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Abstract. The shallow waters off the coast of Norderney
in the southern North Sea are characterised by a higher
frequency of rogue wave occurrences than expected. Here,
rogue waves refer to waves exceeding twice the signifi-
cant wave height. The role of nonlinear processes in the
generation of rogue waves at this location is currently un-
clear. Within the framework of the Korteweg–de Vries (KdV)
equation, we investigated the discrete soliton spectra of mea-
sured time series at Norderney to determine differences be-
tween time series with and without rogue waves. For this
purpose, we applied a nonlinear Fourier transform (NLFT)
based on the Korteweg–de Vries equation with vanishing
boundary conditions (vKdV-NLFT). At measurement sites
where the propagation of waves can be described by the KdV
equation, the solitons in the discrete nonlinear vKdV-NLFT
spectrum correspond to physical solitons. We do not know
whether this is the case at the considered measurement site.
In this paper, we use the nonlinear spectrum to classify rogue
wave and non-rogue wave time series. More specifically, we
investigate if the discrete nonlinear spectra of measured time
series with visible rogue waves differ from those without
rogue waves. Whether or not the discrete part of the nonlin-
ear spectrum corresponds to solitons with respect to the con-
ditions at the measurement site is not relevant in this case, as
we are not concerned with how these spectra change during
propagation. For each time series containing a rogue wave,
we were able to identify at least one soliton in the nonlin-
ear spectrum that contributed to the occurrence of the rogue
wave in that time series. The amplitudes of these solitons
were found to be smaller than the crest height of the cor-
responding rogue wave, and interaction with the continuous

wave spectrum is needed to fully explain the observed rogue
wave. Time series with and without rogue waves showed dif-
ferent characteristic soliton spectra. In most of the spectra
calculated from rogue wave time series, most of the solitons
clustered around similar heights, but the largest soliton was
outstanding, with an amplitude significantly larger than all
other solitons. The presence of a clearly outstanding soliton
in the spectrum was found to be an indicator pointing to-
wards the enhanced probability of the occurrence of a rogue
wave in the time series. Similarly, when the discrete spec-
trum appears as a cluster of solitons without the presence of
a clearly outstanding soliton, the presence of a rogue wave
in the observed time series is unlikely. These results sug-
gest that soliton-like and nonlinear processes substantially
contribute to the enhanced occurrence of rogue waves off
Norderney.

1 Introduction

Rogue waves are commonly defined as individual waves ex-
ceeding twice the significant wave height, where the signif-
icant wave height refers to the average height of the highest
one-third of waves in a record. The occurrence of a rogue
wave is a rare incident in the framework of a second-order
process (Haver and Andersen, 2000). However, due to their
exceptional height and unexpected nature, they pose a threat
to ships and offshore platforms (Bitner-Gregersen and Gram-
stad, 2016). Rogue waves have not only been observed in
the deep and shallow water depths of the ocean but also ap-
proaching coastlines (Didenkulova, 2020). There has been
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a lively discussion regarding whether the occurrence fre-
quency of rogue waves in the open ocean is well described by
common wave height distributions. Both Rayleigh (Longuet-
Higgins, 1952) and Weibull distributions (Forristall, 1978),
which are based on the linear superposition of wave compo-
nents, have been used to describe the distributions of wave
and crest heights. Later theories include second-order steep-
ness contributions in wave height distributions (e.g. Tay-
fun and Fedele, 2007). Distributions have been assessed
for measurement data collected by surface-following buoys
(e.g. Baschek and Imai, 2011; Pinho et al., 2004; Cattrell
et al., 2018), radar devices (e.g. Olagnon and van Iseghem,
2000; Christou and Ewans, 2014; Karmpadakis et al., 2020),
laser altimeters (e.g. Soares et al., 2003; Stansell, 2004), and
acoustic Doppler current profilers (ADCPs) (Fedele et al.,
2019). Independent of the measurement device, some authors
have found measured wave heights to agree well with the es-
tablished distributions (e.g. Casas-Prat et al., 2009; Waseda
et al., 2011; Christou and Ewans, 2014), whereas others have
found the frequency of rogue wave occurrences to be overes-
timated (e.g. Olagnon and van Iseghem, 2000; Baschek and
Imai, 2011; Orzech and Wang, 2020) or underestimated (e.g.
Stansell, 2004; Pinho et al., 2004). Numerous authors have
described local differences in the rogue wave occurrence fre-
quency between their measurement stations (Baschek and
Imai, 2011), depending on the wave climate (Stansell, 2004),
especially in coastal waters, where waves interact with the
seabed (Cattrell et al., 2018; Orzech and Wang, 2020). Mas-
sel (2017) stated that the wave height distribution is depen-
dent on the water depth; however, the water depth is not ex-
plicitly included in the common models. Karmpadakis et al.
(2020) found that, while different models can describe wave
height distributions well within narrow ranges of sea state
conditions, no model is able to describe measured wave
heights for a wide range of sea states accurately. Mendes and
Scotti (2021) recently introduced a new exceedance probabil-
ity distribution for rogue waves by geometrically combining
some commonly used distributions. This combined distribu-
tion is more flexible than the individual distributions, as it
is additionally dependent on sea state variables. The distri-
bution is capable of describing rogue waves in a wide range
of sea states and was also able to describe the uneven rogue
wave distributions in storms that were observed by Stansell
(2004).

In a previous study, we analysed measurement data from
various stations in the southern North Sea (Teutsch et al.,
2020) and found the rogue wave occurrence frequencies to
vary spatially and by measurement device. For data obtained
from wave buoy measurements, we generally found rogue
wave frequencies to be slightly overestimated by the For-
ristall distribution, which is a special form of the Weibull
distribution, fit to wave data recorded during hurricanes (For-
ristall, 1978). An exception was one measurement buoy that
was located in the shallow waters off the coast of the island
of Norderney, Germany (Fig. 1). For this buoy, enhanced

rogue wave occurrence was observed that could not be ex-
plained by the Forristall distribution. This suggests that non-
linear processes and interactions may play a role in increas-
ing the rogue wave occurrence frequency at this specific lo-
cation. In order to better understand the impact of nonlinear
processes at this location, we analyse surface elevation time
series from this location using a so-called nonlinear Fourier
transform1 (NLFT) (Ablowitz et al., 1974; Osborne, 2010).
Different NLFTs exist for different wave evolution equations
and boundary conditions. Therefore, before the contributions
of our work are detailed, we first discuss the most common
NLFTs and their use in connection with rogue waves.

To date, the nonlinear behaviour of deep-water rogue
waves has received considerably more attention than that of
shallow-water rogue waves. The evolution of the complex en-
velope of unidirectional wave trains in deep water can be de-
scribed by the cubic nonlinear Schrödinger (NLS) equation
(Zakharov, 1968; Whitham, 1974). The NLS equation is a
weakly nonlinear, narrow-banded approximation of the fully
nonlinear water wave equations (Whitham, 1974) that can
be solved exactly using an appropriate NLFT (Zakharov and
Shabat, 1972). In deep water, rogue wave occurrence beyond
the second-order model has been explained, for example, by
a nonlinear instability that was also found in numerical sim-
ulations and tank experiments (see e.g. Dysthe et al., 2008,
and the references therein). Here, uniform wave trains exhibit
modulational instability with respect to small side-band per-
turbations and disintegrate into groups, in which the highest
wave becomes significantly larger than the wave height in
the original train (Benjamin and Feir, 1967). The instabil-
ity is, therefore, also known as modulational instability. The
NLS equation has exact solutions – known as breathers – that
have been suggested as an analytical model of rogue waves
in a unidirectional case (Dysthe and Trulsen, 1999). Just like
rogue waves, breathers seem to “appear from nowhere and
disappear without a trace” (Akhmediev et al., 2009). This
impressive effect was demonstrated experimentally by Chab-
choub et al. (2011). Slunyaev and Shrira (2013) investigated
the behaviour of breathers beyond the NLS equation nu-
merically, using the full two-dimensional Euler equations.
Breather solutions are known to occur after the modulational
instability has been triggered for randomly perturbed plane
waves (e.g. Soto-Crespo et al., 2016; Randoux et al., 2016;
Grinevich and Santini, 2018). Furthermore, it was found that
random sea states can lead to similar results (Onorato et al.,
2001, 2006). However, the relevance of modulational insta-
bility for the formation of oceanic rogue waves has been
doubted based on the analysis of real-world events (Fedele
et al., 2016). A recent review in Dudley et al. (2019) dis-
cusses these and many other works in this area.

The form of the NLFT for the NLS equation (NLS-NLFT)
depends on the boundary conditions. Initially, the NLS-

1Nonlinear Fourier transforms are also known as scattering
transforms in the literature.
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Figure 1. Map of the German Bight, showing the location of the measurement buoy close to the island of Norderney.

NLFT was developed for vanishing boundary conditions,
where localised wave packets with sufficient decay are con-
sidered (Zakharov and Shabat, 1972). The NLS-NLFT for
vanishing boundary conditions decomposes a wave packet
into solitons and a radiative part (Ablowitz and Segur, 1981).
An NLS-NLFT for periodic boundary conditions was devel-
oped by Its and Kotlyarov (1976) (see Kotlyarov and Its,
2014, for an English translation). The periodic NLS-NLFT
instead represents a periodic wave using Riemann theta func-
tions. This representation can be interpreted as nonlinearly
interacting stable modes (i.e. Stokes waves) and unstable
modes (Osborne, 2010). Special solutions of the NLS equa-
tion such as solitons and breathers have distinctive represen-
tations in both nonlinear Fourier domains (Osborne, 2010).
Therefore, the periodic NLS-NLFT has been used to analyse
rogue wave data by various authors. Osborne et al. (2000)
proposed the interpretation of unstable modes in the nonlin-
ear Fourier spectrum as (potentially small) rogue wave com-
ponents (also see Osborne, 2010). A recent study of a real
storm using this approach was presented in Osborne et al.
(2019). With the help of the periodic NLS-NLFT, Islas and
Schober (2005) observed that rogue waves in random Joint
North Sea Wave Project (JONSWAP) data are close to ho-
moclinic solutions of the NLS equation (also see Calini and
Schober, 2017). Randoux et al. (2016) proposed classifying
rogue waves based on the periodic NLS-NLFT of their lo-
cal periodisation and applied this technique to rogue waves
formed in simulations of a dam break and the modulational
instability. In Randoux et al. (2018), this technique was ap-
plied to experimental data of Peregine breathers. Onorato

et al. (2021) applied it to a giant wave packet measured in
the ocean.

The vanishing NLS-NLFT, which detects envelope soli-
tons and radiation in deep-water wave packets, has been ap-
plied to rogue waves as well. As pointed out by Slunyaev
(2006), the vanishing NLS-NLFT is easier to compute and
interpret. Furthermore, breather solutions typically consist of
one or more solitons that interact with a periodic background
(Slunyaev, 2006). In Slunyaev (2006), the NLS-NLFT was
used to detect envelope solitons for a measured rogue wave
and estimate their parameters (e.g. amplitude, velocity and
position). Slunyaev (2018) estimated the accuracy of this
procedure for strongly nonlinear waves. The NLFT was ap-
plied to the interpretation of deep-water waves, the extrac-
tion of soliton-like groups and the prediction of their fur-
ther dynamics. Carrying this work further, Slunyaev (2021)
identified a wave group in numerical simulations as a sta-
ble envelope soliton, which could be related to rogue wave
events. In addition to the periodic NLS-NLFT, Onorato et al.
(2021) also applied the vanishing NLS-NLFT to the giant
wave packet.

The role of nonlinear processes with respect to rogue wave
generation in shallow water has received considerably less at-
tention than for deep water. Shallow-water wind waves sub-
stantially differ from deep-water wind waves; therefore, it
is not appropriate to simply scale the deep-water nonlinear
interaction to shallow-water waves (Janssen and Onorato,
2007). As the water depth becomes more and more shal-
low, a wave-induced current develops and less wave energy
is available for nonlinear focusing (Benjamin and Feir, 1967;
Janssen and Onorato, 2007). Although waves in shallow wa-
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ter can also destabilise due to oblique perturbations (Toffoli
et al., 2013), the modulational instability in shallow water
does not enhance the formation of extreme waves (Fernan-
dez et al., 2014). Didenkulova et al. (2013), supported by ob-
servations, reported that the influence of the modulational in-
stability on rogue wave generation becomes less probable in
shallow water. Fedele et al. (2019) stated that waves in shal-
low water break before they can start to “breathe” and be-
come rogue waves. Glukhovskiy (1966) hypothesised early
that high individual waves in shallow water would occur less
frequently than predicted by the Rayleigh distribution due to
depth-induced wave breaking. Therefore, some authors ex-
pect the rogue wave probability to decrease in shallow water
(e.g. Slunyaev et al., 2016). Other authors have referred to
the large ratio between nonlinearity and dispersion in shal-
low water (Kharif and Pelinovsky, 2003) and have concluded
that Gaussian statistics are not sufficient for the description
of shallow-water waves and that rogue waves are likely to
occur more frequently as the water depth decreases (Garett
and Gemmrich, 2009; Sergeeva et al., 2011). The nonlinear
processes in shallow water are mainly a result of the inter-
action of waves with the seafloor (Prevosto, 1998). Refrac-
tion, shoaling and higher-order nonlinear effects change the
shapes of waves and their energy spectrum (Bitner, 1980;
Tayfun, 2008). Soomere (2010) found that additional pro-
cesses associated with the generation of extreme waves, like
wave amplification along certain coastal profiles, redirection
of waves or the formation of crossing seas, are more relevant
in shallow water (compared with deep water) due to wave–
bathymetry interactions; therefore, more rogue waves should
be expected in nearshore regions.

