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Abstract. Ensuring food security against climate risks has
been a growing challenge recently. Weather index insurance
has been pointed out as a tool for increasing the financial re-
silience of food production. However, the multi-hazard insur-
ance design needs to be better understood. This paper aims
to review weather index insurance design for food security
resilience, including the methodology for calculating natu-
ral hazards’ indices, vulnerability assessment, and risk pric-
ing. We searched for relevant research papers in the Scopus
database using the Preferred Reporting Items for Systematic
reviews and Meta-Analyses (PRISMA) protocol. Initially,
364 peer-reviewed papers from 1 January 2010 to 19 Febru-
ary 2022 were screened for bibliometric analysis. Then, the
26 most relevant papers from the last 5 years were systemati-
cally analyzed. Our results demonstrate that despite a signifi-
cant research effort on index insurance, most papers focused
on food production. However, research considering other as-
pects of food security, such as transportation, storage, and
distribution, is lacking. Most research focuses on droughts.
Other hazards, such as extreme temperature variation, ex-
cessive rainfall, and wildfires, were poorly covered. Most
studies considered only single-hazard risk, and the multi-
hazard risk studies assumed independence between hazards,
neglecting the synergy hypothesis between hazards. Lastly,

we proposed a conceptual framework that illustrates design
paths for a generalized weather index insurance design and
evaluation. Solutions for addressing multi-hazard problems
are considered. An illustrative example demonstrates the
importance of testing the multi-hazard risk hypothesis for
weather-based index insurance design for soybean produc-
tion in Brazil.

1 Introduction

The increased frequency and magnitude of extreme weather
and climate events have been evidenced in many regions of
the globe, being widely attributed to climate change (IPCC,
2022). In recent years, extreme weather events have caused
significant losses and damages in many climate-sensitive sec-
tors, affecting urban and rural areas. Insurance is essential to
provide economic sustainability to vulnerable sectors and to
improve recovery from catastrophic climate events.

Insurance has been pointed out as a tool for safeguard-
ing populations and properties from climate change (UNEP
FI, 2012). Nevertheless, Kraehnert et al. (2021) argue that
insurance itself is not an adaptation measure and depends
on several characteristics and factors. Some relevant factors
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are living standards, economic well-being, the availability of
safety nets for poor people, characteristics of the sector, and
the types of risks that sectors are exposed to (FAO, 2014).

Swiss Re (2021) predicts non-life insurance premiums to
rise 10 % above the pre-pandemic state and acknowledges
that climate change might have an even more significant im-
pact on the insurance industry. They propose that increasing
underwriting policies against climate-related disasters is vital
to tackle this problem.

However, the challenge might be more significant in de-
veloping countries with lower insurance coverage. On the
one hand, the premiums per capita in the United States
and Canada were USD 7270 in 2020, which is much higher
than the world average of USD 809 per capita and the euro-
zone average of USD 2723. Conversely, Latin America, the
Caribbean, emerging Europe, and Asia presented premiums
of USD 203, 159, and 215 per capita, respectively. Africa and
the emerging Middle East presented much lower numbers of
USD 45 and 93 per capita, respectively (Swiss Re, 2021).

Index-based insurance policy is a solution to improve in-
surance coverage, especially in low-income areas (Raucci
et al., 2019). The term index insurance started being used
for crop yield insurance policies based on area-yield indices
as first described by Halcrow (1949) and then further re-
visited by Miranda (1991). The area-yield insurance model
was adopted in the United States in the early 1990s, dividing
agricultural areas in the crop domain into group risk plans
(GRPs). Indemnities were triggered when forecasted crop
yields would fall under a certain threshold within each GRP
(Skees, 2008).

Area-yield contracts depend on data availability and tech-
nical capacity to evaluate and monitor the group risk units,
which can be costly and impractical in many poor and de-
veloping countries. To overcome this challenge, researchers
proposed contracts based on weather indices (Müller and
Grandi, 2000).

In the financial and actuarial literature, weather derivatives
have been used to associate the financial frustration of a busi-
ness with a weather index (Müller and Grandi, 2000). Con-
tracts based on weather indices have helped policyholders
to hedge against adverse conditions in the clothing business
(Štulec et al., 2019), hydropower plants (Foster et al., 2015),
and solar energy systems (Boyle et al., 2021). Crop yield con-
tracts based on rainfall have been used due to their simplicity
and data availability (Yoshida et al., 2019). The method uses
rainfall from weather stations nearby farms to predict losses,
and the threshold is usually defined according to an index in
the growing season.

This type of contract almost eliminates the need for on-site
verification of losses, reducing administrative costs and im-
proving the transparency of insurance products (Shirsath et
al., 2019). Insurance companies also benefit from reducing
moral hazards, since crop losses are estimated from indices
provided by third-party agencies (Ghosh et al., 2021). More-
over, due to reduced costs, contracts based on weather in-

dices have been used for microinsurance contracts in poor ru-
ral areas to improve protection against adverse climate con-
ditions and to prevent smallholder farmers from falling into
poverty traps (Skees, 2008). Despite its advantages, index in-
surance has a particular side effect called basis risk, which
is a mismatch between actual losses and predicted losses
(Ghosh et al., 2021).

As expected from the relevance of agriculture in the insur-
ance industry, most literature reviews focus on understanding
index insurance and microinsurance for agriculture (Leblois
et al., 2014; Sarris, 2013). Zara (2010) proposed a systematic
review of the role of weather derivatives in the wine industry.
Akter (2012) focused on reviewing problems of microinsur-
ance in Bangladesh, looking for evidence for insurance de-
mand, how to approach the market, and design challenges to
improve the safety of vulnerable populations, especially for
smallholder farmers.

Several studies have reported on single-hazard risk insur-
ance design. Considering only one hazard does not include
the expression of risk due to interactions among different
hazards (Gill and Malamud, 2014; Hillier et al., 2020). In-
surance risk assessment and climate change impacts have re-
cently been reviewed by Lyubchich et al. (2019). The authors
review several adverse events such as floods, hail, and exces-
sive wind, but the interaction effect between hazards could
be explored further.

Sekhri et al. (2020) proposed a framework for multi-
hazard risk management. However, it was too specific for
mountainous regions and a broader risk management strat-
egy. Komendantova et al. (2014) introduced a framework for
participatory risk governance, allowing for feedback from
stakeholders. Abdi et al. (2022) conducted an extensive re-
view of the possible index insurance applications for agricul-
ture. The authors summarized indices and methods for de-
signing index insurance with possible applications for multi-
hazard risks. However, multi-hazard implementation has not
been nearly as thoroughly investigated as single-hazard prob-
lems.

