo.3939050
https://doi.org/10.24381/cds.68d2bb30
https://doi.org/10.24381/cds.e2161bac
https://doi.org/10.5880/GFZ.1.4.2020.001
https://doi.org/10.3390/rs6098026


2248 A. Rosi et al.: Comprehensive landslide susceptibility map of Central Asia

Behling, R., Roessner, S., Golovko, D., and Kleinschmit, B.:
Derivation of long-term spatiotemporal landslide activity – A
multi-sensor time series approach, Remote Sens. Environ., 186,
88–104, https://doi.org/10.1016/j.rse.2016.07.017, 2016.

Brabb, E. E.: Innovative approaches to landslide hazard mapping,
in: Proceedings 4th International Symposium on Landslides,
Toronto, Canada, 16–21 September 1984, Canadian Geotechni-
cal Society, 1, 307–324, 1984.

Breiman, L.: Random forests, Mach. Learn. 45, 5–32, 2001.
Brenning, A.: Spatial prediction models for landslide hazards: re-

view, comparison and evaluation, Nat. Hazards Earth Syst. Sci.,
5, 853–862, https://doi.org/10.5194/nhess-5-853-2005, 2005.

Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv,
M., Tsendbazar, N. E., Herold, M., and Fritz, S.: Coper-
nicus global land service: Land cover 100 m: collection 3:
epoch 2019: Globe, Version V3.0.1, Zenodo [data set],
https://doi.org/10.5281/zenodo.3939050, 2020.

CAC DRMI: Risk assessment for Central Asia and Caucasus: desk
study review, project report, Central Asia and Caucasus Disaster
Risk Management Initiative, 2009.

Carrara, A.: Multivariate models for landslide hazard evaluation, J.
Int. Assoc. Math. Geol., 15, 403–426, 1983.

Cascini, L.: Applicability of landslide susceptibility and hazard zon-
ing at different scales, Eng. Geol., 102, 164–177, 2008.

Catani, F., Lagomarsino, D., Segoni, S., and Tofani, V.: Landslide
susceptibility estimation by random forests technique: sensitivity
and scaling issues, Nat. Hazards Earth Syst. Sci., 13, 2815–2831,
https://doi.org/10.5194/nhess-13-2815-2013, 2013.

Chedia, O. K. and Lemzin, I. N.: Seismogenerating faults of the
Chatkal depression, in: Seismotectonics and seismicity of the
Tien Shan, Frunze, Ilim, 18–28, 1980.

Chen, L., Van Westen, C. J., Hussin, H., Ciurean, R. L., Turkington,
T., Chavarro-Rincon, D., and Shrestha, D. P.: Integrating expert
opinion with modelling for quantitative multi-hazard risk assess-
ment in the Eastern Italian Alps, Geomorphology, 273, 150–167,
2016.

Coccia, G. et al.: The SFRARR probabilistic flood hazard assess-
ment, in preparation, 2023.

Corominas, J., Copons, R., Vilaplana, J. M., Altimir, J., and Amigó,
J.: Integrated landslide susceptibility analysis and hazard assess-
ment in the principality of Andorra, Nat. Hazards, 30, 421–435,
2003.

Cruden, D. M. and Varnes, D. J.: Landslide types and processes.
Landslides: Investigation and Mitigation, Special Report 247,
Transportation Research Board, Washington, 36–75, 1996.

Danneels, G., Bourdeau, C., Torgoev, I., and Havenith, H. B.: Geo-
physical investigation and dynamic modelling of unstable slopes:
case-study of Kainama (Kyrgyzstan), Geophys. J. Int., 175, 17–
34, 2008.

Delvaux, D., Abdrakhmatov, K. E., Lemzin, I. N., and Strom, A.
L.: Landslides and surface breaks of the 1911 Ms 8.2 Kemin
earthquake, Kyrgyzstan, Russ. Geol. Geophys.+, 42, 1667–1677,
2001.

Duman, T. Y., Can, T., Gokceoglu, C., and Sonmez, H.: Applica-
tion of logistic regression for landslide susceptibility zoning of
Cekmece Area, Istanbul, Turkey, Environ. Geol., 51, 241–256,
2006.