In shallow water, the wave evolution is described by the
Korteweg–de Vries (KdV) equation (Korteweg and de Vries,
1895). It describes weakly nonlinear and dispersive progres-
sive unidirectional free-surface waves in shallow water with
constant depth (Whitham, 1974). Osborne and Petti (1994)
point out that kh, where k and h represent the wave num-
ber and water depth, respectively, should not be much larger
than one for the KdV equation because of how the dis-
persion relation is approximated. The threshold kh≤ 1.36
marks the point at which the modulational instability disap-
pears (Osborne and Petti, 1994). Following Osborne (1995),
we use this threshold to define shallow-water conditions in
this work. The regular wave solutions of the KdV are sta-
ble, i.e. the wave amplitude does not change significantly
when the initial wave train is perturbed. Therefore, the mod-
ulational instability cannot contribute to the explanation of
rogue wave occurrence in shallow water.

The KdV equation can again be solved using suitable
NLFTs. The NLFT for the KdV equation (KdV-NLFT) with
vanishing boundaries was found by Gardner et al. (1967).
Its and Matveev (1975) presented the Riemann theta form of
the periodic KdV-NLFT. As in the NLS case, the vanishing
KdV-NLFT decomposes a signal into solitons and radiation,
while the periodic KdV-NLFT can be interpreted as a super-

position of cnoidal waves plus their nonlinear interactions
(Osborne, 2010). While there seems to be no work on apply-
ing the KdV-NLFT to rogue waves, it has been exploited to
investigate potentially hidden solitons in shallow water.

By numerically solving the KdV equation, Zabusky and
Kruskal (1965) discussed the decomposition of a cosine sig-
nal into a train of eight solitons. They documented that the
amplitude and shape of solitons remain unaffected by non-
linear interactions with each other. Osborne and Bergamasco
(1986) applied the periodic KdV-NLFT and found it could
detect the solitons in the numerical experiment of Zabusky
and Kruskal (1965) before they became visible. In Osborne
et al. (1991), they used this method to analyse surface-wave
data from the Adriatic Sea. Christov (2009) used the peri-
odic KdV-NLFT to analyse internal waves in the Yellow Sea.
Costa et al. (2014) used the periodic KdV-NLFT to confirm
the soliton content of low-pass-filtered time series measured
in the Currituck Sound during a storm. Brühl and Oumeraci
(2016) and Trillo et al. (2016) independently confirmed the
findings of Osborne and Bergamasco (1986) experimentally.
A comprehensive comparison of the vanishing and periodic
NLFT with the conventional Fourier transform for the detec-
tion of hidden solitons in bores has been presented recently
by Brühl et al. (2022).

The nonlinear interaction of solitons in shallow water has
been discussed with regard to its role in rogue wave gen-
eration. Pelinovsky et al. (2000) showed that dispersive fo-
cusing is possible for the vanishing KdV equation, but they
also mentioned that “the ‘nonlinear’ [wave] train should in-
clude a soliton”. Equivalently to the linear case, in which
rogue waves evolve from the superposition of wave com-
ponents, nonlinear focusing is then the interaction between
one or, in principle, multiple solitons with dispersive waves,
due to their velocity difference. For the unidirectional case,
Kharif and Pelinovsky (2003) found that the interaction of
KdV solitons does not lead to a significant increase in surface
elevation. Soomere (2010) considered that, as soliton interac-
tion in the unidirectional case does not lead to an enhance-
ment in surface elevation, a higher nonlinearity should even
lead to a decrease in the rogue wave occurrence probabil-
ity. As this is not consistent with observations, the aforemen-
tioned author concluded that directionality must play a role
in rogue wave generation in shallow water. Indeed, crossing
solitons are known to be able to produce large amplitudes
(Peterson et al., 2003). In contrast to linear superposition, the
interaction of two crossing solitons may produce a crest up
to 4 times higher than the incoming waves (Peterson et al.,
2003).

At the moment, rogue wave occurrence in shallow wa-
ter has not been sufficiently explained beyond second order.
Moreover, almost all investigations in previous work have
been based on theoretical considerations, numerical simu-
lations or laboratory experiments. In this study, we instead
leverage the vanishing KdV-NLFT to analyse the soliton
spectrum of a large number of time series with and with-
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out rogue waves that have been measured off the coast of
Norderney in the southern North Sea. For this location, wave
height distributions based on linear superposition have been
shown to underestimate rogue wave occurrence (Teutsch
et al., 2020). We apply the KdV-NLFT for vanishing bound-
aries (vKdV-NLFT) as a spectral analysis method to explore
the extent to which the presence of solitons might contribute
to the enhanced rogue wave occurrence off Norderney. Fol-
lowing Sugavanam et al. (2019), we use the NLFT only as a
signal processing tool. Our goal is to classify time series by
their nonlinear spectra. We do not assume that the nonlinear
soliton spectra remain constant during propagation beyond
the measurement site, which would be the case only if the
propagation conditions are well approximated by the KdV
equation.

The structure of the paper is outlined in the following. Sec-
tion 2.1 describes the measurement site and the dataset and
gives a definition for rogue waves. In Sect. 2.2, the applica-
tion of vKdV-NLFT to the measurement data is explained.
Section 3 consists of two parts: in Sect. 3.1, we explore
the direct association of solitons calculated from NLFT with
rogue waves, and Sect. 3.2 discusses statistical differences
in the soliton spectra of time series with and without rogue
waves. In Sect. 4, we discuss the time windows and location
for which our results are valid and suggest further investiga-
tions. In Sect. 5, our conclusions are presented.

2 Methods

2.1 Measurement site and dataset

We analysed wave elevation data measured by a surface-
following buoy off the coast of the island of Norderney in
the German Bight in the time period between 2011 and 2016.
The predominant wave propagation direction during this time
period was southeast (Fig. 3). The measurement buoy was
deployed at a nominal water depth of h= 10 m, which was
assumed to be constant for the following analyses. In reality,
the water depth off the coast of Norderney is not constant,
as the bathymetry at the location is spatially highly variable
with strong gradients (Fig. 2). The bed slope perpendicular
to the wave direction varies between 1 : 500 (offshore direc-
tion) and 1 : 200 (onshore direction). As the buoy is restricted
only by its mooring, there is the possibility that it will move
horizontally. The actual water depth h below the horizontally
moving buoy may then be subject to rapid changes. In ad-
dition, the tidal range at the site is about 2.5 m (NLWKN,
2021), which further causes the water depth to vary.

The wave data were measured at a frequency of 1.28 Hz
and are available as a set of time series (samples) of 30 min
length. To exclude low-energy sea states in the following,
only samples with a significant wave height Hs above the
long-term 70th percentile of the significant wave height,
Hs,70 = 1.29 m, were included in the analysis. Here, the sig-

nificant wave height Hs is defined as the mean of the highest
30 % of the wave heights in a 30 min sample. Hs,70 was cal-
culated from the significant wave heights Hs of all 30 min
samples during the 6 years of available measurement data.
On the one hand, this excludes possible measurement uncer-
tainties caused by short waves that are only described by a
few points; on the other hand, it includes only rogue waves of
heights relevant for offshore activities. As the KdV equation
for shallow water was to be applied to the data, only samples
satisfying shallow-water conditions in terms of the validity
of the KdV equation were included in the study. The defini-
tion of shallow water depths for the applicability of the KdV
equation is different from the commonly used definition of
shallow water in the engineering context, kh < π/10 (Dinge-
mans, 1997). As explained in Sect. 1, the shallow-water con-
dition used in this study was

h

L
< 0.22 or kh≤ 1.36, (1)

with water depth h and wavelength L. The wavelength was
calculated as

L= Tp · c (2)

from the peak period Tp = f
−1
p of each sample, where fp is

the peak frequency in the linear fast Fourier transform (FFT)
spectrum of the sample, and the linear phase speed c =

√
gh,

where g is gravity. Following Eqs. (1) and (2), the condition
for the peak period may be written as

Tp >
h

0.22 · c
. (3)

Thus, for a water depth of h= 10 m, the peak period had to
satisfy the condition Tp > 4.6 s in order for a sample to clas-
sify for shallow depth conditions in which the KdV equation
is valid. We based the shallow-water condition on the peak
period Tp of the entire sample to assume that shallow-water
wave properties as described by the KdV equation strongly
contribute to the wave processes in the sample. Nevertheless,
it was additionally ensured that each of the individual rogue
waves (or the highest wave in each sample that did not con-
tain a rogue wave) satisfied the depth conditions required for
the applicability of the KdV equation, based on its period
Tmax. Of all the selected samples above Hs,70, the required
shallow depth conditions applied in more than 98 % of cases
and were, thus, the dominant condition in these samples. The
2 % of the samples not satisfying the condition of shallow
depth were discarded and not considered in the analysis. In
the considered samples, kh ranged between 0.38 and 1.36.

Rogue waves are commonly defined as waves with an indi-
vidual heightH from crest to trough of (Haver and Andersen,
2000)

H ≥ 2.0 Hs (4)
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Figure 2. Bathymetry conditions at Norderney relative to NHN (Normalhöhennull), which represents the standard elevation zero of the
German reference height system, and the position of the measurement buoy.

Figure 3. Mean directional wave spectrum for the time period from
2011 to 2016, obtained using the DIrectional WAve SPectra Tool-
box (DIWASP; Johnson, 2002).

and/or waves with a crest height C above still water level of
(Haver and Andersen, 2000)

C ≥ 1.25 Hs. (5)

In a previous study based on measurement data from the
southern North Sea (Teutsch et al., 2020), we found that the
rogue wave frequency significantly deviated from the For-
ristall distribution for wave heights larger than 2.3 Hs. There-
fore, in the present study we further define “extreme rogue

waves” by a more strict height criterion of

H ≥ 2.3 Hs. (6)

For the definition of a wave, the zero-upcrossing method
was used.

The measured time series were subdivided into five cate-
gories:

– Non-rogue samples comprise measurement samples that
did not include any rogue wave.

– Height rogue samples comprise measurement samples
that include a rogue wave only according to the height
criterion defined in Eq. (4) but exclude the extreme
rogue waves according to Eq. (6) and the double rogue
samples (see below).

– Crest rogue samples comprise measurement samples
that include a rogue wave only according to the crest
criterion defined in Eq. (5) but exclude the double rogue
samples.

– Double rogue samples comprise measurement samples
that include a rogue wave that fulfilled both the criteria
defined in Eqs. (4) and (5) at the same time but exclude
the extreme rogue waves according to Eq. (6).

– Extreme rogue samples comprise measurement samples
that include a rogue wave according to the height cri-
terion defined in Eq. (6) but exclude the double rogue
samples.

Nat. Hazards Earth Syst. Sci., 23, 2053–2073, 2023 https://doi.org/10.5194/nhess-23-2053-2023
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Figure 4. Panels (b)–(e) show 200 s sections taken from example time series illustrating rogue waves for each of the four rogue wave
categories, and panel (a) presents a non-rogue wave sample with a similar value of Hs for comparison. Vertical red lines mark the two
zero-upcrossings of the rogue wave. Rogue wave and crest heights are indicated in red and green, respectively.

Table 1. Number of samples and total number of individual waves in the considered time series categories.

Category Non-rogue Height Crest Double Extreme Total
rogue rogue rogue rogue

No. of samples 13 984 833 95 151 93 15 156
Total no. of waves 4 759 663 287 617 32 354 52 520 32 117 5 164 271
Sample percentage 92.3 % 5.5 % 0.6 % 1.0 % 0.6 % 100 %

Examples of each time series category are shown in Fig. 4.
Table 1 shows the number of samples and the percentage of
samples in each category.

