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Abstract. The increasing availability of long-term observa-
tional data can lead to the development of innovative mod-
elling approaches to determine landslide triggering condi-
tions at a regional scale, opening new avenues for land-
slide prediction and early warning. This research blends
the strengths of existing approaches with the capabilities
of generalized additive mixed models (GAMMs) to develop
an interpretable approach that identifies seasonally dynamic
precipitation conditions for shallow landslides. The model
builds upon a 21-year record of landslides in South Tyrol
(Italy) and separates precipitation that induced landslides
from precipitation that did not. The model accounts for ef-
fects acting at four temporal scales: short-term “triggering”
precipitation, medium-term “preparatory” precipitation, sea-
sonal effects, and across-year data variability. It provides
relative landslide probability scores that were used to es-
tablish seasonally dynamic thresholds with optimal perfor-
mance in terms of hit and false-alarm rates, as well as addi-
tional thresholds related to user-defined performance scores.
The GAMM shows a high predictive performance and indi-
cates that more precipitation is required to induce a landslide
in summer than in winter/spring, which can presumably be

attributed mainly to vegetation and temperature effects. The
discussion illustrates why the quality of input data, study de-
sign, and model transparency are crucial for landslide predic-
tion using advanced data-driven techniques.

1 Introduction

Landslides are potentially hazardous phenomena that can oc-
cur under a variety of environmental conditions. In moun-
tainous and hillslope environments, they are amongst the
most influential landscape-forming geomorphic processes
while simultaneously posing a risk to people, assets, and
infrastructure (Crozier, 1989; Glade et al., 2005). Each
year, considerable economic losses and fatalities are caused
by landslides across the globe, and ongoing environmental
changes are expected to alter future landslide hazard and as-
sociated risk (Slaymaker et al., 2009; Petley, 2012; Gariano
and Guzzetti, 2016; Alvioli et al., 2018; Froude and Pet-
ley, 2018; Haque et al., 2019; Lin et al., 2022; Maraun et
al., 2022; Ozturk et al., 2022).
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In this context, the development of reliable decision sup-
port tools and landslide early warning systems is of criti-
cal value to mitigate or reduce future harm. Literature de-
picts that landslide early warning systems have gained in-
creasing attention over time (Piciullo et al., 2018; Guzzetti
et al., 2020). At the same time, however, it is known that
the effectiveness of subsequent decisions and risk reduction
measures heavily depends on the reliability of the underly-
ing prediction rules that describe the associations between
the occurrence of slope instabilities and their causes (Basher,
2006; Segoni et al., 2018b; Steger et al., 2021). In most cases,
the timing of landslide occurrence can primarily be explained
by an interplay of preparatory and triggering dynamic condi-
tions, such as pre-moistened soil experiencing a heavy pre-
cipitation event (Crozier, 1989). In Italy, for instance, rain-
fall can be considered the main dynamic factor for explain-
ing the timing of shallow landslide occurrence (Brunetti et
al., 2010).

For regional scale assessments, statistical approaches are
widely used to create an empirical relation between a land-
slide catalogue (i.e. information on past landslide occur-
rence) and associated rainfall measurements. For this pur-
pose, a regression model is commonly used to derive em-
pirical rainfall thresholds, i.e. a landslide is likely to be
initiated if the respective rainfall conditions are exceeded.
Widely used examples are the cumulative event-rainfall–
duration (ED) threshold or its widely used derivative, the
intensity–duration (ID) threshold. These thresholds are vi-
sualized as lines within a log-scaled scatterplot (e.g. cumu-
lated rainfall vs. rainfall duration) of points, each represent-
ing a rainfall condition that induced one or more landslides.
ED and ID thresholds may represent a low bound of rain-
fall amount, below which past landslides have rarely been
triggered – e.g. 5 % non-exceedance probability – and fu-
ture landslides are more likely expected with higher rain-
fall conditions (Caine, 1980; Guzzetti et al., 2008; Brunetti
et al., 2010; Peruccacci et al., 2012; Piciullo et al., 2017;
Guzzetti et al., 2022). Although such binary thresholds may
be preferred for decision-making purposes, they do not ide-
ally represent the continuous nature of the underlying phe-
nomena, i.e. the fact that the likelihood of landslide occur-
rence can change gradually with changing precipitation con-
ditions. Empirical ED or ID thresholds are dependent on a
variety of decisions (Segoni et al., 2018a), such as the type of
rainfall data used (e.g. ground-based measurements or radar
estimates) and their temporal and spatial resolutions, the spe-
cific criteria used to define the rainfall conditions (either trig-
gering or non-triggering landslides), the strategy applied to
link a specific landslide location with nearby rainfall mea-
surement locations, and the method adopted to estimate the
threshold parameters. In particular, the separation of inde-
pendent rainfall events is usually based on a criterion that
refers to dry (or low rainfall) hiatuses between the events.
Literature shows that fixed time periods (e.g. 24 h without
rainfall) and variable time periods, also depending on sea-

sonality, have been proposed (Guzzetti et al., 2008; Brunetti
et al., 2010; Melillo et al., 2015). Dedicated software able to
objectively reconstruct rainfall events and to calculate rain-
fall thresholds for different non-exceedance probabilities has
facilitated the automatic derivation of empirical thresholds
(Melillo et al., 2018). In summary, most empirical rainfall
thresholds only consider rainfall conditions associated with
known slope instabilities, neglecting those that did not trig-
ger landslides. Despite promising results from numerical and
synthetic experiments (e.g. Peres and Cancelliere, 2021), it
remains challenging to distinguish precipitation conditions
that triggered landslides from those that did not trigger land-
slides at a regional scale. In fact, lack of landslide informa-
tion does not necessarily mean that landslides have not oc-
curred in an area (Gariano et al., 2015; Steger et al., 2021).

Binary classification algorithms, such as logistic regres-
sion, are less used in this field, despite their potential to elab-
orate differences between rainfall that initiated landslides and
rainfall that did not cause slope failure (Glade et al., 2000;
Jakob and Weatherly, 2003; Frattini et al., 2009; Peres and
Cancelliere, 2014; Giannecchini et al., 2016; Postance et
al., 2018). This may be due to a non-trivial sampling of the
representative non-landslide data (i.e. rainfall events not in-
ducing landslides), associated data uncertainties, and higher
data demands (e.g. collection of landslide absence data).

Many empirical studies dealing with critical landslide
rainfall conditions did not perform a quantitative result val-
idation (Gariano et al., 2015; Segoni et al., 2018a). Ap-
proaches focusing on landslide observations only (e.g. con-
ventional ED thresholds) frequently compare the respec-
tive results with independent landslide datasets, thus provid-
ing insights into the portion of correctly “predicted” land-
slide events (Gariano et al., 2015; Piciullo et al., 2017). The
trade-off between correctly classified landslide observations
and correctly classified non-landslide observations is more
straightforward to validate using binary algorithms. In this
context, confusion matrices or receiver operating characteris-
tic (ROC) curves can be used to evaluate the overall ability of
the model to separate rainfall conditions with landslides from
those without. ROC curves are primarily used to assess over-
all model performance for continuous outcomes (e.g. prob-
ability of landslides) but proved useful to derive optimized
probability cutpoints (Jakob and Weatherly, 2003; Peres and
Cancelliere, 2014; Gariano et al., 2015; Piciullo et al., 2017;
Postance et al., 2018).

Although most empirical studies put the spotlight on short-
term triggering conditions, the effects of preparatory hy-
drological factors and medium-term antecedent precipitation
conditions on the occurrence of landslides were also explored
(Bogaard and Greco, 2018). Usually, a variable or function
representing medium-term precipitation before the triggering
event is used as a proxy for subsurface wetness immediately
prior to slope failure (Crozier, 1999; Glade et al., 2000; Mirus
et al., 2018; Monsieurs et al., 2019; Leonarduzzi and Molnar,
2020; Rosi et al., 2021). For instance, early works of Glade

Nat. Hazards Earth Syst. Sci., 23, 1483–1506, 2023 https://doi.org/10.5194/nhess-23-1483-2023



S. Steger et al.: Seasonal effects of triggering and preparatory precipitation for landslide prediction 1485

et al. (2000) and Chleborad (2000) built upon the idea that
rainfall conditions responsible for landslide initiation can be
described by combining a variable that represents the short-
term precipitation immediately before slope failure with a
variable that relates to the medium-term antecedent wetness
conditions. In these cases, short-term triggering precipitation
was represented by the total rainfall amount measured on the
day of the event (Glade et al., 2000) or by the cumulative pre-
cipitation observed during a number of days prior to the event
(e.g. 3 d in Chleborad, 2000). Antecedent precipitation was
described by a time-dependent decay coefficient (Crozier,
1999; Glade et al., 2000) or by cumulative precipitation in
a fixed 15 d time window prior to the 3 d “triggering” pre-
cipitation (Chleborad, 2000). Several works still rely on the
idea of explicitly combining variables representing trigger-
ing precipitation and antecedent preparatory precipitation or
soil moisture conditions to derive critical thresholds for land-
slide occurrence (Scheevel et al., 2017; Mirus et al., 2018;
Postance et al., 2018; Rosi et al., 2021). Rosi et al. (2021) ob-
served that 3D thresholds based on intensity, duration, and 7
to 30 d cumulative rainfall can considerably reduce the false
alarms in comparison to classical ID thresholds.

