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Abstract. Forecasting the occurrence of hydrological
drought according to a forecasting system is an important
disaster reduction strategy. In this paper, a new drought pre-
diction model adapted to changing environments was con-
structed. Taking the Luanhe River basin in China as an exam-
ple, first, nonstationarity analysis of hydrological sequences
in the basin was carried out. Then, conditional distribution
models with the human activity factor as an exogenous vari-
able were constructed to forecast hydrological drought based
on meteorological drought, and the results were compared
with the traditional normal distribution model and condi-
tional distribution model. Finally, a scoring mechanism was
applied to evaluate the performance of the three drought fore-
casting models. The results showed that the runoff series of
the Luanhe River basin from 1961 to 2010 were nonstation-
ary; moreover, when human activities were not considered,
the hydrological drought class tended to be the same as the
meteorological drought class. The calculation results of the
models involving HI as an exogenous variable were signifi-
cantly different from the models that did not consider human
activities. When the current drought class tended towards
less severe or normal, the meteorological drought tended
to turn into more severe hydrological drought with the in-
crease in human index values. According to the scores of the
three drought forecasting models, the conditional distribution
models involving the human index can further improve the
forecasting accuracy of drought in the Luanhe River basin.

1 Introduction

Typically, meteorological drought is regarded as the begin-
ning of a drought event; after the occurrence of meteoro-
logical drought, other drought phenomena occur, such as
hydrological drought (Fendeková et al., 2018; Fuentes et
al., 2022; Wang et al., 2021). However, there is a delay pe-
riod from meteorological drought to hydrological drought
(Ding et al., 2021; Xu et al., 2019; Onyutha, 2017; Cammal-
leri and Vogt, 2018). Therefore, the occurrence of hydrolog-
ical drought can be forecasted according to meteorological
drought monitoring. Accurate hydrological forecast informa-
tion is beneficial to reduce the losses caused by hydrological
drought (Behzad and Hamid, 2019; Oertel et al., 2018 Dixit
et al., 2022; Jehanzaib et al., 2020).

To identify the drought characteristics of the region, schol-
ars have developed drought indices. For example, the stan-
dardized precipitation index (SPI) is typically used to iden-
tify and capture the characteristics of meteorological drought
(McKee et al., 1993). Considering the influence of precip-
itation and temperature, Vicente-Serrano et al. (2010) pro-
posed the standardized precipitation evapotranspiration in-
dex (SPEI) to characterize meteorological drought. The stan-
dardized runoff index (SRI), which focuses on the surface
runoff of catchments, is typically used to indicate hydrolog-
ical drought (Shukla and Wood, 2008). Aghelpour and Var-
shavian (2021) proposed the multivariate standardized pre-
cipitation index (MSPI) to forecast hydrological drought in
Iran.
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Statistical technology is an effective prediction method
that has been widely used in drought forecasting in recent
years (Alquraish et al., 2021; Abbasi et al., 2021; Dehghani
et al., 2019; Mallya et al., 2013). For instance, neural network
models have been proposed to combine multiple data for
drought prediction (Rezaeianzadeh et al., 2016; Mokhtarzad
et al., 2017; Ahnadi et al., 2011), and time series models
can be used to analyse the variation in time series such as
rainfall and runoff to achieve drought prediction (Moghimi
et al., 2020; Natsagdorj et al., 2021; Stojković et al., 2020).
The conditional probability model was proposed by Cancel-
liere et al. (2007) and developed for drought forecasting by
Bonaccorso et al. (2015). Bonaccorso et al. (2015) showed
that the conditional probability model can calculate the tran-
sition probabilities from the current drought index values to
the future drought classes, and this is a more robust method
that can be used to forecast drought than the traditional prob-
ability prediction models (such as the multivariate normal
distribution model and Markov method).

A change in the environment may lead to the nonstation-
arity of the relationship between hydrological series (for ex-
ample, precipitation and runoff series), which also occurs in
the Luanhe River basin (Wang et al., 2016, 2018, 2020; Li et
al., 2015). Traditional drought prediction methods need to be
further improved to adapt to nonstationary conditions (Wang
et al., 2022; Zhao et al., 2018; Chen et al., 2021). Ren et
al. (2017) found that the conditional distribution model using
large-scale climatic indices as covariates can improve the ac-
curacy of meteorological drought forecasting in the Luanhe
River basin. Although some progress has been made in the
study of drought forecasting, there are relatively few studies
considering the impact of the changing environment.

