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Abstract. Lava fountains at the Etna volcano are spectacular
eruptive events characterized by powerful jets that expel hot
mixtures of solid particles and volcanic gases, easily reaching
stratospheric heights. Ash dispersal and fallout of solid parti-
cles affect the inhabited areas, often causing hazards both to
infrastructure and to air and vehicular traffic.

We focus on the extraordinary intense and frequent erup-
tive activity at Etna in the period of December 2020–
February 2022, when more than 60 lava fountain events oc-
curred with various ejected magma volume and lava foun-
tain height and duration. Differences among the events are
also imprinted in tiny ground deformations caught by strain
signals recorded concurrently with the lava fountain events,
reflecting a strict relationship with their evolution. To charac-
terize this variability, which denotes changes in the eruption
style, we clustered the lava fountain events using the k-means
algorithm applied on the strain signal. A novel procedure was
developed to ensure a high-quality clustering process and
obtain robust results. The analysis identified four groups of
strain variations which stand out for their amplitude, duration
and time derivative of the signal. The temporal distribution of
the clusters highlighted a transition in different types of erup-
tions, thus revealing the importance of clustering the strain
variations for monitoring the volcano activity and evaluating
the associated hazards.

1 Introduction

In the last decade, lava fountains represented a typical erup-
tive style at the Etna volcano (i.e. Calvari et al., 2018; An-
dronico et al., 2021). These eruptive events are powerful jets
that can expel hot mixtures of solid particles and volcanic
gases to heights ranging from tens to several hundred me-
tres (Fig. 1a). The ash dispersal and fallout deposits of the
solid particles, known as tephra, cause critical hazards to civil
infrastructure and aviation, frequently provoking the tempo-
rary closure of southern Italy airports. The characterization
of such eruptive events is thus fundamental for both moni-
toring the volcano activity and evaluating the associated haz-
ards.

At Etna, lava fountains produce short-term and small de-
formations of the ground (Bonaccorso and Calvari, 2017;
Bonaccorso et al., 2013b, 2016, 2021) that are well-captured
by the Sacks–Evertson dilatometer (Fig. 1b; Sacks et al.,
1971), a widely employed geophysical instrument to study
ground deformation processes associated with volcano un-
rest (Amoruso et al., 2015; Bonaccorso et al., 2012, 2020;
Linde and Sacks, 1995; Linde et al., 2016, 1993; Voight et
al., 2006). This dilatometer is particularly appropriate for
monitoring lava fountains, since it measures the volumetric
strain within a very wide frequency range (10−7 to > 20 Hz)
and with the highest resolution (10−10 to 10−11) achiev-
able among geophysical instruments (i.e. NASEM, 2017;
Roeloffs and Linde, 2007). Other geodetic techniques such
as GPS and InSAR are unable to detect the deformations
associated with lava fountains because of their lower accu-
racy (GPS> 0.5 cm) or lower-frequency sampling (InSAR
periodic passages). These technical characteristics make the
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Figure 1. (a) Lava fountain occurring on 23 October 2021 (photo from INGV internal report no. 43/2021). (b) Location of the borehole
strainmeter stations installed at the Etna volcano. The coordinates system is WGS 84 UTM 33S.

strain measurements fundamental for monitoring explosive
events, especially when images from surveillance cameras
do not allow the event detection because of poor visibility
(Carleo et al., 2022b; Calvari and Nunnari, 2022).