Considering this initial analysis, this paper thoroughly an-
alyzes the literature, further describes the identified gaps, and
proposes a framework for addressing multi-hazard index-
based insurance design for agricultural purposes. The sys-
tematic review was designed to answer the following ques-
tions, considering the context of index insurance: (1) what in-
dices are used to assess and monitor extreme weather events?
(2) What functions and methods are used to assess the vul-
nerability of food production to extreme weather events, and
(3) how are risk premiums determined?

The paper is organized into the following sections: Sect. 2
presents the methodology used to conduct the systematic lit-
erature review; Sect. 3 reports the main findings of the liter-
ature review, discusses the most relevant papers, presents the
proposed framework for insurance design, and illustrates its
use with an example for soybean production in Brazil; and
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Sect. 4 concludes the paper, pointing out limitations and rec-
ommended future works.

2 Methodology

A systematic review was conducted to better identify
state-of-the-art designing and implementing of multi-hazard
index-based insurance in agricultural environments and to
identify the main gaps in current techniques and models. The
Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) protocol (Liberati et al., 2009) was ap-
plied, and the Scopus database was used for data collection.

This database was chosen due to its comprehensive cov-
erage of relevant events and scientific journals related to cli-
mate change, agriculture, insurance design, and multi-hazard
frameworks and techniques among other relevant topics. It
encompasses a wide range of subjects in technology, sci-
ence, social sciences, medicine, humanities, and arts (Sco-
pus, 2022).

We performed the literature review following the PRISMA
protocol (Liberati et al., 2009). First, a bibliometric analysis
was performed on the selected papers from 1 January 2010
to 19 February 2022 using the Bibliometrix R package (Aria
and Cuccurullo, 2017). Then, a critical analysis of the most
cited papers of the last 5 years (2018 to 2022) was performed
to identify fundamental research topics, themes, keywords,
and guidelines for index insurance design and evaluation and
to identify the main gaps in the literature.

The systematic review process was divided into four steps
(Fig. 1). The first consisted of defining the search strings
based on the three research questions described in Sect. 1.
Our search string was composed of keywords in the English
language extracted from an in-depth analysis of relevant lit-
erature reviews and papers on the topic. It was then used to
search terms in the documents’ title, abstract, and keywords
in the Scopus database. The following criteria were consid-
ered:

– English keywords: multi-risk weather index insurance.

– English synonyms: multi-risk, risk, weather, climate, in-
dex, parametric, insurance, microinsurance, derivative.

– Search string: TITLE-ABS-KEY ((risk (multi AND
risk) OR portfolio) OR (index OR parametric) AND
(insurance OR microinsurance OR derivative) AND
(weather OR climate)).

The second step was the screening process. First, we
selected only scientific papers published in peer-reviewed
journals in English, Portuguese, or Spanish. Review papers,
books, book chapters, and conference proceedings were ex-
cluded from the analysis, following the methodology used in
other systematic reviews in the literature. This step resulted
in 1192 documents.

In the third step, an analysis of the documents’ titles and
abstracts was conducted to filter only works that designed or
implemented a complete application of an index insurance
or weather derivative. Many studies on the evaluation of de-
mand for index insurance, and traditional insurance models
were excluded. This step resulted in 365 documents. Then,
several tools used for bibliometric analysis were applied to
this dataset.

The fourth step was performing a critical review of the 26
most cited papers published in the last 5 years of the dataset
(2018 to 2022). This evaluation excluded papers that did not
provide information on index insurance design. This review
was divided into (i) hazard identification, (ii) vulnerability
analysis, and (iii) financial method and risk pricing analy-
ses. These three modules were adapted from the frameworks
developed by Guzmán et al. (2020), Mohor and Mendiondo
(2017), and Righetto et al. (2007), which encompass the main
aspects of weather-based insurance design.

Before analyzing the full papers, it is critical to specify the
main concepts and definitions. Although there are many defi-
nitions for concepts such as hazard, multi-hazard, resilience,
and food security, we chose to adopt the most broadly ac-
cepted ones. These were the following:

– Hazard. “A dangerous phenomenon, substance, human
activity or condition that may cause loss of life, in-
jury or other health impacts, property damage, loss of
livelihoods and services, social and economic disrup-
tion, or environmental damage” (UNDRR, 2014). This
paper refers explicitly to hazards derived from extreme
weather and climate events.

– Multi-hazard. “All possible and relevant hazards and the
valid comparison of their contributions to hazard poten-
tial, including the contribution to hazard potential from
hazard interactions and spatial/temporal coincidence of
hazards, while also taking into account the dynamic
nature of vulnerability to multiple stresses” (Gill and
Malamud, 2014).

– Vulnerability. “The conditions determined by physi-
cal, social, economic and environmental factors or pro-
cesses, which increase the susceptibility of a commu-
nity to the impact of hazards” as defined by the Hyogo
Framework for Action (UNDRR, 2014). For this paper,
the concept of vulnerability was focused on the phys-
ical damages and losses derived from the realization
of an extreme weather event. We are utilizing, there-
fore, a classical approach to quantify the vulnerability of
risk-averse individuals, which considers that the greater
the losses, the more the vulnerability. Even though this
traditional definition has been questioned as a reducer
of solely the economic sphere of an issue that per-
meates social, political, and environmental dimensions,
this is ultimately a practical approach of widespread use
(Machado et al., 2005).
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Figure 1. Methodological steps of the PRISMA statement.

– Resilience. “The ability of a system, community or so-
ciety exposed to hazards to resist, absorb, accommodate
to and recover from the effects of a hazard in a timely
and efficient manner, including through the preservation
and restoration of its essential basic structures and func-
tions” UNDRR (2009). In the context of this paper, and
as described primarily by Mohor and Mendiondo (2017)
and Guzmán et al. (2020), in the resilience module of an
index insurance schema, the risk premium is an indica-
tor of the resilience of a sector for coping with weather
and extreme climate events.

– Food security. “exists when all people, at all times, have
physical, social and economic access to sufficient, safe
and nutritious food which meets their dietary needs and
food preferences for an active and healthy life. House-
hold food security is the application of this concept
to the family level, with individuals within households
as the focus of concern” (FAO, 2003). In summary,
food security is rooted in the pillars of availability, ac-
cess, and utilization (Barrett, 2010). This broadens the
concept of food security to encompass different sup-
ply chain links, such as food production, transportation,
storage, and distribution.

3 Results and discussion

This section describes the main results of this work. It also
discusses important aspects related to applying these results
in different scenarios and contexts. It is divided into the fol-
lowing sections. Section 3.1 contains the main results of the
bibliometric analysis; Sect. 3.2 presents an in-depth litera-
ture review of the most relevant papers identified, exploring
the hazard assessment, vulnerability analysis, and financial
methods and risk pricing modules; and Sect. 3.3 presents the
proposed conceptual framework, encompassing both its de-
scription and an example to illustrate its main aspects and
contributions to the field of multi-hazard weather-based in-
surance design.