In this paper, to analyse the impact of human activities on
hydrological drought, we constructed the human activity in-
dex (HI) based on the restoration method. Subsequently, con-
ditional distribution models with the HI as the exogenous
variable were developed to forecast hydrological drought
based on meteorological drought, and then the results were
compared with the traditional normal distribution model and
conditional distribution model; as a result, the impact of hu-
man activities on transition probabilities was illustrated. A
scoring mechanism was applied to the evaluation of the three
probability models.

In addition to the introduction, this paper contains the fol-
lowing sections. Section 2 introduces the study area and data.
Section 3 briefly describes the methods used in the research.
Section 4 introduces the model construction and calcula-
tion results and analyses the results. Section 5 presents the
prospects.

2 Study area and data

The Luanhe River basin, located in the subtropical monsoon
region, covers an area of approximately 33 700 km2. Its ge-

ographical location is shown in Fig. 1. Due to the influence
of geographical location and topography, the annual average
north–south temperature difference in the basin is 11.5 ◦C,
and the annual rainfall distribution is uneven. Less rain in
spring and winter makes the area prone to meteorological
drought and hydrological drought, while there is relatively
more rainfall in summer. The average rainfall in summer is
approximately 200–560 mm, resulting in highly variable an-
nual runoff in the basin. The concentrated rainfall in summer
has also become one of the remarkable features of the cli-
mate in this area. In recent years, the precipitation and inflow
of the Luanhe River basin have gradually decreased, the wa-
ter level of the Panjiakou Reservoir in the lower reaches of
the basin has decreased, the runoff has decreased, and the fre-
quency of meteorological drought and hydrological drought
has significantly increased. Especially after entering the 21st
century, the river basin has exhibited continuous drought and
even extreme drought. With the change in the global climate
and the impact of human activities on the basin environment,
drought disasters in the Luanhe River basin occur frequently,
causing significant social and economic losses.

Influenced by topography, meteorology, hydrology and
hydrogeological conditions, the spatial distribution of
groundwater resources in the Luanhe River basin is quite
different. The recharge and storage conditions of shallow
groundwater in plain areas and intermountain basins are rela-
tively superior, and the content of groundwater in mountain-
ous areas is relatively small (the area of mountainous areas in
the Luanhe River basin accounts for 98.2 %). Therefore, the
total amount of water resources in the Luanhe River basin is
mainly considered to be affected by the amount of surface
water resources.

In this paper, the monthly rainfall data from 26 stations in
the Luanhe River basin from 1961 to 2010 were provided by
the Hebei Provincial Hydrology and Water Resources Inves-
tigation Bureau. The average monthly rainfall data of the area
were obtained by the inverse distance weighting interpolation
method. The runoff data from 1961 to 2010 came from the
inflow runoff series of the Panjiakou Reservoir. The SPI and
SRI can be calculated for 1-month, 3-month, 6-month, and
12-month timescales to characterize meteorological drought
and hydrological drought based on these data.

3 Methods

3.1 Nonstationarity test method

In the case of environmental changes, nonstationarity may
occur in hydrological series. The Pettitt test, as one of the
important methods to test whether there is nonstationarity in
time series, can identify whether there are change points in
the sample series (Malede et al., 2022). Assuming that the
sample sequence is x = (x1,x2, . . .xn), the formula is as fol-
lows:
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Figure 1. The geographical location of the Luanhe River basin.

Ut,n = Ut−1,n+

n∑
i=1

sgn(xt − xi)(t = 2,3, . . .n)t0 (1)

sgn(xt − xi)=

 1 xt − xi > 0
0 xt − xi = 0
−1 xt − xi = 0

, (2)

whereUt,n is the test statistic, which indicates the cumulative
number of the values at time t greater than or less than the
values at time i. In addition, if Kt0,n satisfies the following,

Kt0,n =max
∣∣Ut,n∣∣(t = 1,2, . . .,n), (3)

then t0 is considered to be the change point, and the cumula-
tive probability of possible change is determined by Kt0,n:

Pt0,n = 2exp

(
−

6K2
t0,n

n3+ n2

)
. (4)

Given the significance level α = 0.05, if Pt0,n > 0.95, it
means that the point is a significant change point (Li et

al., 2022; Koudahe et al., 2018). Furthermore, combined with
the Mann–Kendall test, the trend characteristics of the sam-
ple series can be obtained (Li et al., 2018).