Novel data-driven approaches can go beyond a predeter-
mined parametric equation and allow accounting for differ-
ent interacting effects on landslide occurrence in a flexible
way (Steger et al., 2021; Distefano et al., 2022; Tehrani et
al., 2022). For instance, the consideration of seasonal interac-
tions may allow the description of how the effect of a specific
precipitation amount on landslide occurrence may vary be-
tween seasons, since associated temperature and vegetation
effects are known to induce changes in interception, evapo-
ration, plant water uptake, and transpiration. This in turn af-
fects slope hydrology and therefore also slope stability (Sidle
and Ochiai, 2006; Norris, 2008; Gonzalez-Ollauri and Mick-
ovski, 2017; Schmaltz et al., 2019). Seasons can also be as-
sociated with different types of precipitation, e.g. convective
vs. frontal events (Peruccacci et al., 2012), and in some ar-
eas snow melt also plays a considerable role on slope sta-
bility (Krøgli et al., 2018; Schmaltz et al., 2019). Compara-
ble amounts of short-term precipitation may induce different
quantities of landslides due to seasonal effects and associated
antecedent rainfall conditions (Luna and Korup, 2022).

In summary, no standard procedure exists for the identifi-
cation of precipitation responsible for landslide occurrence,
and different approaches have their advantages and draw-
backs (Segoni et al., 2018a). This research aims to exploit
the possibilities offered by novel generalized additive mixed
models (GAMMs) and the strengths of a wide range of ex-
isting approaches to develop a flexible modelling procedure
to identify critical, season-dependent rainfall conditions for
shallow landslide triggering. The proposed approach aims to
create a data-driven model that

– explicitly accounts for precipitation that caused land-
slides and precipitation that did not cause landslides;

– considers both short-term triggering precipitation (T )
and medium-term preparatory precipitation (P );

– includes season-specific variations of the effect of T and
P on landslide occurrence;

– considers potential inconsistencies in landslide report-
ing across the years (i.e. reporting biases);

– produces continuous outcomes (i.e. probability scores)
that can be converted into objective, optimal or user-
defined thresholds based on ROC metrics;

– and allows a thorough spatial and temporal cross-
validation of the results.

The analysis builds upon a 21-year (2000–2020) record of
earth and debris slides that occurred in South Tyrol (north-
ern Italy) and high-resolution gridded daily precipitation data
(Steger et al., 2021; Crespi et al., 2021).

2 Study area

The approach was developed for the mountainous Ital-
ian province of South Tyrol, northern Italy (Fig. 1a). The
landslide-prone area covers 7400 km2 and is characterized
by varying environmental conditions that determine landslide
occurrence. Landslide predisposition is primarily controlled
by the general high relief energy, terrain morphology (mean
slope 27◦), variations in hillslope materials, and vegetation
cover (more details in Steger et al., 2021).

South Tyrol is located in the southern Alps, which are at
the intersection area for different air masses: humid influ-
ences from the Atlantic, dry air masses from the continen-
tal east, and warm contribution from the Mediterranean. The
geographical location together with the mountainous topog-
raphy leads to a strong climate variability and several small-
scale phenomena, including thermal inversions and cool air
pools, warm and dry Föhn events, orographic enhancement
of precipitation, and sheltered dry regions. The warmest con-
ditions occur in July (13 ◦C areal average) and the lowest
temperatures in January (−4 ◦C), with a mean annual cycle
showing the greatest warming between April and May and
the largest cooling in the transition from October to Novem-
ber (Adler et al., 2015; Crespi et al., 2021). The wettest sea-
son is summer with about 120 mm per month (areal aver-
age), which also corresponds to the main convective period,
while the lowest precipitation amounts are registered in win-
ter, especially in February (30 mm per month areal average).
Precipitation amounts are still remarkably high in autumn
(∼ 80 mm per month) when intense and persistent precipi-
tation events are generally brought by low-pressure systems
from a still-warm Mediterranean Sea (Adler et al., 2015;
Miglietta and Davolio, 2022). At an annual scale, the wettest
areas are located along the northern border of the Puster Val-
ley (east) and close to Trentino (south-east), where annual to-
tals exceed 1500 mm, while drier conditions characterize the
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Figure 1. Position of the study area within Italy (insert within
panel a), elevation, and landslide scarp locations of the earth and
debris slides (n= 581) used for modelling (a), and mean annual
precipitation rates for the period 2000 to 2020 (b).

inner valleys. In particular, the Venosta Valley, i.e. the west-
to-east oriented valley in the western part of the province, is
one of the driest inner-Alpine spots, where the rain-shadow
effect determined by the surrounding high mountain ranges
turns into less than 600 mm yr−1 (Fig. 1b). Heavy precip-
itation can be considered the primary triggering factor for
shallow landslides in the area. However, snow melting and
human activities were also reported to induce shallow slope
failures (Tasser et al., 2003; Stingl and Mair, 2005; Piacen-
tini et al., 2012; Schlögel et al., 2020; Steger et al., 2021).
For South Tyrol, previous research focused on the definition
of debris flow triggering conditions and on the evaluation
of uncertainties related to the use of different rainfall data
sources (Nikolopoulos et al., 2015; Marra et al., 2016; De-
stro et al., 2017; Nikolopoulos et al., 2017; Martinengo et
al., 2021). So far, no regional-scale research has been con-
ducted to define critical precipitation conditions for shallow
slide-type movements in South Tyrol.

3 Data

3.1 Landslide data

The landslide data used for this study are based on the South
Tyrolean subset of the Italian landslide database, called
IFFI (Inventario dei Fenomeni Franosi in Italia; Trigila et
al., 2010). Background information on the South Tyrolean
dataset and its specificities, such as an inherent spatially vari-
able completeness, are described in Steger et al. (2021). The
South Tyrolean IFFI data collection can be considered fairly
systematic since the year 2000. However, temporal data het-
erogeneities across the years may still exist due to changes
in the personnel responsible for compiling and digitizing the
landslide information in different subregions. The compre-
hensive documentation of each registered landslide is associ-
ated with a variety of attributes that were further utilized to
filter suitable entries. In summary, the used attributes relate to
the occurrence date of the landslides, the movement type, the
material type, and the assigned movement cause. Point data
associated with the initiation zone of each landslide were
accessed from the IdroGeo platform (Iadanza et al., 2021;
https://idrogeo.isprambiente.it/app/, last access: 22 October
2022). For South Tyrol, the unfiltered IFFI data contains a
total of 11 420 points related to different movement types.

Additionally, IFFI-independent records of landslides that
occurred in South Tyrol between July 2003 and November
2019 were considered. These 47 data entries (further referred
to as “IRPI landslide records”) belong to a national catalogue
which was compiled by gathering information from various
sources, such as online newspapers, technical reports, and
blog entries (Brunetti et al., 2015; Peruccacci et al., 2017).
Prior to the analysis, both the IFFI and the IRPI landslide
records were subjected to a comprehensive data filtering pro-
cess as described in Sect. 4.1.

3.2 Gridded precipitation data

The gridded fields of daily precipitation for South Tyrol were
extracted from the 1980–2018 dataset produced by Crespi et
al. (2021). The dataset exhibits a spatial resolution of 250 m
and was extended until August 2021 to cover all landslide
observations. The precipitation fields were obtained by inter-
polating the rain gauge daily records from a quality-checked
and homogenized archive including around 80 station sites
from the weather station network of South Tyrol. Precipi-
tation measurements are primarily related to rainfall, but in
winter, the amount of precipitation recorded may also in-
clude snowfall. The interpolation onto the target 250 m grid
is based on a three-step scheme.

1. The 1981–2010 monthly precipitation averages of the
stations were interpolated by means of a weighted linear
regression with elevation, whose coefficient was esti-
mated monthly and at each grid-point from surrounding
station values; station weights accounted for their dis-
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tance from the point and the level of similarity in terms
of elevation, slope steepness, and slope orientation.

2. The daily station anomalies, i.e. the ratio of daily precip-
itation and the climatology of the corresponding month,
were interpolated via an inverse distance weighting
scheme, where weights depended on horizontal and ver-
tical distances from the target grid-point.

3. The final fields of daily precipitation are obtained by
multiplying the gridded daily anomalies with the grid-
ded climatologies for the corresponding month. Based
on the common standard adopted by the weather data
providers in Trentino – South Tyrol, the daily precipita-
tion fields refer to the total precipitation occurring from
08:00 UTC of the previous day to 08:00 UTC of the ob-
servation day.

The orographic information at 250 m was computed by us-
ing the European Digital Elevation Model (EU-DEM) v1.1
from Copernicus (http://land.copernicus.eu/pan-european/
satellite-derived-products/eu-dem/eu-dem-v1.1/view, last
access: 21 January 2021). Further details on the interpolation
procedure are provided in Crespi et al. (2021).

The leave-one-out validation against station observations
showed no systematic biases and a mean absolute error, as
averaged over all months and station sites, of 1.1 mm. The
uncertainty of interpolated precipitation decreases with in-
creasing elevation along with the decrease of rain gauge den-
sity (only 4 % of stations in South Tyrol are in the eleva-
tion range 2000–2500 m). This effect, however, was consid-
ered less influential in this study, since the available landslide
data systematically refer to lower altitude areas close to in-
frastructure (Steger et al., 2021). Another potential source
of uncertainty, which was not addressed in this procedure, is
the wind-induced under-catch, especially at higher elevations
during snowfalls, which could lead to a general underestima-
tion of actual precipitation (Sevruk et al., 2009). Before land-
slide modelling, the 1.1 mm mean absolute error was used
as an additional data filter criterion to differentiate between
“wet” days that experienced precipitation shortly before or
at the sampling day (> 1.1 mm) and “dry” days (≤ 1.1 mm)
that were not considered in the analyses (details in Sect. 4.2).