From December 2020 to February 2022, Etna underwent
intense eruptive activity, with more than 60 lava fountains
from the South East Crater (Calvari and Nunnari, 2022).
A variability in terms of duration, degree of explosiveness
and portion of effusive flows has been observed (Calvari and
Nunnari, 2022; Calvari et al., 2022), implying a different de-
gree of the hazard associated with these eruptive events. In-
deed, the onset and the dynamic of the lava fountain is usu-
ally a gradual growing process, starting from weak Strombo-
lian activity, continuing with transitional explosive activity
and eventually leading to sustained eruptive column. The in-
tensity and the duration of these three main phases are not
always the same, and they characterize the temporal evolu-
tion of the episodes. A preliminary inspection of the strain
signal recorded during the lava fountains reveals a similar
pattern for all the events and a strict relationship with their
temporal evolution (Bonaccorso et al., 2021; Calvari et al.,
2021), allowing for tracing of the waxing and waning of each
episode and marking the onset and the end of the eruptions.
On average, but not systematically, some differences arise in
terms of amplitude and duration of the strain signal. For ex-
ample, the lava fountains occurring in February–April 2021
were characterized by strain changes with high amplitudes
(hundreds of nstrain) and temporal evolutions ranging from
tens of minutes to 8–9 h. Conversely, the strain changes ac-
companying the eruptions in May–June 2021 were lower in
amplitude (tens of nstrain) and developed in intervals from
1 h to less than 4 h (Fig. 2).

In the recent past, attempts to classify the lava fountains
at Etna have been made manually by experts by comparing
different geophysical and volcanological data. Andronico et
al. (2021) manually found different eruptive styles at the Etna
volcano on the basis of volcanological observations. Calvari

et al. (2022) analysed three lava fountain episodes that oc-
curred in 2021 with a multidisciplinary approach and gave
insights into the different eruptive styles. Manual classifica-
tion is time consuming since it involves a huge amount of
data analysis, and it is prone to subjective biases. With the
aim of avoiding a classification biased by experts’ beliefs, we
investigate whether an objective cluster analysis on instru-
mental dataset could help in discovering a group of events
with similar characteristics. Clustering analyses on monitor-
ing signals have already been performed in volcanology (Cir-
illo et al., 2022; Corradino et al., 2021; Langer et al., 2009;
Nunnari, 2021; Romano et al., 2022; Unglert et al., 2016) but
have never been applied to the strainmeter data for clustering
eruptive events.

Here, we made use of clustering techniques applied on
the strain variations recorded concurrently with the eruptive
episodes from December 2020 to February 2022 in order to
derive the key features that characterize the eruptive process
and distinguish the events. In particular, we applied the k-
means clustering algorithm, a widely employed unsupervised
machine learning technique, to solve clustering problems in
several domains (Lloyd, 1982; MacQueen, 1967). One of the
drawbacks of such an algorithm is that the optimal number
of the clusters and also the optimal set of key features which
lead to a high-quality clustering are not known a priori. We
developed a procedure to appropriately identify the features
and the number of clusters which ensure high cohesion and
separation. Moreover, since the clustering solution could de-
pend on the initial position of the barycentre of the clusters
(centroids) chosen to start the algorithm (Fränti and Siera-
noja, 2019), we also investigated the influence of the ini-
tial position of the centroids on the k-means performance by
comparing different initialization techniques. Lastly, we dis-
cuss the implications that this result entails in the assessment
of volcanic activity and the associated eruptive style.
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Figure 2. The detrended recorded (a) and filtered (b) DRUV signals in the study period. Negative step-like strain variations, clearly detected
in the filtered signal, occurred concurrently with the lava fountain episodes. The lava fountains on 29 August and 23 October 2021 were not
recorded due to technical problems. The eruptive activity is divided into four periods: Pi (4 events), S1 (17 events), S2 (34 events) and Pf
(5 events). The black arrow in panel (b) indicates the lava fountain events that occurred on 1–2 July 2021. The zoom of the filtered strain
signal (c) and the related strain rate signal (d) during this event are shown as an example. ti and tf indicate the onset and the end of the strain
variations. At the beginning of the lava fountain (I), expansion rate at the sensor gradually increases. In the central part (II), strain rate rapidly
reaches its absolute maximum value. The expansion gradually diminishes up to a minimum, and the strain rate reaches the pre-event level
during the final part of the eruptive episode (III).