The sliding T test is a basic method commonly used in
statistics. According to the mean and variance of the two
sample sequences before and after the change points in the
runoff time series, the two sample sequences are tested (Li et
al., 2020):
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2, (8)

where the change point is xt , n1 and n2 represent the sample
size before and after the change point, and S2

1 and S2
2 repre-
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sent the variance of the samples before and after the change
point, respectively. If the t statistic satisfies t > tα at the sig-
nificance level of α = 0.05, the point can be considered a
change point.

The Spearman correlation test can be applied to test the
trend of time series, and the specific description refers to the
article of Bishara and Hittner (2012).

3.2 Human activity index

The rainfall and runoff series of the watershed are usually
strongly correlated. However, under the interference of hu-
man activities, the relationship between rainfall and runoff
changes.

The double cumulative curve method can test the nonsta-
tionarity of the bivariate correlation between rainfall series
and runoff series, and the point where the underlying sur-
face is significantly altered by human activities can be de-
termined according to the position of the slope change of the
curve. Due to the short data series before and after the change
point (20 years before the change point and 30 years after the
change point), a linear equation was used to fit the relation-
ship between precipitation and runoff.

The linear regression relationship of the cumulative rain-
fall and runoff series can be calculated according to the fol-
lowing formula:∑

x = k
∑

y+ b, (9)

where x is the runoff series; y is the rainfall series; k is the
correlation coefficient of the regression equation; and b is the
intercept of the regression equation.

Human activities are the main reason for the nonstation-
arity of the runoff series in the watershed, so the HI can
be constructed to quantify the impact of human activities
on runoff. Based on the linear regression relationship estab-
lished between the accumulated precipitation and the accu-
mulated runoff before the change point, the theoretical runoff
sequence during the human activity period can be calculated
from the measured precipitation sequence. SRI′ represents
the standardized runoff index value without human activity
interference, and SRI represents the normalized runoff index
value calculated based on the measured runoff sequence un-
der the disturbance of human activities. The HI is obtained
by subtracting the theoretical SRI′ and the actual SRI, and
the calculation formula is as follows:

HI= SRI′−SRI. (10)

When HI> 0, it can be assumed that human activities exacer-
bate hydrological drought; HI< 0 means that the actual SRI
is greater than the theoretical SRI without human activities,
and when HI= 0, the watershed is considered undisturbed
by human activities.

Table 1. Drought class classification and corresponding SPI values
and SRI values.

SPI/SRI values Class

>−0.99 Normal
−1.00 to −1.49 Moderate
−1.50 to −1.99 Severe
≤−2.00 Extreme

3.3 Multivariate normal distribution model

The SPI is one of the important indicators for evaluating me-
teorological drought in the basin, and the SRI is an important
indicator for evaluating hydrological drought in the basin.
According to the rainfall data and runoff data in the basin, the
SPI and SRI can be calculated at different timescales. Table 1
provides the drought class classification and corresponding
SPI values and SRI values (Kolachian and Saghafian, 2021).

As a traditional drought class forecasting model, the multi-
variate normal distribution model (Model 1) can forecast the
future SRI class according to the current SPI class. Assuming
that the current SPI and SRI series both satisfy a multivari-
able normal distribution, the joint probability density can be
expressed as follows (Chang et al., 2022):

f
Z
(k)
v,λ,W

(k)
v,λ+M

(t, s)=
1

2π |6|
· exp

(
−

1
2
XT6−1X

)
, (11)

where 6 is the covariance matrix, and X = [t, s]T . The form
of the covariance matrix is as follows:

6 =

 1 cov
[
Z
(k)
v,λ, W

(k)
v,λ+M

]
cov

[
Z
(k)
v,λ, W

(k)
v,λ+M

]
1

 .
(12)

Furthermore, according to the joint probability density
function of the SPI value Z(k)v,λ at year v and month λ and

the future M month’s SRI value W (k)
v,λ+M , the analytical for-

mula of the transition probability of the future SRI drought
class can be obtained (Zhang et al., 2017):

P
[
W
(k)
v,λ+M ∈ CM

]
=

∫ ∫
CNCM

f
Z
(k)
v,λ,W

(k)
v,λ+M

(t, s) · dt · ds∫
CN
f
Z
(k)
v,λ

(t) · dt
, (13)

where CM represents the drought class, and f
Z
(k)
v,λ

(t) repre-

sents the marginal density function of Z(k)v,λ in the current λ
month.