2.2 Application of the Korteweg–de Vries equation
with vanishing boundary conditions to the
measurement data

The vKdV-NLFT was applied to the data in order to obtain
the discrete soliton spectrum of each time series. The KdV
equation was introduced by Korteweg and de Vries (1895).
It describes the evolution of weakly nonlinear and dispersive
progressive unidirectional free-surface waves in shallow wa-
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ter with constant depth. For the analysis of space series (fixed
at one point in time), the space-like KdV equation (sKdV) is
given e.g. in Osborne (2010) as

ut + c ux +α u ux +β uxxx = 0, (7)

in which u= u(x, t) is a free-surface space series, develop-
ing in space x and time t . The subscripts x and t denote par-
tial derivatives, c is the phase speed in shallow water, and
α = (3c)(2h)−1 and β = (ch2)/6 are constants, depending
on the phase speed c and the water depth h. Equation (7)
can be adapted to the analysis of time series (fixed at one
point in space, such as buoy measurements). For the case of
a free-surface elevation time series u(x0, t) (see e.g. Fig. 5)
at location x0, the spatial evolution is then described by the
time-like KdV equation (tKdV) (Osborne, 1993)

ux + c
′ ut +α

′ u ut +β
′ ut t t = 0, (8)

in which c′ = c−1
= (
√
gh)−1, α′ =−α (c2)−1 and β ′ =

−β (c4)−1. For our application of the KdV-NLFT, we as-
sumed initial conditions with vanishing boundaries, i.e.

lim
t→±∞

u(x0, t)= 0 (9)

sufficiently fast. As we were mainly interested in the soliton
part of the nonlinear spectrum and solitons are not periodic,
we preferred vanishing to periodic boundary conditions. For
vanishing boundary conditions, the initial wave packet devel-
ops into a train of solitons followed by an oscillatory trail that
vanishes over time (e.g. Ablowitz and Segur, 1981). The soli-
ton spectrum therefore completely describes the behaviour of
the wave train in the far field. The surface elevation in the far
field is then described by

u(x, t)≈

N∑
n=1

ũnsech2 (ωnt − knx−φn) , (10)

i.e. as the linear superposition of independent solitons after
the oscillatory waves have dampened out, with ũn and kn
uniquely determined byωn, h0 and g (Ablowitz and Kodama,
1982, Eq. 2.20a). The nonlinear spectrum of the vKdV-NLFT
consists of a discrete spectrum representing solitons and a
continuous spectrum representing oscillatory waves. We ap-
plied the vKdV-NLFT by using the MATLAB (2019) in-
terface to a development version (commit 681191c) of the
FNFT software library (Wahls et al., 2018). Figure 5 shows
an example of a measured time series, its linear FFT spec-
trum, the nonlinear continuous spectrum and the discrete
nonlinear soliton spectrum. In this paper, only the discrete
soliton spectrum will be discussed further. Each of the soli-
tons in the discrete spectrum would be a physical soliton
if the signal is propagated according to the KdV equation
with vanishing boundary conditions. After sufficiently long
propagation, the solitons will separate and their characteris-
tic shapes become clearly visible. For visualisation of the role

Figure 5. Example of a time series including a rogue wave at
approximately 820 s, and its corresponding FFT and NLFT spec-
tra. The nonlinear spectra were calculated from vKdV-NLFT. The
time series with Hmax H

−1
s = 2.58, Hmax = 7.00 m and Hs =

2.71 m was measured on 17 October 2013, starting at 11:30 CEST.
Panel (a) additionally shows the soliton train, as obtained by nonlin-
ear superposition of the solitons in the discrete spectrum (Prins and
Wahls, 2021). The required soliton phase shifts were computed us-
ing the method of Prins and Wahls (2019). Note that inverting large
soliton spectra is numerically difficult (Prins and Wahls, 2021);
therefore, a shortened time series was used in panel (a).

of solitons in the time series, Fig. 5a shows the soliton train
that was obtained by nonlinear superposition of the solitons
(considering their interactions but neglecting the continuous
spectrum) using the algorithm from Prins and Wahls (2021).
Although a soliton does not cross the still water level, a math-
ematical definition of the angular frequency can be obtained
from the soliton solution of the tKdV (Brühl et al., 2022,
Eq. 12) as follows:

�= 2π ·F =

√
3Ag
4h2 . (11)

As this equation relates the frequency F to the amplitude A
of the soliton, the frequency sorts the solitons in the spec-
trum by their amplitude. Following the convention in Brühl
and Oumeraci (2016), the solitons in the discrete spectrum
(Fig. 5d) are displayed on a negative frequency axis. The
vKdV-NLFT was applied to all 15 156 samples listed in Ta-
ble 1.
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Figure 6. Panel (a) presents an extreme rogue time series from
17 October 2013, starting at 11:30 CEST. Panel (b) displays a mag-
nified view of the rogue wave (blue curve) and the reduction of its
elevation to 80 % (red curve). Panel (c) shows soliton spectra of the
original (blue circles) and the modified time series (red triangles)
resulting from vKdV-NLFT.

2.3 Attribution of solitons to rogue waves

The aim of the study was to explore the role of the individ-
ual solitons in the generation of rogue waves. The following
procedure was used to check whether individual solitons in
the NLFT spectrum could be associated with the recorded
rogue waves. First, the KdV-NLFT of the original time se-
ries was computed. Following this, all free-surface elevations
between the two zero-upcrossings of a rogue wave (or the
largest wave for non-rogue wave samples) were scaled down
to 80 % (Fig. 6). The KdV-NLFT was then repeated for the
modified time series, which resulted in a new soliton spec-
trum. We monitored which of the solitons had changed in am-
plitude A (and, therefore, in frequency F ), due to the change
in wave height of the modified rogue wave. These solitons
were assumed to have the same position in the time series as
the rogue/maximum wave.

3 Results

Regular and irregular wave trains in very shallow water are
known to often contain solitons, even without the presence of
rogue waves (e.g. Osborne et al., 1991; Brühl and Oumeraci,
2016). Our data support this finding: solitons were found in
all samples, with and without rogue waves. In the follow-
ing, we therefore first investigate whether individual solitons
in the NLFT spectrum can be associated with the recorded
rogue waves. Afterwards, we explore whether the soliton
spectra calculated from rogue wave time series show differ-
ences when compared with those calculated from non-rogue
wave time series.

3.1 Attribution of solitons to rogue waves

Solitons were attributed to specific rogue waves, following
the procedure described in Sect. 2.2. In each case, we found
that the amplitude of one large soliton significantly decreased
for a reduced rogue wave (or maximum wave) height. Fur-
thermore, slight changes in amplitudes were observed in the
group of smaller solitons. As amplitude A and frequency F
are related according to Eq. (11) for solitons, the reduction in
amplitude corresponded to a simultaneous shift in frequency,
which can be seen in the soliton spectrum (Fig. 6). The re-
duced solitons can be regarded as being associated with the
rogue wave in the time series, while the other solitons in the
spectrum maintained their amplitudes. The solitons with con-
stant amplitudes can be regarded as not being associated with
the rogue wave. We refer to the amplitudes of the l = 1. . .n
solitons associated with the rogue wave as AnS, with A1

S de-
noting the largest attributed soliton. Although often the case,
the largest soliton attributed to the rogue wave was not nec-
essarily the largest soliton in the spectrum (Fig. 7).

We extracted the amplitude of the largest attributed soliton
A1

S for each time series and compared it to the rogue wave
heightH (for rogue waves according to any of the two height
criteria, including double rogue waves; Fig. 8a) or the crest
height C of the rogue wave (for rogue waves according to
the crest criterion, including double rogue waves; Fig. 8b). A
comparison of the soliton amplitude A1

S to the largest wave
height Hmax and the largest crest height Cmax in non-rogue
wave samples has been added for reference (Fig. 8c, d). The
slopes of the linear regression curves express increasing A1

S
with increasing H or Hmax and C or Cmax. For the analysed
samples, the scatter of the data suggests an upper limit of A1

S
of between 2 and 3 m. The goodness of fit of each curve to
the data is given in terms of the coefficient of determination

R2
= 1−

SSres

SStotal
, (12)

in which SSres is the sum of squares of residuals with respect
to the regression curve and SStotal is the sum of squares of
residuals with respect to the average value of the data (and
thus a measure of the variance). R2 indicates that the linear
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Figure 7. Panel (a) presents a double rogue time series from
27 April 2016, starting at 20:30 CEST. Panel (b) displays a mag-
nified view of the rogue wave (blue curve) and the reduction of its
elevation to 80 % (red curve). Panel (c) shows soliton spectra of the
original (blue circles) and the modified time series (red triangles)
resulting from vKdV-NLFT.

curves fit the results from height and extreme rogue samples
better than the results from non-rogue, double and crest rogue
samples. R2 is higher in Fig. 8a than in Fig. 8b–d.

Moreover, it is seen that the amplitude of the largest soli-
ton is always smaller than the rogue wave crest/height itself.
This is in agreement with results by Osborne et al. (1991),
who identified solitons in measurement data from the Adri-
atic Sea by applying the NLFT with quasi-periodic boundary
conditions to the KdV equation. Our investigation revealed
that, in all cases, some smaller solitons were additionally as-
sociated with a rogue wave. Typical values of the amplitude
of the second largest soliton A2

S are 20 %–30 % of A1
S. The

amplitude of the third largest attributed soliton A3
S is typi-

cally 10 %–20 % of A1
S.

So far, the results show that high soliton amplitudes in the
spectrum are associated with high absolute values of wave
heights or crests. However, this does not necessarily imply
that high solitons play a role in forming individual waves
that are exceptional with respect to the surrounding wave
field. To be able to compare different measurement samples,
the soliton amplitudes A1

S were normalised by the signifi-
cant wave height Hs of the corresponding sample. By relat-

Figure 8. Amplitude of the largest soliton attributed to the highest
wave, A1

S, in the time series for the rogue wave (a, b) or non-rogue
wave (c, d) samples as a function of rogue wave heightH and max-
imum wave heightHmax (a, c), respectively, or rogue crest height C
and maximum crest height Cmax (b, d), respectively. The goodness
of fit of the linear regression curves is given in terms of R2.

ing the normalised soliton amplitudes to the different time
series categories, the importance of solitons for the relative
height of rogue or maximum waves was investigated (Fig. 9).
If solitons are to play a major role in the presence of rogue
waves, their normalised amplitudes are expected to increase
from non-rogue wave samples with H (Hs)

−1 < 2.0 through
height and double rogue waves (2.0≤H (Hs)

−1 < 2.3) to
extreme rogue waves (H (Hs)

−1
≥ 2.3). In fact, the median

values of A1
S (Hs)

−1 are higher for rogue wave samples than
for non-rogue wave samples, meaning that the distributions
calculated from the rogue wave samples are shifted towards
higher normalised soliton amplitudes with respect to the dis-
tribution calculated from non-rogue wave samples (Fig. 9).
Additionally, the rogue wave sample distributions, especially
those calculated from crest and extreme rogue samples, show
heavier tails. The differences in the distributions suggest that
solitons play a role in rogue wave generation. It is striking
that not only extreme rogue waves but also crest rogue waves
had a tendency to be associated with higher solitons. This
makes sense when recalling that a soliton is not an oscil-
lating wave and, due to its shape, contributes more to wave
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Figure 9. Amplitude of the highest soliton attributed to the rogue
wave or maximum wave in the time series, normalised by the sig-
nificant wave height, for the different categories of time series. Dis-
tributions are shown as box-and-whisker plots (box: interquartile
range; whiskers: 1.5 times the interquartile range; horizontal line
inside the box: median; red crosses: data outside the whiskers).

crests than to wave heights. However, although differences
in normalised soliton amplitudes A1

S (Hs)
−1 are present for

the different categories, the distributions overlap and the pos-
itive trend with increasing relative wave height is not as pro-
nounced as the positive trend of A1

S with increasing max-
imum wave height (as presented in Fig. 8). This empha-
sises the relevance of the considered sea state for the soliton
amplitude, in that large solitons are only found in high sea
states. Large solitons correspond to high wave heightsH and
high crest heights C but not necessarily to high relative wave
heights H (Hs)

−1 or high relative crest heights C (Hs)
−1.

As we were interested in the importance of nonlinear pro-
cesses in rogue wave generation at the buoy location, we in-
tended to quantify the nonlinearity of the rogue waves. In
shallow water, the nonlinearity of waves can be described
by the Ursell number (Ursell, 1953). According to Osborne
(2010, Eqs. 10.151 and 10.154), the Ursell number in its
time-like form is given by

Ur =
3

32π2

(
HL2

h3

)
=
mK2(m)

2π2 , (13)

with the modulus m.2

2Different definitions of the Ursell number exist. A common
definition is (Dean and Dalrymple, 1991, Eq. 11.109) U1 =

HL2

h3 =

16
3 K

2k2, with K the complete elliptic integral of the first kind and
with the modulus k. Comparison of Ur and U1 shows the Ursell
numbers to differ by a factor of 3/(32π2). The moduli of Ur and
U1 are related by m= k2. Thus, different Ursell number definitions

The Ursell number has been used to classify wave types.
In Brühl (2014), solitary-like waves are defined by a modulus
ofm> 0.99. According to this classification and by applying
U1, Ursell numbers Ur > 0.559 are obtained for solitary-like
waves. Waves with Ur ≤ 0.559 are classified as oscillatory
waves.