Ermini, L., Catani, F., and Casagli, N.: Artificial Neural Networks
applied to landslide susceptibility assessment, Geomorphology,
66, 327–343, 2005.

European Commission: Humanitarian Aid, Civil Protection,
U.N.I.S. for D.R.R.: Disaster Risk Reduction 20 Examples of
Good Practice from Central Asia, European Commission, tech-
nical report, 2006.

Frattini, P., Crosta, G., and Carrara, A.: Techniques for evaluating
the performance of landslide susceptibility models, Eng. Geol.,
111, 62–72, 2010.

GFDRR (Global Facility for Disaster Reduction and Recovery):
Disaster Risk Management Notes for Priority Countries 2009–
2015, Eur. Asia, GFDRR, technical report, 48–49, 2009.

GFDRR (Global Facility for Disaster Reduction and Recovery):
Europe and Central Asia-Country Risk Profiles for Floods and
Earthquakes, GFDRR, technical report, 144 pp., 2016.

Goetz, J. N., Brenning, A., Petschkoc, H., and Leopold, P.: Evalu-
ating machine learning and statistical prediction techniques for
landslide susceptibility modeling, Comput Geosci., 81, 1–11,
2015.

Golovko, D., Roessner, S., Behling, R., Wetzel, H. U., and Klein-
schmidt, B.: Development of multi-temporal landslide inven-
tory information system for southern Kyrgyz Republic us-
ing GIS and satellite remote sensing, PFG 2015, 157–172,
https://doi.org/10.1127/pfg/2015/0261, 2015.

Havenith, H.-B., Strom, A., Jongmans, D., Abdrakhmatov, A.,
Delvaux, D., and Tréfois, P.: Seismic triggering of landslides,
Part A: Field evidence from the Northern Tien Shan, Nat. Haz-
ards Earth Syst. Sci., 3, 135–149, https://doi.org/10.5194/nhess-
3-135-2003, 2003.

Havenith, H. B., Strom, A., Cacerez, F., and Pirard, E.: Analysis of
landslide susceptibility in the Suusamyr region, Tien Shan: sta-
tistical and geotechnical approach, Landslides, 3, 39–50, 2006a.

Havenith, H. B., Torgoev, I., Meleshko, A., Alioshin, Y., Torgoev,
A., and Danneels, G.: Landslides in the Mailuu-Suu Valley, Kyr-
gyz Republic – hazards and impacts, Landslides, 3, 137–147,
2006b.

Havenith, H. B., Strom, A., Torgoev, I., Torgoev, A., Lamair,
L., Ischuk, A., and Abdrakhmatov, K.: Tien Shan geohazards
database: Earthquakes and landslides, Geomorphology, 249, 16–
31, https://doi.org/10.1016/j.geomorph.2015.01.037, 2015a.

Havenith, H. B., Torgoev, A., Schlögel, R., Braun, A., Torgoev, I.,
and Ischuk, A.: Tien Shan geohazards database: Landslide sus-
ceptibility analysis, Geomorphology, 249, 32–43, 2015b.

Havenith, H. B., Torgoev, A., Braun, A., Schlögel, R., and Micu, M.:
A new classification of earthquake-induced landslide event sizes
based on seismotectonic, topographic, climatic and geologic fac-
tors, Geoenvironmental Disasters, 1, 1–24, 2016.

Havenith, H. B., Umaraliev, R., Schlögel, R., Torgoev, I., Ruslan,
U., Schlogel, R., and Torgoev, I.: Past and Potential Future So-
cioeconomic Impacts of Environmental Hazards in Kyrgyz Re-
public, in: Kyrgyz Republic: Political, Economic and Social Is-
sues, edited by: Olivier, A. P., Nova Science Publishers, Inc.,
Hauppauge, NY, USA, 63–113, ISBN 978-1-53612-763-8, 2017.

Hong, Y., Adler, R., and Huffman, G.: Use of satellite remote sens-
ing data in the mapping of global landslide susceptibility, Nat.
Hazards, 43, 23–44, 2007.