3.4 Conditional distribution model

The conditional distribution model (Model 2) proposed by
Bonaccorso et al. (2015) is described as follows: when one
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group of sample data X obeys a normal distribution and sat-
isfies X ∼N(µ1,61), and another group of sample data Y
also obeys a normal distribution, namely, Y ∼N(µ2,62),
then the total sequence can be written as follows:

B =

[
X
Y

]
r

p− r
∼Np

([
µ1
µ2

]
,

[
611 612
621 622

])
. (14)

When sequence Y obeys a normal distribution, the distri-
bution of sequence X under the Y condition still satisfies a
normal distribution; namely, the distribution of (X|Y ) is as
follows (Gong et al., 2021):

(X|Y )∼N(µ3,63), (15)

where µ3 represents the expected value under the conditional
distribution, and 63 is the conditional covariance matrix:

µ3 = µ1+6126
−1
22 (y−µ2) (16)

63 =611−6126
−1
22 621. (17)

Then, the probability of the current SPI value transitioning
to the future SRI drought class can be deduced as follows
(Ren et al., 2017):

P
[
Wv,λ+M ∈ CM |Zv,λ = z0

]
=

∫ CMs

CMi

·
1

√
2πσZ

e
−

1
2

(
x−ρz0
1−ρ2

)2

dx, (18)

where Zv,λ represents the SPI value of the current month λ,
Wv,λ+M represents the SRI value of the λ+M month, CMs

and CMi
are the upper and lower limits of drought class CM ,

and the correlation coefficient between the current SPI value
and the future SRI value is ρ. Furthermore, the current SPI
and future SRI can be expressed as the standard normal cu-
mulative distribution function 8:

P
[
Wv,λ+M ∈ CM |Zv,λ = z0

]
=8

[
CMs − ρ · z0

1− ρ2

]
−8

[
CMi
− ρ · z0

1− ρ2

]
. (19)

The calculation of the correlation coefficient ρ is as fol-
lows:

ρ =
cov

[
Z
(k)
v,λ, W

(k)
v,λ+M

]
√

var
(
Z
(k)
v,λ

)
var
(
W
(k)
v,λ+M

) , (20)

where K represents the timescale of the drought index. As-
suming that the cumulative rainfall Y and runoff X satisfy
a normal distribution, after the standardization process, the
SPI value Z(k)v,λ corresponding to cumulative rainfall Y and

SRI value Wv,λ+M corresponding to runoff X obey the stan-
dard normal distribution:

var
(
Z
(k)
v,λ

)
= var

(
W
(k)
v,λ+M

)
= 1. (21)

cov
[
Z
(k)
v,λ, W

(k)
v,λ+M

]
represents the covariance between the

current SPI and the Sri value with a forecast period of M
months. The calculation is as follows:

cov
[
Z
(k)
v,λ, W

(k)
v,λ+M

]
=

1√
k−1∑
i=0

σ 2
λ+M−i

k−1∑
j=0

σ 2
λ−j

·

k−1∑
i=0
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j=0

cov
[
Xv,λ+M−j , Yv,λ−i

]
. (22)

3.5 Conditional distribution model involving the HI as
an exogenous variable

According to the above conditional probability model, when
considering the HI as an exogenous variable, the model
(Model 3) can be extended as follows:

P
[
Wv,λ+M ∈ CM |Zv,λ = z0,Hv,λ = h0

]
=

∫ CMs

CMi

1
√

2πσz
e
−

1
2

(
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)2

dx (23)
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=6′12(6
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σ 2
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′

22)
−16′21, (25)

where

6′12 =
[
cov

(
Wν,λ+M , Zν,λ

)
cov

(
Wν,λ+M , Hν,λ

)]
(26)

6′22 =

[
1 cov(Zν,λ, Hν,λ)

cov(Hν,λ, Zν,λ) 1

]
(27)

6′21 = (6
′

12)
T . (28)

3.6 Scoring mechanism

A scoring mechanism was applied to evaluate the perfor-
mance of the drought forecasting models. In this method, the
monthly drought transition probability is summed to evalu-
ate the model (Chen et al., 2013), where ps,t characterizes
the transition probability in month t of year s, and n is the
length of the validation period.