According to U1, the Ursell number is defined either by
the modulus m or by height H and wavelength L of a sin-
gle wave oscillation over depth h. Thus, we can calculate the
Ursell number for the identified rogue waves using theH and
L obtained by zero-upcrossing. In our case, the amplitudes of
the largest attributed solitons show an almost linear positive
trend with increasing Ursell number up until approximately
Ur = 0.5 (Fig. 10). For our data, in which the bulk of waves
are located below Ur = 0.559, this means that most rogue
waves are not classified as solitons. This is in agreement with
several previous studies that have shown that rogue waves
in shallow water, despite their large amplitudes, have very
small ratios of nonlinearity to dispersion (Ursell numbers)
and, thus, are almost linear (Pelinovsky et al., 2000; Kharif
and Pelinovsky, 2003; Pelinovsky and Sergeeva, 2006). An-
other observation made from Fig. 10 is an upper limit in soli-
ton amplitude between A1

S = 2.0 m and A1
S = 2.8 m, depend-

ing on the time series category, for Ursell numbers larger
than approximately Ur = 0.5. Referring to the classification
given above, this implies that soliton amplitudes are limited
for the most nonlinear waves, which are those satisfying soli-
tary wave theory. A limit in soliton height as a result of break-
ing is expected at amplitudes of approximatelyA= 8 m for a
water depth of h= 10 m, as the breaking criterion for solitary
waves is A h−1

= 0.78 (McCowan, 1891) or A h−1
= 0.83

(Lenau, 1966). Therefore, shallow-water wave breaking at
the location of the buoy can be excluded. The reason for the
limit in soliton amplitude at A1

S = 2.5 m to A1
S = 3 m could

be limited energy input by wind (see Middleton and Mellen,
1985, for soliton generation by wind) or a shoal in front of
the measurement buoy causing the larger waves to break be-
fore they reach the buoy.

3.2 Soliton spectra for time series with and without
rogue waves

When investigating the attribution of solitons to rogue waves
in Sect. 3.1, we found that the largest soliton in the nonlinear
spectrum could be attributed to the rogue wave in the ma-
jority of cases. In addition, this soliton was often outstand-
ing from the other solitons in the spectrum, with a much
larger amplitude than the remaining solitons in the spec-
trum (see the example in Fig. 6). Therefore, we were in-
terested in whether the existence of an outstanding soliton

will yield different thresholds for the separation of wave theories.
In this study, we use the definition given in Eq. (13) and adjust the
cited threshold values accordingly. (For consistency with U1, the
wave amplitude a in the original equation of Osborne (2010) has
been replaced by the wave height a =H/2.)
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Figure 10. (a) Amplitude of the highest soliton attributed to the
maximum wave in the time series as a function of the Ursell number
of the maximum wave in the time series. (b) Amplitude of the high-
est soliton attributed to the rogue wave as a function of the Ursell
number of this rogue wave.

in the nonlinear spectrum was typical of rogue wave sam-
ples off Norderney. We investigated this question statistically
by comparing soliton spectra, calculated from vKdV-NLFT,
for non-rogue wave samples and the four different categories
of rogue wave samples. In fact, while all 15 156 considered
time series yielded discrete spectra with a large number of
solitons, we identified two characteristic classes of soliton
spectra. The typical appearance of a soliton spectrum cal-
culated from a time series without rogue waves was a clus-
ter of solitons (Fig. 11). On the contrary, in the majority of
cases, soliton spectra calculated from time series including
a rogue wave showed one outstanding soliton with an ampli-
tude much larger than that of the remaining cluster of solitons
in the spectrum (Fig. 5).

To distinguish between clustered soliton spectra and those
featuring an outstanding soliton, we compared the ampli-
tudes of the largest soliton,A1, and the second largest soliton,
A2, in the discrete spectrum. From the visual inspection of
the spectra, we identified a threshold of the ratio A2 (A1)

−1,
below which the largest soliton could be called outstanding:

A2

A1
≤ 0.8. (14)

Thus, a soliton spectrum had an outstanding soliton if
the second largest soliton was at least 20 % smaller than
the largest soliton in the spectrum. The choice of this
threshold was further supported by the fact that the thresh-
old A2 (A1)

−1
= 0.8 coincides with the median value of

A2 (A1)
−1 for maximum wave heights just below the rogue

wave criterion H (Hs)
−1
≥ 2.0 (Fig. 12). This reveals that

our threshold chosen for the distinction between clustered
spectra and those featuring an outstanding soliton concur-

Figure 11. Example of (a) a non-rogue wave time series with-
out rogue waves and (b) its corresponding soliton spectrum calcu-
lated from vKdV-NLFT. The soliton spectrum displays a cluster of
solitons, found to be typical of the majority of spectra calculated
from non-rogue wave time series. The time series was measured
on 26 December 2016, starting at 11:30 CEST, with the parameters
Hmax = 4.44 m, Hs = 2.46 m and Hmax (Hs)

−1
= 1.80.

Figure 12. Distribution of the ratio between the second largest and
the largest soliton in the discrete spectrum calculated from non-
rogue wave time series. H (Hs)

−1 bins of width 0.05 are shown up
untilH (Hs)

−1 < 2.0, which corresponds to the definition of height
rogue samples (Eq. 4). Distributions are shown as box-and-whisker
plots (box: interquartile range; whiskers: 1.5 times the interquartile
range; horizontal line inside the box: median; red crosses: data out-
side the whiskers).

rently indicates a difference between the spectra calculated
from non-rogue and those calculated from rogue wave time
series.
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Table 2. Share of samples in each category showing an outstanding soliton or a clustered soliton spectrum, respectively.

Non-rogue Height Crest Double Extreme
rogue rogue rogue rogue

Outstanding soliton 36 % 57 % 64 % 72 % 87 %
Clustered solitons 64 % 43 % 36 % 28 % 13 %

Equation (14) is valid for 30 min samples at the measure-
ment site, which is the standard window size of measurement
samples delivered by Datawell Waverider buoys. As the ratio
between soliton amplitudes might be dependent on the win-
dow size, it is not clear if Eq. (14) would apply to time win-
dow sizes other than 30 min. The effect of a larger time win-
dow size will be discussed in Sect. 4. Table 2 shows the share
of outstanding solitons and clustered soliton spectra in each
of the categories defined in Sect. 2.1. It is seen that the typical
appearance of the soliton spectrum for 30 min wave measure-
ment samples off Norderney without rogue waves is a cluster
of solitons (64 % of the samples); at the same time, it is not
unlikely to obtain a soliton spectrum with one outstanding
soliton from vKdV-NLFT (36 % of the samples). For 30 min
rogue wave samples, in contrast, it is more likely to obtain
a soliton spectrum with one outstanding soliton than a clus-
tered soliton spectrum. This is true for height rogue samples
(57 %), and it is even more pronounced for crest rogue sam-
ples (64 %), double rogue samples (72 %) and, finally, ex-
treme rogue samples (87 %). The conclusion can be drawn
that the absence of an outstanding soliton is a strong indica-
tor of the absence of an extreme rogue wave. The differences
between the four rogue wave categories, indicating that the
presence of an outstanding soliton is not equally expressive
for all types of rogue waves, may lead to the presumption
that not all rogue waves found off Norderney can necessarily
be explained by the same theory.

The question regarding whether inferences can be made
from the time to the spectral domain or vice versa is answered
by a contingency table (Fig. 13). Here, all previously defined
rogue wave categories are combined into one joint group of
rogue wave samples. Two statements can be made based on
the table. On the one hand, the probability that an NLFT
spectrum calculated from a normal sample shows an out-
standing soliton is 4986/13.984= 36 %, whereas the prob-
ability that a spectrum calculated from a rogue wave sample
shows an outstanding soliton is 726/1172= 62 %. This in-
dicates that, although not all rogue waves can necessarily be
explained by the same theory, outstanding solitons occurred
in connection with the majority of observed rogue waves off
Norderney. While outstanding solitons play a role in 62 % of
the cases in the combined group of rogue waves, the share
differs between the rogue wave categories (Table 2). On the
other hand, although rogue waves are more likely to be ob-
served when an outstanding soliton is present in the NLFT
spectrum, the presence of an outstanding soliton alone is not

Figure 13. Contingency table of forecast–event pairs. The letters
used in the table denote the following: a – hits, b – false alarms, c –
misses and d – correct negatives.

a sufficient an indicator for the detection of rogue waves. The
main difficulty is the imbalance in sample size between non-
rogue wave and rogue wave samples.

In Fig. 14, the ratio between the amplitudes of the sec-
ond largest and the largest soliton in the nonlinear spectrum,
A2 (A1)

−1, is visualised in a box plot for each of the time se-
ries categories. A ratio aboveA2 (A1)

−1
= 0.8, meaning that

the second largest soliton has a rather similar amplitude to the
largest soliton, implies that the soliton spectrum is clustered
(Eq. 14). For non-rogue wave samples, this is the case for
the bulk of time series. The median of the ratio A2 (A1)

−1

decreases from the leftmost to the rightmost category on the
right axes in Fig. 14. For height rogue samples, the median
of A2 (A1)

−1 is below the 80 % line, with the distribution
extending above and below. For double and extreme rogue
waves, the gap between the soliton amplitudes may become
much larger than for height rogue waves. In some cases, the
amplitude A2 amounts to less than 30 % of the amplitude
A1. In all categories except extreme rogue samples, there are
samples for which the first and second solitons are almost
similar in amplitude (A2 (A1)

−1
≈ 1). On the contrary, for

all extreme rogue wave samples, A2 is below 93 % of A1.
The large part of soliton spectra from extreme rogue samples
shows an outstanding soliton.
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Figure 14. Box plots of the ratio between the second largest soli-
ton (A2) and the largest soliton (A1) in the spectrum for the dif-
ferent categories of time series. Distributions are shown as box-
and-whisker plots (box: interquartile range; whiskers: 1.5 times
the interquartile range; horizontal line inside the box: median; red
crosses: data outside the whiskers). Below the horizontal line de-
noting 80 %, the highest soliton in the spectrum is classified as out-
standing.

Figure 15 presents the ratio A2 (A1)
−1 in a scatter plot

with one data point for each individual time series. Accord-
ing to this representation, although the presence of an out-
standing soliton with A2 (A1)

−1
≤ 0.8 is not a useful indi-

cator of whether a rogue wave is present in the time series
or not, the presence of a rogue wave becomes much more
likely when one soliton in the nonlinear spectrum is strongly
outstanding with A2 (A1)

−1
≤ 0.3: of all 23 samples satisfy-

ing A2 (A1)
−1
≤ 0.3, only 4/23= 17 % are non-rogue wave

samples, whereas 19/23= 83 % of the samples are rogue
wave samples (1 height, 1 crest, 8 double and 9 extreme
rogue samples).

4 Discussion

We investigated discrete nonlinear soliton spectra obtained
by the application of the vKdV-NLFT to time series mea-
sured by a surface-following buoy off the coast of the island
of Norderney in the southern North Sea. The impulse to in-
vestigate the data at this specific site using nonlinear meth-
ods was given by a previous study (Teutsch et al., 2020). In
the aforementioned publication, it was found that, while the
Forristall distribution was sufficient to describe rogue wave
occurrences at nearby buoy stations in somewhat deeper wa-
ter (see kh ranges of buoy stations in Table 1 of Teutsch et al.,
2020), the Norderney buoy recorded a larger number of rogue
waves than expected according to the Forristall distribution.

Figure 15. Ratio between the second largest soliton (A2) and the
largest soliton (A1) in the spectrum as a function of relative wave
height H (Hs)

−1 or Hmax (Hs)
−1 for the different categories of

time series. Below the horizontal line denoting 80 %, the highest
soliton in the spectrum is classified as outstanding. Below the hor-
izontal line denoting 30 %, the highest soliton in the spectrum is
referred to as strongly outstanding.

The results described in this paper suggest that nonlinear pro-
cesses may explain the enhanced rogue wave occurrence at
this specific site. The results were derived by the application
of vKdV-NLFT and are, therefore, strictly valid for shallow-
water conditions in the context of the applicability of the
KdV equation. In a future study, it may be interesting to ex-
tend the investigation to additional sites with shallow water
depths.