3.1 Bibliometric analysis

First, it is vital to observe that around 50 % of the works
analyzed have been published since 2018, denoting an in-

Figure 2. Weather index insurance studies. (a) Temporal distri-
bution of papers collected from 1 January 2010 to 19 February
2022. (b) Thematic map representing the global collaboration net-
work, where the countries in blue represent the number of stud-
ies produced by scientists. The darker the color, the more affilia-
tions the country has. The world vector map data were provided
by https://www.naturalearthdata.com/ (last access: 8 March 2023)
under public domain.

creased interest in the topic. The average number of cita-
tions per year per paper demonstrates the increasing impact
of weather index insurance in the literature (Fig. 2a). How-
ever, the global distribution is concentrated in Europe, the
United States, Canada, and Asia. The role of Latin America,
the Caribbean, Australia, New Zealand, Oceania, and Africa
is much smaller, representing less than 10 % of the published
papers each.

Additionally, international collaboration is a critical factor
for high-impact scientific studies. Two important countries to
analyze in this aspect are Russia and China. In Russia, more
than 90 % of highly cited papers were written in an interna-
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tional setting (Pislyakov and Shukshina, 2014). Similarly, in
China, 47 % of highly cited papers were written in an inter-
national, collaborative form.

These countries’ international cooperative background, in
general, paves the way to more innovative research in the
field. These publications illustrate how collaborations with
international scientists from centers of excellence enhance
the study’s dissemination.

The scientific collaboration map (Fig. 2b) shows strong
collaboration networks between the United States, European
countries, China, and India. European countries such as Ger-
many, Switzerland, and the Netherlands have played a domi-
nant role in integration and have promoted collaboration with
Kenya, Ethiopia, Nigeria, and South Africa. Canada has col-
laborated with China, Indonesia, the United States, and Eu-
ropean countries. From this analysis, we conclude that the
United States, China, and Germany have dominant roles in
scientific collaboration and are the most influential countries.

A keyword analysis revealed that agricultural and crop in-
surance are well-developed subjects with a substantial impact
on index insurance. In addition, drought is the most studied
hazard, explained by the impacts of droughts on agriculture.
It is important to note that since index insurance was de-
signed to be used in agriculture (Miranda, 1991; Skees, 2008)
and as the concept has gained attention, a broader range of
applications might be proven feasible.

On the one hand, Latin American countries such as Brazil,
Argentina, and Mexico are vital to global food production
(Baldos et al., 2020). On the other hand, by conducting a bib-
liometric analysis of relevant studies from 2010 to 2022, we
discovered a low academic engagement between them and
the rest of the world. This is contradictory, as these coun-
tries suffer the most from extreme event losses due to their
solid economic link with climate-dependent primary activi-
ties. These findings emphasize the importance of developing
index insurance in tropical countries, notably Latin Amer-
ica, to adapt better to climate change. Furthermore, climate
change and basis risk are critical in building index insurance.
However, these themes need to be developed more in the lit-
erature analyzed.

Table 1 presents a strategic diagram to analyze clusters of
keywords (referred to as themes) according to their centrality
and density values. According to Cobo et al. (2011), density
is a measure of the development of the theme, and central-
ity is the importance of the theme in the development of the
whole field of research analyzed. According to their densities
and centralities, the themes are divided into four classes: ba-
sic, motor, niche, and emerging and declining themes. These
will be analyzed in the following paragraphs.

Basic themes represent relevant keyword clusters for all
the documents analyzed. These include the following clus-
ters: index-based insurance, climate change, index insurance,
and basis risk. Climate change has been a significant concern
for decision-makers, especially in risk management. Climate
change might lead some regions toward higher risk profiles,

increasing their vulnerability and the expected losses. There-
fore, this theme represents an opportunity to develop index
insurance for agriculture. Basis risk is a primary topic that
requires more development. Even though it is a well-known
bottleneck in the field, our analysis suggests room for im-
provement. More attention must be paid to this topic in future
studies.

Motor themes encompass keywords that are relevant to the
entire insurance theme and that are well developed. Since
they present strong centrality and high density, the clusters’
insurance, agriculture, risk management, and crop insurance
are conceptually related to almost all papers gathered in the
bibliometric analysis. This result confirms that agricultural
and crop insurance are the most explored themes in the index
insurance field.

Emerging and declining themes are related to themes that
represent a combination of low levels of development and
are marginal to the entire field of research. This quadrant in-
cludes weather index insurance, which is a critical issue in
terms of impact, since extreme weather events trigger signif-
icant disasters worldwide. Given the need to manage weather
extremes and their importance to a broader geophysical com-
munity, weather index insurance is an emerging topic that
will gain more attention in the coming years.

Finally, niche themes encompassed the term weather
derivatives. It is considered a niche theme because it is well
developed but has a marginal impact on the field. The themes
have fundamental distinctions and similarities. Derivatives
are traded over the counter (OTC) or on the Chicago Mercan-
tile Exchange (CME). Index insurance is a product offered
by insurance and reinsurance companies. They theoretically
have a similar principle: a risk-averse individual pays a pre-
mium for a risk-bearing individual.

3.2 Systematic literature review

The concept of food security is rooted in the pillars of avail-
ability, access, and utilization (Barrett, 2010). Food produc-
tion can affect availability, while access to renewable or sus-
tainable energy can facilitate proper food transportation and
storage. Not all research in the systematic review could be
thoroughly examined due to a lack of information on their
applications. Thus, for the 26 papers with complete informa-
tion, we conducted an overview of the application and most
relevant characteristics of index insurance for food security
in three main categories: (i) agricultural, (ii) hydrological,
and (iii) sustainable energy insurance. Table 2 presents the
results of this analysis.

We observed that most studies evaluated insurance at dif-
ferent spatiotemporal aggregations, such as crop insurance,
which was analyzed at the farm level by governmental agen-
cies, insurance companies, or surveys. In many countries,
for example, agricultural data are aggregated at a regional
scale, i.e., municipality, department, state, and country, with-
out standardization. The size of the properties varied greatly
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Table 1. Thematic mapping of the documents based on the conceptual structure of the authors’ keywords divided into seven clusters with
word frequency higher than 40 words according to centrality (the relevance of the theme in the development of the field) and density (the
development of the field).

Theme Cluster Density Centrality

Motor
Insurance 9 7
Crop insurance 7 5

Niche Weather derivative 2 8

Emerging and declining
Weather index insurance 3 4
Index-based insurance 5 3

Basic
Basis risk 8 1
Climate change 6 2

from 5 to 400 ha, and the total coverage was up to 1.6 million
ha.

