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Abstract. Accurate estimates of hail risk to exposed assets,
such as crops, infrastructure, and vehicles, are required for
both insurance pricing and preventive measures. Here we
present an event catalog to describe the hail hazard in South
Africa guided by 14 years of geostationary satellite obser-
vations of convective storms. Overshooting cloud tops have
been detected, grouped, and tracked to describe the spa-
tiotemporal extent of potential hail events. It is found that
hail events concentrate mainly in the southeast of the coun-
try, along the Highveld, and around the eastern slopes. Events
are most frequent from mid-November through February and
peak in the afternoon, between 13:00 and 17:00 UTC. Mul-
tivariate stochastic modeling of event properties yields an
event catalog spanning 25 000 years, aiming to estimate, in
combination with vulnerability and exposure data, hail risk
for return periods of 200 years.

1 Introduction

Damage from large hail is a significant contribution to natural
hazard losses in many parts of the world (Punge and Kunz,
2016; Púčik et al., 2019; Allen et al., 2020), including South
Africa, and growing research activity has opened up oppor-
tunities to estimate risk for the insurance sector (Punge et al.,
2014; Rädler et al., 2023). In South Africa, hail has long
been known to generate large amounts of damage to agri-
culture – around 2 % of the value of products (Carte, 1977)
– and forestry (Smith et al., 2002; Wingfield and Swart,
1994). Events with severe hail damage to buildings, vehi-

cles, and infrastructure like the one on 28 November 2013
(total loss ZAR 1.4 billion, around USD 140 million, Powell
and Burger, 2014) are numerous (e.g., Perry, 1995). Still, in
comparison to other natural hazards, the sporadic occurrence
and highly localized effects of hail pose a particular chal-
lenge to hazard quantification, which forms the basis for any
risk modeling. Such modeling is required for the insurance
sector to estimate the financial risks related to a hazard, as
required, for example, by the Insurance Act 18 of 2017, and
can guide measures to improve resilience.

Across the world, reliable records of hailfall including size
information are limited to reports by volunteer observer net-
works (e.g., Held, 1974) and other sources, sometimes col-
lected in databases of hail reports (e.g., Dotzek et al., 2009;
Allen et al., 2015) or hailpad networks (e.g., Palencia et al.,
2009). Leigh and Kuhnel (2001), for example, constructed a
regional risk model based on such reports and loss data alone.
Grieser and Hill (2019) used volunteer-collected hail obser-
vations in the United States (Reges et al., 2016) to model the
rate of hailstones hitting the ground per unit area, time, and
hailstone size bin during the passage of a hailstorm. Based on
that data, they set up a model to calculate the vulnerability of
subjects at risk as a function of the diameter of the largest
hailstone, which can be transferred to other regions.

For South Africa, Admirat et al. (1985) evaluated hailpad
and hail reports from a network of voluntary hail observers
(mainly farmers equipped with hail cards) to quantify hail
properties in an area of 280 km2 in the Transvaal Highveld
(HVD), nowadays a part of the Gauteng region (see Fig. 2a).
Using reports from the same network over a 19-year period,
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Smith et al. (1998) found on average 68.5 hail days per year,
much more than in other regions of similar size, for example,
northern Italy, which is the highest hail-exposed region in
Europe (e.g., Giaiotti et al., 2003; Punge et al., 2017). Of
these, 3.3 d had hail greater than 3 cm.

While distinction between hail and rain or sleet is often
challenging, remote sensing data from either radar or satel-
lite instruments are required to determine the spatial extent
of hail events and to depict the geographic distribution of the
hazard (Puskeiler et al., 2016; Bedka et al., 2017; Nisi et al.,
2018; Allen et al., 2020). Alternatively, numerical models
such as high-resolution reanalysis can be used to identify at-
mospheric conditions favorable for hailstorm formation (e.g.,
Rädler et al., 2023; Kunz et al., 2020; Taszarek et al., 2020).
In that case, climatologies over long time series can be gen-
erated (Dyson et al., 2020; Prein and Holland, 2018). These
are, however, generally limited by model resolution and the
inaccurate representation of convective initiation, since hail-
storms often form by local-scale and mesoscale processes re-
lated to, for example, orographic lifting and mountain winds,
low-level convergence zones, or land use inhomogeneities
(Allen et al., 2020). In addition, reanalyses or regional cli-
mate models use simplified microphysical parameterization
schemes and not two- or even three-moment schemes re-
quired for more realistic hail size modeling (Seifert and Be-
heng, 2006; Loftus et al., 2014; Wellmann et al., 2020). Sev-
eral studies have used hail signals or hail detection algo-
rithms for hail frequency assessments (Cintineo et al., 2012;
Junghänel et al., 2016; Fluck et al., 2021) and risk model-
ing (Puskeiler et al., 2016; Nisi et al., 2018; Schmidberger,
2018). However, radar data are usually only available on
country scales due to availability and inter-radar calibration
issues. In South Africa, the use of radar data for nowcast-
ing of hail has been studied for the Highveld region (Ayob,
2019). However, the South African radar network does not
cover the entire country.

Even though satellite data are a less accurate proxy for
hailstorm detection compared to radar, the big advantage
is that these data cover comparatively larger areas almost
homogeneously. The detection of hail via scattering of up-
welling Earth-emitted microwave radiation is currently lim-
ited to satellites in low-earth orbit (Mroz et al., 2017; Ni
et al., 2017; Bang and Cecil, 2019). Such data can be ex-
ploited for global analysis of hail occurrence as well as for
identification of atmospheric conditions prevailing during in-
dividual hailstorms. The drawback, however, is the lack of
temporal coverage required to examine the evolution of hail-
storms. In contrast, indirect indicators have been designed to
extract severe weather and hail signals from much more fre-
quent and spatially detailed geostationary satellite imagery
(Bedka et al., 2010; Melcón et al., 2016).

An overshooting cloud top (OT) indicates an intense up-
draft capable of generating hail. The OTs can be detected in
both visible and infrared data (Bedka and Khlopenkov, 2016;
Khlopenkov et al., 2021). In particular, the most severe hail-

storms show a clear OT signature (e.g., Kunz et al., 2018;
Wilhelm et al., 2021). The OT detection algorithm has been
extensively calibrated and tested against severe weather re-
ports and radar data (Bedka and Khlopenkov, 2016; Sand-
mæl et al., 2019; Cooney et al., 2021). Still, in some cases,
OT features may have been misdetected or may not have pro-
duced hail on the ground, for example, due to melting of hail-
stones during fall through a deep column of warm air. This
is acknowledged in the studies of Punge et al. (2014, 2017)
and by Bedka et al. (2018a), who noted the large percentages
of OTs without hail on the ground. However, in addition to
the hazard modeling purpose, the focus of our study is on the
identification of larger spatial severe convective storm (SCS)
clusters with an increased potential of hail production dur-
ing the lifetime of the event, rather than detecting each indi-
vidual storm with enhanced hail potential. These large-scale
hail-producing outbreaks can cause by far the largest part of
the damage registered by insurers and can induce solvency
issues when the risk is not properly estimated.

Punge et al. (2014, 2017) used the OT approach to es-
timate a hail event dataset for Europe which served as the
physical basis for the Willis European Hail Model, the first
fully randomized stochastic hail model to cover all of Eu-
rope. Since 2014, the model has been established as a stan-
dard tool in hail risk estimation and pricing among insurance
and reinsurance companies in Europe. A similar approach
was later applied to Australia (Bedka et al., 2018b). How-
ever, assessments of this kind are absent in many emerging
insurance companies and markets around the world. Of these,
South Africa is a prime example of where hail is a common
hazard and major risk driver. Therefore, we focus on South
Africa in this article, refining the methodology of Punge et al.
(2014, 2017) to describe hail events more accurately. In con-
trast to Bedka et al. (2010), the Khlopenkov et al. (2021)
OT detection technique, which was applied here, provided
a gridded probabilistic representation of an OT rather than a
list of OT centroid pixel locations, accounting for both size
and reliability of the updraft detections. The event definition
procedure now tracks storm signatures over time, allowing us
to follow convective activity more closely. In the stochastic
component of the model, rather than simply re-sampling his-
toric events to describe possible future hazards, distributions
of relevant event properties are modeled and sampled sep-
arately, conserving correlation among these properties. Im-
provements compared to the European and Australian hail
models concern event definition, event parameter distribu-
tions, and detail of the stochastically generated footprints.