Score=
1

12n

∑12
t−1

∑n

s=1
ps,t (29)

4 Results and discussion

4.1 Nonstationarity analysis

In this paper, the area average monthly rainfall data of the Lu-
anhe River basin from 1961 to 2010 were obtained by spatial
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Table 2. Spearman correlation test results of runoff series trend.

Runoff series Statistic t Critical value tα

The whole series −3.471 ±2.009
Series before 1979 0.691 ±2.009
Series after 1979 −2.292 ±2.009

interpolation. The runoff data came from the inflow runoff
series of the Panjiakou Reservoir. Given the significance
level α = 0.05, the nonstationarity test results are shown in
Fig. 2.

Figure 2a shows that the years of possible runoff change
were 1979, 1996, 1997, 1998 and 1999. The P values in 1979
and 1998 were infinitely close to 1, which were considered to
be extremely significant runoff change points. Among all the
possible points satisfying t > tα , there were two maximum
points (Fig. 2b), namely, 1979 and 1998, which were con-
sidered to be possible runoff change points. The final change
point needs to be judged based on the actual situation of the
watershed.

The results of the Spearman correlation test (Table 2) in-
dicate that the runoff series showed an upwards trend before
1979, but the trend was not significant. However, there was a
significant downwards trend in the series after 1979. In gen-
eral, the runoff series showed a significant downwards trend.

In addition, according to historical records, local human
activities (such as land use change and reservoir construc-
tion) are regarded as the main factors influencing runoff (Yan
et al., 2018; Chen et al., 2021). Synthesizing the above anal-
ysis, 1979 was determined as the change point for the runoff
sequence in the basin, and this conclusion was consistent
with Li et al. (2015) and Wang et al. (2015).

4.2 Transition probabilities from current SPI values to
future SRI classes

According to the normality test results of rainfall and runoff
series, it was reasonable to apply the conditional distribution
model. To analyse the influence of different timescales of the
SPI on the transition probabilities, using the forecast period
as 1 month and the SPI timescales at 1, 3, 6 and 12 months as
examples, the probabilities of converting SPI values to SRI
classes were calculated (Fig. 3).

As shown in Fig. 3, when meteorological drought is cate-
gorized as extreme drought, the probabilities of maintaining
the SRI class in extreme drought increased with the increas-
ing SPI timescale. While the SPI had a short timescale, the
response of the future SRI class to rainfall was fast, so the hy-
drological drought was more likely to tend to a normal status.
This situation also occurred when the current meteorological
drought was in another status.

In addition, the transition probabilities of drought were
distinct for different forecast periods. As seen in Fig. 4, when

Table 3. Linear regression relationship between cumulative precip-
itation (x per mm) and cumulative runoff (y per 106 m3).

Period Linear regression Correlation
equation coefficient

1961–1979 x = 0.0276y+ 2.7566 0.99
1980–2010 x = 0.0307y− 30.652 0.98

the forecast periods were short (M = 1 or 2), the hydrolog-
ical drought classes obtained from the transition of meteo-
rological drought tended to be the same as those of mete-
orological drought. With the extension of the forecast pe-
riod (M = 2 or 3), the hydrological drought classes obtained
from the transition tended to be lower than the meteorologi-
cal drought or the normal status.

4.3 Transition probabilities involving the HI as the
covariate

The effects of human activities are complex. To quantify the
impact of human activities, the change point was identified,
and then it was believed that the difference in the relation-
ship between precipitation and runoff before and after the
change point was caused by human activities. Moreover, the
HI is easy to calculate and can approximately replace the in-
fluence of human activities. According to historical records,
local human activities (such as land use change and reservoir
construction) were regarded as the main factors influencing
runoff (Yan et al., 2018; Chen et al., 2021). According to the
above nonstationarity test results, 1979 was the change point,
and the linear regression relationship of the cumulative rain-
fall and runoff series before and after the change point was
established. The calculation results are shown in Table 3.

The HI results for different timescales are shown in Fig. 5.
As shown in Fig. 5, the HI at all monthly scales generally

ranged upwards, which means that human activities have in-
tensified the occurrence of hydrological drought. According
to historical statistics, many water conservancy projects were
built in the basin from 1980 to 2000, and the construction
and operation of large reservoirs in the mid-1990s may be
the main reason for the serious negative values of the HI.

The HIs of different monthly scales were standardized,
taking the 12-month timescale as an example, and the results
were calculated as shown in Table 4.