Forestry insurance covers larger areas and uses remote
sensing data to assess risk. Therefore, spatial discretization
is performed at a pixel level. The catchment level was the
spatial unit for hydrological insurance, and the coverage in-
cluded all hydrological processes that occurred upstream of
the reservoir. For the sustainable energy insurance – wind
and solar power insurance – a unique point, representing the
location of the windmills and solar panels, was evaluated.

The temporal scale at which the insurance was purchased
varied from seasonal to annual. Crop insurance is typically
contracted before the sowing period and reaches maturity at
the end of the crop cycle. Sectors that are continuously ex-
posed to natural hazards are operated on an annual basis.

The insurance premiums were represented using different
units. However, most of the works focused on premiums per
unit of area and unit of cost. The crop insurance premium
varied from USD 6.18 to 55.26 per hectare. This value was
affected mainly by the cost of production and farmers’ degree
of risk aversion. A value of USD 187.29 per tonne of crop
and 3 % to 7 % of production costs was also found.

In contrast, the hydrological insurance for water supply
represents values of USD 10.48, and the irrigation insurance
ranges from USD 212.83 to 333.07 per hectare. The prices
for irrigation were inconsistent with crop insurance. This
might be related to irrigation costs. Sustainable insurance
presented premium rates ranging from 0.35 % to 0.50 % of
production costs or a fixed fee of USD 0.033144 per kW h. A
detailed analysis of hazard identification, vulnerability analy-
sis, and financial methods of the reviewed paper is presented
in sequence.

3.2.1 Hazard assessment

The index insurance literature contains a broader range of
analyzed hazards and indices (Table 2). Drought and hydro-
logical drought are the most frequent hazard (77 %), followed
by excessive rainfall and flood (27 %), temperature variation:

heat and cold waves (4 %), wildfire (4 %), low wind speed
(4 %), and lack of solar radiation (4 %). Furthermore, 27 %
of the studies have a multi-hazard interaction, with drought
and excessive rainfall being the most common, followed by
wildfire and excessive rainfall and hydrological drought and
floods.

Most studies focused on drought, which is consistent with
the findings of Abdi et al. (2022), who identified drought as
the leading risk when studying index insurance for crop pro-
ductions. This is due to the fact that drought is the most dam-
aging threat in the agricultural sector, and the sector was the
driving subject of the studies evaluated. Our finding is consis-
tent with the fact that drought-induced yield losses occurred
in three-fourths of the global harvested regions between 1983
and 2009 (Kim et al., 2019).

Index insurance is a promising methodology for designing
insurance models because it avoids the high administration
costs, adverse selection, and moral hazard issues associated
with traditional indemnity-based insurance. The behavior of
an index can characterize the variability of a hazard. How-
ever, its performance in covering losses is highly dependent
on the index chosen.

The index choice is a critical phase in index insurance
modeling, since a mismatch between the index and the actual
loss might increase basis risk. Another significant element
influencing performance is geographic basis risk, which oc-
curs when the insurance index is based on a location other
than the insured location. This difficulty emerges, for exam-
ple, in agricultural insurance when the index is derived from
a meteorological station placed in a location that does not
adequately represent the insured region.

Because it is challenging to give specific index insurance
contracts to small regions, geographical basis risk is gener-
ally unavoidable (Odening and Shen, 2014). Another option
for mitigating this risk is to utilize decorrelation functions
and an insurance portfolio composed of contracts for various
regions (Norton et al., 2013). Figueiredo et al. (2018) pro-
poses a probabilistic framework for tackling uncertainties in
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Table 2. Main categories for index-based insurance and their specific application. Indices: cumulative precipitation index (CPI), water
storage (WS), water deficit (WD), normalized difference vegetation index (NDVI), soil moisture index (SMI), standardized precipitation
evapotranspiration index (SPEI), standardized precipitation index (SPI), El Niño–Southern Oscillation (ENSO), evaporative stress index
(ESI), Ped’s drought index (PDI), Ribéreau–Gayon and Peynaud hydrothermal scale (RGP), sum of 2 consecutive days’ rainfall exceeding a
given threshold value (R2mm), Drought and Overwhelmed Water Key Indicator (DOWKI), Berman and Levadoux (BBL), high temperature
(HT), low temperature (LT), peak flow (PF), Visible Infrared Imaging Radiometer Suite (VIIRS), solar radiation (SR), and wind speed
(WSpeed).

Category Hazard Index Threshold Author

Agricultural

Drought

Expected yield Turvey et al. (2019)

Expected yield Roznik et al. (2019)

CPI 30th percentile Kath et al. (2019)

50th–85th percentile Awondo (2019)

Expected yield Ricome et al. (2017)

CPI, NDVI Customized trigger Eze et al. (2020)

CPI, SPI, SPEI,
Expected yield Bucheli et al. (2021)

SMI, ESI

ENSO Expected yield Mortensen and Block (2018)

PDI, CPI Expected yield Bokusheva (2018)

SMI Expected yield Vroege et al. (2021)

SPI, SPEI Expected yield Hohl et al. (2021)

WD Expected yield Gómez-Limón (2020)

BBL, RGP 50th–90th percentile Martínez Salgueiro (2019)

Drought and excessive
CPI 50th percentile Martínez Salgueiro (2019)

rainfall

CPI, R2mm Customized trigger Shirsath et al. (2019)

Drought and excessive
DOWKI 10th and 90th percentile Kapsambelis et al. (2019)

rainfall

Excessive rainfall CPI
94th percentile Furuya et al. (2021)

70th–95th percentile Kath et al. (2018)

Temperature variation
HT, LT

5-year moving
Guo et al. (2019)

(high and low) average yield

Wildfires and excessive
WSpeed and VIIRS Customized trigger Sacchelli et al. (2018)

rainfall

Hydrological

Drought WD
Q7,10 Mohor and Mendiondo (2017)

70th–90th percentile Denaro et al. (2018)

Hydrological drought WS Expected yield Guerrero-Baena and Gómez-Limón (2019)

Hydrological droughts
WD, PF Expected yield Denaro et al. (2020)

and floods

Sustainable Lack of solar radiation SR Customized trigger Boyle et al. (2021)

energy Low wind speed WSpeed Customized trigger Rodríguez et al. (2021)
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trigger selection and damage modeling, therefore improving
basis risk quantification, evaluation, and communication.

Approximately 50 % of the studies analyzed used a
rainfall-based drought indicator (i.e., CPI, SPI, CDD, and
R2mm) to indicate drought and excessive rainfall. This
straightforward strategy indicates drought conditions and
only needs precipitation data. Besides, these indices have the
advantage of representing both water deficit and water ex-
cess.