Section 2 presents the methodology and datasets used as
input for the model, whereas Sect. 3 describes the derived
hazard distribution and OT event sets. Stochastic event sam-
pling and potential hail footprint generation are discussed in
Sect. 4.
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Figure 1. Diagram illustrating the functioning of the hail hazard model for South Africa.

2 Methods and data

The diagram in Fig. 1 illustrates how the different data
sources, explained in the following, are combined in the
model and processed to yield a set of event footprints rep-
resenting 25 000 years of hail-generating convective storms
based on the climate and weather of the period 2005–2018.
Important steps in the development of the final stochastic
modeling are (i) filtering of OTs that are unreliable or un-
likely to produce severe hail using both passive microwave
hailstorm detections and insurance loss data combined with
convective environments (convective available potential en-
ergy (CAPE), wind shear, melting level) from ERA5 reanal-
ysis; (ii) clustering of OTs in space and time to attain sin-
gle events; (iii) quantifying histograms of the most important
event properties (length, width, duration, time of day, day
of year) and their relations; (iv) considering a hailstone size
spectrum from severe weather reports outside of the study
area; (v) adjusting appropriate statistical distribution func-

tions to the different properties; (vi) stochastically generat-
ing (artificial) events that resemble the climatology of poten-
tial hail events and their characteristics; (vii) applying impor-
tance sampling to reduce the number of events; and, finally,
(viii) computing single hail footprints for the stochastic event
set. All the steps and procedures mentioned above will be ex-
plained in the following sections.

2.1 Study area

South Africa’s topography consists of a large central plateau
with extensive grasslands; a continuous escarpment of moun-
tain ranges surrounding the plateau on the west, south, and
east; and a narrow strip of low-lying land near the coastline.
The central plateau is bounded by the Great Escarpment (see
Fig. 2a), a major topographical feature in Africa consisting
of steep slopes that drop from the high central plateau toward
the oceans that surround southern Africa on three sides. The
eastern part of the Great Escarpment in the border region of
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Figure 2. (a) Map showing the relief of South Africa from the Shuttle Radar Topography Mission (Farr et al., 2007), provinces, and major
cities. Port Elizabeth and Swaziland are now Gqeberha and Eswatini, respectively.(b) Meteosat IR image showing convective storm activity
on 28 November 2013 at 13:30 UTC. Colors represent 10.8 µm channel brightness temperature, and dots indicate detected overshooting
tops (OTs, black) for this image. OT detections are parallax-corrected here but the underlying IR satellite image is not, leading to some slight
displacement of a detection and a corresponding cold region. The anvil cloud in yellow and green colors is automatically detected using the
IR anvil detection index greater than 10.

South Africa and Lesotho is the Drakensberg Escarpment. It
is the highest mountain range in southern Africa, reaching an
elevation of 3482 a.m.s.l. (above mean sea level).

South Africa’s climate is determined by the subtropical
zone of the Southern Hemisphere, the location between the
Atlantic and the Indian oceans, and its orographic charac-
teristics. Climate conditions, influenced by the ocean along
the east and west coasts and the interior plateaus, vary be-
tween subtropical and temperate: subtropical in the north-
east, Mediterranean in the southwest, and a warm dry desert
environment in the central west and northwest.

2.2 Overshooting top detection

Intense thunderstorms are routinely observed by visible and
infrared imagery from geostationary satellites for forecasting
and warning purposes (Zinner et al., 2013; de Coning et al.,
2015). In particular in the infrared channel, deep convective
cloud tops atop updrafts appear as cold spots growing near to
or above the tropopause level, surrounded by a warmer anvil
(Adler et al., 1985). Cloudy air masses are propelled upwards
in the storm’s core before rebounding or dissolving again on
timescales of a few minutes.

Detection of these OTs hereinafter referred to as OT de-
tections has been automated by Bedka et al. (2010), reveal-
ing the climatological distribution in North America as well
as in Europe (Bedka, 2011) and Australia (Bedka et al.,
2018b). An advanced version of the OT detection algorithm
described by Khlopenkov et al. (2021) delivers a 3 km grid-
ded probabilistic estimate of OT likelihood based on a statis-
tical combination of tropopause-relative infrared (IR) bright-
ness temperature, prominence of an OT relative to the sur-

rounding anvil, and the area and spatial uniformity of the
anvil cloud surrounding an OT candidate region. OTs de-
tected with a probability> 50 % and with a surrounding anvil
cloud (green and yellow colors in Fig. 2b) are used in this
work (Scarino et al., 2020; Khlopenkov et al., 2021). The
method was validated by Cooney et al. (2021) using OT
identifications from gridded weather radar observations and
by Khlopenkov et al. (2021) using human OT identifications
over the United States (US). A relation between hail size es-
timated from radar and OT intensity has been suggested in
several studies (e.g., Bedka, 2011).

In the Khlopenkov et al. (2021) study, the human ana-
lysts identified OTs with two confidence levels, resulting in
a conservative mask with only the most confident OTs and
a liberal mask that also included less confident OT identifi-
cations that did not appear as prominently in the imagery as
those in the conservative mask. For the Geostationary Oper-
ational Environmental Satellite GOES-16, probability of de-
tection (POD) at an OT probability> 0.5 ranged from 0.51
to 0.95 and false alarm ratio (FAR) ranged from 0.04 to 0.24,
with the highest POD for the conservative mask and the low-
est FAR for the liberal mask. For GOES-13, POD decreased
to 0.8 for the conservative mask but remained nearly the same
as GOES-16 for the liberal mask. FAR increased by 0.10 for
the liberal mask. In Cooney et al. (2021), an OT probability
of 0.5 corresponded to a median 20 dBZ precipitation echo
top near the tropopause and a FAR ranging from∼ 0.1 to 0.5
depending on the reflectivity level used to define the precip-
itation echo top (e.g., 10 or 20 dBZ), the height of the echo,
and the satellite data used as input (e.g., GOES-13 vs. GOES-
16). POD based on these comparisons with echo tops ranged
from 0.35 to 0.75. In summary, even the most prominent
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.

Figure 3. Map of (a) all OT pixel detections in the period 2005–2018 over continental South Africa and neighboring nations and seas
(11 143 479 OTs) and (b) OT pixels retained after filtering for atmospheric conditions (8 272 509 OTs; see discussion in Sect. 2.6)

OTs are less evident and harder to detect in the GOES-13
data. Given the reduced prominence from coarser resolution,
OT detection algorithm sensitivity settings must allow de-
tection of smaller temperature gradients within anvils, which
results in increased FAR.

False OT detections in very cold outflow near to actual
OT regions is the most common source of error. Despite these
false alarms, which in our opinion are impossible to com-
pletely eliminate, the Khlopenkov et al. (2021) OT detection
method improves upon the Bedka et al. (2010) version used
in previous hailstorm climatology studies and will represent
the convection climatology across South Africa quite well.

Imagery of the Meteosat Second Generation (MSG) Spin-
ning Enhanced Visible and Infrared Imager (SEVIRI) instru-
ment (Schmetz et al., 2002) between January 2005 and De-
cember 2018 is scanned for OTs at a temporal resolution of
15 min. Since South Africa is not continuously covered by
the high-resolution visible imagery product of MSG, only
the IR channel data (given as 10.8 µm brightness tempera-
ture) are provided to the detection algorithm. An example is
shown in Fig. 2b, where brightness temperature during a very
strong hail event on 28 November 2013 and detected OTs are
displayed.

The spatial distribution of OT pixel detections across the
entire study domain and 14-year study duration is depicted
in Fig. 3a. Clearly, convective storms are most common in
the prevailing moist subtropical climate in east South Africa,
along the Great Escarpment, including the southeastern
flanks of the Drakensberg and stretching north through the
Mpumalanga province (see Fig. 2a and Sect. 2.1). Here the
complex terrain with a height of more than 2300 m a.s.l. in-
duces uplift to serve as a trigger for convection initiation. By
contrast, OT frequency decreases towards the west and to-
wards the coast of the Indian Ocean, where the climate is
mainly semi-arid to desert.

Compared to Dyson et al. (2020), we note the absence of
an OT frequency maximum over the country of Lesotho, even
in the unfiltered OT data, and higher values to the north and
southeast. We attribute these differences to the coarse spatial
resolution of the ERA-Interim reanalysis used in the above-
mentioned study, which is likely insufficient to resolve local
orography. The high altitudes in southern Lesotho (mostly
2500–3500 m a.s.l.; see Fig.2a) seem to suppress deep con-
vection to some degree, similar to the situation in the interior
of the Alps in Europe (Punge and Kunz, 2016; Nisi et al.,
2018).