Nat. Hazards Earth Syst. Sci., 23, 2229–2250, 2023 https://doi.org/10.5194/nhess-23-2229-2023

https://doi.org/10.1016/j.rse.2016.07.017
https://doi.org/10.5194/nhess-5-853-2005
https://doi.org/10.5281/zenodo.3939050
https://doi.org/10.5194/nhess-13-2815-2013
https://doi.org/10.1127/pfg/2015/0261
https://doi.org/10.5194/nhess-3-135-2003
https://doi.org/10.5194/nhess-3-135-2003
https://doi.org/10.1016/j.geomorph.2015.01.037


A. Rosi et al.: Comprehensive landslide susceptibility map of Central Asia 2249

Ishihara, K., Okusa, S., Oyagi, N., and Ischuk, A.: Liquefaction-
induced flow slide in the collapsible loess deposit in Soviet Tajik,
Soils Found., 30, 73–89, 1990.

Juliev, M., Pulatov, A., and Hubl, J.: Natural hazards in
mountain regions of Uzbekistan: A review of mass
movement processes in Tashkent province, International
Journal of Scientific & Engineering Research, 8, 1102,
https://doi.org/10.14299/ijser.2017.02.013, 2017.

Kalmetieva, Z. A., Mikolaichuk, A. V, Moldobekov, B. D.,
Meleshko, A. V., Janaev, M. M., and Zubovich, A. V.: Atlas of
earthquakes in Kyrgyz Republic, Central-Asian Institute for Ap-
plied Geosciences and United Nations International Strategy for
Disaster Reduction Secretariat Office in Central Asia, Bishkek,
p. 75, 2009.

Kirschbaum, D., Stanley, T., and Zhou, Y.: Spatial and temporal
analysis of a global landslide catalog, Geomorphology, 249, 4–
15, https://doi.org/10.1016/j.geomorph.2015.03.016, 2015.

Lagomarsino, D., Tofani, V., Segoni, S., Catani, F., and Casagli,
N.: A tool for classification and regression using random forest
methodology: Applications to landslide susceptibility mapping
and soil thickness modeling, Environ. Model. Assess., 22, 201–
214, 2017.

Lee, S.: Application of logistic regression model and its validation
for landslide susceptibility mapping using GIS and remote sens-
ing data, Int. J. Remote Sens., 26, 1477–1491, 2005.

Li, F., Torgoev, I., Zaredinov, D., Li, M., Talipov, B., Belousova,
A., Kunze, C., and Schneider, P.: Influence of Earthquakes on
Landslide Susceptibility in a Seismic Prone Catchment in Central
Asia, Appl. Sci, 11, 3768, https://doi.org/10.3390/app11093768,
2021.

Manzo, G., Tofani, V., Segoni, S., Battistini, A., and Catani, F.: GIS
techniques for regional-scale landslide susceptibility assessment:
The Sicily (Italy) case study, Int. J. Geogr. Inf. Sci., 27, 1433–
1452, 2013.

Martelloni, G., Segoni, S., Fanti, R., and Catani, F.: Rainfall thresh-
olds for the forecasting of landslide occurrence at regional scale,
Landslides, 9, 485–495, 2012.

Medeu, A. R. and Blagovechshenskiy, A. R.: Seismogenic Land-
slide risk zoning in the surrounding areas of Almaty city, Kaza-
khstan, Vestnick of Almaty University of Power Engineering and
Telecommunications (AUPET), 6, 121–126, 2016.

Molnar, P. and Tapponnier, P.: Cenozoic Tectonics of Asia: Effects
of a Continental Collision: Features of recent continental tecton-
ics in Asia can be interpreted as results of the India-Eurasia col-
lision, Science, 189, 419–426, 1975.

Muñoz-Sabater, J.: ERA5-Land monthly averaged data
from 1981 to present, Copernicus Climate Change
Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.e2161bac, 2019a.

Muñoz-Sabater, J.: ERA5-Land hourly data from 1981 to present,
Copernicus Climate Change Service (C3S) Climate Data Store
(CDS) [data set], https://doi.org/10.24381/cds.68d2bb30, 2019b.

Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., and Jaedicke, C.:
Global landslide and avalanche hotspots, Landslides, 3, 159–173,
2006.