Rainfall indices in the agricultural sector might consider-
ably represent low-yield occurrences, in both deficit and ex-
cess forms, which would correlate well with low yields (Abdi
et al., 2022). Indices such as the standardized precipitation
index (SPI) have the advantage of being determinable even
when there are gaps in the data. However, the SPI’s applica-
tion is limited when issues related to the water balance must
be considered in the problem analysis.

As an alternative, the standardized precipitation evapo-
transpiration index (SPEI), while capable of reflecting the
combined effect of rainfall and temperature variations on
drought, requires data for radiation, temperature, and relative
humidity. These can be challenging to obtain in developing
countries with a low density of weather stations.

In addition to data availability, the index’s simplicity of
computation is a significant factor to consider while choos-
ing it. As a result of their ease of calculation and data in-
put, indices such as CPI, consecutive dry days (CDD), wa-
ter storage (WS), and water deficit (WD) are popular among
the studies examined. While data for CPI, CDD, WS, and
WD calculations are easily acquired, the spatial distribution
of risk has yet to be fully known, even in places with long-
established weather stations. This poses difficulty in the in-
dex insurance market: strategically exploiting information
from existing stations at geographic locations where the pre-
cise weather observations are unknown (Norton et al., 2013).

The standardized precipitation index (SPI) and standard-
ized precipitation evapotranspiration index (SPEI) are more
complicated indices that add weather statistics to the anal-
ysis. Aside from the complexity of its calculation, these in-
dices require a database of at least 30 years. Indices derived
from modeling techniques and remote sensing are much
more challenging to acquire and determine.

Besides that, complex indices, such as the soil moisture
index (SMI) and the normalized difference vegetation index
(NDVI), as well as the usage of the El Niño–Southern Oscil-
lation (ENSO), have grown more frequent as modeling tech-
niques and remote sensing have advanced. This populariza-
tion is already seen in the current review, as they were used
in 11 % of the studies investigated.

A disadvantage of using indices derived from remote sens-
ing is that these datasets have shorter time series. At least
20 years of data are required to understand historical pat-
terns and to provide more confidence for historical burn rate
analysis pricing (Norton et al., 2013).

While some indices are more popular than others, it is cru-
cial to realize that no index can be used for all contexts and
situations. The available data, degree of drought monitoring,
and time resources available for its determination all influ-
ence the index representation of the hazard, as long as the
uncertainties (basis risks) are under control.

Other hazards encompass temperature variation, wildfire,
low wind speed, and lack of solar radiation, accounting for
16 % of the studies analyzed. Thermal hazard is a growing
concern for human health, agriculture production, forestry,
and the environment. Similarly to rainfall, temperature ex-
tremes can also explain satisfactory yield losses (Abdi et al.,
2022).

Given the topic’s relevance, we expected more work fo-
cusing on this subject. However, we have found only one
study on temperature variation insurance. High-temperature
index (HTI) and low-temperature index (LTI), proposed by
Guo et al. (2019), focused on computing the number of days
the temperature was higher or lower than a certain thresh-
old, representing the rice yield reduction. Regardless of the
hazard, we had one study per index. This reflects the diver-
sity of these issues and a need for in-depth research on the
specific hazards – temperature variation, fire, wind, and solar
radiation.

The hazards are treated as independent occurrences in the
multi-hazard interaction. However, not every study exam-
ined one index per hazard. More than half of the multi-
hazard studies considered drought and excessive rainfall,
and they used the same index to reflect both hazards (i.e.,
CPI, DOWKI, and R2mm). According to Kapsambelis et al.
(2019), simple climatic water balance based on precipitation
and evapotranspiration data can simulate both drought and
excess rainfall globally.

The authors state that the DOWKI index was able to fit ex-
treme yield anomalies. One example of employing different
indices to reflect different hazards was found on wildfires and
excessive rainfall on forestry in Italy (Sacchelli et al., 2018).
The authors described forest fires using the Visible Infrared
Imaging Radiometer Suite (VIIRS) and explored the effects
of strong winds through wind speed (WSpeed).

The advantage of using only one index to represent two
hazards is the ease of calculating and implementing the in-
surance policy. However, not all hazards can be represented
by a single index, such as wildfires and excessive rainfall.
It is known that multi-hazard and compound events are in-
creasingly intense and significant. The finding of only a few
studies connected to the theme reflects a substantial gap in
the literature.

3.2.2 Vulnerability analysis

In finance and management, insurance is a product that in-
tends to totally or partially reduce or eliminate the loss
caused due to different risks (Ejiyi et al., 2022). In order to
lower the basis risk and boost the acceptance of insurance
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products, the prediction models of the link between the index
and the damages must be chosen effectively. The vulnerabil-
ity analysis is focused on modeling the physical damages and
losses from an extreme weather event. Thus, we presented a
summary of the expected loss amount (ELA) and expected
annual damage (EAD) models applied in the reviewed pa-
pers, available in Table 3. The deterministic models were
applied for income reduction impacts, especially crop insur-
ance.

Most applied models were related to a unique explanatory
variable or index. Due to their simple application and under-
standing, these models are expected to be the most common,
primarily linear regression models. However, these models
present the disadvantage of contemplating only one hazard
at a time. In contrast, the generalized additive linear models
(GALMs) and stepwise regression added the possibility of
evaluating more than one index. These can then be used in a
multi-hazard approach.

A multi-hazard approach requires understanding the fre-
quency and magnitude of multiple hazards and the possi-
bility of them occurring simultaneously. The multi-hazard
risk index insurance papers analyzed presented combina-
tions of drought and excessive rainfall for crop insurance
(Kapsambelis et al., 2019; Shirsath et al., 2019), fire and
storms for forestry insurance (Sacchelli et al., 2018), tem-
perature variation and excessive rainfall for crop insurance
(Martínez Salgueiro, 2019), and high and low temperatures
for crop insurance (Guo et al., 2019). The assumption of
independence was considered prior knowledge by Martínez
Salgueiro (2019) and Guo et al. (2019). However, the au-
thors did not provide mathematical proof of this choice. In-
stead, they prioritized hazards according to their frequency
and magnitude using pre-existent risk maps.

Another possible way to incorporate hazard interactions
is through copulas. This has been incorporated in loss mod-
eling by Kapsambelis et al. (2019) and Martínez Salgueiro
(2019). The copula theory (Nelsen, 2006) is widely used for
multi-hazard analysis, since it derives joint probability dis-
tributions from marginal distributions. Briefly, the marginal
distributions are not required to follow the same probability
distribution model, giving flexibility and robustness to ana-
lyze the interaction of more than two marginal distributions.