Throughout the study, indications were found that, al-
though solitons play a role in the presence of rogue waves
at Norderney, the soliton spectrum alone does not yield a
satisfactory explanation of the formation of extreme waves/
crests. A first hint is given in Fig. 5a, which shows the recon-
structed soliton train along with the measured time series.
Here, solitons (and their interactions) neither account for the
full height of the observed rogue wave nor provide the ob-
served wave trough. Figure 8 supports the finding that the
solitons were not large enough to explain the full heights of
the associated rogue waves. From Fig. 9, it is seen that the
presence of a large soliton is not necessarily connected to the
presence of a rogue wave. In addition, Kharif and Pelinovsky
(2003) found that the interaction of unidirectional KdV soli-
tons does not result in exceptional increases in wave eleva-
tion. As a consequence, one may speculate that the formation
of the rogue waves in our dataset was a result of nonlinear in-
teractions of one or more solitons with the underlying oscil-
lating wave field. This hypothesis will need further analyses
to be validated.
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The bathymetry below the measurement buoy at Norder-
ney is characterised by a strong decrease in water depth.
Non-Gaussian wave characteristics as a result of decreasing
water depth have already been described by studies such as
Huntley et al. (1977) in the context of wave run-up. It has
gained increased attention in the context of rogue wave oc-
currence (e.g. Sergeeva et al., 2011). Increased rogue wave
frequencies behind slopes or steps have been confirmed by
numerous numerical (e.g. Sergeeva et al., 2011; Majda et al.,
2019) and experimental studies (e.g. Trulsen et al., 2012;
Kashima et al., 2014; Ma et al., 2014; Raustøl, 2014; Jorde,
2018; Bolles et al., 2019; Zou et al., 2019; Zhang et al.,
2019; Trulsen et al., 2020). The main subject that the men-
tioned studies are concerned with is that waves propagat-
ing over a slope, step or bar are forced into new equilib-
rium conditions (Zeng and Trulsen, 2012). This mechanism
is associated with strong non-Gaussian statistics and an in-
creased rogue wave probability (Zhang and Benoit, 2021).
The reason for the enhanced rogue wave probability was
identified as the higher degree of nonlinearity in the shal-
low water behind the slope or step, which leads to an en-
hancement of second-order harmonic-bound waves (Gram-
stad et al., 2013). Zheng et al. (2020) and Li et al. (2021)
confirmed (numerically and theoretically) that second-order
terms (made up from bound waves and free waves released
by the interaction of bound waves with the slope) are respon-
sible for peaks in skewness and kurtosis. Zhang and Benoit
(2021) stated that both second- and third-order effects evolv-
ing from the non-equilibrium dynamics at the depth transi-
tion significantly enhance the local kurtosis and the occur-
rence of rogue waves. For these effects to occur, the shal-
low domain must be sufficiently shallow, and the slope of
the bathymetry change plays a major role (Fu et al., 2021).
The largest peaks in kurtosis and skewness and the highest
rogue wave probabilities were found for the steepest slopes
(Gramstad et al., 2013; Zheng et al., 2020; Fu et al., 2021;
Lawrence et al., 2021). Using tank experiments, Doeleman
(2021) recently showed that the effect of slope is weakened
in shallow water. Mendes et al. (2022) confirmed theoreti-
cally that a strong amplification may be found in intermedi-
ate water (0.5< kh < 1.5). They stated that “Whether rogue
waves are enhanced in strong bathymetry changes through-
out most oceans or regionally under suitable conditions is
yet to be assessed” (Mendes et al., 2022). Zeng and Trulsen
(2012) anticipate that the described mechanisms may explain
the spatially varying occurrence frequency of rogue waves on
the continental shelf, where waves enter from the deep sea.
Therefore, the described processes associated with a strong
decrease in depth might be an explanation for the observed
increased rogue wave occurrence off the coast of Norderney
(Teutsch et al., 2020). A connection between rogue waves
and solitons in this context was established by Sergeeva et al.
(2011). The authors showed, by applying a KdV equation,
that the number of solitons increases in the shallow water be-

Table 3. Share of samples in each category showing an outstand-
ing soliton in the soliton spectrum, for the respective water depth
adopted in the NLFT calculation. Note that the shallow-depth crite-
rion in Eq. (3) changes to Tp > 5 s for a water depth of h= 12 m,
which left approximately 94 % of the samples for the calculation at
a water depth of 12 m.

Water Non-rogue Height Crest Double Extreme
depth rogue rogue rogue rogue

8 m 32 % 57 % 61 % 73 % 75 %
10 m 36 % 57 % 64 % 72 % 87 %
12 m 36 % 53 % 62 % 70 % 76 %

hind a slope. They linked this increased soliton occurrence to
an increased rogue wave probability.

The solutions of the KdV equation for a given free-surface
elevation time series strongly depend on the water depth (see
Eq. 7). While we assumed a constant water depth of h= 10 m
for our calculations, there are in fact major uncertainties re-
garding the water depth at the actual location of the buoy,
due to tidal changes and bathymetry gradients as well as the
movement of the buoy, as mentioned in Sect. 2.1 (Fig. 2).
The mean tidal range at Norderney is approximately 2.5 m;
however, due to an additional movement of the buoy of 2 m
to each side of the slope, a total deviation from the nominal
water depth of ±2 m is reasonable. We performed a sensitiv-
ity analysis to test the robustness of the results with respect
to these uncertainties. To do so, we repeated the computation
of the soliton spectrum for water depths of h= 8 and 12 m,
respectively, while using the same free surface data as in the
previous analysis. A changed water depth leads to a differ-
ent depth range in which the KdV equation is valid (Eq. 3).
For the calculation with a depth of h= 12 m, we repeated the
identification of the samples that fulfil shallow-water condi-
tions in the KdV context, as samples and maximum waves
(due to the larger water depth) now had to satisfy the condi-
tion Tp or T > 5 s in order to classify as shallow-depth sam-
ples/waves for the applicability of the KdV equation. There-
fore, only 14 206 samples (i.e. approximately 94 % of the
original sample size) were available for the calculation at
h= 12 m. For the calculation with a depth of h= 8 m, we
used the same samples as for the calculation with h= 10 m,
as these automatically fulfilled shallow depth conditions at
h= 8 m. Irrespective of the water depth adopted in the cal-
culation, the result remained that samples with rogue waves,
especially extreme rogue waves, were more likely to contain
an outstanding soliton in the nonlinear spectrum than sam-
ples without rogue waves (Table 3). Thus, the results are ro-
bust with respect to potential uncertainties in water depth.

The KdV equation is only valid for unidirectional waves.
Although Osborne (1993) recommends the application of the
NLFT for KdV to measurement data only for samples in
which the largest part of the energy is in the dominant propa-
gation direction, we applied the KdV-NLFT outside the lim-
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Table 4. Share of samples in each category showing an outstanding soliton, for the approximately 10 % of samples with the lowest directional
spreading.

Non-rogue Height Crest Double Extreme
rogue rogue rogue rogue

No. of samples 1614 91 12 17 10
Outstanding soliton 31 % 57 % 67 % 88 % 90 %

its that are given in the literature. At our measurement site,
the sea state was always multidirectional, with a directional
spreading of the wave energy approximately between 28 and
55◦, whereas only 5 % of the energy was perpendicular to
the dominant direction of propagation in the dataset of Os-
borne (1993). We repeated the first part of the analysis, for
which the results are described in Sect. 3.1, for the approx-
imately 10 % of samples in each category with the lowest
directional spreading. This corresponded to a threshold in di-
rectional spreading of 35◦ for most categories, except crest
rogue waves, which tended to occur in broader sea states
(threshold at 36.5◦), and extreme rogue waves, which statis-
tically occur in more narrow sea states (Christou and Ewans,
2014) (threshold at 34◦). We found our result – that an out-
standing soliton is more typical of a rogue wave time series
than for a non-rogue wave time series – confirmed and partly
emphasised (Table 4). Therefore, we rate vKdV-NLFT, al-
though assuming unidirectionality in multidirectional mea-
surement samples, an appropriate tool to evaluate the con-
nection between solitons and rogue waves off Norderney.

In our study, we applied the vKdV-NLFT as a trace method
for (extreme) rogue waves and demonstrated, for the first
time, that certain distinctive patterns in the NLFT spectrum
of real-world time series indicate extreme rogue waves. The
method may provide further information on possibly dan-
gerous time series in future applications. Further research
is required on the applicability of the KdV equation to our
data, which cannot be validated on the basis of single-point
measurements. If wave propagation at Norderney is well de-
scribed by KdV theory, the NLFT spectrum is approximately
constant during propagation. The method may then iden-
tify time series with the potential of forming extreme rogue
waves. Moreover, even if the KdV equation does not describe
the propagation well, we still consider the NLFT a more ap-
propriate transform than the linear FFT, which is often ap-
plied even if waves are nonlinear. Similar to the FFT in the
linear case, our method should be treated as a signal trans-
form (Sugavanam et al., 2019). Our study provides insights
into the spectral characteristics at the considered site.

We would like to put an emphasis on the limitation of our
suggested definition of an outstanding soliton (Eq. 14) to the
size of the measurement window. Our criterion was chosen
based on the inspection of soliton spectra from 30 min time
series. However, the gap size might change depending on the
chosen window size. An increase in window size, meaning

more waves in the time series, will introduce additional soli-
tons to the spectrum. If these are larger than A1 or emerge
in between A1 and A2, the gap size between the two largest
solitons will be influenced. If these are smaller than A2, their
emergence will not alter the gap between A1 and A2. Sim-
ilarly, a reduction in window size would exclude waves in
the time series and remove solitons corresponding to these
waves. If this modification leads to the removal of the largest
or second largest soliton, the gap between the newA1 andA2
will become larger or smaller than for a 30 min time window.
If this modification only affects solitons smaller than A2, the
size of the gap between A1 and A2 will not be influenced.
We applied the ratio between A2 and A1 merely as a mea-
sure to statistically evaluate differences in the soliton spectra
calculated from 30 min non-rogue wave and rogue wave time
series. For different window sizes, it might be necessary to
define new criteria.

Due to the limited recording frequency of the wave buoy,
one might question the correct assignment of time series
to the different categories (Table 1). Wave crests might be
missed by the discrete measurement points, leading to a pos-
sible underestimation of rogue or extreme rogue samples
(Stansell et al., 2002). However, even if extreme rogue time
series were assigned incorrectly to the category of height
rogue samples, this misinterpretation is conservative: none
of the time series in the extreme rogue category has been as-
signed incorrectly. Furthermore, according to the sampling
theorem (Shannon, 1949), the buoy sampling rate of 1.28 Hz
is sufficient to sample time series whose FFT spectra decay
at approximately 0.6 Hz (Fig. 5b). Therefore, we consider the
buoy sampling frequency sufficient for our purpose.

Our result that rogue wave samples have a higher probabil-
ity of showing an outstanding soliton in the nonlinear spec-
trum compared with non-rogue wave samples becomes most
obvious in the categories of double and extreme rogue sam-
ples. In these categories, differences from non-rogue wave
samples are visible not only in the percentage of outstand-
ing solitons but also in the magnitude of the amplitude gap
between the first and second solitons in the spectrum. Height
rogue waves, on the contrary, do not seem to differ very much
from high waves in non-rogue wave samples, both in terms
of the gap between first and second soliton in the spectrum
and in the height of the solitons associated with the max-
imum wave. The fact that differences between time series
with and without rogue waves become apparent only in some
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of the chosen categories raises questions regarding whether
the choice of rogue wave definitions is reasonable for the
considered location. The rogue wave definitions serving as
a basis to this study were introduced by Haver and Andersen
(2000) for deep-water waves. The relative height and crest
values in their definitions represent outliers, being exceeded
in 1 of 100 cases when applying a second-order model to the
deep-water sea surface elevation (Haver, 2000). The defini-
tions have been taken up numerous times in the literature.
Authors have been investigating whether rogue waves ac-
cording to the definition of Haver and Andersen (2000) are
outliers with respect to typical wave distributions in the real
ocean as well (e.g. Müller et al., 2005; Gemmrich and Gar-
rett, 2008). The question of whether rogue wave definition
by a certain height or crest threshold is useful in practice
has been raised (Häfner et al., 2021). Several authors have,
based on large measurement datasets, come to the conclu-
sion that these rogue waves are rare but are, nevertheless, re-
alisations of commonly used wave distributions (e.g. Waseda
et al., 2011; Christou and Ewans, 2014). In a previous study
(Teutsch et al., 2020), we were able to confirm this con-
clusion at buoy measurement stations in intermediate water.
However, at the buoy station off Norderney, in a comparably
shallow water depth, that showed a larger number of rogue
waves than expected according to the common wave distribu-
tions, the interaction of solitons with oscillating waves might
be a mechanism explaining the increased occurrence of rogue
waves.

5 Conclusions

Rogue wave occurrence recorded off the coast of the island
of Norderney is not sufficiently explained by the Forristall
distribution of wave heights. We investigated the role of soli-
tons as components of the discrete vKdV-NLFT spectrum in
the enhanced rogue wave occurrence. Our main results for
this specific measurement site are as follows.

– Each measured rogue wave could be associated with at
least one soliton in the NLFT spectrum.

– The soliton heights were always smaller than those of
the rogue waves. Samples with rogue waves were more
likely to contain an outstanding soliton in the NLFT
spectrum than samples without rogue waves.

– The soliton spectrum analysis is a good indicator of ex-
treme rogue waves in the corresponding time series.

– The presence of a strongly outstanding soliton, with a
ratio between the second largest and the largest soli-
ton in the nonlinear spectrum of A2 (A1)

−1
≤ 0.3, was

found to be a strong indicator for the presence of a rogue
wave.

– Conversely, the absence of an outstanding soliton in the
spectrum is a strong indicator for the absence of an ex-
treme rogue wave of H (Hs)

−1
≥ 2.3.

We conclude that nonlinear processes are important in the
generation of rogue waves at this specific site and may ex-
plain the enhanced occurrence of such waves beyond com-
mon wave height distributions. Rogue waves at Norderney
are likely to be a result of the interaction of solitons with
the underlying field of oscillatory waves. The nature of this
interaction should be subject to further research.
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//github.com/FastNFT/FNFT (last access: 31 May 2023). The spe-
cific commit used for this work is furthermore archived under
https://doi.org/10.5281/zenodo.7991180 (Wahls et al., 2021).

Data availability. The underlying wave buoy data are the property
of the Lower Saxony Water Management, Coastal Defence and Na-
ture Conservation Agency (NLWKN). They can be obtained upon
request from the agency (https://www.nlwkn.niedersachsen.de/fsk,
last access: 31 May 2023).