Niyazov, R., Nurtaev, B., Bimurzaev, G., and Tashpulatov, M.:
Flow Slides in Uzbekistan: Overview and Case Studies, in: Un-
derstanding and Reducing Landslide Disaster Risk, edited by:
Casagli, N., Tofani, V., Sassa, K., Bobrowsky, P. T., and Takara,

K., WLF 2020, ICL Contribution to Landslide Disaster Risk
Reduction, Springer, Cham, https://doi.org/10.1007/978-3-030-
60311-3_5, 2021.

Niyazov, R. A. and Nurtaev, B. S.: Evaluation of Landslides in Uze-
bekistan Caused by the Joint Impact of Precipitation and Deep-
focus Pamir-Hindu Earthquakes, in: Landslides: Global Risk Pre-
paredness, edited by: Sassa, K., Rouhban, B., Briceño, S., Mc-
Saveney, M., and He, B., Springer, Berlin, Heidelberg, 253–265,
https://doi.org/10.1007/978-3-642-22087-6_17, 2013.

Pánek, T., Korup, O., Minár, J., and Hradecký J.: Giant landslides
and highstands of the Caspian Sea, Geology, 44, 939–942, 2016.

Persits, F. M., Ulmishek, G. F., and Steinshouer, D. W.: Maps
showing geology, oil and gas fields and geologic provinces of
the Former Soviet Union, No. 97-470-E, US Geological Survey,
https://doi.org/10.3133/ofr97470E, 1997.

Piroton, V., Schlögel, R., Barbier, C., and Havenith, H.
B.: Monitoring the recent activity of landslides in the
Mailuu-suu valley (Kyrgyz Republic) using radar and
optical remote sensing techniques, Geosciences, 10, 164,
https://doi.org/10.3390/geosciences10050164, 2020.

Pittore, M., Ozturk, U., Moldobekov, B., and Saponaro, A.: EMCA
Landslide catalog Central Asia, V.1.0. GFZ Data Services [data
set], https://doi.org/10.5880/GFZ.2.6.2018.004, 2018.

Poggi, V. et al.: Harmonising seismicity information in Central
Asia: earthquake catalogue and faults. The SFRARR probabilis-
tic flood hazard assessment, in preparation, 2023a.

Poggi, V. et al.: Development of a state of art probabilistic seismic
hazard model for Central Asia countries. The SFRARR proba-
bilistic flood hazard assessment, 2023b.

Pollner, J., Kryspin-Watson, J., and Nieuwejaar, S.: Disaster Risk
Management and Climate Change Adaptation in Europe and
Central Asia, World Bank, technical report, 1–53, 2010.

Pusch, C.: A comprehensive risk management framework for Eu-
rope and Central Asia, No. 9, The World Bank, Disaster Risk
Management Working Paper Series, technical report, 2004.

Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and
Guzzetti, F.: A review of statistically-based landslide suscepti-
bility models, Earth Sci. Rev., 180, 60–91, 2018.

Roessner, S., Wetzel, H. U., Kaufmann, H., Kornus, W., Lehner,
M., Reinartz, P., and Mueller, R.: Landslide Investigations in
Southern Kyrgyz Republic Based on a Digital Elevation Model
Derived from MOMS-2P Data, Congress “Geoinformation for
all”, Amsterdam, the Netherlands, 2000, ISPRS – International
Archives of Photogrammetry and Remote Sensing, Vol. 33, Part
B7, 1259–1266, 2000.

Roessner, S., Wetzel, H. U., Kaufmann, H., and Sarnagoev, A.:
Satellite Remote Sensing and GIS Based Analysis of Large
Landslides in Southern Kyrgyz Republic, NATO Advanced Re-
search, in: Workshop Proceedings: Security of Natural and Ar-
tificial Rockslide Dams, Bishkek, Kyrgyz Republic, 7–12 June
2004, GFZ Publication, 2004.

Roessner, S., Wetzel, H. U., Kaufmann, H., and Sarnagoev, A.: Po-
tential of Satellite Remote Sensing and GIS for Landslide Hazard
Assessment in Southern Kyrgyz Republic (Central Asia), Nat.
Hazards, 35, 395–416, 2005.