Furthermore, the drought transition probabilities involving
the HI can be calculated from Eq. (23). Using the forecast
period of 1 month from December and the SPI timescale of
12 months as an example, the drought transition probabil-
ities from the current SPI values to the future SRI classes
were calculated (Fig. 6). To analyse the effect of human ac-
tivities on the drought transition probability more clearly, the
calculation results of the three models are compared here
separately. The horizontal coordinate indicates the drought
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Figure 2. The change points of the runoff series.

Table 4. HI-12 monthly mean and standard deviation (SD).

January February March April May June July August September October November December

Mean −0.04 −0.03 −0.03 −0.03 −0.03 0.00 0.06 0.06 0.10 0.10 0.09 0.06
SD 1.36 1.37 1.38 1.41 1.41 1.51 1.40 1.40 1.45 1.44 1.44 1.43

Figure 3. Influence of the SPI timescale on transition probabilities
(z0: initial value of SPI).

classes corresponding to the SRI for the coming month, and
the vertical coordinate is the drought transition probability.

In Fig. 6a, when the initial z0 = 0.75 and C0 =N , the re-
sults shown in Model 1 and Model 2 were similar, and the
probabilities of the SPI values transitioning to the SRI classes
in the future month in the normal class were close to 1. How-
ever, the results of Model 3 indicated that the probabilities
of maintaining the SRI in the normal class in the future de-
creased as the HI increased. When HI= 2, the future hydro-

Figure 4. Influence of forecast period on transition probabilities (z0:
initial value of SPI).

logical drought classes were more likely to transition to se-
vere drought or extreme drought.

From the initial z0 =−1.25 and C0 =Mo (Fig. 6b), the
results of Model 3 showed that the transition probabilities of
the SPI values to a normal SRI class in the coming month
were higher when the HI was less than 1. As the HI in-
creased, the transition probabilities of the SPI values to a
moderate drought or even a more severe drought in the fu-
ture increased. In addition, the probabilities of maintaining
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Figure 5. Different average periods of the HI (HI-1: HI with a 1-month timescale; HI-3: HI with a 3-month timescale; HI-6: HI with a
6-month timescale; HI-12: HI with a 12-month timescale).

moderate drought were the highest when human activities
were not considered, and Model 2 showed a higher proba-
bility than Model 1.

While the initial meteorological drought class was severe
drought (Fig. 6c), the probabilities of the future SRI drought
class being in the normal class became larger as the HI de-
creased. When the effect of human activities was not consid-
ered, the probability that the current SPI value transitioned
to the SRI class under severe drought in the future month
was the highest, and the probability of being in the normal
class was the lowest. For Model 2, the probability of the SRI
classes transitioning to severe drought was higher than the
result of Model 1.

It was noteworthy that when the initial z0 =−2.5 and
C0 =Es (Fig. 6d), the probabilities of transition of the SPI
values to the future SRI classes at the normal class were close
to 1 as HI < 0. However, hydrological drought was more
likely to be moderate drought or severe drought, as the HIs
were greater than 0, and the transition probabilities exceeded
0.25. For Model 1 and Model 2, the probabilities of transition
of the current SPI values or classes to the future month SRI
classes in extreme drought were both higher than 0.75, and
Model 2 showed a higher probability than Model 1.

In general, for the evaluation of drought transition prob-
abilities in the future month, hydrological drought classes
tended to be the same as meteorological drought when hu-
man activities were not considered, and this situation was

more significant in Model 2 than in Model 1. The calcula-
tion results of the model involving the HI as an exogenous
variable were significantly different from those of the models
that did not consider human activities. The calculation results
of Model 1 and Model 2 showed that the future hydrological
drought classes were more likely to be the same as the meteo-
rological drought classes in the current period, and they were
more significant in Model 2. In addition, it was obvious that
the drought transition probabilities of Model 3 were signifi-
cantly different from those of Model 1 and Model 2. Taking
Fig. 6b as an example, when z0 =−1.25 and C0 =Mo, the
result of Model 1 showed that the probability of the SPI val-
ues transitioning to the SRI classes in the future month in the
normal class was close to 0.15, the result of Model 2 was
close to 0, and the result of Model 3 (HI= 0) was close to
0.95. The results of Model 3 (HI= 0) indicated that hydro-
logical drought was likely to remain at the normal class in the
future month. Moreover, the value of the HI had a great im-
pact on the results of Model 3; for example, when HI=−2
or −1, the probabilities of the SPI values transitioning to the
SRI classes in the future month in the normal class were both
close to 1, but the probability was close to 0.65 and 0.17
when HI= 1 and 2, respectively.The results further indicated
that meteorological drought tended to turn into more severe
hydrological drought with increasing HI values.
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Figure 6. Drought transition probability under the influence of human activities (C0 denotes the initial drought class of the SPI in the
multivariate normal model; z0 represents the initial value of the SPI in the conditional distribution model; Model 1: the normal distribution
model; Model 2: the conditional distribution model; Model 3: the conditional distribution model involving the HI).