2 Strain changes during the Etna lava fountains in
2020–2022

The December 2020–February 2022 eruptive activity of Etna
was extraordinarily intense. It started with four lava foun-
tains from 13 December 2020 to 16 January 2021 (period
Pi). Successively, a first lava fountain sequence of 17 events
took place up to 1 April 2021, with an average frequency
of 0.39 events per day (sequence S1). After 49 d of repose,
the Etna volcano reawakened, and a second lava fountain se-
quence of 34 episodes occurred till 10 August 2021, with
a frequency of about 0.42 events per day (S2). Then, the
eruptive activity diminished with five events occurring from
10 August 2021 to the end of February 2022 (Pf).

The borehole strainmeter network, operating at Etna since
2011 (Bonaccorso et al., 2016; Fig. 1b), was fundamen-
tal in investigating the dynamics of the eruptions (Bonac-
corso et al., 2021) and monitoring the eruptive events in near
real time for volcanic surveillance (Carleo et al., 2022b). In
this study, we focus on the measurements recorded by the
DRUV station, which is located quite far from the summit
craters, at ∼ 11 km, and installed in a massive rock layer
(at ∼ 180 m depth), guaranteeing high efficiency in trans-
ferring deformation from the rock to the sensor. The strain-
meter was calibrated with three different techniques (Bonac-
corso et al., 2013a, 2016; Currenti et al., 2017) that confirmed
its high sensitivity (∼ 10−10). The DRUV strain signal was
filtered from the disturbing effects of both the Earth tides
and the barometric pressure to highlight small strain vari-
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ations related to the volcano activity (Currenti and Bonac-
corso, 2019). We used the procedure proposed by Carleo et
al. (2022a) to highlight tiny volcano-related strain changes
up to 10−10 for timescales less than 1 d. Furthermore, we re-
moved the long-term drift component from the strain signal
due to the effect of both the curing of the cement and the
relaxation of the drilled hole (Canitano et al., 2021).

In Fig. 2a and b, both the recorded and the filtered DRUV
signals are presented for the period of December 2020–
February 2022. The near-real-time detection algorithm de-
veloped by Carleo et al. (2022b) allowed the automatic detec-
tion of 58 strain variations, all related to the eruptive episodes
in the analysed period. Such strain variations are the response
to the decompression of the magmatic source feeding the
lava fountain (Bonaccorso et al., 2013b, 2016; Bonaccorso
and Calvari, 2017; Bonaccorso et al., 2021; Currenti and
Bonaccorso, 2019). The time derivative of the filtered strain
signal (strain rate signal), like other high-precision geode-
tic signals (Kozono et al., 2013; Ichihara, 2016), is expected
to be related to the rate of magma chamber decompression
and, thus, to the speed of magma ascent (Hreinsdóttir et al.,
2014). The Etna lava fountains grow gradually, starting from
Strombolian activity and evolving towards a sustained erup-
tive column. As already found in previous studies (Calvari
et al., 2021, 2022), the evolution of a lava fountain is well-
represented by both the strain and the strain rate signals. In
Fig. 2c and d, the filtered strain and the filtered strain rate sig-
nals during the lava fountain on 1–2 July 2021 are shown as
an example of the recorded variations. Typically, the strain
and the strain rate signals show a sigmoid and a V shape,
respectively. The different lava fountain phases can be de-
scribed by dividing the signals in three main parts: in the ini-
tial part (Part I), when the Strombolian activity takes place,
both the strain and the strain rate gradually decrease with
time, showing an elbow with a downward concavity; in the
central part (Part II), the lava fountaining is persistent, and
the strain rate changes its slope abruptly, reaching the ab-
solute maximum value; and in the final part (Part III), the
eruptive activity starts declining, and the strain rate inverts
its trend, reaching the pre-event level. To identify the begin-
ning of the event, we focused on the strain rate signal. We
first evaluated the amplitude of the background noise of the
strain rate signal, σ , as the mean standard deviation in an op-
timal moving time window of 3 h (Carleo et al., 2022a). We
found a σ value of 0.93 nstrain per hour. The beginning of
the variation ti was chosen concurrently with the time when
the beginning of the deformation rate can be clearly identi-
fied, namely when the strain rate exhibits a value of one order
of magnitude higher than σ . Therefore, we selected ti as the
time when the strain rate reaches −10 nstrain per hour. The
end of the variation tf was set when the sign of the strain rate
becomes positive.