Additionally, loss and damage databases are not necessar-
ily normally distributed in copulas models, which is common
in crop production. This way, a significant amount of skewed
information can be well embodied, depicting better hydro-
logical and meteorological extremes than linear regression
models.

In addition, to embody loss and damages originating from
multi-hazard events, another important aspect of vulnerabil-
ity assessment is the representation of complex patterns in
the loss and damage series modeling. In this regard, linear
regressions are commonly applied in loss forecasting due to
their simplicity.

Generalized additive linear models (GALMs) add a link
function to express a linear relationship between more than
one variable (Blier-Wong et al., 2020), making it possible
to express both multi-hazard risk phenomena and simple
nonlinear effects. While simple and easily explainable, such
models may be ineffective at learning complex patterns in
the data, which are common in food production. Machine
learning (ML) can enable the optimal formulation of insur-
ance policies when applied to the insurance field. These mod-
els help to capture high-dimensional, nonlinear, and complex
interactions between indices and losses (Blier-Wong et al.,
2020).

ML techniques are still emerging in loss models, and here
we have reviewed only a very recent paper (from 2020) that
used cluster analysis. The paper provides evidence that ML
techniques can improve loss modeling from different sources
and that it can present different time and spatial scales (Eze
et al., 2020). Blier-Wong et al. (2020) emphasized that ML
applications in actuarial science are expanding rapidly and
show great promise.

Frees et al. (2014) affirm that with greater data availability
and robustness in ML algorithms, more heterogeneity repre-
sented by insured individuals can be captured, representing
their vulnerability accurately. With these models becoming
more common in future studies, the multi-hazard assessment
could be better incorporated. While promising, applying ML
techniques to model loss and damages in the insurance sector
may be bottlenecked, especially in developing countries, by
the need for qualified personal and powerful GPUs.

When vulnerability studies or datasets for loss and dam-
age quantification in specific sites are unavailable, the insurer
can lay their hands on empirical functions or crop model-
ing techniques. Monteleone et al. (2022) reviewed methods
used to model the functional relationship between a given ex-
treme event and crop losses. They also highlighted the need
for studying crop vulnerability to other less-studied climate-
related hazards, such as extreme temperatures. Regarding in-
dex insurance design, we found a paper that presented empir-
ical functions based on the assumption of linearity between
water deficit and losses. Mohor and Mendiondo (2017) used
the water deficit volume to the Q7,10 reference flow for pre-
dicting the impact of water shortage on water supply, irri-
gation, livestock, and ecological sectors. In crop insurance,
if the historical yield losses database is non-existent or only
available at a high level of aggregation, crop modeling shows
promise in estimating yield while utilizing different explain-
able variables.

3.2.3 Financial methods and risk pricing

The impact provided in the vulnerability analysis module can
be translated as expected values of damage, income reduc-
tion, or business interruption by financial methods. The re-
viewed papers presented burning rate, probabilistic fit, and
index modeling as the most prevalent risk pricing models.
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Table 3. Summary of expected loss amount (ELA) and expected annual damage (EAD) models.

Type of impact Type of loss model Authors

Cluster analysis Eze et al. (2020)

Bokusheva (2018), Bucheli et al. (2021), Furuya et al. (2021), Gómez-Limón (2020),
Linear regression Guerrero-Baena and Gómez-Limón (2019), Guo et al. (2019), Hohl et al. (2021),

ELA Kath et al. (2019), Mortensen and Block (2018), Denaro et al. (2020)

GALM Awondo (2019), Kath et al. (2018)

Stepwise regression Shirsath et al. (2019)

Copula Bokusheva (2018), Kapsambelis et al. (2019), Martínez Salgueiro (2019)

EAD Empirical curve Mohor and Mendiondo (2017), Sacchelli et al. (2018)

They commonly use the mean historical losses to estimate
expected future losses for similar sectors (Sant, 1980).

The expected losses are called pure risk premiums and are
the primary concern in index insurance papers. The histori-
cal losses are converted into payouts considering two critical
variables: (i) strike value K and (ii) degree of coverage dc.
K is the index value that triggers payouts proportional to risk
aversion and the degree of coverage. The risk aversion is re-
flected in the degree of coverage, e.g., dc ranging from 0 to
1, 0 being with no protection and 1 with complete protection.
These variables represent the behavior and aversion of poli-
cyholders towards a particular risk and will be key in defining
the premium and indemnity values.

The loss expectation can be determined using the histori-
cal burn rate method (HBR), which is based on the observa-
tion of historical losses (Guerrero-Baena and Gómez-Limón,
2019; Hohl et al., 2021; Mortensen and Block, 2018; Shir-
sath et al., 2019). This method is widely applied in the in-
surance industry. However, it requires sufficient data in or-
der to be accurate. For smaller datasets considering uncer-
tainty, expected values can be evaluated by fitting loss data
to a probability density function (Bokusheva, 2018; Bucheli
et al., 2021; Kath et al., 2019; Eze et al., 2020; Kath et
al., 2019; Martínez Salgueiro, 2019; Sacchelli et al., 2018;
Vroege et al., 2021). This procedure helps to improve pure
risk premium rates by accounting for the probability of ex-
treme events that have not been recorded. The probability
distribution of loss data presents distortions in the tails, lead-
ing to underestimating pure risk premiums.

Moreover, insurance companies present nontraded assets
that add costs to final premium rates. The transformation
method proposed by Wang (2002), also referred to as Wang
transform, takes into consideration the impact of nontraded
assets in premium rates, and the method was applied by
Boyle et al. (2021) and Denaro et al. (2018).

Other approaches for defining contract payouts are based
on a probabilistic fit. Bokusheva (2018) applied the marginal
expected shortfall (MES) method, which is a conditional
probability modeling where payouts are given when the tar-

get variable exceeds the strike value. In contrast, Eze et al.
(2020) used cluster analysis, associating NDVI and weather
variables with higher yield observations.

It is well known that climate variables present a certain de-
gree of uncertainty when they are predicted. Therefore, this
aspect needs to be considered when estimating losses caused
by climate-related losses (Smith and Matthews, 2015). A
stochastic approach based on Monte Carlo simulations is
used in the literature to address the problem. A Monte Carlo
simulation is the basis of the index modeling method applied
by Gómez-Limón (2020), Guo et al. (2019), Kapsambelis
et al. (2019), Gómez-Limón (2020), Mohor and Mendiondo
(2017), and Rodríguez et al. (2021). The generation of syn-
thetic weather time series enhances understanding of the cli-
mate uncertainty in terms of confidence intervals. A sum-
mary of the risk pricing methods is described in Table S1 in
the Supplement.