4.4 Model evaluation and analysis

To quantitatively evaluate the prediction accuracy of
Model 1, Model 2 and Model 3, the study period was divided
into a correction period (1961–2003) and a verification pe-
riod (2004–2010), and then the drought transition probabil-
ity from the SPI value or class to the SRI class in the future
M-month was calculated. The calculation results are shown
in Table 5.

With the same timescale of the SPI, the model scores of
Model 1 and Model 2 decreased as the forecast period M
lengthened, while the model scores of Model 3 were not sig-
nificantly affected by the forecast periodM . Model 1 had the
highest rating of 0.36 at an SPI of a 1-month timescale and
a forecast period of 1 month; Model 2 reached the highest
model rating of 0.74 at a 12-month timescale and a fore-
cast period of 1 month; and Model 3 performed well at an
SPI of 1-month timescale and a 12-month timescale. Overall,
Model 3 had the highest rating, and Model 1 had the lowest
rating for the same SPI timescale and the same forecast pe-
riod, which also indicated that the forecast accuracy of the
conditional distribution model considering the HI was higher
for short-term forecasts with a forecast period of 3 months or

Table 5. Model evaluation (Model 1: multivariate normal distribu-
tion model; Model 2: conditional distribution model; Model 3: con-
ditional distribution model with the HI).

Model type Lead time M SPI timescale

1 3 6 12

1 0.36 0.36 0.28 0.22
Model 1 2 0.11 0.35 0.27 0.22

3 0.02 0.34 0.26 0.22

1 0.69 0.52 / 0.74
Model 2 2 0.69 0.47 / 0.67

3 0.69 0.44 0.39 0.60

1 0.72 0.64 0.59 0.71
Model 3 2 0.71 0.64 0.59 0.71

3 0.72 0.64 0.60 0.71
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less, and including the HI could further improve the forecast
accuracy of the model.

5 Conclusions

Many studies have noted that human activities have a signifi-
cant impact on watershed runoff in the Luanhe River basin. In
this paper, three probability models were constructed to cal-
culate the transition probabilities from the current SPI classes
or values to the future SRI classes; then, a scoring mechanism
was applied to evaluate the performance of the models.

The calculation results of Model 1 and Model 2 showed
that the future hydrological drought classes were more likely
to be the same as the meteorological drought classes in the
current period, and they were more significant in Model 2.
In addition, it was obvious that the drought transition proba-
bilities of Model 3 were significantly different from those of
Model 1 and Model 2. Under the condition of considering the
HI, the results of the drought transition probability showed
that when HI< 0, the future hydrological drought classes
tended to normal status, and this situation was more obvi-
ous with the decrease in the HI values, which indicates that
human activities mitigate the degree of hydrological drought
when HI< 0. However, when HI> 0, the future hydrological
drought classes generally transitioned to more severe drought
with increasing HI values. Thus, it was indicated that human
activities exacerbate the degree of hydrological drought as
HI> 0.

Finally, a scoring mechanism was applied to the evaluation
of the models, and the forecast results of the three models
were evaluated. The results demonstrate that when the SPI
timescale was the same, the scores of Model 1 and Model 2
decreased as the forecast period lengthened. In most cases,
Model 2 performed better than Model 1, and the performance
of Model 3 was the most stable of the three models and had
the highest score. The conditional probability model consid-
ering the HI was more suitable for the Luanhe River basin,
where human activities have a high influence.

Although this study has made some progress in the fore-
casting of hydrological drought in a changing environment,
only the HI was considered as the exogenous variable in this
paper, and human activities were generalized. In future stud-
ies, the HI can be analysed specifically. For example, the im-
pact of land use and socioeconomics on drought prediction
can be specifically analysed. In addition, climate factors can
be further considered in future research.
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