We characterized each lava fountain event by extracting
the main features from both the strain and strain rate signals
in the period ti and tf. In particular, we focused on Parts I

and II of the signals. The extracted features transform each
eruptive event into a strain data point in the feature domain,
which forms a dataset that is going to be clustered.

3 Clustering the strain variations with the k-means
algorithm

The k-means is an unsupervised machine learning algorithm
(Lloyd, 1982; MacQueen, 1967) designed to partition data
points into clusters by minimizing the sum of the squared dis-
tances (SSE) between every data point and its nearest clus-
ter mean (centroid). The data points are formed by a set of
features which should be chosen by the following two rules:
the features should identify the data point uniquely, and the
smaller the feature vector, the better (Langer et al., 2009).

The k-means algorithm starts by selecting the initial cen-
troid position in the feature domain. Each data point is as-
signed to the kth cluster, represented by the closest centroid
to the data point. The initial positions of the centroids, which
represent the barycentre of the related clusters, change on the
basis of the assigned data points. Iteratively, new centroid
positions are re-estimated, and the data points are eventually
re-assigned to the closest cluster. The algorithm stops until
centroids no longer move. The k-means algorithm has ex-
cellent fine-tuning capabilities (Fränti and Sieranoja, 2019).
However, the goodness of the clustering solution depends on
the choice of both the number of clusters, k, and the set of
features, C, to cluster the data. Moreover, the results are in-
fluenced by the centroid positions chosen to start the algo-
rithm.

To overcome the drawbacks of k-means, we tried different
clustering solutions by varying the inputs of the algorithm,
namely the number of clusters, the employed set of features
and the initial centroid positions. The quality of the different
clustering solutions was estimated by employing two meth-
ods: the “elbow method” and the silhouette value (Sil; Kauf-
man and Rousseeuw, 1990). The elbow method is one of the
most widely used techniques to find the optimal number of
clusters. It is a method based on the SSE value: the less the
SSE of the clustering solution, the better the clustering. Nor-
mally, the higher the number of the clusters, the lower the
SSE. In a k–SSE plot, the elbow of the curve represents the
optimal number of clusters for the analysed dataset and cor-
responds to the most effective clustering solution in terms of
k and SSE.

The silhouette value (Sil) for a single data point is defined
as

Sil=
b− a

max {b,a}
, (1)

where b is the average distance between the datum and the
data of another cluster minimized over the clusters, and a is
the average distance between the datum and the data within
the cluster to which the datum belongs. The Sil value is a
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measure of how much a data point is cohesive within its own
cluster (distance a) and, at the same time, separated from the
other clusters (distance b). It ranges from −1 to 1, where
−1 corresponds to a completely wrong clustering while 1
corresponds to a perfect clustering.

We designed an iterative procedure to find the optimal
number of cluster, kopt, and the optimal set of features,
Copt, that allow for a high-quality clustering solution for our
dataset of strain variations. We analysed different clustering
solutions (C, k) by varying the number of clusters, k, and the
involved subset of features, C, and evaluated the quality of
the clustering by using both the elbow method and the silhou-
ette value. The initial centroid position was chosen randomly.
To have a more robust result, for each analysed clustering
solution, we performed n= 104 repetitions of the k-means
algorithm, setting different random initial seeds and keeping
fixed the other inputs. Then, we chose the solution with the
lowest SSE value. The robustness of the choice of n and of
the initial random position of the centroids in providing reli-
able results was also proven.