Author contributions. All authors contributed to the idea and scope
of the paper. IT performed the analyses and wrote the manuscript.
MB, RW and SW provided help with data analysis, discussed the re-
sults and contributed to writing the paper. RW supervised the work.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The buoy data were kindly provided by the
Lower Saxony Water Management, Coastal Defence and Nature
Conservation Agency (NLWKN).

Financial support. This project has received funding from the
European Research Council (ERC) under the European Union’s
Horizon 2020 Research and Innovation programme (grant agree-
ment no. 716669). Ina Teutsch received funding for this work from
the Federal Maritime and Hydrographic Agency (BSH).

The article processing charges for this open-access
publication were covered by the Helmholtz-Zentrum Hereon.

Review statement. This paper was edited by Ira Didenkulova and
reviewed by two anonymous referees.

https://doi.org/10.5194/nhess-23-2053-2023 Nat. Hazards Earth Syst. Sci., 23, 2053–2073, 2023

https://github.com/FastNFT/FNFT
https://github.com/FastNFT/FNFT
https://doi.org/10.5281/zenodo.7991180
https://www.nlwkn.niedersachsen.de/fsk


2070 I. Teutsch et al.: Contribution of solitons to enhanced rogue wave occurrence in shallow water depths

References

Ablowitz, M. J. and Kodama, Y.: Note on Asymptotic Solutions
of the Korteweg-de Vries Equation with Solitons, Stud. Appl.
Math., 66, 159–170, https://doi.org/10.1002/sapm1982662159,
1982.

Ablowitz, M. J. and Segur, H.: Solitons and the Inverse Scatter-
ing Transform, Society for Industrial and Applied Mathematics,
https://doi.org/10.1137/1.9781611970883, 1981.

Ablowitz, M. J., Kaup, D. J., Newell, A. C., and Se-
gur, H.: The Inverse Scattering Transform-Fourier Analysis
for Nonlinear Problems, Stud. Appl. Math., 53, 249–315,
https://doi.org/10.1002/sapm1974534249, 1974.

Akhmediev, N., Ankiewicz, A., and Taki, M.: Waves that appear
from nowhere and disappear without a trace, Phys. Lett. A, 373,
675–678, https://doi.org/10.1016/j.physleta.2008.12.036, 2009.

Baschek, B. and Imai, J.: Rogue Wave Observations
Off the US West Coast, Oceanography, 24, 158–165,
https://doi.org/10.5670/oceanog.2011.35, 2011.

Benjamin, T. B. and Feir, J. E.: The disintegration of
wave trains on deep water, J. Fluid Mech., 27, 417–430,
https://doi.org/10.1017/s002211206700045x, 1967.

Bitner, E. M.: Non-linear effects of the statistical model of
shallow-water wind waves, Appl. Ocean Res., 2, 63–73,
https://doi.org/10.1016/0141-1187(80)90031-0, 1980.

Bitner-Gregersen, E. M. and Gramstad, O.: Rogue waves. Impact
on ship and offshore structures., in: R+I Position Paper, DNV
GL, https://www.dnv.com/Publications/rogue-waves-60134 (last
access: 23 May 2023), 2016.

Bolles, C. T., Speer, K., and Moore, M. N. J.: Anomalous wave
statistics induced by abrupt depth change, Phys. Rev. Fluids, 4,
011801, https://doi.org/10.1103/PhysRevFluids.4.011801, 2019.

Brühl, M.: Direct and inverse nonlinear Fourier transform based on
the Korteweg-deVries equation (KdV-NLFT) – A spectral anal-
ysis of nonlinear surface waves in shallow water, PhD thesis,
Technische Universität Carolo-Wilhelmina zu Braunschweig,
https://doi.org/10.24355/DBBS.084-201411210916-0, 2014.

Brühl, M. and Oumeraci, H.: Analysis of long-period cosine-wave
dispersion in very shallow water using nonlinear Fourier trans-
form based on KdV equation, Appl. Ocean Res., 61, 81–91,
https://doi.org/10.1016/j.apor.2016.09.009, 2016.

Brühl, M., Prins, P. J., Ujvary, S., Barranco, I., Wahls, S.,
and Liu, P. L.-F.: Comparative analysis of bore propaga-
tion over long distances using conventional linear and KdV-
based nonlinear Fourier transform, Wave Motion, 111, 102905,
https://doi.org/10.1016/j.wavemoti.2022.102905, 2022.

Calini, A. and Schober, C. M.: Characterizing JONSWAP rogue
waves and their statistics via inverse spectral data, Wave Motion,
71, 5–17, https://doi.org/10.1016/j.wavemoti.2016.06.007, 2017.

Casas-Prat, M., Holthuijsen, L., and Gelder, P.: Short-term statis-
tics of 10 000 000 waves observed by buoys, Proceedings
of the Coastal Engineering Conference, Hamburg, Germany,
31 August–5 September 2008, World Scientific, 560–572,
https://doi.org/10.1142/9789814277426_0047, 2009.

Cattrell, A. D., Srokosz, M., Moat, B. I., and Marsh, R.:
Can Rogue Waves Be Predicted Using Characteristic Wave
Parameters?, J. Geophys. Res.-Oceans, 123, 5624–5636,
https://doi.org/10.1029/2018jc013958, 2018.

Chabchoub, A., Hoffmann, N. P., and Akhmediev, N.: Rogue
Wave Observation in a Water Wave Tank, Phys. Rev. Lett., 106,
204502, https://doi.org/10.1103/physrevlett.106.204502, 2011.

Christou, M. and Ewans, K.: Field Measurements of
Rogue Water Waves, J. Phys. Oceanogr., 44, 2317–2335,
https://doi.org/10.1175/jpo-d-13-0199.1, 2014.

Christov, I.: Internal solitary waves in the ocean: Analysis using
the periodic, inverse scattering transform, Math. Comput. Simu-
lat., 80, 192–201, https://doi.org/10.1016/j.matcom.2009.06.005,
2009.

Costa, A., Osborne, A. R., Resio, D. T., Alessio, S., Chrivì, E.,
Saggese, E., Bellomo, K., and Long, C. E.: Soliton Turbulence
in Shallow Water Ocean Surface Waves, Phys. Rev. Lett., 113,
108501, https://doi.org/10.1103/PhysRevLett.113.108501, 2014.

Dean, R. G. and Dalrymple, R. A.: Water Wave Me-
chanics for Engineers and Scientists, World Scientific,
https://doi.org/10.1142/1232, 1991.

Didenkulova, E.: Catalogue of rogue waves occurred in
the World Ocean from 2011 to 2018 reported by mass
media sources, Ocean Coast. Manage., 188, 105076,
https://doi.org/10.1016/j.ocecoaman.2019.105076, 2020.

Didenkulova, I., Nikolkina, I., and Pelinovsky, E.: Rogue waves in
the basin of intermediate depth and the possibility of their for-
mation due to the modulational instability, JETP Lett.+, 97, 194–
198, 2013.

Dingemans, M. W.: Water Wave Propagation Over Un-
even Bottoms, World Scientific Publishing Company,
https://doi.org/10.1142/1241, 1997.

Doeleman, M. W.: Rogue waves in the Dutch North Sea, Master
Thesis, Delft University of Technology, Delft, the Netherlands,
2021.

Dudley, J. M., Genty, G., Mussot, A., Chabchoub, A., and Dias,
F.: Rogue waves and analogies in optics and oceanography,
Nat. Rev. Phys., 1, 675–689, https://doi.org/10.1038/s42254-
019-0100-0, 2019.

Dysthe, K., Krogstad, H. E., and Müller, P.: Oceanic
Rogue Waves, Annu. Rev. Fluid Mech., 40, 287–310,
https://doi.org/10.1146/annurev.fluid.40.111406.102203, 2008.

Dysthe, K. B. and Trulsen, K.: Note on Breather Type Solutions
of the NLS as Models for Freak-Waves, Phys. Scripta, T82, 48,
https://doi.org/10.1238/physica.topical.082a00048, 1999.

Fedele, F., Brennan, J., de León, S. P., Dudley, J., and Dias, F.: Real
world ocean rogue waves explained without the modulational in-
stability, Sci. Rep., 6, 27715, https://doi.org/10.1038/srep27715,
2016.

Fedele, F., Herterich, J., Tayfun, A., and Dias, F.: Large
nearshore storm waves off the Irish coast, Sci. Rep., 9, 15406,
https://doi.org/10.1038/s41598-019-51706-8, 2019.

Fernandez, L., Onorato, M., Monbaliu, J., and Toffoli, A.:
Modulational instability and wave amplification in finite wa-
ter depth, Nat. Hazards Earth Syst. Sci., 14, 705–711,
https://doi.org/10.5194/nhess-14-705-2014, 2014.

Forristall, G. Z.: On the statistical distribution of wave
heights in a storm, J. Geophys. Res., 83, 2353,
https://doi.org/10.1029/jc083ic05p02353, 1978.

Fu, R., Ma, Y., Dong, G., and Perlin, M.: A wavelet-based
wave group detector and predictor of extreme events over
unidirectional sloping bathymetry, Ocean Eng., 229, 108936,
https://doi.org/10.1016/j.oceaneng.2021.108936, 2021.

Nat. Hazards Earth Syst. Sci., 23, 2053–2073, 2023 https://doi.org/10.5194/nhess-23-2053-2023

https://doi.org/10.1002/sapm1982662159
https://doi.org/10.1137/1.9781611970883
https://doi.org/10.1002/sapm1974534249
https://doi.org/10.1016/j.physleta.2008.12.036
https://doi.org/10.5670/oceanog.2011.35
https://doi.org/10.1017/s002211206700045x
https://doi.org/10.1016/0141-1187(80)90031-0
https://www.dnv.com/Publications/rogue-waves-60134
https://doi.org/10.1103/PhysRevFluids.4.011801
https://doi.org/10.24355/DBBS.084-201411210916-0
https://doi.org/10.1016/j.apor.2016.09.009
https://doi.org/10.1016/j.wavemoti.2022.102905
https://doi.org/10.1016/j.wavemoti.2016.06.007
https://doi.org/10.1142/9789814277426_0047
https://doi.org/10.1029/2018jc013958
https://doi.org/10.1103/physrevlett.106.204502
https://doi.org/10.1175/jpo-d-13-0199.1
https://doi.org/10.1016/j.matcom.2009.06.005
https://doi.org/10.1103/PhysRevLett.113.108501
https://doi.org/10.1142/1232
https://doi.org/10.1016/j.ocecoaman.2019.105076
https://doi.org/10.1142/1241
https://doi.org/10.1038/s42254-019-0100-0
https://doi.org/10.1038/s42254-019-0100-0
https://doi.org/10.1146/annurev.fluid.40.111406.102203
https://doi.org/10.1238/physica.topical.082a00048
https://doi.org/10.1038/srep27715
https://doi.org/10.1038/s41598-019-51706-8
https://doi.org/10.5194/nhess-14-705-2014
https://doi.org/10.1029/jc083ic05p02353
https://doi.org/10.1016/j.oceaneng.2021.108936


I. Teutsch et al.: Contribution of solitons to enhanced rogue wave occurrence in shallow water depths 2071

Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R. M.:
Method for solving the Korteweg–deVries equation, Phys. Rev.
Lett., 19, 1095-7, https://doi.org/10.1103/PhysRevLett.19.1095,
1967.

Garett, C. and Gemmrich, J.: Rogue waves, Phys. Today, 62, 62–63,
https://doi.org/10.1063/1.3156339, 2009.

Gemmrich, J. and Garrett, C.: Unexpected
Waves, J. Phys. Oceanogr., 38, 2330–2336,
https://doi.org/10.1175/2008jpo3960.1, 2008.

Glukhovskiy, B.: Investigation of sea wind waves, Gidrometeoizdat,
Leningrad, 1966 (in Russian).

Gramstad, O., Zeng, H., Trulsen, K., and Pedersen, G. K.: Freak
waves in weakly nonlinear unidirectional wave trains over a
sloping bottom in shallow water, Phys. Fluids, 25, 122103,
https://doi.org/10.1063/1.4847035, 2013.

Grinevich, P. and Santini, P.: The finite gap method and the ana-
lytic description of the exact rogue wave recurrence in the pe-
riodic NLS Cauchy problem. 1, Nonlinearity, 31, 5258–5308,
https://doi.org/10.1088/1361-6544/aaddcf, 2018.

Häfner, D., Gemmrich, J., and Jochum, M.: Real-
world rogue wave probabilities, Sci. Rep., 11, 10084,
https://doi.org/10.1038/s41598-021-89359-1, 2021.

Haver, S.: Evidences of the existence of freak waves, in: Proc.
Rogue Waves, Brest, France, 29–30 November 2000, IFREMER,
ISBN 2-84433-063-0, 2000.

Haver, S. and Andersen, O. J.: Freak waves: rare realizations of a
typical population or typical realizations of a rare population?,
in: The Tenth International Offshore and Polar Engineering Con-
ference, Seattle, USA, 27 May–2 June 2000, International Soci-
ety of Offshore and Polar Engineers, ISBN 978-1-880653-46-3,
2000.

Huntley, D. A., Guza, R. T., and Bowen, A. J.: A universal form
for shoreline run-up spectra?, J. Geophys. Res., 82, 2577–2581,
https://doi.org/10.1029/jc082i018p02577, 1977.