Saponaro, A., Pilz, M., Bindi, D., and Parolai, S.: The contribution
of EMCA to landslide susceptibility mapping in Central Asia,
Ann. Geophys.-Italy, 58, S0113, https://doi.org/10.4401/ag-
6668, 2015a.

https://doi.org/10.5194/nhess-23-2229-2023 Nat. Hazards Earth Syst. Sci., 23, 2229–2250, 2023

https://doi.org/10.14299/ijser.2017.02.013
https://doi.org/10.1016/j.geomorph.2015.03.016
https://doi.org/10.3390/app11093768
https://doi.org/10.24381/cds.e2161bac
https://doi.org/10.24381/cds.68d2bb30
https://doi.org/10.1007/978-3-030-60311-3_5
https://doi.org/10.1007/978-3-030-60311-3_5
https://doi.org/10.1007/978-3-642-22087-6_17
https://doi.org/10.3133/ofr97470E
https://doi.org/10.3390/geosciences10050164
https://doi.org/10.5880/GFZ.2.6.2018.004
https://doi.org/10.4401/ag-6668
https://doi.org/10.4401/ag-6668


2250 A. Rosi et al.: Comprehensive landslide susceptibility map of Central Asia

Saponaro, A., Pilz, M., Wieland, M., Bindi, D., Moldobekov, B.,
and Parolai, S.: Landslide susceptibility analysis in data-scarce
regions: the case of Kyrgyz Republic, B. Eng. Geol. Environ., 74,
1117–1136, https://doi.org/10.1007/s10064-014-0709-2, 2015b.

Scaini, C. et al.: A new regionally consistent exposure database for
Central Asia: population and residential buildings, in prepara-
tion, 2023.

Schiavina, M., Melchiorri, M., Pesaresi, M., Politis, P., Freire, S.,
Maffenini, L., Florio, P., Ehrlich, D., Goch, K., Tommasi, P.,
and Kemper, T.: GHSL Data Package, Publications Office of the
European Union, Luxembourg, 2022, ISBN 978-92-76-53071-8,
2022.

Schlögel, R., Torgoev, I., De Marneffe, C., and Havenith, H. B.:
Evidence of a changing size-frequency distribution of landslides
in the Kyrgyz Tien Shan, Central Asia, Earth Surf. Proc. Land.,
36, 1658–1669, 2011.

Segoni, S., Tofani, V., Rosi, A., Catani, F., and Casagli, N.: Combi-
nation of rainfall thresholds and susceptibility maps for dynamic
landslide hazardassessment at regional scale, Front Earth Sci., 6,
https://doi.org/10.3389/feart.2018.00085, 2018.

Stanley, T. and Kirschbaum, D. B.: A heuristic approach to global
landslide susceptibility mapping, Nat. Hazards, 87, 145–164,
2017.

Sternberg R.: Damming a river: a changing perspective on altering
nature, Renew. Sust. Energ. Rev., 10, 165–197, 2006.

Strom, A.: Landslide dams in Central Asia region, Journal of the
Japan Landslide Society, 47, 309–324, 2010.

Strom, A. and Abdrakhmatov, K.: Large-Scale Rockslide Inven-
tories: From the Kokomeren River Basin to the Entire Cen-
tral Asia Region, WCoE 2014–2017, IPL-106-2, in: 4th World
Landslide Forum, Ljubljana, Slovenia, 29 May–2 June 2017,
Springer, Cham, 339–346, https://doi.org/10.1007/978-3-319-
59469-9_28, 2017.

Strom, A. and Abdrakhmatov, K.: Rockslides and rock avalanches
of Central Asia: distribution, morphology, and internal structure,
Elsevier, 441 pp., ISBN 978-0-12-803204-6, 2018.

Strom, A. L. and Korup, O.: Extremely large rockslides and rock
avalanches in the Tien Shan, Kyrgyz Republic, Landslides 3,
125–136, 2006.

Styron, R. and Pagani, M.: The GEM Global Active Faults
Database, Earthq. Spectra, 36, 160–180, 2020.

Thurman, M.: Natural Disaster Risks in Central Asia: A Synthesis,
UNDP BCPR, technical report, 2011.