3.3 Additional environmental data for validation

Cross-validation (CV) based on a leave-one-factor-out data
partitioning (Sect. 4.5) focused on several spatial environ-
mental variables (Fig. 2). The data were obtained from the
open Geodata platform of South Tyrol (Geokatalog, 2021).
Model transferability amongst lithological units was tested
based on a 1 : 500 000 overview lithological map (Fig. 2a;
Geologische Übersichtskarte Südtirol). A 30 m× 30 m bilin-
early resampled LiDAR-DTM was used to derive slope angle
classes (Fig. 2b) and elevation classes (Fig. 2c). For these two
variables, quartiles were calculated based on the number of

landslide observations. Thus, each of the four classes is rep-
resented by an equal number of landslide observations (i.e.
25 %). The area was additionally subdivided into four large
spatial blocks by merging neighbouring catchment areas to
test the spatial transferability across these large subregions
(Fig. 2d). To evaluate differences of model transferability
across the land cover units, we took advantage of the asso-
ciated IFFI attributes that refer to the land cover observed at
the time of landslide initiation (classes: forest, agricultural
land and other/na).

4 Methods

The general workflow of this study is shown in Fig. 3, while
details are depicted in Sect. 4.1 to 4.5. In general, the binary
response variable (landslide presences vs. absences) was
compiled by combining filtered information on precipitation-
induced earth and debris slides with a sample of pre-landslide
dates at these locations (Sect. 4.1). Each observation of the
resulting binary variable was then used to extract a variety
of pre-observation cumulative precipitation variables on the
basis of daily gridded precipitation data (Sect. 3.2). In anal-
ogy to Chleborad (2000), two different types of precipita-
tion variables were extracted for each observation: six candi-
dates for representing potential triggering precipitation T (0
to 5 d prior the observation) and 30 candidates for represent-
ing medium-term antecedent cumulative precipitation P (1
to 30 d prior T ) (Sect. 4.2). A parsimonious and interpretable
model was created by identifying the best-performing T –P

combination, i.e. one T and one P variable. For this pur-
pose, a two-parameter (Tdays, Pdays) grid search combined
with CV was used to iteratively change and test the predictive
performance of 165 T –P combinations (Sect. 4.3). A bino-
mial generalized additive mixed model (GAMM) enabled the
modelling of the binary response as a (non-linear) function of
the main effects T , P , and a seasonal cyclic effect (day of the
year; DOY). Also, potential interactions between the main
effects (T , P , DOY) were considered via additional tensor
product interaction terms. Furthermore, two random effects
were included during model fitting to account for potential
across-year variability in landslide data reporting (sampling
year; YEAR) and for the underlying repeated spatially nested
data structure (sampling location; LOC_ID). These two ran-
dom effects were averaged out for the final prediction in anal-
ogy to Steger et al. (2021) (Sect. 4.3). The model output was
visualized in the form of 2D surface plots and 3D perspec-
tive surface plots that depict the modelled probabilities as a
function of the predicted variables (T , P , DOY). The result-
ing prediction surface plots were then complemented by bi-
nary thresholds (i.e. curves) that are directly related to ROC-
based model performance metrics (Sect. 4.4). Model valida-
tion was conducted using multiple CV procedures based on
spatial partitioning of training and test sets (i.e. leaving spe-
cific subregions out), temporal data partitioning (i.e. leaving
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Figure 2. Spatial environmental maps used for leave-one-factor-out cross-validation. The lithological map (a) shows the classes crystalline
basement (Cry), porphyry (Por), sedimentary rocks (Sed), plutonite (Plu), and calcschists with ophiolites (Cals). The quartile classification for
slope angle (b) and elevation (c) is based on the final landslide presence sample (i.e. each class contains 25 % of landslides). The geographical
zonation (d) is based on the intersection of catchments.

specific months or years out), and factor-based data partition-
ing (i.e. leaving environmental factors out). Finally, a cross-
check with recently occurred landslides data and data based
on independent data sources was also performed (Sect. 4.5).

4.1 Landslide data filtering and balanced sampling of
landslide absence dates

Prior to the analyses, suitable landslide records were selected
based on the filter criteria “movement type”, “material type”,
“movement cause”, and “date availability”. Only transla-
tional and rotational movement-types associated with the as-
signed material-type “earth” and “debris” were included. In
this context, we explicitly removed slide types associated
with deep-seated gravitational slope deformations. Further-
more, only landslides with the assigned causes of “short-
intense precipitation” or “prolonged precipitation” were se-
lected. The resulting 1822 entries were then filtered accord-
ing to an additional temporal criterion: only entries with reli-
able information on the day of occurrence and from January
2000 to the end of 2020 were selected, resulting in a sample
of 676 landslide records.

The 2021 IFFI data were still undergoing editing within
the IdroGEO platform at the time of the filtering, and there-

fore the few available entries (n= 3) were only used for the
final cross-checks in analogy to the IRPI landslide data. All
47 IRPI landslide records were associated with time infor-
mation that allowed the determination of the required land-
slide occurrence day (exact time: 18, part of the day: 26,
day only: 3). For validation, only non-fall type landslides
with an assigned high spatial accuracy (i.e. mapping un-
certainty < 1 km2) were selected. Furthermore, entries with
measured short-term precipitation lower than or equal to
1.1 mm were also excluded (Sect. 4.2 for details). The fi-
nal IRPI landslide data used for the cross-check consisted
of seven shallow landslides and an additional 12 slope insta-
bilities associated with flow-type movements.

The outcome of a binary classification algorithm is heav-
ily dependent on the ratio of landslide presence to ab-
sence across the variable space. For instance, using a single-
variable classifier, a higher probability of landslide occur-
rence will be predicted for a specific variable characteristic
(e.g. season: summer) in case the ratio of presences to ab-
sences is higher within this class compared to the other val-
ues of this variable (e.g. season: winter). As a consequence,
systematic biases can be introduced in a binary model by un-
derrepresenting presence or absence information. This was
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Figure 3. Workflow of this study. The individual steps are described in detail in Sect. 4.1 to 4.5.

demonstrated for spatial landslide susceptibility modelling in
the context of systematically incomplete landslide data (Ste-
ger et al., 2017) and a spatially distorted absence sampling
(Steger and Glade, 2017). We ensured that the previously de-
scribed potential across-year reporting bias of landslide data
is not propagated into the final predictions by introducing a
dedicated random effect (Sect. 4.3).

The sampling of dates when landslides did not occur fo-
cused on drawing multiple absence observations prior to the
known landslide date at each landslide location. This implies
that the subsequent modelling relates to known landslide-
prone terrain only, while areas with unknown occurrence of
slope instabilities are disregarded. Rule-based stratified ran-
dom sampling of absences was initiated by randomly select-
ing a high number of days (n= 2000) between the year 2000
and 2020 for each known landslide position. Then, all ab-
sences related to a day after the landslide occurrence were
excluded, since the effect of precipitation on slope instabil-
ity is likely to change after an event, especially when inter-
ventions took place. A minimum temporal distance of 30 d
between the observations was introduced to avoid tempo-
ral overlaps of the cumulative precipitation time windows
generated thereon and to reduce the effect of temporal au-
tocorrelation amongst the observations. A final data-thinning

step focused on balancing the observations across the years
and months to ensure that each of these time periods is
equally well-represented by the absence data. For instance,
the final absence sample is proportional to the number of
days within each month (e.g. January 31, February 28.25,
April 30). Merging of the sampled absence data with the se-
lected landslide presence observations resulted in the initial
presence–absence sample with 6568 observations (676 pres-
ences, 5892 absences). Subsequent extraction of precipita-
tion data for this initial sample allowed further exclusion of
dry observations before modelling, as described in Sect. 4.2.

4.2 Cumulative precipitation variables T and P

The initial presence–absence sample (n= 6568) built the ba-
sis for extracting pre-observation cumulative daily precipita-
tion amounts for each sampled day. First, 6 d windows (from
day 0 to day 5) representing short-term cumulative daily pre-
cipitation before the observation day (T ) were extracted. An
observation day in the initial presence–absence sample refers
to a 24 h period from 00:00 to 00:00 UTC. A day in the grid-
ded precipitation data, instead, relates to a 24 h period from
08:00 of the previous day to 08:00 UTC of the observation
day. Thus, during precipitation data extraction, a 1 d forward
shift of the sampling date was required to ensure full cov-
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erage of precipitation amounts before the actual observation
day. The drawback of this procedure is that precipitation po-
tentially falling 8 h after the observation day is also included
in the T variables. The T day window 1 (day 0 plus day 1)
represents the shortest possible time window that fully cov-
ers the precipitation amount before the observation. It should
be noted that the described 1 day shift only concerned the
described data extraction task, meaning that the original day
assigned to each presence and absence observation remained
untouched.

Second, several medium-term preparatory precipitation
P variables were created by summing up the precipitation
amounts that fell a multiple of days prior to T in analogy to
Chleborad (2000). For this purpose, a 1 d stepwise enlarge-
ment of the time window for P was performed until the 30 d
limit was reached. The resulting T –P combinations were
then used to find the best pair of T and P to predict land-
slide occurrence (Sect. 4.3).