Islas, A. L. and Schober, C. M.: Predicting rogue waves
in random oceanic sea states, Phys. Fluids, 17, 031701,
https://doi.org/10.1063/1.1872093, 2005.

Its, A. and Kotlyarov, V.: Explicit formulas for solutions of the
Schrödinger nonlinear equation, Doklady Akad. Nauk Ukrainian
SSR, ser. A, 11, 965–968, 1976.

Its, A. R. and Matveev, V. B.: Schrödinger operators with
finite-gap spectrum and N-soliton solutions of the Korteweg-
de Vries equation, Theor. Math. Phys.+, 23, 343–355,
https://doi.org/10.1007/bf01038218, 1975.

Janssen, P. A. E. M. and Onorato, M.: The Intermediate Wa-
ter Depth Limit of the Zakharov Equation and Consequences
for Wave Prediction, J. Phys. Oceanogr., 37, 2389–2400,
https://doi.org/10.1175/jpo3128.1, 2007.

Johnson, D.: DIWASP, a directional wave spectra toolbox for
MATLAB®: User Manual, Centre for Water Research, Univer-
sity of Western Australia, Tech. Rep., Research Report WP-
1601-DJ (V1.1), 2002.

Jorde, S.: Kinematikken i bølger over en grunne, Master thesis, Uni-
versity of Oslo, Oslo, Norway, 2018.

Karmpadakis, I., Swan, C., and Christou, M.: As-
sessment of wave height distributions using an ex-
tensive field database, Coast. Eng., 157, 103630,
https://doi.org/10.1016/j.coastaleng.2019.103630, 2020.

Kashima, H., Hirayama, K., and Mori, N.: Estimation Of
Freak Wave Occurrence From Deep To Shallow Wa-
ter Regions, Coastal Engineering Proceedings, 1, 36,
https://doi.org/10.9753/icce.v34.waves.36, 2014.

Kharif, C. and Pelinovsky, E.: Physical mechanisms of the
rogue wave phenomenon, Eur. J. Mech. B-Fluid., 22, 603–634,
https://doi.org/10.1016/j.euromechflu.2003.09.002, 2003.

Korteweg, D. J. and de Vries, G.: XLI. On the change of form of
long waves advancing in a rectangular canal, and on a new type
of long stationary waves, The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 39, 422–443,
https://doi.org/10.1080/14786449508620739, 1895.

Kotlyarov, V. and Its, A.: Periodic problem for the
nonlinear Schroedinger equation, arXiv [preprint],
https://doi.org/10.48550/ARXIV.1401.4445, 17 January 2014.

Lawrence, C., Trulsen, K., and Gramstad, O.: Statistical proper-
ties of wave kinematics in long-crested irregular waves propa-
gating over non-uniform bathymetry, Phys. Fluids, 33, 046601,
https://doi.org/10.1063/5.0047643, 2021.

Lenau, C. W.: The solitary wave of maxi-
mum amplitude, J. Fluid Mech., 26, 309–320,
https://doi.org/10.1017/s0022112066001253, 1966.

Li, Y., Draycott, S., Zheng, Y., Lin, Z., Adcock, T. A.,
and van den Bremer, T. S.: Why rogue waves occur
atop abrupt depth transitions, J. Fluid Mech., 919, R5,
https://doi.org/10.1017/jfm.2021.409, 2021.

Longuet-Higgins, M. S.: On the Statistical Distribution of the
Height of Sea Waves, J. Mar. Res., 11, 245–266, 1952.

Ma, Y., Dong, G., and Ma, X.: Experimental Study Of Statistics Of
Random Waves Propagating Over A Bar, Coastal Engineering
Proceedings, 1, 30, https://doi.org/10.9753/icce.v34.waves.30,
2014.

Majda, A. J., Moore, M. N. J., and Qi, D.: Statistical dy-
namical model to predict extreme events and anoma-
lous features in shallow water waves with abrupt depth
change, P. Natl. Acad. Sci. USA, 116, 3982–3987,
https://doi.org/10.1073/pnas.1820467116, 2019.

Massel, S. R.: Ocean Surface Waves: Their Physics and Prediction,
World Scientific, https://doi.org/10.1142/2285, 2017.

MATLAB: version 9.6.0.1072779 (R2019a), The MathWorks Inc.,
Natick, Massachusetts, 2019.

McCowan, J.: VII. On the solitary wave, The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 32,
45–58, https://doi.org/10.1080/14786449108621390, 1891.

Mendes, S. and Scotti, A.: The Rayleigh-Haring-Tayfun distribution
of wave heights in deep water, Appl. Ocean Res., 113, 102739,
https://doi.org/10.1016/j.apor.2021.102739, 2021.

Mendes, S., Scotti, A., Brunetti, M., and Kasparian, J.:
Non-homogeneous analysis of rogue wave probabil-
ity evolution over a shoal, J. Fluid Mech., 939, A25,
https://doi.org/10.1017/jfm.2022.206, 2022.

Middleton, D. and Mellen, R.: Wind-generated solitons: A po-
tentially significant mechanism in ocean surface wave genera-
tion and surface scattering, IEEE J. Oceanic Eng., 10, 471–476,
https://doi.org/10.1109/JOE.1985.1145130, 1985.

Müller, P., Garrett, C., and Osborne, A.: Meeting re-
port: Rogue waves – The Fourteenth ’Aha Huliko’a
Hawaiian Winter Workshop, Oceanography, 18, 66–75,
https://doi.org/10.5670/oceanog.2005.30, 2005.

https://doi.org/10.5194/nhess-23-2053-2023 Nat. Hazards Earth Syst. Sci., 23, 2053–2073, 2023

https://doi.org/10.1103/PhysRevLett.19.1095
https://doi.org/10.1063/1.3156339
https://doi.org/10.1175/2008jpo3960.1
https://doi.org/10.1063/1.4847035
https://doi.org/10.1088/1361-6544/aaddcf
https://doi.org/10.1038/s41598-021-89359-1
https://doi.org/10.1029/jc082i018p02577
https://doi.org/10.1063/1.1872093
https://doi.org/10.1007/bf01038218
https://doi.org/10.1175/jpo3128.1
https://doi.org/10.1016/j.coastaleng.2019.103630
https://doi.org/10.9753/icce.v34.waves.36
https://doi.org/10.1016/j.euromechflu.2003.09.002
https://doi.org/10.1080/14786449508620739
https://doi.org/10.48550/ARXIV.1401.4445
https://doi.org/10.1063/5.0047643
https://doi.org/10.1017/s0022112066001253
https://doi.org/10.1017/jfm.2021.409
https://doi.org/10.9753/icce.v34.waves.30
https://doi.org/10.1073/pnas.1820467116
https://doi.org/10.1142/2285
https://doi.org/10.1080/14786449108621390
https://doi.org/10.1016/j.apor.2021.102739
https://doi.org/10.1017/jfm.2022.206
https://doi.org/10.1109/JOE.1985.1145130
https://doi.org/10.5670/oceanog.2005.30


2072 I. Teutsch et al.: Contribution of solitons to enhanced rogue wave occurrence in shallow water depths

NLWKN: Tideaußenpegel, NLWKN [data set], https:
//www.pegelonline.nlwkn.niedersachsen.de/Pegel/Tideau%
C3%9Fenpegel/ID/452 (last access: 23 December 2021), 2021.

Olagnon, M. and van Iseghem, S.: Some observed characteristics
of sea states with extreme waves, in: Proc. 10th Int. Offshore
Polar Engineering Conf., Seattle, USA, 27 May–2 June 2000,
International Society of Offshore and Polar Engineers, 84–90,
ISBN 978-1-880653-46-3, 2000.

Onorato, M., Osborne, A. R., Serio, M., and Bertone, S.: Freak
Waves in Random Oceanic Sea States, Phys. Rev. Lett., 86,
5831–5834, https://doi.org/10.1103/physrevlett.86.5831, 2001.

Onorato, M., Osborne, A., Serio, M., Cavaleri, L., Brandini,
C., and Stansberg, C.: Extreme waves, modulational insta-
bility and second order theory: wave flume experiments
on irregular waves, Eur. J. Mech. B-Fluid., 25, 586–601,
https://doi.org/10.1016/j.euromechflu.2006.01.002, 2006.

Onorato, M., Cavaleri, L., Randoux, S., Suret, P., Ruiz, M. I., de Al-
fonso, M., and Benetazzo, A.: Observation of a giant nonlinear
wave-packet on the surface of the ocean, Sci. Rep., 11, 23606,
https://doi.org/10.1038/s41598-021-02875-y, 2021.

Orzech, M. D. and Wang, D.: Measured Rogue Waves and Their En-
vironment, Journal of Marine Science and Engineering, 8, 890,
https://doi.org/10.3390/jmse8110890, 2020.

Osborne, A.: The inverse scattering transform: Tools for the nonlin-
ear fourier analysis and filtering of ocean surface waves, Chaos
Soliton. Fract., 5, 2623–2637, https://doi.org/10.1016/0960-
0779(94)e0118-9, 1995.

Osborne, A. and Bergamasco, L.: The solitons of Zabusky and
Kruskal revisited: Perspective in terms of the periodic spec-
tral transform, Phys. D, 18, 26–46, https://doi.org/10.1016/0167-
2789(86)90160-0, 1986.

Osborne, A. R.: Behavior of solitons in random-function solutions
of the periodic Korteweg–de Vries equation, Phys. Rev. Lett., 71,
3115–3118, https://doi.org/10.1103/physrevlett.71.3115, 1993.

Osborne, A. R.: Nonlinear ocean waves and the inverse scattering
transform, Elsevier, Amsterdam, ISBN 9780125286299, 2010.

Osborne, A. R. and Petti, M.: Laboratory-generated, shallow-
water surface waves: Analysis using the periodic, in-
verse scattering transform, Phys. Fluids, 6, 1727–1744,
https://doi.org/10.1063/1.868235, 1994.

Osborne, A. R., Segre, E., Boffetta, G., and Cavaleri, L.: Soliton ba-
sis states in shallow-water ocean surface waves, Phys. Rev. Lett.,
67, 592–595, https://doi.org/10.1103/physrevlett.67.592, 1991.

Osborne, A. R., Onorato, M., and Serio, M.: The nonlinear dynam-
ics of rogue waves and holes in deep-water gravity wave trains,
Phys. Lett. A, 275, 386–393, https://doi.org/10.1016/s0375-
9601(00)00575-2, 2000.

Osborne, A. R., Resio, D. T., Costa, A., Ponce de León, S., and
Chirivì, E.: Highly nonlinear wind waves in Currituck Sound:
dense breather turbulence in random ocean waves, Ocean Dy-
nam., 69, 187–219, https://doi.org/10.1007/s10236-018-1232-y,
2019.

Pelinovsky, E. and Sergeeva, A.: Numerical modeling of the
KdV random wave field, Eur. J. Mech. B-Fluid., 25, 425–434,
https://doi.org/10.1016/j.euromechflu.2005.11.001, 2006.

Pelinovsky, E., Talipova, T., and Kharif, C.: Nonlinear-dispersive
mechanism of the freak wave formation in shallow water, Phys.
D, 147, 83–94, https://doi.org/10.1016/s0167-2789(00)00149-4,
2000.

Peterson, P., Soomere, T., Engelbrecht, J., and van Groesen, E.:
Soliton interaction as a possible model for extreme waves
in shallow water, Nonlin. Processes Geophys., 10, 503–510,
https://doi.org/10.5194/npg-10-503-2003, 2003.

Pinho, U., Liu, P., Eduardo, C., and Ribeiro, C.: Freak Waves at
Campos Basin, Brazil, Geofizika, 21, 53–67, 2004.

Prevosto, M.: Effect of Directional Spreading and Spec-
tral Bandwidth on the Nonlinearity of the Irregu-
lar Waves, in: Eighth ISOPE conference, Montreal,
Canada, 24–29 May 1998, International Society of Off-
shore and Polar Engineers (ISOPE), ISOPE-I-98-212,
https://onepetro.org/ISOPEIOPEC/proceedings-abstract/
ISOPE98/All-ISOPE98/ISOPE-I-98-212/24544 (last access:
23 May 2023), 1998.

Prins, P. J. and Wahls, S.: Soliton Phase Shift Calculation for the
Korteweg–De Vries Equation, IEEE Access, 7, 122914–122930,
https://doi.org/10.1109/access.2019.2932256, 2019.

Prins, P. J. and Wahls, S.: An accurate O(N2) float-
ing point algorithm for the Crum transform of the
KdV equation, Commun. Nonlinear Sci., 102, 105782,
https://doi.org/10.1016/j.cnsns.2021.105782, 2021.

Randoux, S., Suret, P., and El, G.: Inverse scattering transform anal-
ysis of rogue waves using local periodization procedure, Sci.
Rep., 6, 29238, https://doi.org/10.1038/srep29238, 2016.

Randoux, S., Suret, P., Chabchoub, A., Kibler, B., and El, G.: Non-
linear spectral analysis of Peregrine solitons observed in optics
and in hydrodynamic experiments, Phys. Rev. E, 98, 022219,
https://doi.org/10.1103/physreve.98.022219, 2018.