Tien Bui, D., Tuan, T. A., Klempe, H., Pradhan, B., and Revhaug, I.:
Spatial prediction models for shallow landslide hazards: a com-
parative assessment of the efficacy of support vector machines,
artificial neural networks, kernel logistic regression, and logistic
model tree, Landslides, 13, 361–378, 2016.

Tiranti, D., Nicolò, G., and Gaeta, A. R.: Shallow landslides pre-
disposing and triggering factors in developing a regional early
warning system, Landslides, 16, 235–251, 2019.

Trifonov, V. G., Makarov, V. I., and Scobelev, S. F.: The Talas-
Fergana active right-slip faults, Ann. Tectonicae, 6, 224–237,
1992.

Trigila, A., Frattini, P., Casagli, N., Catani, F., Crosta, G., Es-
posito, C., and Spizzichino, D.: Landslide susceptibility map-
ping at national scale: the Italian case study, in: Landslide
Science and Practice, Springer, Berlin, Heidelberg, 287–295,
https://doi.org/10.1007/978-3-642-31325-7_38, 2013.

Ullah, S., Bindi, D., Pilz, M., Danciu, L., Weatherill, G., Zuccolo,
E., Anatoly Ischuk, A., Mikhailova, N. N., Abdrakhmatov, K.,
and Parolai, S.: Probabilistic seismic hazard assessment for Cen-
tral Asia, Ann. Geophys.-Italy, 58, 1, https://doi.org/10.4401/ag-
6687, 2015.

UNISDR: Risk assessment for Central Asia and Caucasus: desk
study review, CAC DRMI 2009, Risk Management Working Pa-
per Series No. 9, The World Bank, technical report, 2009.

World Bank: Natural Disaster Hotspots: Case Studies, Disaster Risk
Management Series No. 6, World Bank, technical report, 2006.

World Bank: Investigation and Analysis of Natural Hazard Impacts
on Linear Infrastructure in Southern Kyrgyz Republic Desk and
Field Studies Report, World Bank, Report 68669, 2008.

World Bank: The Global Landslide Hazard Map: Final Project Re-
port, World Bank, technical report, Appendix A, 2020.

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T.,
O’Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S., and Bates,
P. D.: A high-accuracy map of global terrain elevations, Geophys.
Res. Lett., 44, 5844–5853, 2017.

Yilmaz, I.: Landslide susceptibility mapping using frequency ratio,
logistic regression, artificial neural networks and their compari-
son: a case study from Kat landslides (Tokat–Turkey), Comput.
Geosci., 35, 1125–1138, 2009.

Zubovich, A. V., Wang, X. Q., Scherba, Y. G., Schelochkov, G. G.,
Reilinger, R., Reigber, C., Mosienko, O., Molnar, P., Michajljow,
W., Makarov, V. I., Li, J., Kuzikov, S. I., Herring, T. A., Ham-
burger, M. W., Hager B. H., Dang, Y., Bragin, V. D., and Beisen-
baev, R.: GPS velocity field for the Tien Shan and surrounding re-
gions, Tectonics, 29, 23, https://doi.org/10.1029/2010TC002772,
2010.

Nat. Hazards Earth Syst. Sci., 23, 2229–2250, 2023 https://doi.org/10.5194/nhess-23-2229-2023

https://doi.org/10.1007/s10064-014-0709-2
https://doi.org/10.3389/feart.2018.00085
https://doi.org/10.1007/978-3-319-59469-9_28
https://doi.org/10.1007/978-3-319-59469-9_28
https://doi.org/10.1007/978-3-642-31325-7_38
https://doi.org/10.4401/ag-6687
https://doi.org/10.4401/ag-6687
https://doi.org/10.1029/2010TC002772

	Abstract
	Introduction
	Study area
	Landslide types in Central Asia
	Large rockslides and natural dams
	Landslide in soft rocks and loose deposits

	Materials and methods
	Landslide databases
	Random forest (RF) model
	Selection of independent variables
	Model optimization
	Independent variable optimization
	Landslide inventory harmonization
	Tree number optimization

	Model training
	Model validation

	Results
	Susceptibility map
	The Fergana Valley mountainous rim
	Trained model performances and conditioning factor relevance

	Discussion
	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