Third, data associated with a dry period shortly before or
at the observation day was excluded from the analysis. A pre-
vious landslide susceptibility study showed that the inclusion
of a considerable portion of easy-to-classify “trivial” terrain,
such as floodplains, can lead to an oversimplified classifica-
tion task and problem-unspecific results (Steger and Glade,
2017). The same principle applies to this study when includ-
ing a high portion of trivial time periods, namely observa-
tions that mainly refer to days without precipitation. Pre-
liminary tests in this work confirmed that a binary model
that included a high portion of dry time periods (i.e. non-
precipitation observations) resulted in high predicted proba-
bilities as soon as a small precipitation amount was recorded.
To render our classification more problem-specific, we there-
fore excluded all days that did not experience precipitation
shortly before or at the observation date. For this purpose, we
selected all observations where we had high confidence that
they experienced some amount of short-term precipitation. In
this context, the mean absolute error of the underlying pre-
cipitation grids (1.1 mm) was used as an exclusion criterion.
The resulting final modelling sample (n= 2832, 581 pres-
ences, 2251 absences) basically inherits the characteristics of
the initial presence–absence sample, while excluding entries
with measured precipitation equal or lower than 1.1 mm d−1

before or at the observation date.

4.3 Modelling using GAMMs and associated variable
selection

Generalized additive mixed models (GAMMs) have been re-
cently used to assess landslide susceptibility in the context of
incomplete landslide information (Steger et al., 2021; Lin et
al., 2021). In this study, a GAMM was used to discriminate
precipitation days with landslides from precipitation days
without landslides based on multiple variables. In summary,
a GAMM “allows modelling of nonlinear functional relation-
ships between covariates and outcomes where the shape of

the function itself varies between different grouping levels”
(Pedersen et al., 2019, p. 1). Thus, it blends the strengths of a
generalized additive model (GAM), such as modelling non-
linear relationships, with the advances of a generalized lin-
ear mixed model (GLMM), such as being able to account for
between-group variability in the data, while simultaneously
retaining a high model interpretability (Bolker et al., 2009;
Zuur et al., 2009; Pedersen et al., 2019).

This work builds upon the comprehensive R package mgcv
(Wood, 2004, 2011, 2017) that enables introducing differ-
ent types of smoothing functions while offering an automatic
smoothness estimation and a range of model evaluation and
visualization options. The created model built upon four dif-
ferent types of smoothing functions, namely thin plate re-
gression splines, cyclic cubic regression splines, tensor prod-
uct interactions, and random effects (Table 1).

Thin plate regression splines are general purpose splines
and were used to model nonlinear relationships between the
binary outcome (landslide presence vs. absence) and the pre-
cipitation variables T (first main effect) and P (second main
effect). Cyclic cubic regression splines are usually applied to
model cyclic data in which the start and the end of the data
series is matching. These splines were used to model sea-
sonal effects based on the cyclic DOY variable (third main
effect).

The mgcv implementation also allows the modelling of in-
teractions between several smoothing functions by using ten-
sor products. In cases where the main effects are also present
in the model, tensor product interaction terms are preferred to
create an interpretable model in the presence of the main ef-
fects and any lower marginal interaction (Wood, 2017). Ten-
sor product interactions were used to test the interacting ef-
fects of precipitation T and P on landslide occurrence (first
interaction term), the interacting effect of precipitation T and
DOY (second interaction term), and the interacting effect of
precipitation P and DOY (third interaction term).

In analogy to GLMMs, GAMMs also enable the handling
of hierarchical data structures by introducing random effects
that account for variation between groups, such as data vari-
ability across temporal (e.g. years) or spatial units (e.g. sam-
ple locations). For instance, if observational data are nested
within sampling locations (e.g. multiple observations per lo-
cation), a random intercept whose levels relate to the dif-
ferent sites can be introduced to capture variations deriving
from the spatially nested data structure (Bolker et al., 2009;
Pedersen et al., 2019). Random effects can also be used to
capture variations related to an out-of-interest nuisance vari-
able whose variability should be isolated to avoid confound-
ing with other variables of interest (Steger et al., 2017). Two
random intercept variables related to the sampling location
and the sampling year were introduced. The categorical vari-
able LOC_ID (sampling location) accounts for the underly-
ing nested data structure, i.e. the fact that the 2832 obser-
vations are spatially nested with the 581 sampling locations.
The categorical variable YEAR (sampling year) has been in-
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Table 1. Model setup and variables introduced into the binomial GAMM through the R software (package mgcv).

Variable name(s) Description Smooth function/R command Smooth term Effect
significance used for

(p values) prediction?

SLIDEDATE Landslide occurrence dates (yes/no): – – –
binary response related to presences
(n= 581) and absences (n= 2251)

T Main effect of triggering precipitation: Thin plate regression spline/ < 0.001 Yes
short-term cumulative precipitation sum s(T , bs= ”tp”)
prior to and at the observation date

P Main effect of preparatory precipitation: Thin plate regression spline/ < 0.001 Yes
medium-term cumulative precipitation s(P , bs= ”tp”)
sum prior to T

DOY Main seasonal effect on landslide occurrence Cyclic cubic regression spline/ < 0.001 Yes
described via the day of the year s(DOY, bs= ”cc”)

T ∗P Interaction term that describes the interacting Tensor product interaction/ 0.0124 Yes
effects of T and P on landslide occurrence ti(T , P , bs= c(“tp”, “tp”))

T ∗ DOY Interaction term that describes the interacting Tensor product interaction/ 0.0221 Yes
effects of T and DOY on landslide occurrence ti(T , DOY, bs= c(“tp”, “cc”))

P ∗ DOY Interaction term that describes the interacting Tensor product interaction/ 0.0108 Yes
effects of P and DOY on landslide occurrence ti(P , DOY, bs= c(“tp”, “cc”))

YEAR Random intercept associated with Random effect/ < 0.001 No (averaged-out via the
the sampling year s(YEAR, bs= ”re”) mgcv exclude argument)

LOC_ID Random intercept associated with Random effect/ 0.0884 No (averaged-out via the
the sampling location s(LOC_ID, bs= ”re”) mgcv exclude argument)

The model was fitted using the following R command:
fit = mgcv::gam(formula = SLIDEDATE ∼ s(T , bs= ”tp”)+s(P , bs= ”tp”)+s(DOY, bs= ”cc”)+ti(T , P ,bs= c(“tp”, “tp”))
+ti(T , DOY,bs= c(“tp”, “cc”))+ti(P , DOY, bs= c(“tp”, “cc”))+s(YEAR, bs= ”re”)+s(LOC_ID, bs= ”re”), data=d, family=binomial, method=”REML”).

troduced to isolate a potential bias evolving from the under-
lying landslide data collection procedure in analogy to pre-
vious spatial landslide prediction studies (Steger et al., 2017,
2021; Loche et al., 2022). In detail, this YEAR variable sys-
tematically captures inter-annual data variability and there-
fore ensures that the modelled associations between our vari-
ables of interest (T , P , DOY) and landslide occurrence are
not systematically confounded by a potential inconsistent re-
porting of landslide occurrences across the years. It should be
noted that both random effects were only used for model fit-
ting to avoid confounded relationships between our variables
of interest and landslide occurrence. For the applied model
predictions and validation, these two terms were zeroed-out
as described in Steger et al. (2017, 2021). This procedure al-
lowed us to obtain model predictions and validation results
that do not correspond to a specified year or location.

The procedure to select optimal pre-observation cumula-
tive precipitation time windows for representing T (n= 6,
day 0 to day 5) and P (n= 30; day 1 to 30) was based on
the full model setup (see variable list in Table 1) and CV.
In total, 165 T –P combinations were tested using a two-
parameter (Tdays, Pdays) grid-search combined with CV. To
avoid temporal overlaps between T and P , 15 out of the pos-
sible 180 combinations had to be excluded (e.g. the Pdays
search starts with the day 4 for Tdays3). Leave-locations-

out CV was implemented by iteratively changing the re-
spective Tdays–Pdays combination. In this context, 75 % of
randomly selected landslide locations, including associated
pre-landslide absences at these locations, were used for fit-
ting the model, while the remaining test set (25 % of land-
slide locations) was used to validate the predictions using the
area under the ROC (AUROC). The AUROC metric can be
seen as a threshold-independent measure of model perfor-
mance that depicts the degree to which a model is capable
of discriminating presence observations from absence obser-
vations (Hosmer et al., 2013). For each Tdays–Pdays combi-
nation this procedure was repeated 25 times, and the median
AUROC was taken as a final decision criterion. Computa-
tional feasibility of the 4125 model runs (165× 25) was en-
sured by using the mgcv-function “bam” with fast REstricted
Maximum Likelihood computation (fREML) (Wood, 2017).
The best-performing T –P combination was then used to cre-
ate the final GAMM with the default mgcv-function “gam”
using REML for smoothing parameter estimation, since for
this combination bam and gam results were almost identical.

4.4 Visualization and thresholding

The predictions of the final GAMM were first visualized by
means of 2D surface plots and 3D perspective surface plots.

https://doi.org/10.5194/nhess-23-1483-2023 Nat. Hazards Earth Syst. Sci., 23, 1483–1506, 2023



1492 S. Steger et al.: Seasonal effects of triggering and preparatory precipitation for landslide prediction

The 2D surface plots show the predicted probability score
between 0 and 1 for increasing values of two selected vari-
ables (e.g. T on the y axis and DOY on the x axis). The
perspective surface plots depict the predicted probabilities
as a 3D surface in which the probability scores relate to the
z axis and two selected variables to the x and y axis. Since
the model predictions are based on more than two variables,
namely T , P , and DOY, a strategy had to be found to deal
with the not-shown third variable for visualization purposes.
The not-shown remaining variable was either fixed to a spe-
cific value or averaged-out using the mgcv–exclude argument
(see details in the figure captions). The modelled seasonal ef-
fect was first visualized separately by plotting the predicted
probability scores as a function of DOY and T and as a func-
tion of DOY and P . An intuitive visualization of the effect
of short- and medium-term precipitation on landslide occur-
rence, further called T –P plots, was envisaged by plotting
the predicted probability scores against increasing T (y axis)
and increasing P values (x axis). Finally, a gradual increment
of the day of the year (from 1 to 365) during prediction al-
lowed the visualization of the seasonal effects of T and P on
landslide occurrence via DOY-specific plots and a Graphics
Interchange Format (GIF) animation.