The sets of the features used in the iterations of the pro-
cedure are extracted from a set of 15 potential features X ={
X1,X2, . . .,Xj

}
(Appendix A), where j represents the j th

feature of X, which was taken into account to describe the
strain variations in the Part I and II of both the strain and
the strain rate signals. Since the features are in different units
and ranges, we normalized them in the range [0, 1] to ensure
a balanced weight in the clustering process (Langer et al.,
2020). The procedure is organized in the following steps:

1. create the most basic subset of features, Cstart, com-
posed by the amplitude, A, and the duration, D, of the
strain variation;

2. if it is the first iteration of the procedure, the starting
subset of feature related to the ith iteration, Ci , is Cstart
or otherwise Ci−1,j_max, defined at point 7;

3. consider a new set of features Xleft =X−Ci . Create all
the possible subsets of features, Ci,j , composed by Ci
plus one feature from Xleft;

4. cluster the dataset using Ci and all the Ci,j ;

5. find the optimal number of clusters for the ith iteration
of the procedure, kopt,i , by comparing all the k–SSE
curves;

6. at kopt,i , calculate the silhouette values averaged over
the clusters related to Ci and all the Ci,j , Sila,Ci and
Sila,Ci ,j respectively;

7. if max
{
Sila,Ci ,j

}
>Sila,Ci , then define a new subset of

features Ci,j_max composed by Ci plus the feature that
provides max

{
Sila,Ci ,j

}
; repeat from point 2 to point 7,

updating Ci with Ci,j_max. If max
{
Sila,Ci ,j

}
≤Sila,Ci ,

stop the procedure and take Ci as the optimal set of fea-
tures, Copt, and kopt,i as the optimal number of clusters,
kopt.

The influence of the initialization was investigated by com-
paring two seeding techniques: the random centroid (RC) po-
sition (MacQueen, 1967) and the method proposed by Yedla
et al. (2010) (YC). The former method is the most popular
and consists of locating the centroids randomly in the range
of variation of the features, namely, in our case, between 0
and 1. The latter method involves first sorting data points in
accordance with their distance from the origin and then par-
titioning them in k clusters with an equal number of sorted
points. Yedla et al. (2010) proposed to locate the initial cen-
troid position in the barycentre of each cluster. We introduced
more randomness by locating the centroids randomly in each
cluster. The tests were performed using the optimal set of
features, Copt, found with the iterative procedure previously
described. To investigate the importance of performing rep-
etitions of the k-means algorithm choosing different initial
centroid positions, we repeated the algorithm n times, with n
in the range [10, 106].

4 Clustering results

We used the k-means algorithm to characterize the 2020–
2022 lava fountain events using the associated strain changes.
The iterative procedure provided the optimal number of clus-
ters, kopt, and the optimal subset of features, Copt, that allow
for a high-quality clustering of the strain changes. The pro-
cedure converged in two steps, whose results are presented
in Fig. 3. Figure 3a shows the k–SSE curves related to all
the subsets of features analysed in the last step of the proce-
dure. It can be seen that the elbow of most of the curves is at
k= 4, which can thus be selected as the optimal number of
clusters, kopt, for our dataset of strain variations. By explor-
ing the silhouette values of all the analysed clustering solu-
tions at kopt, the optimal subset of features Copt is selected
in correspondence to the maximum Sil value. The optimal
subset is composed by three elements: (i) the amplitude, A,
and (ii) the duration, D, of the strain variation and (iii) the
average strain rate in the time window ranging from ti to the
time when the strain rate reaches the 75 % of the minimum
strain rate, SS0–75. The Sil value of the (Copt, kopt) solution,
obtained by averaging among all the single Sil values asso-
ciated with the clustered data points, is very high and equal
to 0.83, confirming the goodness of the clustering. Figure 3b
shows the single Sil values, presented on the x axis, of all the
data points grouped in the related cluster, indicated by the y
axis, for the optimal clustering solution (Copt, kopt), where
kopt= 4.