Raustøl, A.: Freake bølger over variabelt dyp, Master thesis, Uni-
versity of Oslo, Oslo, Norway, 2014.

Sergeeva, A., Pelinovsky, E., and Talipova, T.: Nonlinear ran-
dom wave field in shallow water: variable Korteweg-de Vries
framework, Nat. Hazards Earth Syst. Sci., 11, 323–330,
https://doi.org/10.5194/nhess-11-323-2011, 2011.

Shannon, C.: Communication in the Presence of Noise, P. IRE, 37,
10–21, https://doi.org/10.1109/JRPROC.1949.232969, 1949.

Sievers, J., Rubel, M., and Milbradt, P.: EasyGSH-DB: Themenge-
biet – Geomorphologie, Bundesanstalt für Wasserbau [data set],
https://doi.org/10.48437/02.2020.K2.7000.0001, 2020.

Slunyaev, A.: Nonlinear analysis and simulations of measured
freak wave time series, Eur. J. Mech. B-Fluid., 25, 621–635,
https://doi.org/10.1016/j.euromechflu.2006.03.005, 2006.

Slunyaev, A.: Persistence of hydrodynamic envelope solitons: De-
tection and rogue wave occurrence, Phys. Fluids, 33, 036606,
https://doi.org/10.1063/5.0042232, 2021.

Slunyaev, A., Sergeeva, A., and Didenkulova, I.: Rogue events in
spatiotemporal numerical simulations of unidirectional waves
in basins of different depth, Nat. Hazards, 84, 549–565,
https://doi.org/10.1007/s11069-016-2430-x, 2016.

Slunyaev, A. V.: Analysis of the Nonlinear Spectrum of Intense Sea
Wave with the Purpose of Extreme Wave Prediction, Radiophys.
Quant. El.+, 61, 1–21, https://doi.org/10.1007/s11141-018-9865-
8, 2018.

Slunyaev, A. V. and Shrira, V. I.: On the highest non-breaking
wave in a group: fully nonlinear water wave breathers ver-
sus weakly nonlinear theory, J. Fluid Mech., 735, 203–248,
https://doi.org/10.1017/jfm.2013.498, 2013.

Nat. Hazards Earth Syst. Sci., 23, 2053–2073, 2023 https://doi.org/10.5194/nhess-23-2053-2023

https://www.pegelonline.nlwkn.niedersachsen.de/Pegel/Tideau%C3%9Fenpegel/ID/452
https://www.pegelonline.nlwkn.niedersachsen.de/Pegel/Tideau%C3%9Fenpegel/ID/452
https://www.pegelonline.nlwkn.niedersachsen.de/Pegel/Tideau%C3%9Fenpegel/ID/452
https://doi.org/10.1103/physrevlett.86.5831
https://doi.org/10.1016/j.euromechflu.2006.01.002
https://doi.org/10.1038/s41598-021-02875-y
https://doi.org/10.3390/jmse8110890
https://doi.org/10.1016/0960-0779(94)e0118-9
https://doi.org/10.1016/0960-0779(94)e0118-9
https://doi.org/10.1016/0167-2789(86)90160-0
https://doi.org/10.1016/0167-2789(86)90160-0
https://doi.org/10.1103/physrevlett.71.3115
https://doi.org/10.1063/1.868235
https://doi.org/10.1103/physrevlett.67.592
https://doi.org/10.1016/s0375-9601(00)00575-2
https://doi.org/10.1016/s0375-9601(00)00575-2
https://doi.org/10.1007/s10236-018-1232-y
https://doi.org/10.1016/j.euromechflu.2005.11.001
https://doi.org/10.1016/s0167-2789(00)00149-4
https://doi.org/10.5194/npg-10-503-2003
https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE98/All-ISOPE98/ISOPE-I-98-212/24544
https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE98/All-ISOPE98/ISOPE-I-98-212/24544
https://doi.org/10.1109/access.2019.2932256
https://doi.org/10.1016/j.cnsns.2021.105782
https://doi.org/10.1038/srep29238
https://doi.org/10.1103/physreve.98.022219
https://doi.org/10.5194/nhess-11-323-2011
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.48437/02.2020.K2.7000.0001
https://doi.org/10.1016/j.euromechflu.2006.03.005
https://doi.org/10.1063/5.0042232
https://doi.org/10.1007/s11069-016-2430-x
https://doi.org/10.1007/s11141-018-9865-8
https://doi.org/10.1007/s11141-018-9865-8
https://doi.org/10.1017/jfm.2013.498


I. Teutsch et al.: Contribution of solitons to enhanced rogue wave occurrence in shallow water depths 2073

Soares, C. G., Cherneva, Z., and Antão, E.: Characteristics of ab-
normal waves in North Sea storm sea states, Appl. Ocean Res.,
25, 337–344, https://doi.org/10.1016/j.apor.2004.02.005, 2003.

Soomere, T.: Rogue waves in shallow water, Eur. Phys. J.-Spec.
Top., 185, 81–96, https://doi.org/10.1140/epjst/e2010-01240-1,
2010.

Soto-Crespo, J., Devine, N., and Akhmediev, N.: Integrable Turbu-
lence and Rogue Waves: Breathers or Solitons?, Phys. Rev. Lett.,
116, 103901, https://doi.org/10.1103/physrevlett.116.103901,
2016.

Stansell, P.: Distributions of freak wave heights mea-
sured in the North Sea, Appl. Ocean Res., 26, 35–48,
https://doi.org/10.1016/j.apor.2004.01.004, 2004.

Stansell, P., Wolfram, J., and Linfoot, B.: Effect of sampling
rate on wave height statistics, Ocean Eng., 29, 1023–1047,
https://doi.org/10.1016/s0029-8018(01)00066-x, 2002.

Sugavanam, S., Kopae, M. K., Peng, J., Prilepsky, J. E.,
and Turitsyn, S. K.: Analysis of laser radiation using
the Nonlinear Fourier transform, Nat. Commun., 10, 5663,
https://doi.org/10.1038/s41467-019-13265-4, 2019.

Tayfun, M. A.: Distributions of Envelope and Phase
in Wind Waves, J. Phys. Oceanogr., 38, 2784–2800,
https://doi.org/10.1175/2008jpo4008.1, 2008.

Tayfun, M. A. and Fedele, F.: Wave-height distributions
and nonlinear effects, Ocean Eng., 34, 1631–1649,
https://doi.org/10.1016/j.oceaneng.2006.11.006, 2007.

Teutsch, I., Weisse, R., Moeller, J., and Krueger, O.: A statistical
analysis of rogue waves in the southern North Sea, Nat. Hazards
Earth Syst. Sci., 20, 2665–2680, https://doi.org/10.5194/nhess-
20-2665-2020, 2020.

Toffoli, A., Fernandez, L., Monbaliu, J., Benoit, M., Gagnaire-
Renou, E., Lefèvre, J. M., Cavaleri, L., Proment, D., Pakozdi,
C., Stansberg, C. T., Waseda, T., and Onorato, M.: Experimental
evidence of the modulation of a plane wave to oblique perturba-
tions and generation of rogue waves in finite water depth, Phys.
Fluids, 25, 091701, https://doi.org/10.1063/1.4821810, 2013.

Trillo, S., Deng, G., Biondini, G., Klein, M., Clauss, G.,
Chabchoub, A., and Onorato, M.: Experimental Obser-
vation and Theoretical Description of Multisoliton Fis-
sion in Shallow Water, Phys. Rev. Lett., 117, 144102,
https://doi.org/10.1103/physrevlett.117.144102, 2016.

Trulsen, K., Zeng, H., and Gramstad, O.: Laboratory evidence of
freak waves provoked by non-uniform bathymetry, Phys. Fluids,
24, 097101, https://doi.org/10.1063/1.4748346, 2012.

Trulsen, K., Raustøl, A., Jorde, S., and Rye, L. B.: Extreme wave
statistics of long-crested irregular waves over a shoal, J. Fluid
Mech., 882, R2, https://doi.org/10.1017/jfm.2019.861, 2020.

Ursell, F.: The long-wave paradox in the theory of grav-
ity waves, Math. Proc. Cambridge, 49, 685–694,
https://doi.org/10.1017/s0305004100028887, 1953.

Wahls, S., Chimmalgi, S., and Prins, P. J.: FNFT: A Soft-
ware Library for Computing Nonlinear Fourier Trans-
forms, Journal of Open Source Software, 3, 597,
https://doi.org/10.21105/joss.00597, 2018.

Wahls, S., Chimmalgi, S., Prins, P. J., and Brehler, M.: FastN-
FT/FNFT: Development Version (Commit 681191c), Zenodo
[code], https://doi.org/10.5281/zenodo.7991180, 2021.

Waseda, T., Hallerstig, M., Ozaki, K., and Tomita, H.: En-
hanced freak wave occurrence with narrow directional spec-
trum in the North Sea, Geophys. Res. Lett., 38, L13605,
https://doi.org/10.1029/2011gl047779, 2011.

Whitham, G. B.: Linear and Nonlinear Waves, John Wiley and Sons,
ISBN 0-471-94090-9, 1974.

Zabusky, N. J. and Kruskal, M. D.: Interaction of
“Solitons” in a Collisionless Plasma and the Recur-
rence of Initial States, Phys. Rev. Lett., 15, 240–243,
https://doi.org/10.1103/physrevlett.15.240, 1965.

Zakharov, V. E. and Shabat, A. B.: Exact Theory of Two-
Dimensional Self-Focusing and One-Dimensional Self-
Modulation of Waves in Nonlinear Media, S. J. Exp. Theor.
Phys., 34, 62–69, 1972.

Zakharov, V. E.: Stability of periodic waves of finite amplitude on
the surface of a deep fluid, J. Appl. Mech. Tech. Ph.+, 9, 190–
194, https://doi.org/10.1007/bf00913182, 1968.

Zeng, H. and Trulsen, K.: Evolution of skewness and kurto-
sis of weakly nonlinear unidirectional waves over a slop-
ing bottom, Nat. Hazards Earth Syst. Sci., 12, 631–638,
https://doi.org/10.5194/nhess-12-631-2012, 2012.

Zhang, J. and Benoit, M.: Wave–bottom interaction and extreme
wave statistics due to shoaling and de-shoaling of irregular long-
crested wave trains over steep seabed changes, J. Fluid Mech.,
912, A28, https://doi.org/10.1017/jfm.2020.1125, 2021.

Zhang, J., Benoit, M., Kimmoun, O., Chabchoub, A., and Hsu, H.-
C.: Statistics of Extreme Waves in Coastal Waters: Large Scale
Experiments and Advanced Numerical Simulations, Fluids, 4,
99, https://doi.org/10.3390/fluids4020099, 2019.

Zheng, Y., Lin, Z., Li, Y., Adcock, T. A. A., Li, Y., and
van den Bremer, T. S.: Fully nonlinear simulations of uni-
directional extreme waves provoked by strong depth transi-
tions: The effect of slope, Phys. Rev. Fluids, 5, 064804,
https://doi.org/10.1103/physrevfluids.5.064804, 2020.

Zou, L., Wang, A., Wang, Z., Pei, Y., and Liu, X.: Exper-
imental study of freak waves due to three-dimensional is-
land terrain in random wave, Acta Oceanol. Sin., 38, 92–99,
https://doi.org/10.1007/s13131-019-1390-x, 2019.

https://doi.org/10.5194/nhess-23-2053-2023 Nat. Hazards Earth Syst. Sci., 23, 2053–2073, 2023

https://doi.org/10.1016/j.apor.2004.02.005
https://doi.org/10.1140/epjst/e2010-01240-1
https://doi.org/10.1103/physrevlett.116.103901
https://doi.org/10.1016/j.apor.2004.01.004
https://doi.org/10.1016/s0029-8018(01)00066-x
https://doi.org/10.1038/s41467-019-13265-4
https://doi.org/10.1175/2008jpo4008.1
https://doi.org/10.1016/j.oceaneng.2006.11.006
https://doi.org/10.5194/nhess-20-2665-2020
https://doi.org/10.5194/nhess-20-2665-2020
https://doi.org/10.1063/1.4821810
https://doi.org/10.1103/physrevlett.117.144102
https://doi.org/10.1063/1.4748346
https://doi.org/10.1017/jfm.2019.861
https://doi.org/10.1017/s0305004100028887
https://doi.org/10.21105/joss.00597
https://doi.org/10.5281/zenodo.7991180
https://doi.org/10.1029/2011gl047779
https://doi.org/10.1103/physrevlett.15.240
https://doi.org/10.1007/bf00913182
https://doi.org/10.5194/nhess-12-631-2012
https://doi.org/10.1017/jfm.2020.1125
https://doi.org/10.3390/fluids4020099
https://doi.org/10.1103/physrevfluids.5.064804
https://doi.org/10.1007/s13131-019-1390-x

	Abstract
	Introduction
	Methods
	Measurement site and dataset
	Application of the Korteweg–de Vries equation with vanishing boundary conditions to the measurement data
	Attribution of solitons to rogue waves

	Results
	Attribution of solitons to rogue waves
	Soliton spectra for time series with and without rogue waves

	Discussion
	Conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