Thresholds related to model performance metrics were
added to the T –P plots by exploiting the ROC curve. The
ROC plot visualizes the true positive rate (TPR; y axis)
against the inverse of the true negative rate (1-TNR= false-
positive rate; x axis) for varying probability cutpoints. In our
case, the TPR (also known as sensitivity, recall, or hit rate)
depicts for a given probability score the portion of correctly
classified landslide observations (i.e. landslides exceeding
the threshold) amongst all the observed landslide observa-
tions. The TNR focuses on the absence observations and
shows for a given probability score the portion of correctly
classified wet days without landslides (i.e. non-landslides be-
low the threshold) amongst all observed days without land-
slides. A probability threshold that relates to a high portion
of correctly classified landslide presences (TPR) and a high
portion of correctly classified landslide absences (TNR) is
desired. A probability threshold associated with a TPR of
95 % may be interpreted in analogy to a 5 % threshold that
is frequently used for empirical rainfall thresholds, since it
depicts that 95 % of the observed landslides are exceeding
the threshold while the remaining 5 % are wrongly classi-
fied (5 % false-negative rate; FNR). In contrast to conven-
tional empirical thresholds, the TNR can be extracted from
the modelling results (i.e. probability space) as well, giving
valuable information on false alarms. For demonstration pur-
poses, we extracted three probability thresholds. The first one
can be considered an optimal cutpoint that refers to a proba-
bility score that is closest to the perfect classification in the
ROC space (top-left corner). The remaining two thresholds
refer to a very high portion of correctly classified landslide
observations (TPR 95 %) and to a very high portion of cor-
rectly classified landslide absence observations (TNR 95 %).

4.5 Model validation

The model predictions were compared with the observations
from numerous perspectives. The fitting performance of the
model was evaluated using the ROC and AUROC. The dif-
ferent resampling functions implemented in the R sperrorest
package (Brenning, 2012) were used to partition the data into
training and test sets for the subsequent temporal, spatial, and
factor-based CV. All these CV procedures are based on the
principle of fitting the model with a subset of the data (train-
ing set), while then testing the resultant predictions using
the remaining independent test set via the AUROC metric.
Temporal CV was conducted by iteratively removing obser-
vations associated with 1 month (leave-1-month-out CV) or 1
year (leave-1-year-out CV) from the training data sample and
by testing the subsequent predictions on the left-out observa-
tions using the AUROC. A spatially explicit validation was
achieved by leaving-one-location-out (i.e. single locations
are iteratively left out for testing) and by-leaving one-spatial-
cluster-out (i.e. numerous adjacent locations) data partition-
ing strategies. The underlying spatial clustering relies on the
k means method (Brenning, 2012), while we altered the aver-
age cluster size (k = 10, 25, 100) to obtain validation results
for single smaller (k = 100) and larger subregions (k = 10).
Finally, CV was also performed to evaluate the transferabil-
ity of the modelling results across environmental units. In
this context, leave-factor-out CV was based on lithologi-
cal zones (Fig. 2a), slope angle groups (Fig. 2b), elevation
groups (Fig. 2c), geographical zones (Fig. 2d), and land cover
classes as described in Sect. 3.3. Finally, the three indepen-
dent IFFI entries from the year 2021 and the 47 IRPI land-
slide records were used to cross-check the model predictions.

5 Results

5.1 Sampling and variable selection

The initial 11 420 IFFI points were reduced to 2714 entries
by first filtering translational and rotational slide-types and
by excluding deep-seated movements. Most of these entries
(n= 2319) were selected according to the subsequent mate-
rial type filter, i.e. only “earth” or “debris” slides were con-
sidered. Further data subsampling, according to the assigned
movement cause “precipitation-induced”, led to a subsam-
ple consisting of 1822 landslides. Out of these 1822 entries,
676 landslides were associated with reliable day information
while occurring between January 2000 and the end of 2020.

Combining this initial landslide sample with the absence
sample led to an initial binary variable consisting of 6568
observation days (Fig. 4a). These data relate to 676 sampling
locations, with 676 landslide occurrence days (1 landslide
per location) and 5892 pre-landslide absence days. The grey
bars in Fig. 4a highlight that the number of absences within
each month is proportional to the number of days of each
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month (i.e. each day of the year was given an equal chance of
being selected). This initial sample represents landslide days
and a balanced set of pre-landslide days without yet consider-
ing whether the respective days experienced precipitation or
not. The subsequent exclusion of dry observations led to the
modelling sample shown in Fig. 4b. The exclusion of 3736
non-precipitation dates resulted in the final modelling sam-
ple consisting of 2832 observation days. The comparison of
Fig. 4a and b shows that the precipitation filter mainly af-
fected landslide absence observations with more than 60 %
of all observations being excluded (from 5892 to 2251). In
other words, our absence data mimics the yearly distribu-
tion of “precipitation days” at landslide locations and sug-
gests that less than 40 % of the days experienced precipita-
tion shortly before or at the observation date (day 0 or day
1). The distribution of the filtered absence dates over the year
(grey bars in Fig. 4b) highlights that such precipitation days
are more common during the summer months.

After preliminary landslide data filtering, an additional
95 landslides were removed from the precipitation filter be-
cause the available precipitation data provided no evidence
that these recorded slope instabilities were primarily induced
by precipitation. Our data therefore confirm that for 86 % of
these landslides (n= 581) the respective location received
some precipitation shortly before the landslide initiation.
Comparing the seasonal distribution of sampled landslide
presence days and absence days (blue vs. grey bars in Fig. 4b)
highlights that a relative high number of landslides can be
observed for the months with the highest number of precip-
itation days (i.e. June, July, August). The highest number of
landslides per month was recorded in November, although
this month has fewer precipitation days. Without considering
yet the associated amounts of precipitation, the data already
suggest a seasonal effect, indicating that a rarer precipitation
day in November is more likely to be associated with the
occurrence of landslides than an average precipitation day
during the summer.

The final modelling sample (n= 2832) was used in a re-
peated leave-locations-out CV framework to select the best-
performing time windows for representing triggering precip-
itation (T ) and medium-term preparatory precipitation (P )
prior to T .

The pairwise confrontation of model performances is
shown in Fig. 5. The highest performance (mean AUROC
0.87; median AUROC 0.86) was obtained by combining a 2 d
cumulative precipitation variable (Tdays 1 representing day
0 plus day 1) with an antecedent 28 d time window (Pdays
29). Considerably lower AUROCs were observed when com-
bining a comparably longer time window for representing
triggering precipitation (e.g. Tdays 3 to 5) with a relatively
short time window for representing preparatory precipitation.
Lower performances were also observed for Tdays 0 that cov-
ers only 16 hours of the observation day and misses out on 8
hours of potentially crucial precipitation that are now repre-
sented within Tdays 1 (Sect. 4.2). In the following, the letters

T and P will refer to the above-mentioned 2 d and 28 d time
windows, respectively.

The precipitation amounts associated with the selected T

and P variables are shown in Fig. 6. The right skewed dis-
tribution of landslide absence observations for T (Fig. 6a)
depicts that the sampled precipitation days are mainly as-
sociated with low 2 d cumulative precipitation amounts of
less than 10 mm. The median T value for the absences re-
lates to 6.9 mm (mean 11.6 mm), while the median for pres-
ences equals 33.6 mm (mean 42.4 mm). The third quartile for
T equals 15.6 mm for the absences and 60.9 for the pres-
ences. For T precipitation amounts > 20 mm, a presence-to-
absence ratio of ∼ 1 : 1 (389 presences and 391 absences)
can be found, despite the unbalanced initial ratio of presences
to absences (1 : 3.9). Above 40 mm of T , 3 times more pres-
ences (n= 246) than absences (n= 82) are present.

Similar but less pronounced tendencies can be observed
for the medium-term precipitation variable P with generally
increasing presence-to-absence ratios for higher amounts of
P precipitation. The median amount of P precipitation for
the absences equals 73.3 mm (mean 77.7 mm), and the re-
spective median for the landslide occurrence dates equals
127.3 mm (mean 127.2 mm). The third quartile of P equals
105.2 mm for the absence observations and 163.3 mm for the
presences. The ratio of presence to absence is balanced when
considering P precipitation > 137 mm (252 observations in
both groups).