The Sil values are all positives, indicating a good cluster-
ing for all the strain data points. Moreover, the silhouette val-
ues averaged among the points within the same cluster are
very high and equal to 0.90, 0.71, 0.82 and 0.99 for Clus-
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Figure 3. (a) k–SSE curves related to all the clustering solutions (C, k) analysed in the last iteration when the procedure converged. (b) Sil-
houette values related to the optimal clustering solution (Copt, kopt), where kopt = 4, for all the data points grouped in the related cluster
indicated by the y axis.

ter 1, Cluster 2, Cluster 3 and Cluster 4, respectively. These
values denote both a high cohesion in the same cluster and a
high separation among the clusters.

The results of the analysis on the influence of the initial
centroid position and on the number of repetitions of the k-
means algorithm are summarized in Fig. 4. We reported the
k–SSE and the k–Sil plots related to the optimal subset of
feature Copt and initialized with the RC and YC methods for
a number of repetitions, n, equal to 10, 104 and 106. The k–
SSE plots for the different values of n (Fig. 4a, c, e) showed
notably overlapped curves, indicating that the analysed ini-
tial centroid positions do not affect the shape of the curves
and, hence, the choice of kopt. In Fig. 4b, d and f the num-
ber of cluster k is plotted against the Sil value for n equal
to 10, 104 and 106, respectively. The figures highlight that a
high number of repetitions is necessary to make the cluster-
ing independent from the analysed initialization techniques.
Indeed, the k–Sil curves overlap only with n values higher
than 104 and up to k= 4, which corresponds to kopt. There-
fore, the outputs of the procedure, kopt and Copt, obtained
with n= 104, can be considered reliable.

In Fig. 5a, the strain changes are presented in the Copt fea-
ture domain, where a very good clustering can also be ob-
served visually, confirming the reliability of the procedure in
providing high-quality results. The frequency distribution of
the values of the Copt features A,D and SS0–75 are presented
in Fig. 5b–d, respectively. The mode values of the frequency
distributions of the Copt features are presented together with
their centroids locations in Table 1. The analysis of the distri-
butions of the cluster features allows us to identify the main
characteristics of the events. Cluster 1 gathers lava fountain
episodes of low strain amplitude and duration characterized
by small initial strain rate changes. All the features of Clus-
ter 1 are located in the lower range of variations. Cluster 2
groups events whose features cover more the intermediate
part of their ranges. Cluster 3 gathers events characterized by
high deformations evolving in a very short time window, less

than 1 h. Furthermore, the mode value of the SS0–75 feature
for Cluster 3 (181.4 nstrain per hour; Table 1) is 4.5 to 9 times
higher than for the others. Cluster 4 groups the episodes with
the highest mode value for the duration feature D, which is
5 to 11 times higher with respect to the ones related to the
other clusters. The mode of the SS0–75 feature in Cluster 4
shows the lowest value among the clusters. In Fig. 5e, all the
strain changes are plotted by aligning them with their initial
time ti for a further visual comparison among the clustered
variations.

5 Discussions and conclusion

For the first time, an automated clustering analysis was ap-
plied on strainmeter data to provide an objective quantita-
tive measure of similarities and differences between explo-
sive eruptive episodes. In particular, we studied the lava foun-
tain events that occurred at Etna in the period of December
2020–February 2022. The number of lava fountains recog-
nized by different volcanologists in the studied period may
slightly vary. However, the discrepancy in the counting of
the events is due to very few weak events, whose classifi-
cation in a proper category was not simple for the experts
themselves. Moreover, when the eruptive activity undergoes
several phases of waning and waxing, close-in-time events
could often be counted separately or as one (Calvari et al.,
2022; Andronico et al., 2021). Despite these slight discrep-
ancies among the experts’ evaluations, the total number of
lava fountains in the analysed period is at most 66 (Calvari
et al., 2022). We used the protocol proposed by Carleo et
al. (2022b) to automatically identify the eruptive events from
the filtered strain signal. By testing the protocol on the long
period from 20 November 2011 to 31 March 2021, Carleo
et al. (2022b) obtained a true positive rate close to 1, which
means that for each lava fountain event a strain change is as-
sociated. Thanks to this high ratio, we can discern, select and
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Figure 4. k–SSE and k–Sil plots obtained using the optimal set of features, Copt. The SSE and silhouette values are presented considering
the random initial centroid (RC) positions and centroids located as proposed by Yedla et al. (2010) (YC). The results obtained by performing
a number of repetitions, n, equal to 10 (a, b), 104 (c, d) and 106 (e, f) are shown as an example.