2.3 Hail reports and insurance claims

Reports of hail observations including estimates of hail
sizes are registered in several continental-scale, centralized
databases for North America, Europe, and Australia. These
reports are very helpful for validating the severity of the
storms with detected OTs. In addition, derived hail size spec-
tra are required as a measure of intensity in hail risk mod-
els. For South Africa no such database of comparable extent
is available. However, comparing studies that estimated hail
size spectra (e.g., Sánchez et al., 2009; Eccel et al., 2012;
Dessens et al., 2015; Grieser and Hill, 2019), one can con-
clude that hail size spectra do not tend to vary greatly among
regions and even continents. For this reason, we computed
hail size spectra for the stochastic modeling component of
this work from 26 884 hail reports archived by the European
Severe Weather Database (ESWD; Dotzek et al., 2009) for
the period 2005–2019 and from 3764 reports provided by the
Severe Storms Archive of Australia’s Bureau of Meteorol-
ogy for the period 1950–2019. Reporting policies meant that
events of a hail diameter of 2 cm or more are covered, but in
some cases reports with smaller stones accumulating to thick
layers are included. A uniformly distributed random value
between −0.5 and +0.5 cm was added to each reported hail
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Figure 4. Claims locations of hail damage in South Africa (1984–
2017) and passive microwave detections (1998–2018) in the model
domain.

diameter to compensate for rounding in the hailstone mea-
surement process and to obtain a smooth distribution.

In addition, 1423 hail damage claims between 1984
and 2017 including a reference to a location were ob-
tained from several insurance companies of South Africa (see
Fig. 4). Data did not include information on the size of hail,
hour of occurrence, or type of asset affected. Claims data
tend to be biased towards population centers and – in this
case – towards major hail days but still has the advantage of
providing direct evidence for hail occurrences.

2.4 ERA5 reanalysis data

ERA5 (Hersbach et al., 2020) is the fifth-generation reanaly-
sis of the European Centre for Medium-Range Weather Fore-
casts (ECMWF). It is a global observation-guided model rep-
resentation of past weather. Data were obtained for the period
2005–2018 at a spatial resolution of 0.25◦ and hourly reso-
lution. While CAPE and the height of the freezing level are
provided as output variables, bulk wind difference between
the near surface (10 m) and 6 km above the ground (0–6 km
wind difference) was computed based on pressure-level data
using linear interpolation.

2.5 Passive microwave hail retrievals

Scattering of surface-emitted microwave radiation by hail-
stones is an alternative method of hailstorm detection by
satellites (Cecil, 2009). The measurement principle has the
advantage that in contrast to OTs the signal is directly caused
by hailstones but at the cost of spatial and temporal cover-
age, commonly limited to two overpasses per day, and at the
risk of nonuniform beam filling of the field of view. Beam
sizes of current-generation sensors (e.g., Petty and Bennartz,

2017) are of the same order of magnitude as convective storm
core diameters, meaning that the sensor and storm need to be
aligned for successful detection.

In this work, such detections from the Tropical Rain-
fall Measuring Mission (TRMM) and the Global Precipita-
tion Measurement Mission (GPM) satellites (Bang and Ce-
cil, 2019, 2021) over the South African domain were evalu-
ated for the period 1998–2019. Cases with a hail probability
greater than 10 % over South Africa and Lesotho were re-
tained. The threshold here is lower than in the studies cited
above (threshold of 20 %) because our intention is to consider
also small hail diameters and not just significant hail. Along
with the damage claims, they are used to compare hail-prone
environments in South Africa to those in Europe and Aus-
tralia (Punge and Kunz, 2016; Bedka et al., 2018b) and to
constrain OT detections to a certain range of convection-
related parameters from ERA5 reanalysis (see next section).

2.6 OT filtering by conditions from reanalysis

Before clustering the OT detections, a filter is applied based
on surrounding atmospheric conditions in terms of wind
shear and CAPE obtained from ERA5 for days and locations
with microwave hail detections and damage reports (Fig. 5).
Since insurance data are only available for South Africa (see
Fig. 4), the filter criteria are also only determined for the ter-
ritory of South Africa and Lesotho. Note that the purpose of
this filter is distinct from other studies aiming to identify hail-
prone conditions from reanalysis (e.g., Taszarek et al., 2020;
Dowdy et al., 2020; Prein and Holland, 2018), which tend to
suggest much stricter criteria.

The filter design used for Europe (Punge et al., 2017) and
Australia (Bedka et al., 2018b) was retained in this work. For
the filtering, thresholds for the different ambient parameters
were defined based on the OT distribution for insurance loss
data and microwave hail detections. The thresholds are then
determined from the 2nd and 98th percentiles of the respec-
tive distribution functions. OT detections that occur outside
that range are then removed to obtain the filtered OT dataset.

Ambient conditions near OT detections are interpolated
spatially from the much higher resolved ERA5 reanalysis in-
stead of ERA-Interim (25 km rather than 80 km). In contrast
to the latter, ERA5 has hourly rather than 6-hourly fields,
so values at the full hour are used for OT or microwave de-
tections in the following 60 min. This reduces false filtering
due to model uncertainty to resolve, for example, the rapidly
evolving CAPE field with a strong diurnal cycle. For insur-
ance loss data without a time of occurrence, we have chosen
12:00 UTC in ERA5 by default.

The bulk wind difference (near surface to 6 km) and freez-
ing level for both microwave hail detections and insurance
claims in the vicinity of OT detections are shown in Fig. 5
for South Africa and Lesotho. OTs occur at a somewhat
lower 0–6 km wind difference and higher freezing level com-
pared to microwave detections, confirming the filter choice
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Figure 5. Distribution of the ERA5 0–6 km wind difference and melting-level height in hail claims (1984–2017), passive microwave detec-
tions (1998–2019), and OTs (2005–2018) for South Africa and Lesotho. (a, b) Probability distribution and (c–e) bivariate histogram for the
0–6 km wind difference and freezing level for (c) microwave hail detections, (d) damage reports, and (e) OT detections (bold lines indicate
the selected filter thresholds; see text for further details). Only situations with positive CAPE in ERA5 were used for these computations.

in Punge et al. (2017). Note that microwave hail and OT de-
tections occur most frequently at a 0–6 km wind difference
between 10 and 20 m s−1, which represents the lower limit
for organized convective storms such as multicells, super-
cells, or mesoscale convective storms (MCSs) to occur (e.g.,
Markowski and Richardson, 2010). Using a higher thresh-
old would exclude a relevant fraction of situations where
hail is likely based on the microwave algorithm. Damage
reports often occur at 0–6 km wind difference between 20
and 30 m s−1, indicating a bias towards the more organized
storms producing more damaging hail. But given the high
concentration of these claims in populated regions, we re-

frain from using a more restrictive threshold based on this
data alone. The somewhat odd distributions of damage re-
ports shown in Fig. 5a and b are due to heavily population-
biased sampling locations. As 9.5 % of the OTs but only
3.5 % of the microwave hail detections and 2.5 % of the
claims occur at a melting level of fewer than 2400 m, this
altitude was used for the lower threshold with this parameter.

OT detections are thus retained if the surroundings of a
given OT fulfill minimum conditions of convective instability
(CAPE> 100 J kg−1), a 0–6 km wind difference> 1.5 m s−1

and a height of the melting level> 2400 m (< 4845 m a.g.l.).
As can be seen in the spatial distribution of the filtered OTs in
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Fig. 3b, the filter removes OT detections in particular over the
ocean, central Mozambique, and the Lesotho Highlands. The
latter feature is due to the minimum freezing-level condition
and remains to be confirmed by independent observations,
for example, by hailpad or hail sensor data from the region.

A similar pattern of hail events shown in Fig. 3b is found in
the global hail study by Prein and Holland (2018, Fig. 11) as
well as in passive microwave data by Bang and Cecil (2019,
Fig. 7; see also the discussion in the Appendix). A final
judgment on the actual occurrence of significant hail on the
ground would require surface observation data, such as hail-
pads or sensors covering multiple regions of South Africa.
Such direct observation data, however, are not sufficiently
available for the entire South Africa.

All subsequent analyses presented in the next sections are
based on the filtered OT detections.