Econometric models provide values that guide decision-
makers in understanding the price of the risk. However, it
is fundamental to evaluate the risk reduction performance of
index insurance. The simulation of cash flows allows for an
understanding of the hedging effectiveness of the insurance
policy. Nonetheless, this efficiency depends on the point of
reference adopted by the modeler.

The effectiveness problem arises when policyholders and
insurance companies have different and often competing ob-
jectives. On the one hand, policyholders want to protect
their assets at risk to prevent going out of business. On the
other hand, insurance companies want to maximize profit to
comply with the interests of their investors and sharehold-
ers. Since information asymmetry and moral hazards are al-
legedly minimized in the case of index insurance (Barnett
et al., 2008; Mußhoff et al., 2018), the costs associated with
moral hazards can be neglected from premium rate pricing.

The cash flow equation is a standard tool for evaluat-
ing the capital of companies and people. The simulation of
cash flows, using expected revenue and payouts as assets and
premiums as liability for policyholders, is used for evaluat-
ing the effectiveness of the index insurance policy (Boku-
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sheva, 2018; Boyle et al., 2021; Kath et al., 2019; Martínez
Salgueiro, 2019). For insurance companies, the cash flow
changes the direction; i.e., premiums are considered assets,
and payouts are a liability. This was used for calculating the
loss ratio by (Mohor and Mendiondo, 2017).

Other authors have applied the utility theory to evaluate in-
surance policies. The utility theory accounts for the behavior
and individual preferences in economic analysis and is based
on several assumptions that apply to a group of individuals
(Kahneman and Tversky, 1979). Some authors (Bucheli et
al., 2021; Eze et al., 2020; Furuya et al., 2021; Vroege et
al., 2021) used the concept of risk-averse utility functions for
policyholders, where the asset’s utility at risk is concave or
diminishing. Detailed information about the insurance policy
evaluation methods is in Table S2.

When estimating fair premium values and addressing the
potential increase in future risks caused by climate change
scenarios, it is important to note that the insurance market
should take certain steps to minimize their vulnerabilities and
sources of uncertainty. These steps may include the follow-
ing.

First, as mentioned before, to calculate the premium value,
it converges into a multi-objective problem. The insured
could contract a long-term insurance policy with an estab-
lished premium. However, due to the CC uncertainty, some
extreme events did not happen, and the insured paid too much
for unnecessary coverage, resulting in more profit for the in-
surer. Nevertheless, the opposite could happen. In this sce-
nario, the insured pays less, but extreme events do happen,
and the insurer does not have the liquidity to pay for losses.

Second, the insurance market could consider a layered
insurance scheme including private and public sectors (PP)
(Keskitalo et al., 2014; Paudel et al., 2015) to cope with ex-
treme losses. This means that when a certain threshold of
loss is reached, a second partner will pay the difference in
the indemnities. However, the definition of that threshold is
another gap in the literature, similar to the strike value K .

Third, according to the spatial scale, a scheme of pool risk
is preferable to reduce premium values, which requires co-
operation among the stakeholders. However, the main issue
is to reach complete diversification of the portfolio (Porth et
al., 2016). Fourth, this induces risk reduction proposals to
increase resilience and to promote adaptation within the sec-
tor. The latter could be reached through financial incentives
such as premium discounts offered to stakeholders when they
adopt some mitigation measure, as shown in (Hudson et al.,
2016).

Finally, for a multi-hazard scheme, the schemes mentioned
earlier should be calculated for each hazard. Nonetheless,
premium values will be different, and a weighted procedure
will be required, such as what was done with the hazard fre-
quency by Martínez Salgueiro (2019) and Guo et al. (2019)
as mentioned in Sect. 3.2.2.

3.3 Conceptual framework

Based on the results discussed, we present a conceptual
framework for multi-hazard risk index-based insurance de-
sign, delineating various paths through which insurance poli-
cies can be developed. As shown in Fig. 3, the index-based
insurance design can be divided into three modules: (i) haz-
ard identification, (ii) vulnerability assessment, and (iii) fi-
nancial methods and risk pricing.

Hazard identification is the process of analyzing and se-
lecting the most critical threats and their respective indices.
The vulnerability analysis refers to the process of selecting
loss models and thresholds. Finally, the financial methods
and risk pricing refer to methods for estimating long-term
loss expectations and risk premium rates.

This framework (Fig. 3) elicits paths for designing an in-
surance policy, and each step indicates a design option sup-
ported by the literature. Turvey et al. (2019), for example,
followed a path A1–C1–D2–E1–F1, i.e., drought insurance
(A1) with a static threshold (C1) and a loss model based on
losses projected by an index (D2) for single policyholders
(E1) and for many farmers in a region (F1). Sacchelli et al.
(2018) provides another example, presenting a design path
A2–B1–C1–D1–E1–F1, i.e., multi-hazard risk insurance for
wildfires and excessive rainfall (A2), considering the hypoth-
esis of independent events (B1) with a static threshold (C1),
using the index value to model losses (D1), and premium
rates for a single policyholder (E1) without considering risk
pooling (F1).

3.3.1 Hazard identification

The previous discussion demonstrated that the significant de-
cisions in this step are whether to use single- (A1) or multi-
hazard (A2) risk insurance. Single-hazard risk is straightfor-
ward and should be reserved for situations when one hazard
is dominant in a region. However, research has shown that
the single-hazard hypothesis and multi-hazard risks might in-
clude independent, synergistic, and cascade events.

According to (Gill and Malamud, 2014), independent haz-
ards (B1) are events that can happen simultaneously in a
region without any causal dependence. Synergistic hazards
(B2) refer to a situation when the occurrence of a particular
hazard increases the probability of the occurrence of another.
Cascade hazards (B3) represent a situation when an event
triggers the occurrence of another event (i.e., excessive rain-
fall triggering landslides in a particular region).

Alternative multi-hazard interaction hypotheses must be
tested to depict weather- and climate-related losses (Tilloy et
al., 2019) and can influence the correct interpretation of loss
modeling. The papers that addressed multi-hazard risks as-
sumed independence between the events investigated; how-
ever, the combination of drivers and impacts of hazards con-
tributes to risk analysis and is responsible for the occur-
rence of the most severe weather- and climate-related im-
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Figure 3. The multi-hazard risk weather insurance design framework. The framework illustrates the process of selecting and prioritizing
hazards, defining index thresholds, modeling losses, and optimizing insurance risk premiums. The vulnerability assessment presents two
types of systems: (a) stationary-state system, where both thresholds and hazards are stationary and represent an analysis based on observed
historical information, and (b) non-stationary-state system, where both indices and hazards are non-stationary and reflect a combination of
observed historical and projected data. The non-stationary system anticipates a potential increase in risk and optimizes risk premiums.

pacts (Zscheischler et al., 2020). To overcome this challenge,
Tilloy et al. (2019) presented methods for testing multi-
hazard risk hypotheses, including copulas, classification al-
gorithms, linear regression, and physical models. The impor-
tance of these models will be explored in the illustrative ex-
ample.