Table 1. Coordinates of the cluster centroids and mode values of the optimal features for each cluster.

Clusters Amplitude A Duration D Strain rate SS0–75
(nstrain) (hour) (nstrain per hour)

Centroid Mode Centroid Mode Centroid Mode
coordinate coordinate coordinate

Cluster 1 50.0 51.5 1.15 0.98 32.5 20.4
Cluster 2 177.5 181.8 1.92 1.78 59.1 40.5
Cluster 3 232.7 225.3 0.83 0.98 187.6 181.4
Cluster 4 116.8 116.7 9.25 8.94 12.3 20.4
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Figure 5. (a) All the clustered strain data points plotted as circles in the domain of the optimal features: amplitude A, duration D and strain
rate SS0–75. Stars represent the cluster centroids. Frequency distribution of A (b), D (c) and SS0–75 (d) for the different clusters. Mode
values of the distributions are reported in Table 1. In panel (e), all the clustered strain variations are aligned with the initial time, ti.

study the signals recorded concurrently with almost all the
different explosive events. Using this protocol in the period
December 2020–February 2022, we recognized 58 lava foun-
tain events from the strain signal. Out of the eight not recog-
nized events, two were not recorded by the DRUV strain-

meter because of malfunctioning of the station, and the other
six were very weak or counted as sub-events.

In the studied period, the eruptive events showed a high
variability in their characteristics (Andronico et al., 2021;
Calvari and Nunnari, 2022; Calvari et al., 2022) that is
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Figure 6. Temporal distribution of the clusters in the analysed time period plotted over the filtered DRUV signal.

also noticed in the strain variations. Using the extraordinary
2020–2022 strain dataset, we investigated the use of an au-
tomated clustering analysis that allowed us to methodically
identify three key features (A, D and SS0–75) that grouped
the events in four distinct and coherent clusters. In particu-
lar, all the three features are required to distinguish Cluster 1
and 2 from the other clusters, while SS0–75 and D sharply
identify Cluster 3 and Cluster 4, respectively.

The clustered events do not occur randomly but are
grouped over time, as shown in Fig. 6, denoting a transition
in the eruptive dynamic. It turns out that the clusters have
an intimate relationship with the volcanic eruption style. In
the period Pi+ S1 (December 2020–March 2021), Andron-
ico et al. (2021) manually identified three eruption styles
classified as transitional activity (TA), sustained lava foun-
tain (LF) and large-scale lava fountain (LSLF). Comparing
the strain clustering and the eruption style classification re-
ported in Andronico et al. (2021), we observed an interesting
correspondence. The first events recorded in Pi and classi-
fied as TA are all grouped in Cluster 1, except the 21 De-
cember lava fountain, which falls into Cluster 2. Then, in
the S1 lava fountain sequence, the eruptive style turned into
LF with episodic LSLF events. As well, the clustering high-
lights a transition, grouping the S1 events in Cluster 2 and
3. The three events that belong to Cluster 3 are all classi-
fied as LSLF in Andronico et al. (2021) and occurred closely
in time on 16 February, 28 February and 7 March 2021. At
the end of S1 on 23 and 31 March, two LF events occurred
that the k-means algorithm does not associate with Cluster 2
and requires the further Cluster 4, well-separated from Clus-
ter 2. After a period of repose, the new sequence S2 restarted
in May 2021 with events belonging to Cluster 1 that slowly
over time turned into events belonging to Cluster 2. This tran-
sition is in agreement with a variation in the parameters es-
timated from the thermal camera images (Calvari and Nun-
nari, 2022). The comparison between the manual classifica-
tion and the automatic clustering highlights that the strain
signal is able to recognize and identify four classes of lava