2.7 Event definition: grouping hail activity

Figure 6 illustrates the definition of historic potential events
based on observed and filtered OT detections. These events
are formed by computing the spatial and temporal distance
between individual OT detections. OTs are assigned to the
same event if they are separated by fewer than 1 h and fewer
than 30 km. This simple approach can detect both single
cells and other more organized forms of convection includ-
ing MCSs or squall lines. Event centroids are defined as the
mean latitude and longitude of the event, or grouped, OTs.
An event is approximated by an ellipse and characterized by
its length, width, and orientation relative to the meridian, as
well as the fraction filled with OTs. In addition, we also con-
sidered the highest OT–anvil mean temperature difference
among the OTs assigned to an event as a criterion for storm
severity (see Sect. 3.2). Lifetime and propagation speed are
estimated based on the initial and final OT detections within
an event. Events can overlap when several storms pass over
the same region on a given day. This actually happened in
the example on 28 November 2013, shown in Fig. 6. The
three events overlap, but we can assume that the activity of
the smaller ones is not related to the main event, since the
convection occurred several hours later when the main storm
had already moved away and also was much weaker.

The event definition criteria are more restrictive compared
to Punge et al. (2014), so the events are better constrained to
zones of possible hail activity. Events made up by OT detec-
tions only at a single time step, hence lasting for fewer than
30 min, are neglected. In total, 33 820 events were identified
from the total of 8 272 509 filtered OT detections for the en-
tire 14-year study period. This means one event on average
contains 245 individual OT detections.

Histograms of duration and propagation speed of SCS
events – not considered in Punge et al. (2014) – are shown
in Fig. 7. The distribution of duration is exponential in
shape, in line with radar-based studies (Schmidberger, 2018;
Fluck et al., 2021). While duration is roughly proportional

Figure 6. Convective storm activity in the Gauteng region of South
Africa on 28 November 2013. Filtered OTs (gray dots), retained
OTs (color-coded by time), hail claims (pink), and event definition
(ellipses). Hail claims (magenta) indicate the location of successive
hailstorms, split by the algorithm into three events, for which el-
lipses show the spatial extent. A line connects the locations of the
initial and final OT locations, determining the orientation of the el-
lipse. Two smaller events overlap the main event centered over the
Gauteng region, as the associated cells developed at a later time,
separately from the main activity.

to length, it becomes clear that propagation speed varies
over a wide range. Most frequently, the speed ranges around
30–35 km h−1 (≈ 8–10 m s−1), slightly lower than the range
of 10–30 kn (≈ 18–55 km h−1) found by Carte (1966). Very
high values beyond 100 km h−1 are explained by cases where
convection is triggered simultaneously over a larger area and
OTs from several storms are unintendedly grouped to an
event. Such unrealistic events can be simply excluded in the
event set.

3 Stochastic modeling and event properties

In this section we describe the spatial distribution of SCS
detections for the hail hazard model as well as additional
event properties. This section refers to events of grouped
OTs according to the event definition in Sect. 2.7. Because
we cannot be assured that all historic events identified by
satellite data and filtered through the ERA5 reanalysis are
associated with hail on the ground, these events are here-
inafter referred to as potential hail events. Distribution func-
tions are used to approximate the historic set of potential
events presented in the previous section. Stochastic events
are generated using these distribution functions for relevant
event properties, and 14-year samples from the stochastic
event set are compared to historic data such as those available
in the existing databases. The full stochastic event set cov-
ers 25 000 years with a total of 21 093 957 events spanning
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Figure 7. Histogram of hail-filtered OT event (a) duration and (b) propagation speed, 2005–2018.

3 442 346 d. The key challenge in generating the stochastic
event set is to ensure conservation of event properties, their
inter-relationships, and the spatial distribution of the historic
potential hail events. This point is addressed by drawing
from historic distributions using correlated random numbers
where required.

The spatial distribution of potential hail events is obtained
by normalizing the annual frequency of filtered OT detec-
tions, counted on a rectangular 0.3◦× 0.5◦ (lat–long) grid
with the average number of OTs per event (Fig. 8). This grid
was chosen to retain spatial details of OT occurrence due to
atmospheric processes and mechanisms, such as orographi-
cally induced lifting, but dampen local accumulations of OTs
on individual pixels caused by the occasional passage of mul-
tiple storms at the same location. The implicit assumption
with this method that potential hail events are distributed
in the same way as OTs implies a certain amount of addi-
tional smoothing that can be neglected at scales larger than
the event length.

Following Punge et al. (2014), both annual and diurnal cy-
cles are modeled with Gaussian distributions. Approximate
normal distributions were found, for example, by Allen et al.
(2015) for hail reports in the US or by Taszarek et al. (2019)
using ESWD reports across Europe. Even if in a few regions
the annual and diurnal cycles deviate from a normal distri-
bution due to climatological peculiarities, this distribution is
plausible on average over a large area. To determine the day
of year, larger grid cells of 3◦× 5◦ are considered, group-
ing 10× 10 of the smaller grid cells used above such that
the number of observations in each cell is sufficient to derive
characteristics of the distribution. Depending on the mean
number of OT events at a certain location, either a mixture
of two Gaussians – to accommodate two peaks in spring and
autumn – or a simple Gaussian distribution is fitted to the
data. The relatively large grid was chosen to ensure a stable
solution when fitting this complex distribution function, also
in regions with few OT events. For each batch of stochas-
tic events representing 250 years, the following procedure is
applied: days are drawn from each larger grid cell of 3◦× 5◦

distribution forN events in this cell and also from the respec-

Figure 8. Event frequency distribution used for stochastic model-
ing. The boxes show different regions discussed in Sect. 3.6: the
greater South Africa domain (SAF, purple box; for simplicity de-
fined as the area between 35 and 22◦ S and 16 and 33◦ E), the High-
veld (HVD, red box), and KwaZulu-Natal (KZN, yellow box) are
shown as the most populated and most storm-affected regions, and
the Gauteng (GAU) region is shown as the largest contiguous urban
area with a significant concentration of assets.

tive eight surrounding grid cells of the same size, yielding 9
times the required number of events. To mimic the grouping
of potential hail events in severe days, the same day is then
attributed to blocks ofN1/3. The exponent of 1/3 was chosen
to best fit the observations (1 would have all events on one
day, 0 would keep the original date for each event). Finally,
the day is retained for N of these events at random. The spa-
tial smoothing technique described above effectively intro-
duces averaging on a scale of 9◦×15◦, which approximately
represents the scale of synoptic processes and flow patterns
governing the spatial (and temporal) clustering of SCS, for
example, by specific weather regimes such as Baltic block-
ing (e.g., Mohr et al., 2019, 2020). This procedure requires
only one tuning parameter and has been found empirically to
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Figure 9. Distribution of potential hail events in the time of day and day of year: (a) historic events from 2005–2018, (b) stochastic model
events, and (c) difference between the two for the events shown in Fig. 8. Days of the year are counted from 1 January. The grid shown in
all figures represents 1 h and 7 d.

approximate the observed space–time distribution of days in
a satisfactory manner.

The hour of day is determined in a similar way as the dis-
tribution on the larger 3◦×5◦ grid. Times are drawn from this
distribution for the N potential hail events considering again
a larger region of 10◦×6◦ around the grid cell center and re-
tained with a chance of 1/4. Again, the grid cell dimensions
may appear arbitrary but have been carefully chosen to cap-
ture observed spatiotemporal variability. In fact, the time of
day is spatially correlated at a smaller scale because in a se-
ries of potential hail events the later ones are spatially shifted
with respect to the earlier ones.

Figure 9 shows the daily and seasonal variation of the
(a) observed potential hail events and (b, same duration – first
14 years) the modeled events. Seasonal hail activity estimates
based on OT activity (2004–2018) and passive microwave
hail retrievals (1998–2018) are presented in Fig. B2. A clear
maximum of the events is found in austral summer (Decem-
ber and January) in the afternoon around 15:00 UTC. Also
note the secondary local maximum in the historic OT event
set at around the day of the year 140 and at 06:00 UTC (dis-
cerned as an area of orange shades in that region in Fig. 9a),
which is also represented in the model. For the Highveld re-
gion, Smith et al. (1998) report a somewhat earlier maximum

of hail events in November and December. Indeed, we find
the convective season peaks around this time in the Highveld
and KwaZulu-Natal and in the first half of November over
Gauteng (not shown). Over the Southern Ocean, the peak oc-
currence is shifted towards fall. Offshore events need to be
represented in the model as they can extend to the coastal re-
gion. An onshore impact of these far offshore events is quite
unlikely and will be marginal at this distance.