5.2 Model fit, modelled relationships, and thresholds

The final model fit showed a high capability to discriminate
landslide presence observations from absence observations
with an AUROC of 0.87. All smooth terms used for predic-
tion were significant, with p values < 0.001 for the main ef-
fects (P , T , DOY) and p values < 0.05 for the three associ-
ated interaction terms (Table 1). The visualization of the pre-
dictions allowed insights into modelled relationships (Fig. 7).
In general, increasing landslide probabilities were predicted
for increasing amounts of T and P precipitation. The effect
of short-term precipitation T on landslide occurrence was
modelled to be rather constant over the year (e.g. horizon-
tal contours in Fig. 7b), with the steepest increases in the
predicted landslide probabilities for precipitation amounts
between ∼ 40 and ∼ 70 mm (i.e. steep surface in Fig. 7a
and narrow contours in Fig. 7b). Seasonal effects were ob-
served to play a much more prominent role when considering
our proxy variable for antecedent soil moisture conditions,
namely the medium-term preparatory precipitation (P ). For
instance, the dip in the 3D surface (Fig. 7c) and the non-
horizontal contours (Fig. 7d) highlight that the effect of P

on landslide occurrence was modelled to vary systematically
within a year. During winter (mid-February: day 40), a prob-
ability score of above 0.6 was predicted for a P amount of
150 mm (Fig. 7d). The same amount of preparatory precip-
itation, however, was associated with much lower landslide
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Figure 4. Overview of the distribution of presence observations (selected IFFI data) and absences observations across the months. The
initial presence–absence sample before excluding non-precipitation days (a) and the final modelling sample after excluding non-precipitation
days (b). The distribution of grey bars in panel (a) reflects that each day of the year has an equal chance of being sampled, with the number
of absence observations in each month being proportional to the number of days in each month. The grey bars in panel (b) depict that the
distribution of precipitation observations based thereon is considerably higher during summer.

Figure 5. Result of the pairwise selection of precipitation variables using leave-locations-out cross-validation. The highest AUROCs (mean
0.87; median 0.86) were calculated when combining the day-window Tdays 1 with the day-window Pdays 29. Tdays 1 refers to the 2 d
cumulative precipitation at day 0 plus day 1, while Pdays 29 refers to the 28 d prior T . The variability of AUROCs is shown by the interquartile
range (IQR).

probabilities of around 0.2 during time periods characterized
by dense vegetation and higher temperatures (day 240: end
of August).

The T –P plot (Fig. 8a) highlights the combined mod-
elled effect of short-term precipitation T and the antecedent
preparatory precipitation P on landslide occurrence without
yet considering seasonal variations (i.e. DOY was averaged
out for the prediction). The highest probabilities were pre-
dicted for situations in which high P and high T occur si-
multaneously. The shown point positions depict the precipi-
tation amounts for the underlying presence and absence ob-
servations. A comparably high portion of landslide observa-
tions (crosses) is observed for higher probability scores and
a high number of landslide absence observations (points) for
lower probabilities. The ROC plot (Fig. 8b) refers to the final
GAMM that includes seasonal effects for the prediction. The
plot depicts performance scores related to the three selected
cutpoints (Table 2). Since each of these cutpoints is associ-
ated with a probability score (first number in Fig. 8b), it can
be drawn as a curve in the probability space (Fig. 8a).

The shown blue cutpoint in Fig. 8 refers to the a priori
selected TPR of 95 %. It is shown that this cutpoint is asso-
ciated with a low portion (40 %) of correctly classified pre-
cipitation observations without landslide occurrence (TNR
40 %). In contrast, the black cutpoint refers to a particular
high TNR of 0.95 but to a low portion of correctly classified
landslide observations (TPR 56 %). The “optimal” cutpoint
in red balances misclassification rates and refers to a TPR of
81 % and a TNR of 79 %. Note that these curves are drawn
within Fig. 8a for demonstration purposes only to ease the
understanding of the link between the ROC curve, the prob-
ability space, the observations, and the derived thresholds.
A correct visualization of these thresholds is co-dependent
on the third predicted variable, namely the seasonal effect
(Fig. 9).

The season-dependent thresholds in Fig. 9 reflect the pre-
viously described modelled relationships. For instance, com-
paring the optimal thresholds across the seasons depicts that
during winter times (Fig. 9a) a considerably lower amount
of preparatory precipitation is required to surpass the thresh-
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Figure 6. Overlapping histograms for the presence (red) and absence (grey) observations for the two selected precipitation variables T (a)
and P (b). Note that the ratio of presence-to-absence observations generally grows with increasing precipitation values, indicating a trend of
increasing landslide occurrence probabilities with increasing precipitation amounts.

Table 2. Probability thresholds and associated ROC-based metrics.

Threshold name Probability True positive rate (TPR) True negative rate (TNR)

TPR95 0.04 95 % (552 out of 581 presences) 40 % (900 out of 2251 absences)
Optimal 0.13 79 % (460 out of 581 presences) 81 % (1823 out of 2251 absences)
TNR95 0.41 56 % (325 out of 581 presences) 95 % (2138 out of 2251 absences)

olds, compared to a day at the end of September (Fig. 9d).
An examination of continuous time series throughout the
year (“Animation.gif” in the Supplement) showed that crit-
ical landslide conditions were associated with the lowest
amount of P precipitation around mid-February (day of the
year ∼ 45). In contrast, the thresholds were associated with
the highest amount of P precipitation during early Septem-
ber (day of the year ∼ 250). The comparatively small sea-
sonal variations in the modelled effect of T on landslide oc-
currence are reflected by the modest changes in the thresh-
old y axis positions at low preparatory precipitation (e.g. at
P = 0 mm).

5.3 Validation results

CV revealed the general robustness and transferability of the
predictions with AUROC scores frequently exceeding 0.8. In
general, a low performance for a specific unit (e.g. test sub-
region or test month) indicates that the observed conditions
responsible for landslide initiation within this unit were es-
timated to differ from the modelled conditions obtained by
training a model within the remaining units. Temporal CV
showed model transferability across the years (Fig. 10a) and
months (Fig. 10b), with overall mean AUROCs of 0.83 and
0.84, respectively. A comparably high variation in model per-
formance was observed when validating the model across the
years, with partly very high AUROCs of > 0.95 for the years

2011, 2012, 2016, and 2018 and low AUROCs of < 0.7 for
the years 2001, 2006, and 2010. In this context, the partially
low number of underlying landslide observations used for
testing must also be mentioned. For instance, less than 10
landslides were inventoried for the years 2001 (n= 6), 2003
(n= 3), 2009 (n= 9), 2010 (n= 3), 2011 (n= 1), and 2015
(n= 5). More than 50 landslides were registered for the years
2007 (n= 53), 2008 (n= 106), and 2020 (n= 85). The anal-
ysis of the measured precipitation amounts for the 2 years
with the lowest performance scores (2001 and 2006) depicts
that the associated landslide observations were related to par-
ticularly lower precipitation amounts compared to the “mean
landslide situation” in the dataset. For instance, the mean T

precipitation amount for all landslides was 42.4 mm, while it
was 10.1 and 16.9 mm for 2001 and 2006, respectively.

Leave-one-month-out CV led to more robust results with
less variation in the estimated temporal transferability of the
model (i.e. no AUROC below 0.7 or above 0.95). The results
showed that the model performance is generally lower when
predicting out-of-sample observations for spring (March,
April, May) and June, with AUROCs between 0.75 and 0.8.
AUROCs above 0.85 were observed for the months January,
February, July, August, October, November, and December
(Fig. 10b).

Spatial CV led to mean AUROCs above 0.85 (Fig. 11).
Leave-one-location-out CV showed an exceptionally high
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Figure 7. The 3D surface plots (a, c) and 2D surface plots (b, d) depict the modelled effects of triggering precipitation T (a, b) and
preparatory precipitation P (c, d) on landslide occurrence within a year (day of the year). The contours and the colour scale show predicted
relative probability scores from 0 (white) to 1 (dark green). Note that these plots were created by fixing the not-shown variables (P in
panels a, b; T in panels c, d) to their lowest value (T = 1.1; P = 0).

mean AUROCs of 0.94 (Fig. 11a). These results revealed
that 61.5 % of all test locations were associated with a per-
fect AUROC of 1, meaning that, for the majority of test lo-
cations, the predicted probability scores for the respective
landslide observation were higher than the predicted prob-
abilities for any pre-landslide absence observation. Spatial
CV using k-means clustering (Fig. 11b–d) showed that ob-
servations within left-out regions can generally be well pre-
dicted by a model trained within other subregions of South
Tyrol. A more detailed elaboration of these results suggests
slightly lower model performances for the western part of
the area. The influence of test sample size on the variation in
estimated performance scores is revealed by the observed in-
creasing standard deviation (SD) of AUROCs for an increas-
ing number of data partitions (number of clusters k), with a

SD of 0.041 for k = 10, a SD of 0.054 for k = 25, and a SD
of 0.119 for k = 100.

Leave-one-factor-out CV showed mean AUROCs of >

0.86 with no single unit being associated with an AUROC
lower than 0.75 (Fig. 12). AUROCs constantly above 0.85
depict that the modelled relationships are well transferable
across the lithological units (Fig. 12a). Similar tendencies
were observed when testing the model performance across
the topographical variables slope and altitude (Fig. 12b
and c). Slightly higher AUROCs were observed for models
tested within less inclined terrain and at lower altitudes. This
indicates that the precipitation conditions responsible for in-
ducing a landslide are most different from the “average” sit-
uation for very steep terrain and at higher altitudes. In anal-
ogy, Fig. 12d indicates that the performance of the model is
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Figure 8. T –P plot showing the predicted probability for increasing precipitation amounts (T , P ) and associated thresholds (a). The thresh-
olds are based on the ROC (b). The surface in panel (a) depicts the combined effect of short-term (T ) and medium-term (P ) precipitation
on landslide occurrence for an average day of the year (i.e. the DOY effect was zeroed for the prediction). The point positions relate to the
precipitation amounts observed for the 581 landslide presence observations (crosses) and the 2251 absences (points). Thresholds (a) can
directly be derived from the ROC (b). The shown cutpoints refer to a probability threshold (first number) that is associated with a specific
TPR (first number in brackets) and a TNR (second number in brackets). The optimal cutpoint is shown in red, the cutpoint related to a TNR
of 95 % is shown in black and the cutpoint related to a TPR of 95 % is shown in blue.