fountains, of which three are closely linked to the manual
classification and a further one defines a distinctive class. In
particular, Cluster 1 groups events that induce small defor-
mation of the volcano edifice; Cluster 2 includes lava foun-
tains to which, on average, higher deformation, higher strain
rate and higher duration, with respect to Cluster 1, can be as-
sociated; and Cluster 3 groups fast events (duration less than
1 h) with high strain rate. Cluster 4 identifies two events well-
separated from the others, since they were characterized by
very long duration and very low-rate values. The peculiar-
ity of the events in Cluster 4 was also noticed in previous
studies. Calvari and Nunnari (2022) analysed thermal cam-
era images and estimated the duration of all the 2020–2022
episodes with three different approaches. A close inspection
of their results shows that the duration of the two events of
Cluster 4 exhibits the largest values. Andronico et al. (2021)
retrieved seismic parameters from volcanic tremor signals
recorded during the eruptive episodes. The parameters re-
lated to the events of Cluster 4 show values higher than the
average value estimated for the lava fountain events of the
studied period.

The identification of clusters of lava fountain events has a
strong impact on the alert system in place to manage volcanic
crises. During lava fountains, which emit huge amounts of
tephra into the atmosphere, knowledge on intensity and du-
ration of the events has important implications, especially for
civil aviation. The distinctive features of the clusters could be
attributed to the degree of explosiveness and portion of effu-
sive flows accompanying the event that define the eruptive
style. Changes in the eruptive style are regulated by many in-
terrelated magmatic properties and processes (Cassidy et al.,
2018). The exsolved and dissolved gas content, overpressure
at depth, magma composition, and conduit geometry of the
plumbing system all control the speed at which magma as-
cends, decompresses and outgasses and, hence, determines
eruptive style and evolution.

Our findings demonstrate that the clustering analysis on
the strain signal may contribute to characterizing the dif-
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ferent eruptive styles at the Etna volcano and highlighting
persistence and transition in the eruptive style, providing in-
direct insights into the evolution of the magmatic plumb-
ing system. The obtained results are very promising and
encourage us to extend them to investigate other volcanic
processes that engender strain changes, such as magmatic
recharges and intrusions. A joint analysis, together with other
geophysical, geochemical, volcanological and petrophysical
data, may help in confirming the evolution of the magmatic
system conditions and in identifying the most likely mag-
matic properties and/or processes that regulate the volcano
activity at Etna.

Appendix A: Features considered in the cluster analysis

A Amplitude of the strain change from ti to tf.
D Duration of the strain change from ti to tf.
Srmin Minimum strain rate from ti to tf.
SA0–75 Amplitude from ti to the instant when 75 % of Srmin is reached.
SA0–100 Amplitude from ti to the instant when 100 % of Srmin is reached.
SD0–75 Length of the time window from ti to the instant when 75 % of Srmin is reached.
SD0–100 Length of the time window from ti to the instant when 100 % of Srmin is reached.
SS0–75 Average strain rate from ti to the instant when 75 % of Srmin is reached.
SS0–100 Average strain rate from ti to the instant when 100 % of Srmin is reached.
AS0–50 Average strain rate from ti to the instant when 50 % of A is reached.
AS0–75 Average strain rate from ti to the instant when 75 % of A is reached.
ASrmin,0–50 Minimum strain rate from ti to the instant when 50 % of A is reached.
ASrmin,0–75 Minimum strain rate from ti to the instant when 75 % of A is reached.
AD0–50 Length of the time window from ti to the instant when 50 % of A is reached.
AD0–75 Length of the time window from ti to the instant when 75 % of A is reached.

Code and data availability. MATLAB scripts and data are avail-
able upon request to the corresponding author.
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