The peak time of day is between 14:00 to 15:00 UTC or
16:00 to 17:00 South African standard time, slightly ear-
lier than in Smith et al. (1998, 17:00–18:00) but consistent
with Olivier (1990) (see also Fig. B1). The diurnal cycle
is most pronounced in summer. The temporal climatologies
of historic (Fig. 9a) and modeled (Fig. 9b) events match
rather well. In the histograms shown in Fig. 10a and b, most
of the modeled events fall within the error bars of the ob-
served events, quantified from seven independent samples
over 14 years.

3.1 Geometric event properties

Both length l and width w distributions, determined from the
observed OT events as described in Sect. 2.7, decay rapidly
with increasing values (histograms shown in Fig. 10c and d).
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Figure 10. Distributions of properties of historic and stochastic events for (a) day of the year, (b) hour of the day, (c, d) event length and
width, (e) affected area, (f) orientation of the events, and (g) maximum hail size. With modeled events, (error) bars indicate the median
(spread) among seven independent samples of 14 years’ length. Each set of bars represents 14 d, 1 h, 20 km in length, 10 km in width, 0.1 on
the log scale of part (e), and 10◦in orientation. Since hail severity information is essentially unknown for the historic events, blue bars are
missing in (g).
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Table 1. Potential hail event property distributions and parameters (computed with the standard MATLAB mle function).

Variable Distribution Shape Scale Location
parameter parameter parameter

Length l [km] GEV 0.57 26.68 37.33
Width l [km] GEV 0.90 7.92 13.00
Event-to-storm-area ratio 1/f GEV 0.20 1.26 2.36
Hail size d [cm] Gamma 3.70 0.83

In contrast to previous model versions, we choose to approx-
imate both properties with generalized extreme value (GEV)
distributions rather than exponential distributions. This im-
proves their overall fit but particularly at the lower end of the
range. The good match represents a use case for the GEV
function family beyond extreme value theory. Positive shape
parameters κ for length, width, and event-to-storm-area ratio
(Table 1) indicate that the GEV converges to a Fréchet distri-
bution, also known as a Fisher–Tippett Type II distribution.
These distributions exhibit what are called heavy tails, mean-
ing that the probability density function decreases rather
slowly for large values of x (Wilks, 1995). Consequently,
the GEV tends to give too large values, which is why length
and width were truncated at 1.5 times the largest observed
values at which events effectively cover the entire country
(1445 km× 677 km). In addition, low widths are somewhat
overrepresented, which can be attributed to the design of the
event definition procedure for historic potential hail events.

The fraction f of the event area – the area of the ellipse
spanned by major and minor axes of lengths l and w, π/4lw
– covered by OT events is also modeled using the GEV (his-
togram for the logarithm of the effective event area shown in
Fig. 10e). Here we fitted the GEV to the inverse of that frac-
tion, the event-to-storm-area ratio. This function was found
to match observations well as the inverse has no upper bound.
Furthermore, very OT-sparse events are extremely rare in the
event catalogue. For the highest class (> 105 km2), the frac-
tion in the stochastic set is significantly higher, while the
match is otherwise satisfactory. Table 1 lists the distributions
and parameters for these event properties.

The orientation, or the direction of the major axis of an
event, generally aligns with the direction of propagation. We
find that most frequently events have an orientation of around
100◦, i.e., propagate eastward to southeastward (Fig. 10f)
most frequently. This, however, applies only for the whole
country but not for all regions such as the high hailfall region
Gauteng, where storms preferably propagate in northeasterly
directions. Stochastic modeling was performed using a von
Mises distribution function (Wilks, 1995).

For the sake of completeness, Fig. 10g shows the distribu-
tion of maximum hail diameters dmax modeled with a gamma
distribution function. As can be clearly seen, the distribution
has an exponential decay for sizes larger than 2 cm. The de-
crease in hail counts for smaller diameters is only due to re-

porting practices and does not reflect reality. However, small
hail is not relevant to hail damage and risk.

Because event properties vary across the South Africa do-
main, a box-window average over a 2.5◦ window is used to
estimate these variations and to scale event properties from
the historic event set. Figure 11a shows the spatial variation
of event length, estimated using maximum likelihood estima-
tion. Here the objective function is the negative logarithm of
the product of the probabilities of each sample length given
the assumed (GEV) distribution of lengths. The distribution
parameters were then varied to find the maximum of the ob-
jective function.

Figure 11b represents the most common orientation, ob-
tained by fitting a von Mises distribution (Mardia and Zem-
roch, 1975) to the regional events on a national scale. Events
occurring offshore, where MCSs occur more frequently than
over land (Feng et al., 2021), tend to run longer, whereas
events are shorter in the western part of the domain, hint-
ing towards less organized forms of convection. Orientation
varies from southeastward in the southwest to northeastward
in the northeast and is most aligned over the Eastern Cape re-
gion. Garstang et al. (1987) found winds from the northwest-
erly sector to prevail at 850 hPa on convective storm days
in northeastern South Africa but from a much smaller sam-
ple. The larger spread in orientation towards the north and
west can be explained by (i) the prevalence of storm sys-
tems affecting larger regions at the same time, hence group-
ing multiple parallel storms, as well as by (ii) small, quasi-
stationary events whose orientation does not reflect an influ-
ence of storm propagation.

3.2 Storm severity indicator

At present, SCS intensity cannot be estimated accurately
from geostationary satellite measurements alone, even if
Marion et al. (2019) suggest that storms’ tornadic intensity
is related to the OT area. In a recent study, Khlopenkov et al.
(2021) showed that the difference between the OT temper-
ature and the tropopause temperature and the OT tempera-
ture and surrounding anvil in general is larger for significant
severe (≥ 5 cm) hailstorms than storms with smaller hail re-
ports. But, because of the large uncertainty involved in these
relationships, hail sizes estimated from the temperature dif-
ferences are not further considered in our stochastic model-
ing approach. To at least separate days with strong convec-
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Figure 11. (a) Spatial variation of mean event length (%) and (b) spatial variation of event orientation, location parameter (arrows), and the
shape parameter κ of the von Mises distribution derived from the observed OT events.

tion from fewer convective days, we determined a severity
indicator based on the temperature difference between the
overshooting top and surrounding anvil. This extent can be
somehow related to the strength of the updraft supporting
hailstone growth (Marion et al., 2019; Khlopenkov et al.,
2021; Lin and Kumjian, 2022). To quantify the hail sever-
ity indicator, first the temperature difference between the OT
and the surrounding anvil is computed. The severity index is
then assigned to the highest such temperature difference of
all OTs comprised within an event (see also discussion in the
Appendix).

3.3 Hail size distribution in stochastic modeling

For the estimation of the damage and the risk, the hail model
needs as intensity metric the hail size. Because OT data do
not allow us to estimate reliable hail sizes (see previous
Sect. 3.2), this quantity is only considered and implemented
in the stochastic part of the model based on the hail size dis-
tributions obtained from severe weather reports. Since hail
size observations in South Africa are very rare, we assume
that the maximum hail diameters follow the same distribution
as large hail diameters recorded in the databases of ESWD
and Severe Storms Archive (see Sect. 2.3). Hail sizes for all
hailswaths within an event are derived from the attributed
largest hail diameter. This means that hailswaths with small
hail sizes are more frequent in the stochastic model than the
distribution derived from the database of maximum diame-
ters would suggest. That is also the case in reality, as hail with
a small diameter is less likely to be recorded in a database
than large hail. The hailstone size distribution used in the
stochastic model is assumed to be exponential as suggested
by various authors using hailpad data (Sioutas et al., 2009;
Berthet et al., 2011; Grieser and Hill, 2019). As we do not
know the hail spectra for South Africa, this uncertainty re-
mains in the model. However, when the final hail risk model

is calibrated using historical loss events, this uncertainty in
the result can be reduced to a large degree.

3.4 Length–severity correlation

An important feature of the stochastic hail model is that
it conserves the relation of different properties of the his-
toric potential hail events. The most relevant properties that
are correlated among each other are event length l, event
width w, event severity, and fraction f of event area covered
by potential hail streaks (see also Punge et al., 2014).

The scatterplot of length and width (Fig. 12a) confirms that
correlations between these event properties are conserved in
the model. As in Punge et al. (2014), the correlations be-
tween length and width to the storm severity indicator – rep-
resented by the minimum OT temperature difference for his-
toric events as described in Section 3.2 – are likewise con-
served here. By the same method, the fraction of the event
area affected by potential hail events (“effective track area”
determined from the ellipse area spanned by length l and
width w; see also Sect. 3.1) was also taken into account.
This is achieved by first drawing correlated sets of random
numbers for each property from a uniform distribution and
determined ranks. Then, for each property, we draw values
from the actual distribution, sort them, and attribute them to
events using the pre-determined ranks (Punge et al., 2014).