Figure 9. T –P plot showing the predicted probability for increasing precipitation amounts (T , P ) and associated thresholds for a selected
DOY: day 1 (a), day 90 (b), day 180 (c), and day 270 (d). The animation in the Supplement (Animation.gif) visualizes the continuous changes
from day 1 to 365.
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Figure 10. Leave-one-temporal-unit-out cross-validation. The AUROCs reveal, for each test year (a) or test month (b), the predictive perfor-
mance of a model that was trained on the remaining time periods (e.g. the months 1 to 11 were used to train a model whose prediction was
tested with month 12 data). The bar width is proportional to the underlying test sample size (presences plus absences). The mAUROC at the
top refers to the mean AUROC of all time periods.

Figure 11. Leave-one-spatial-unit-out cross-validation (CV). The maps depict, for different test subregions, the predictive performance of
models that were trained on the remaining subregions. Leave-one-location-out CV (a) was performed for 465 locations associated with more
than three observations per location. In panel (a) the AUROCs are shown from light blue (0.5–0.6) to dark blue (0.9–1), and the circle size
is proportional to the test sample size. The maps (b–d) are based on k-means clustering and depict different k values (i.e. 100 clusters in
panel b, 25 in panel c, 10 in panel d). Each colour is associated with a cluster, while larger circles and darker circle borders are associated
with higher AUROCs and vice versa. The AUROC at the bottom refers to the mean of all locations/clusters (mAUROC).
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lower when tested in the drier western part of South Tyrol
(Fig. 12d) and when tested for forested terrain (Fig. 12e).

Comparing the model predictions with the 2021 IFFI data
and the independent IRPI landslide records generally con-
firmed a high predictive performance of the model. The
three IFFI landslide observations all occurred in August and
were associated with a comparably high mean T precipita-
tion amount of 56.6 mm and a high mean P precipitation
amount of 238.6 mm, resulting in high predicted probabili-
ties (> 0.78). Thus, all 2021 IFFI landslide entries exceeded
the three thresholds (Fig. 9) by a considerable margin. Con-
sidering also that pre-landslide absence observations at these
locations led to an AUROC of 1, the respective landslide ob-
servations were associated with higher probabilities than any
sampled pre-landslide absence observations at the same loca-
tions. Lower but still high performances were computed on
the basis of the independent IRPI landslide records. The AU-
ROC equalled 0.85 for the seven shallow landslide locations
and 0.9 for the 12 precipitation-induced flow-type landslides,
respectively. The seven shallow landslide entries were asso-
ciated with a mean T of 29.6 mm and a mean P of 98.1 mm,
resulting in a mean probability score of 0.31. Visually, six of
these seven entries are located above the optimal threshold
(Fig. 9). A mean T of 42.3 mm and a mean P of 129.3 mm
were registered for the 12 flow-type landslides (i.e. 11 of the
12 entries were positioned above the optimal threshold).

6 Discussion

The seasonally dynamic predictive model allowed the com-
bination of the strengths of previously published approaches
with the capability of novel GAMMs to identify season-
dependent critical precipitation conditions for shallow land-
slide occurrences in the considered area. The model per-
formed well, successfully accounting for the effect of short-
term triggering precipitation, medium-term preparatory pre-
cipitation, a cyclic seasonal effect, and across-year data
variation that potentially stems from an inconsistent land-
slide data reporting. Strengths, weaknesses, and interpreta-
tion possibilities of the model are discussed below.

6.1 Antecedent precipitation and seasonal effects

Advantages of adding medium-term antecedent soil moisture
and precipitation conditions have been highlighted by sev-
eral researchers (Crozier, 1999; Glade et al., 2000; Scheevel
et al., 2017; Mirus et al., 2018; Monsieurs et al., 2019;
Leonarduzzi and Molnar, 2020; Rosi et al., 2021; Stanley
et al., 2021). In this study, medium-term antecedent precip-
itation conditions were found to have a statistically signif-
icant influence on the occurrence of shallow landslides in
South Tyrol. The model provided quantitative evidence that
higher amounts of preparatory precipitation (i.e. a proxy for
antecedent soil moisture) decreases the necessary amount of

short-term precipitation required to trigger a shallow slope
instability (Crozier, 1989; Ponziani et al., 2012). A major
innovation of this research lies in the explicit and continu-
ous modelling of seasonal variations of the effects of short-
and medium-term precipitation on landslide occurrence. It
was shown that during winter and spring a lower amount of
preparatory precipitation is required to trigger a landslide.
From a slope hydrology viewpoint, this trend could be ex-
pected, since higher temperatures and more active vegeta-
tion during summer and early autumn are likely associated
with higher rates of evaporation, interception, transpiration,
and plant water absorption, all influencing soil water con-
tent and slope stability (Crozier, 1989; Osman and Barakbah,
2006; Sidle and Ochiai, 2006; Norris et al., 2010; Gonzalez-
Ollauri and Mickovski, 2017; Schmaltz et al., 2019). Such
combined season-dependent effects of dynamic precipitation
conditions on slope stability have not yet been considered
in data-driven landslide prediction modelling. In a related
recent work, Luna and Korup (2022) found that seasonal
peaks in landslide activity are lagging annual precipitation
peaks by 1 to 2 months, emphasizing the effect of antecedent
hillslope conditions. The underlying monthly models pre-
dicted, for a fixed monthly precipitation amount, a consid-
erably higher landslide activity for January/February com-
pared to November/December when mean monthly precipi-
tation amounts peaked.

With respect to the work of Luna and Korup (2022), our
work shows similarities and differences in the way sea-
sonal landslide patterns are reasoned and linked to poten-
tial drivers. Ultimately, it also reflects common challenges
in model inference and causal interpretation. What a data-
driven model enables one to capture heavily depends on the
underlying study design, which includes the selection of vari-
ables used to capture potential confounding. Although we are
aware that correlation does not necessarily imply geomor-
phic causation in data-driven landslide modelling (Steger et
al., 2021), we suggest that the elaborated seasonal variation
is primarily attributable to effects related to vegetation cover,
and to a lower degree also to temperature and snow melting,
rather than to delayed response of a hillslope to antecedent
precipitation.

In detail, two landslide peaks were observed over the year
in South Tyrol, one in July and one in November (Fig. 4).
This trend is likely to be reflected by a binary model trained
with the cyclic DOY effect as its only predictor, since the
input data showed highest presence-to-absence ratios within
these periods. However, our final model additionally in-
cluded two differently scaled precipitation variables, captur-
ing the important effects of short- and medium-term pre-
cipitation on landslide occurrence. Since these precipitation
variables also exhibit systematic seasonal variation, they si-
multaneously captured a considerable portion of the seasonal
variation in landslide occurrence. Thus, in the current model
setup, only the “residual” seasonal variation that is not ex-
plained by precipitation was explained by the seasonal DOY
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Figure 12. Leave-one-factor-out cross-validation. The AUROCs reveal, for each environmental test unit, the predictive performance of a
model that was trained on the remaining environmental units (e.g. data associated with the slope quartiles Q1 to Q3 were used to train a
model whose prediction was tested with slope quartile Q4 data). Bar heights depict the test AUROCs for different lithological units (a), slope
quartiles (b), altitude quartiles (c), geographical zones (d), and land use units (e). Lithological units: crystalline basement (Cry), porphyry
(Por), sedimentary rocks (Sed), plutonite (Plu), and calcschists with ophiolites (Cals). The bar width is proportional to the underlying
test sample size (presences plus absences). The mAUROC at the top refers to the mean AUROC across the shown units. A map of the
environmental units is shown in Fig. 3.

effect. In other words, this residual seasonal effect remained
most influential in situations in which the included precipi-
tation variables were less capable of explaining seasonal al-
terations in landslide occurrence. The dip in the modelled
seasonal effect (e.g. Fig. 7c), for instance, indicates that the
precipitation variable P was less effective for discriminat-
ing landslide occurrences from non-occurrences during sum-
mer/early autumn (DOY∼ 200 to 250). Our interpretation
that the slowly changing DOY effect mainly acts as a proxy
for (unobserved) vegetation/temperature influences, and not
for antecedent precipitation amounts, already considers that
potential time-lagged precipitation effects at a monthly scale
are accounted for by the 28 d precipitation variable P .

Seasonal effects were found to be most pronounced in
spring (Fig. 7d at DOY∼ 50), when a less active vegeta-
tion cover temporally coincides with the main snowmelt pe-
riod. These seasonal conditions are known to reduce slope
stability (Crozier, 1989; Gonzalez-Ollauri and Mickovski,

2017; Krøgli et al., 2018). However, the lower model perfor-
mance in spring (Fig. 10b) suggests that the seasonal DOY
effect could only partly compensate unobserved factors that
(de)stabilize the hillslopes during this period. In this con-
text, we assume that an inclusion of a variable that specif-
ically describes snow melt conditions may stimulate a fur-
ther model improvement (Chleborad et al., 2008; Krøgli et
al., 2018; Stanley et al., 2021). The modelled seasonal ef-
fect may also be influenced by variations in the precipi-
tation regime and types across the seasons. In the north-
eastern Alps, summer is the wettest season with prevailing
convective activity, while in winter precipitation amounts
are smoother and mostly generated by larger-scale frontal
events (Frei and Schär, 2001; Molnar and Burlando, 2008;
Haslinger et al., 2019). Although a dedicated consideration
of the particular precipitation regime/type would theoreti-
cally be possible, its practical feasibility might be hampered
when considering a needed single-case assignment of pre-
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cipitation characteristics for a high number of individual ob-
servations over 20 years (i.e. > 2800 in this study). In sum-
mary, this section illustrated some of the challenges in deduc-
ing cause-and-effect relationships from data-driven landslide
models, while also emphasizing the importance of control-
ling for confounding factors that may act at multiple scales
(Steger et al., 2016, 2021). From a temporal perspective,
our model captured effects related to four temporal scales,
namely short-term (T ), medium-term (P ), seasonal (DOY),
and across-year data variation (YEAR).