Figure 12b shows the relation of the event length l and
fraction f area, indicating that in large events, a lower frac-
tion of the area is affected. Table 2 summarizes the Spear-
man rank correlation coefficients of the four variables con-
sidered. Accordingly, longer hail events tend to be wider,
have a higher storm intensity, and have a lower fraction of
the event area covered by hail streaks.
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Figure 12. Scatterplot of historic and stochastic event properties: (a) length and width and (b) length and fraction of event covered by
potential hail events.

Figure 13. Time series of event count anomaly: (a) deviation of the annual sum from the 14-year mean and (b) event days per year (July–
June) for the regions Gauteng (GAU, regional annual mean event count 35), the Highveld (HVD, 152), KwaZulu-Natal (KZN, 181), and
South Africa (SAF, 1259). The July–June period is considered more appropriate as the austral summer season is not split among years. For
the 2004/2005 period, only events in 2005 are covered; likewise 2018/2019 covers only the last 6 months of 2018. When computing the event
count anomalies for these years, the overall repartition of events to half years was taken into account.

3.5 Inter-annual variability

Hailstorm frequency shows considerable year-to-year varia-
tion in both the annual number of hail events and hail days
(Fig. 13). Even if there is a strong correlation between all
regions shown in the figure (i.e., GAU, HVD, and KZN),
smaller regions because of the short temporal and small spa-
tial scales of potential hail events tend to experience rela-
tively higher variability. This information helps to better un-
derstand the year-to-year variability of hail hazard and re-
sulting losses. Note, however, that the year 2013/2014 had
the second-lowest event count in the Gauteng region, despite
the large damage from the 28 November 2013 event. Fig-
ure 14 shows patterns for the first 4 years of the historic event
set (left), along with 5 years of the stochastic event set for a
visual impression of spatiotemporal variability. Overall, the
variations in location and intensity of the annual maximum
look realistic. The model has fewer events in the north com-

pared to the observed event count as it is based on the scaled
OT frequency instead of events, and events in this region
contain fewer OTs. The modeled distribution appears overly
smoothed at lower rates, but this is unlikely to be a concern.

3.6 Intra-annual variability

Quite relevant in practice is the representation of multiple
events occurring on a single day, not considered by Punge
et al. (2014). In fact, it turns out that only 15 % of the po-
tential hail event days have just one event, whereas on a
few occasions, more than 30 events were detected on a sin-
gle day. Figure 15 shows the number of days with a given
number of observed events per day for the South Africa do-
main (KwaZulu-Natal – KZN, Highveld – HVD, and Gaut-
eng – GAU regions as displayed in Fig. 15). Naturally, the
smaller the study area, the lower the respective counts. Over
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Figure 14. Spatial patterns of annual event distribution for single years (a, c, e, g) and the stochastic event set (b, d, f, h) for the years
(a, b) 2005/2006, (c, d) 2006/2007, (e, f) 2007/2008, and (g, h) 2008/2009.
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Table 2. Spearman rank correlation matrix of historic OT event properties.

Property Set Length Width Severity Event-to-storm-area
ratio

Length historic 1.00 0.89 0.39 0.75
model 1.00 0.90 0.39 0.49

Width historic 0.89 1.00 0.41 0.61
model 0.90 1.00 0.40 0.43

Severity historic 0.39 0.41 1.00 0.17
model 0.39 0.40 1.00 0.16

Event-to-storm-area historic 0.75 0.61 0.17 1.00
ratio model 0.49 0.43 0.16 1.00

Figure 15. Spectrum of number of events per day on historic event
days for the entire country (SAF), the Highveld (HVD), KwaZulu-
Natal (KZN), and Gauteng (GAU).

the Highveld, the events are concentrated on a smaller num-
ber of days compared to the similar-sized KZN region.

The panels in Fig. 16 show the same regional frequency
spectra, comparing the historic events to six equivalent sub-
sets of the stochastic set. For example, the Highveld region
has 2530 OT events over 813 d. This corresponds to around
180 hail events on 58 d each year. In an equivalent sam-
ple of subsets from the stochastic event set, the event count
ranges from 2281 to 2942 (2523±232) events on 805 to 893 d
(838± 32). Table 3 summarizes the annual OT and model
event statistics for the four regions.

The result is satisfactory for the South Africa and High-
veld regions, whereas for the KwaZulu-Natal region, events
concentrate on slightly fewer days. Given the absence of
multiple-event treatment in previous model versions, this
new event approach represents an improvement for the es-
timation of damage on individual days.

Table 3. Annual severe convective storm characteristics for South
Africa, estimated from 14-year periods for the greater South Africa
domain (SAF), KwaZulu-Natal (KZN), the Highveld (HVD), and
Gauteng (GAU).

Region OT OT Model OT OT Model
count event event days event hail

count count days days

SAF 2594 1439 1494± 47 196 181 172± 2
KZN 359 207 240± 13 96 80 66± 1
HVD 339 181 180± 17 74 58 60± 2
GAU 71 40 42± 3 32 23 26± 2

In the Highveld region, there were 74 d yr−1 with OT de-
tections, 58 d with OT events, and 60±2 events in the model
event set, whereas in the Gauteng region, these numbers
were 32 and 23, respectively (Table 3).

In contrast, Smith et al. (1998) found 69 hail days per year
from hail reporting from a network of voluntary observers by
mail for a portion of Gauteng (2800 km2). The observers re-
ported three size categories: 3–10, 11–30, and > 31 mm; in-
formation about the number of days for the different classes,
however, is missing. Assuming an exponential hail size dis-
tribution, one can assume that the given number of hail days
is dominated by events with small hail sizes. These are un-
derrepresented in our model, as they are not relevant for hail
damage. This hypothesis is supported by the fact that Smith
et al. (1998) reported about severe hail (> 3 cm in diameter)
on an average of only 3.3 d yr−1.

When considering only hail of this size and assuming the
hail severity indicator of the stochastic event set would cor-
respond to an actual diameter, the stochastic event set has
14.5 hail days per year in the Gauteng region. Clearly, the fre-
quency of severe events may have changed since the time of
Smith’s observations, through natural variability or climatic
change, but the effect is likely small compared to the uncer-
tainty of both past and present estimates.
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Figure 16. As Fig. 15, but comparing subsets of the stochastic event set to the historic OT event set (as well as the set containing events
lasting only 1 time step) for each region. (a) South Africa, (b) the Highveld, and (c) KwaZulu-Natal. Numbers indicate the total count and
total number of days on which these occurred for each set.

4 Modeled event footprints

4.1 Importance sampling

When applying the stochastic hail risk model to an insurer’s
portfolio, going through millions of events for – potentially
– millions of assets is a time-consuming process. While the
complete event set is optimal for describing the hail hazard,
an intermediate step, called importance sampling (IS), is in-
troduced to make risk calculations more efficient, reducing
the event count by a factor of approximately 10. However, the
most important events in terms of damage potential are over-
represented to allow for adequate statistics (notably, comput-
ing damage at higher return periods reliably).

The newly introduced explicit modeling of the date re-
quires that all events occurring on the same day need to be
considered together. Consequently, daily aggregated damage
potential (here: ellipse area× hail severity indicator) is the
relevant quantity to rank event days by overall aggregated
severity. The class thresholds correspond to the 50th, 80th,
95th, and 99th percentiles of aggregated severity, splitting the
event set into five classes, of which 2.5 %, 7.5 %, 5 %, 10 %,
and 100 % were retained. To compensate, the retained events

are attributed a higher frequency (default is once per event
set period, e.g., 25 000 years), so the total damage potential
is conserved. These frequency weights are hence the inverse
of the retained fraction per class, i.e., 40, 13.3, 20, 10, and
1 for classes 1 to 5.

The large differences in event frequency across South
Africa mean that local statistics on, for example, hail dam-
age or probable maximum loss for a 200-year return period,
can rely on a much bigger sample in the hail hotspots of the
country compared to the less hail-prone regions in the west.
It is hence important to retain a minimum number of events
in those low-hail regions, in practice at least one per 250-year
batch (if one is present in the first place).

Figure 17 illustrates this point: Fig. 17a shows the distri-
bution of events retained in the importance sampling; some
areas in the west and far north have fewer than 50 events in a
0.5◦×0.3◦ box (≈ 30 km in extent). As to be expected, when
frequency weights are applied (Fig. 17b and c), the distribu-
tion corresponds very well to that of the full event set (Fig. 8).
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Figure 17. (a) Number of events retained by the importance sampling; (b) as (a) but weighed by frequency; (c) event frequency before
importance sampling.

4.2 Footprint generation

Finally, the areas affected by hail with corresponding hail
sizes need to be determined for the stochastic events, forming
a hail “footprint”. Given the arbitrary paths of thunderstorms
observed for the historic events, we chose to achieve this by a
randomized process of allocating ellipsoid hail streaks within
the event area. These streaks are aggregated across all events
of a day to form the daily hail footprint, which is applied to
portfolios in the further stages of the risk model. The foot-
print catalog gives local information on hail occurrence and
a severity indicator for each day on a 2×2 km2 grid covering
continental South Africa.

The footprint generation algorithm attempts to mimic ob-
served patterns of hailfall in an empirical way. A first streak
is located in the center of the event, and its length, ori-
entation, and severity indicator match those attributed to
the event. Streak widths were chosen to approximate hail
streaks in ground- and radar-based studies (Stout et al., 1960;
Changnon, 1977; Schmidberger, 2018; Fluck et al., 2021),
without strictly following observed distributions. An expo-
nential distribution is assumed, with a mean width of 6 km
and a maximum of 20 km. Hail severity decreases towards

the streak’s edges in a parabolic way, as proposed by Schmid-
berger (2018). This is deemed acceptable, since actual hail
patterns on the ground are largely uncertain across the world.
In an iterative process, further streaks are added until the
combined streak area covers the prescribed fraction of the
event area. They are located randomly within the event area,
and the possible event length decreases with each new streak.
Streak orientation is varied by±10◦ around the event orienta-
tion to account for both the uncertainty in the tracking of OTs
and new cell formations preferably at the downshear flank.

Accumulating events over a time equivalent of 2500 years,
Fig. 18a and b show the number of events hitting each cell for
a 10 % sample of the importance-sampled event set, for the
least and most severe class (1 and 5, respectively). Clearly,
the footprint frequency over the Highveld and KwaZulu-
Natal increases from class 1 to 5, whereas it decreases in
the western half of the country. Consequently, hailstorms are
relatively more often severe over the Highveld than other
parts of the country, with important consequences for the
financial risks associated with the peril. Figure 18c shows
the accumulated, frequency-weighed annual sum of hail oc-
currences in the model. We note that the local frequency-
weighed hail count per year is about 2 in the KwaZulu-Natal
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Figure 18. Number of events hitting a grid cell per year (a, b): for classes 1 and 5, respectively; (c) total, frequency-weighted; (d) as (c) but
for hail diameter> 2 cm. Port Elizabeth is now Gqeberha.

maximum and around 1 in the Highveld and Gauteng re-
gions, roughly in line with 0.81 normalized hail days per year
in Held (1974). For a maximum hail severity indicator greater
than 2 cm, the overall number of events decreases by about
75 %, while the overall spatial distribution remains almost
the same (Fig. 18d).

Based on the local hail count and event set length, re-
turn periods, i.e., inverse frequencies, can be estimated for
given hail severity thresholds. Hail severity for a fixed re-
turn period was calculated by linear interpolation between
such thresholds fixed at constant intervals. Summarizing the
information contained in the event set, and assuming hail
severity estimates were corresponding to actual hail sizes,
Fig. 19 shows the maximum hail severity that can be ex-
pected once per decade at a given location: in the most af-
fected parts in the east, near Newcastle and Ladysmith, hail-
stones of around 4 cm were to be expected, followed by
3.5 cm in Pietermaritzburg, Mthatha, or Nelspruit (officially
known as Mbombela); 3.1 cm in Durban; and 2.8 cm in the
major cities of Gauteng but fewer than 2 cm in the western
third of the country. Despite the uncertainty regarding the

exact hail-size–OT relation, this information has clear impli-
cations for the need for mitigation measures to reduce hail
risk, such as roof-cover robustness or covered parking of ve-
hicles.

5 Conclusions

In our paper, we have presented a method to estimate hail
frequency for South Africa, a country frequently affected by
large hail, and to generate footprints over a long-term period
of 25 000 years, which can be used by the insurance indus-
try to quantify hail risk. Despite the high exposure to hail, no
reliable estimates of hail frequency are available for South
Africa to date. The lack of available damage reports or accu-
rate hail observations, for example, by human observers or by
hailpad observations, limits the accuracy of hail hazard de-
scriptions (compared to, e.g., Europe, Púčik et al., 2019). The
uneven distribution of population and wealth in the coun-
try complicates this matter further. For this reason, satellite-
based observations of SCS/hailstorms have been used to de-
scribe the spatial distribution and nature of intense convec-
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Figure 19. Model-estimated maximum hail size occurring once in
10 years for grid cells across South Africa, computed as the lowest
hail diameter class with a return period. Port Elizabeth and Nelspruit
have been renamed to Gqeberha and Mbombela, respectively.

tion in the country. By stochastic modeling, hail hazard was
derived from a large sample of events, which can be used to
quantify hail risk for a given portfolio of insured assets. As
was shown in the paper, the stochastically generated event set
matches very well with the historic event set over a 14-year
period.

The combination of improved OT detection and advanced
spatiotemporal clustering allows the determination of hail
hazard zones much more precisely compared to the method
used for the Willis European Hail Model (Punge et al., 2014).
Regarding storm properties, exponential distributions have
been replaced by GEV distributions in most instances, yield-
ing a better fit to observations.

More importantly, the model is now capable of produc-
ing realistic spatiotemporal distribution of events, handling
multiple events per day as well as their spatial spread and
multi-year variability. By explicitly including the date as
an event property, it has become possible to represent out-
breaks with multiple events on a single day in a realistic
way (see Fig. 16). Hence the increased financial risk of clus-
ters with repeating severe storms (e.g., 11 and 28 Novem-
ber 2013 in Gauteng, Dyson et al. (2020); or in Germany on
27–28 July 2013, Kunz et al. (2018); Munich RE (2015)) is
accounted for.

In addition, the footprint generation algorithm has been re-
vised to predict hail only in a fraction of the event area, mim-
icking observed storms. This will assist in the calibration of
the exposure and vulnerability functions of the risk model
and yield more accurate loss estimates. Finally, another ad-
dition compared to previous model versions is the time of
day, which will allow for the reflectance of daily changes in
exposure, for example of parked cars, in the risk model.

Of course, with the OT-based approach, some scattered,
short-lasting hail episodes forming smaller hailstones may
be missed. These events, however, are generally unimpor-
tant for the hail threat to insurance businesses, which are
mostly concerned about major loss events. Another limita-
tion of the OT approach is the difficulty to distinguish hail-
producing from non-hail producing storms or to identify the
fraction of an individual storm’s track in which it produces
hail. While storm environments from reanalysis (e.g., Bedka
et al., 2018b; Punge et al., 2017) can help with the first task,
they can hardly address the second.

Nonetheless, while the absolute number of hail days per
year strongly depends on the minimum size of hail consid-
ered, findings are comparable to local hail-reporting-based
studies, particularly for the Gauteng region, for which some
studies of observed hail frequency are available (Carte, 1977;
Admirat et al., 1985; Smith et al., 1998). However, there is
disagreement with previous studies over the presence of a
hail frequency maximum in the Lesotho mountains, absent
in our study. Also, there is uncertainty in the occurrence of
hail offshore, albeit not in the focus of this study. Future stud-
ies will have to address whether the differences between our
study and previous work in the spatial distribution of hail are
artifacts of imperfect methodology and assumption or actu-
ally represent reality.

Appendix A: OT intensity

To demonstrate the relationship between IR-based storm-
intensity metrics and an estimate of hail size, we com-
pared GOES-12 and GOES-13 data with the 95th per-
centile Maximum Expected Size of Hail (MESH95) from
the US NEXRAD GridRad dataset at hourly intervals from
2007–2017 (Murillo and Homeyer, 2019). MESH95 cell ob-
jects exceeding two pixels in area (10 km2) and spaced by
at least 28 km are derived using watershed segmentation ap-
plied to the hourly 10 mm+ MESH95 climatology (Murillo
and Homeyer, 2019) using the open-source Tracking and
Object-Based Analysis of Clouds (tobac v1.2; Heikenfeld
et al., 2019) Python package. Further, following Murillo et al.
(2021), we have applied linear discriminant analysis (LDA)
using their coefficients to combine reanalysis precipitable
water and 0–6 km shear to filter out likely false alarms.