6.2 Research design and representativeness of input
data

The explanatory power of the modelled relationships may
be diminished not only by a non-consideration of confound-
ing factors, but also by the inclusion of unrepresentative in-
put data. In binary modelling, systematic underrepresenta-
tion of presence or absence data is likely to provoke sys-
tematic model distortions, especially if such data bias is de-
scribed by a model term (e.g. an underrepresentation of land-
slide data in winter can be reproduced by a seasonal effect).
Within this study, mixed effects modelling allowed one to
isolate (and average-out) a potential inconsistent reporting of
landslide observations across the years, as previously con-
ducted for spatially inconsistent data in landslide suscepti-
bility modelling (Steger et al., 2017, 2021). The decision to
sample absences only at the locations of inventoried first-
time failures (i.e. sampling pre-landslide dates) substantially
reduced the chance of precipitation being incorrectly flagged
as an absence observation. It also implied that the created
model systematically refers to landslide-prone terrain only.

The spatially nested sampling design (i.e. multiple ob-
servations at each location) resulted in a statistical depen-
dence between the observations that must be considered.
Conventional data-driven models often ignore such nested
data structures. In this study, nesting of the data was explic-
itly addressed by using a location-specific random effect in
a mixed-effects modelling framework (Bolker et al., 2009;
Zuur et al., 2009). Temporal autocorrelation was counter-
acted by sampling only few observations at each location
over time (five on average over 21 years) while additionally
defining a minimum temporal interval of 30 d between the
observations.

During absence sampling, each month was given an equal
chance to be sampled as an absence observation, prior to re-
moving non-precipitation observations (Fig. 4). Instead of
simply sampling an equal number of wet days for each
month, we considered this two-step procedure necessary to
achieve a representative within-year distribution of wet days
without landslides. The specific finding that an average wet
day in November is more critical than an average wet day in
summer would likely have remained hidden had the under-
lying sampling design not taken into consideration that wet
days are much more common in summer. In summary, these

considerations highlight why a refined data sampling design,
combined with a specific strategy for handling potential bias
in the input data, was considered important.

6.3 Thresholds that relate to performance metrics

The presented model produced continuous outcomes (i.e.
landslide probability scores) in contrast to conventional em-
pirical rainfall thresholds. Thus, it enabled one to show that
an increasing amount of precipitation was associated with a
continuously increasing likelihood of landslide occurrence.
However, the shown probability values are not straightfor-
ward to interpret because they reflect the relative chance of
landslide occurrence. These predicted values are heavily de-
pendent on the underlying data distribution and the associ-
ated presence-to-absence ratio. For interpretation and practi-
cal applications, we therefore recommend linking such rela-
tive probability scores to more tangible model performance
metrics, such as the associated hit rate (TPR) or the false-
positive rate (1-TNR) (Fig. 8a). For instance, the meaning of
a predicted probability of 0.13 (optimal threshold in Fig. 9)
might be difficult to grasp and communicate to decision mak-
ers. Instead, the statement that 81 % (TPR) of all landslide
observations are above this threshold and 79 % (TNR) of rep-
resentative wet days without landslides are below may facil-
itate understanding of the results.

Besides providing information on potential false-alarm
rates, an inclusion of non-landslide precipitation observa-
tions in the definition of critical rainfall conditions can ad-
ditionally increase the robustness of the analysis and allow
to derive optimized thresholds that balance misclassifica-
tion rates (Frattini et al., 2009; Peres and Cancelliere, 2014;
Gariano et al., 2015; Giannecchini et al., 2016; Postance et
al., 2018; Leonarduzzi and Molnar, 2020). The threshold as-
sociated with the TPR of 95 % (blue in Fig. 9) can be viewed
as an analogue to the commonly shown empirical precipita-
tion thresholds of 5 %. Even though this threshold implies
that a very high portion of the landslide observations were
positioned above the threshold, the associated high false-
positive rate of 60 % depicts that also the majority of “wet”
days without landslide occurrences exceeded the threshold.
Relying on this 95 % in decision-making would therefore
come along with a high portion of false alarms. Thus, this
study provides another illustration on why non-landslide
events should be taken into account whenever continuous
precipitation records are available (Postance et al., 2018;
Leonarduzzi and Molnar, 2020).

The developed approach may be used in the context of
early warning by exploiting the day-specific predictions, as
shown in Fig. 9. This involves evaluating whether observed
or expected precipitation amounts are likely to exceed a par-
ticular threshold. To illustrate, consider a September day
(Fig. 9d), where the optimal threshold will not be exceeded
if 100 mm of precipitation were accumulated within the past
28 d (x axis) and 25 mm of precipitation were expected to
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fall within the upcoming 2 d (y axis). In contrast, the thresh-
old will be exceeded if the same amount of short-term pre-
cipitation (i.e. 25 mm) falls after a particularly wet period
(i.e. 200 mm within the past 28 d). Knowing that 81 % of past
landslides surpassed this threshold, while 79 % of wet days
without slope instability occurred below it, may further ease
interpretation.

6.4 Multi-perspective model validation

A considerable amount of published research on critical
landslide precipitation conditions does not include quanti-
tative validation information (Gariano et al., 2015; Segoni
et al., 2018a). Within this study, multiple data partitioning
strategies combined with CV were used for in-depth model
testing. In general, this procedure provided quantitative evi-
dence of the general model robustness and the model trans-
ferability across different time units (Fig. 10), across differ-
ent areas (Fig. 11), and across different environmental condi-
tions (Fig. 12). The additional consideration of “never-seen”
landslide observations (i.e. 2021 IFFI data, IRPI landslide
records) paired with constant plausibility checks of the mod-
elled relationships provided a further confirmation of the
model robustness.

Validation also acted as an additional analysis tool to iden-
tify situations in which the model performance deviates most
from the average condition. This in turn provided inspira-
tion for further hypotheses to test and entry points for model
improvement. For example, the systematically lower model
performance on higher altitudes (Fig. 12c) and at steep ter-
rain (Fig. 12b) indicates that in high alpine terrain and on
steep slopes landslide occurrence might be associated with
different season-specific precipitation amounts, compared to
lower lying and flatter areas. This in turn suggests that further
model improvements may be achieved by including spatially
explicit variables that directly describe landslide predispo-
sition. The current model was specified only for landslide-
prone terrain and thus disregards effects of spatially varying
landslide predisposition by design (Crozier, 1989).

7 Conclusions

The developed approach using GAMMs enabled the iden-
tification of critical, season-dependent precipitation condi-
tions for the occurrence of shallow landslides in the Ital-
ian province of South Tyrol. The flexible and interpretable
model targeted a daily scale and considered precipitation that
triggered shallow landslides as well as precipitation that did
not induce slope instability. It simultaneously accounted for
short-term and antecedent medium-term precipitation con-
ditions, while actively counterbalancing a potential across-
year landslide data reporting bias. Through our approach, we
found that the same amount of preparatory precipitation led
to different landslide probabilities depending on the day of

the year. It was assumed that this seasonal effect was at-
tributable mainly to temporal changes in vegetation and, to
a lesser extent, to temperature and snowmelt. The practi-
cal applicability of the results was enhanced by linking the
predicted probability scores to common model performance
metrics such as hit rates and false-alarm rates and by visualiz-
ing optimal and user-defined thresholds that change dynam-
ically throughout the year. The in-depth validation process
confirmed a high predictive performance of the model and
shed light on entry points for further model improvements.
The developed approach represents a compromise between
model transparency and model flexibility and can be adapted
and extended to different study contexts. We believe that, de-
spite the increasing availability of highly flexible data-driven
algorithms, the quality of input data, study and sampling de-
sign, model transparency, and result plausibility will con-
tinue to be very relevant for landslide prediction, especially
if decisions are to be made based on such results.

Code and data availability. Modelling has been conducted in R us-
ing the package mgcv. The R code used to fit the model is shown
in Table 1. Additional R scripts and custom codes (e.g. data cu-
ration/preparation, model validation, thresholding, visualizations)
are available upon request. The landslide point data (unfiltered) can
be accessed from https://doi.org/10.3390/ijgi10020089 (Iadanza et
al., 2021; https://idrogeo.isprambiente.it/app/page/open-data, last
access: 22 October 2022). The datasets of daily precipitation at
250 m resolution (NetCDF format) are freely available at PAN-
GAEA Data Publisher for Earth and Environmental Science through
https://doi.org/10.1594/PANGAEA.924502 (Crespi et al., 2020).
The environmental datasets (lithological map, terrain model) can be
accessed from the open geodatabase of the Autonomous Province of
South Tyrol through http://geokatalog.buergernetz.bz.it/geokatalog/
#! (last access: 2 October 2022, Geokatalog, 2021).
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