In Fig. A1, the following GOES-12/13 IR-derived param-
eters are matched with and binned by MESH95 cell maxima:
OT probability, area of the embedded cold spot (ECS), ECS–
anvil temperature difference, and ECS–tropopause temper-
ature difference. Though there is considerable overlap in
GOES parameters between the various MESH95 bins, it can
be seen that all parameters representing updraft intensity
and area are positively correlated with MESH95. The cor-
relation between GOES-16 data and MESH95 during spring
and summer 2017 (not shown) is even greater than GOES-
13, due to higher spatial resolution of GOES-16. OT prob-
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ability is better correlated with MESH95, suggesting that
the prominence of an ECS relative to the background anvil
combined with its intensity and area are all contributing to
higher OT probability. Therefore, the IR–anvil brightness
temperature difference is a suitable parameter, independent
of any reliance on a numerical model, for purposes of mod-
eling the expected hail severity at the ground. Though these
results suggest a quasi-linear relationship between MESH-
and satellite-derived updraft intensity proxies, the true rela-
tionship between such proxies and hail size encountered on
the ground is unknown, primarily due to known uncertain-
ties with hail size reporting. While direct matching of SE-
VIRI with MESH cells over South Africa is not possible, the
≈ 3 km nadir pixel resolution (halfway between GOES-13
and GOES-16) and lower view zenith angles over the South
African domain (MSG is positioned at 0◦ E) are expected to
result in similarly robust correlations with hail size diameter.

Table A1 further compares the frequency of GOES-13,
GOES-16, and MSG ECS detections, e.g., areas that appear
distinctly colder than the surrounding anvil and are consid-
ered to be OT candidates, and OT detections (OT probabil-
ity≥ 0.5) matching various hail detections from radar cells,
ground-spotter-reported hail size (SPC), and microwave ra-
diometer (MWR) hail detections. Requiring OT probabil-
ity≥ 0.5 to refine severe hail detections to those we are
most confident in, we lose 54 % (44 %) of the severe-hail-
producing storms exceeding 4 cm MESH95 maxima for
GOES-13 (GOES-16). In other words, many severe hail-
storms can look quite “boring” from a satellite infrared per-
spective, but the boring ones are hard to differentiate from
false OT detections in anvils (i.e., detections in cold outflow
near to real OTs). Uncertainty between report time or the
time a radar scanned a storm vs. the time of OT detections
may also influence our results. For example, an OT may have
been prominent several minutes before the time of a hail de-
tection, but we only have a single GOES snapshot to match.
By relaxing the matching criterion to ECS detections, we
lose only 30 % (17 %) of likely severe-hail-producing cells
for GOES-13 (GOES-16).

The frequency of geostationary updraft detections that
are co-located with MWR hail detections is comparable to
MESH95 and SPC hail reports despite added uncertainty
due to parallax shifts in the storm positions in microwave
data, especially those close to the limb of the overpass. En-
abled by the global coverage of MWRs, Table A1 shows that
2005–2018 MSG SEVIRI ECS and OT detections over South
Africa match with likely severe MWR hail detections with
frequencies similar to GOES-16 over the US. Although the
total number of matches is relatively low over South Africa,
this suggests that MSG IR-based updraft detections agree
with independent hail detections, thus, supporting the use of
MSG SEVIRI to detect hail cores over South Africa.
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Table A1. Detection counts and fractions of geostationary-derived embedded cold spot (ECS) and OT detections matched within 28 km2 and
15 min of hail observations.

Count Count Fraction Count Fraction
with with with OT with OT
ECS ECS

GOES-13

MESH95≥ 4 cm 148 326 104 007 0.70 67 668 0.46
MESH95≥ 2.5 cm 384 444 219 436 0.56 109 839 0.29
SPC hail≥ 2.5 cm 121 505 82 443 0.68 46 211 0.38
MWR P_hail≥ 50 4225 3165 0.75 2440 0.58

GOES-16

MESH95≥ 4 cm 10 452 8677 0.83 5814 0.56
MESH95≥ 2.5 cm 28 811 19 367 0.67 10 619 0.37

MSG

MWR P_hail≥ 50 732 536 0.73 458 0.63

Figure A1. GOES-12 and GOES-13 IR-based parameters binned by MESH95 hail sizes. MESH95 exceeding 4 cm is considered a potentially
severe storm. Counts in each bin are shown below the x axis, and the Pearson correlation coefficient is shown in the upper right of each panel.
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Figure B1. Variation in OT activity throughout the day, estimated
with the OT method (yellow) and passive microwave detection
(blue), normalized by the total number of detections.

Appendix B: Climatology of satellite-derived hail
estimates

The microwave hail detection algorithm (Bang and Ce-
cil, 2019) and the OT-based detection method (Khlopenkov
et al., 2021) have independently been designed to represent
hail occurrence. A comparison of the spatial and temporal
variability of the detected occurrences can thus be used to
identify times and locations where the two methods disagree,
indicating potential weaknesses or imbalances in one of the
approaches.

The daily cycle of OT activity is more pronounced com-
pared to that for the microwave detection (Fig. B1), and its
maximum sets in almost an hour earlier. Overall the agree-
ment between the two satellite climatologies, however, is
very good, but the OT algorithm may be slightly too sensitive
for weaker convection.

To that end, Fig. B2 shows the seasonal sums of OT
(Fig. B2a–d) and microwave (Fig. B2e–h) activity over the
respective observational period. Of all seasons, most OTs
are detected over land in austral summer (DJF; Fig. B2a
and e), and the spatial distribution is similar to that of cli-
matology. In autumn (MAM; Fig. B2b and f), and to a lesser
degree in winter (JJA; Fig. B2c and g), both methods indi-
cate persisting hail activity over the eastern oceans and along
the coast. Summertime (JJA; Fig. B2c and g) presents the
highest activity with both methods and a clear focus along
the eastern slopes of the Great Escarpment and some ac-
tivity over the southeastern ocean. We note a difference in
the north, where the OT algorithm appears to detect intense
but, due to high temperatures, non-hail-producing convection
(Fig. B2c). Both methods indicate widespread hail activity in
spring (SON; Fig. B2d and h) over the eastern half of the
continent and adjacent oceans, with a somewhat more pro-
nounced concentration around Botswana and the Drakens-
berg with the OT method. This method could thus be some-
what too sensitive to the frequent but weak convective ac-
tivity in springtime also found in other regions of the world
(e.g., Europe, Punge et al., 2017).
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Figure B2. Seasonal hail activity estimates based on overshooting top activity (2004–2018, a–d) and passive microwave hail retrievals
(1998–2022, e–h) for austral summer (DJF; a, e), autumn (MAM; b, f), winter (JJA; c, g), and spring (SON; d, h).
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Code availability. The hail event identification and stochastic gen-
eration software was developed in partnership with insurance broker
Willis Towers Watson (WTW) and is therefore not publicly avail-
able.

Data availability. MSG SEVIRI data are available from EUMET-
SAT: https://www.eumetsat.int/eumetsat-data-centre (EUMET-
SAT, 2023). The OT dataset is not publicly available, but it may be
available upon request.

The GPM GMI and TRMM TMI L1C passive-microwave
data are available for download from the Precipitation Process-
ing System (https://arthurhouhttps.pps.eosdis.nasa.gov/https:
//arthurhouhttps.pps.eosdis.nasa.gov; last access: 21 April 2023)
after registration (https://registration.pps.eosdis.nasa.gov/
registration/, last access: 21 April 2023).

The GOES-13 and GOES-16 data used to generate ECS and
OT detections over the US can be acquired from the NOAA
Comprehensive Large Array-Data Stewardship System (CLASS):
https://www.avl.class.noaa.gov/saa/products/welcome;jsessionid=
BDF491314248B818A20B53DFF3EC97B5 (NOAA, 2023).

The GridRad MESH data used to analyze hailstorm detectabil-
ity over the US can be acquired from http://gridrad.org/data.html
(University of Oklahoma, 2023).

ERA5 reanalysis can be downloaded from the Copernicus
Climate Change Service (C3S) Climate Date Store (https://cds.
climate.copernicus.eu/#!/search?text=ERA5&type=dataset; Coper-
nicus, 2023).

Hail reports are available at the European Severe Weather
Database (ESWD) operated by ESSL: https://eswd.eu/ (ESWD,
2023; Dotzek et al., 2009).

Insurance loss data and hail reports for Australia are not publicly
available.
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