3.3.2 Vulnerability analysis

The vulnerability analysis for insurance design is translated
into threshold definition and loss model selection. Thresh-
olds, strikes, and triggers are all terms for the pre-agreed-
upon index value that triggers claim payments when reached
or exceeded. In the literature, we identified loss models rep-
resented in terms of index value (D1) or losses estimated with
index values (D2).

The rising frequency of extreme climate events has forced
insurers to increase premium rates and threatens coverage
availability. Losses and damages associated with extreme
events have multiple drivers (Zscheischler et al., 2020), im-
plying that losses have multiple thresholds and are associated
with multiple variables. These thresholds vary with time and
space (Hoek van Dijke et al., 2022).

As discussed in the vulnerability section, the selection
of thresholds and consequential loss modeling consists of
evaluating historical events. This creates a system we call
stationary-state system (C1), characterized by fixed thresh-
olds even when multiple hazards are considered. The second
case is the non-stationary-state system (C2). The frequency
and severity of hazards change over time, and the thresholds
are dynamic, indicating either improvement or deterioration
of resilience.

We proposed a conceptual framework for considering
multi-hazard risk analysis that allowed us to analyze the
interaction between hazards and two types of vulnerabil-

Figure 4. Graphical representation of static- and dynamic-state re-
silience systems.

ity: static and dynamic resilience (Fig. 4). Static resilience
refers to a stationary-state system. Most papers represent this
case. Dynamic resilience refers to a non-stationary-state sys-
tem and considers changing hazard patterns and vulnerability
thresholds. Considering a non-stationary-state system helps
one to anticipate increasing patterns of losses, therefore op-
timizing risk premiums to accelerate the adaptation to and
resilience of farmers against climate change.

The dynamic threshold considers future scenarios that
might assist in avoiding risk reassessment by anticipating
and diluting potential severe climate shocks. Shifts in fre-
quency and severity of extreme events are evaluated using
the Representative Concentration Pathways (RCPs) (Van Vu-
uren et al., 2011), indicating possible changes in risk expo-
sure. The Shared Socioeconomic Pathways (SSPs) (Riahi et
al., 2017) will help us to understand risk in different vulnera-
bility trajectories, i.e., increasing, stationary, and decreasing
resilience.
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3.3.3 Financial methods and risk pricing

Financial methods require defining parameters relevant to
policy implementation, which depend on regional socioeco-
nomic factors. Single contracts (E1) are focused on the indi-
vidual policy and were the general option described in the
literature review (Table 2). Community contracts (E2) are
widely used for microinsurance contracts when smallholder
farmers are associated with governmental institutions, asso-
ciations, or companies to access affordable insurance poli-
cies and long-term financial support against weather- and
climate-related threats (Platteau et al., 2017).

Both individual and community contracts can be tailored
to a single region (F1), or different locations can be pooled
(F2). In the derivative market, several locations can be in-
sured in the same contract using the same weather index.
This type of contract has been applied by retailers (Štulec
et al., 2019) and is suited for farmers and companies with
operations in more than one location.

3.4 Framework application: illustrative example

An illustrative example was developed to demonstrate the
multi-hazard risk path of the framework proposed. This en-
compasses all steps from problem definition and data col-
lection to index calculation and loss evaluation for several
cities and a specific crop. It is important to note that the meth-
ods utilized and the code created can be reused for different
years, areas, countries, hazards, and crops.

This choice was motivated to prove the impact of selecting
multi-hazard indices for designing weather index-based in-
surance for crop yields. Further studies must be done to link
crop yield to other aspects of food security, such as trans-
portation, storage, and retail.

In this example, we chose the 42 largest soybean-
producing municipalities in the Brazilian state of Paraná for
evaluation. According to Pereira et al. (2013), the study area
is located in a region with low to very low geodiversity
and low soil diversity. Fine-grained soil such as Ultisols and
Latosols with a high iron content are predominant in the re-
gion, followed by the presence of medium-grained soils such
as Cambisols (Bhering et al., 2009). These soils are gener-
ally classified as clayey and loamy, and their soil volumetric
water content (VWC) tends to be high. According to Saxton
and Rawls (2006), the permanent wilting point (PWP) is on
average 22 %, the field capacity (FC) is 37 %, and the poros-
ity/saturation is at 47 %.

The production of soybeans represents an interesting ob-
ject of study, since it is an essential crop for oil and pro-
tein. Soybean has a significant economic impact on Brazil,
a wide geographical distribution, and a vulnerability to vari-
ous hazards. Soybean crop yields in Paraná are mainly threat-
ened by temperature variation, droughts, and excessive rain-
fall (da Silva et al., 2021).

We used 22 years of yield data of first-cycle soybean pro-
duction from the 1996/1997 to the 2019/2020 growing sea-
sons. Crop data were retrieved from the official statistical
yearbooks (Parana, 2023). The multi-hazard risk hypothesis
was tested using the widely employed machine learning al-
gorithm random forest (Breiman, 2001).

The conceptual framework illustrated in Fig. 4 was applied
to a case study for soybean production in southern Brazil,
following the methodology described in Sect. 2.2. The main
objective of this case study was to illustrate the main steps of
the framework, focusing on multi-hazard risks (A2), testing
the hypothesis of synergic interaction between hazards (B2),
a stationary-state system (C1), a loss estimated with index
value (D2), single contracts (E1), and no risk pooling (F1).
The following five key steps were used in the illustrative ex-
ample:

1. Hazard identification. We selected thermal stress,
drought, and excessive rainfall as the main threats to
soybean production. The index selection was based on
the indices found in the literature (Table 2) and the in-
dices indicated by the CCl/CLIVAR/JCOMM Expert
Team (ET) on Climate Change Detection and Indices
(ETCCDI) (Peterson et al., 2001). The index selection
focused on finding simple indicators based solely on
precipitation and temperature. After an extensive ex-
amination, the following indices were considered: the
maximum daily rainfall event over the growing sea-
son (pmax), a 3-month standardized precipitation index
(SPI), and the number of days where daily precipitation
is higher than the 90th percentile over the growing sea-
son (TX90p).

2. Definition of loss thresholds. Crop losses were chosen as
the target variable because they can be used as a proxy
for the impact of extreme weather occurrences. The
crop yields were detrended following the linear proce-
dure used in Bucheli et al. (2021): y = yi+β ·(yearend−

yeari), where y is the detrended crop yield series, yi is
the raw crop yield data in the year i, and β is the linear
regression coefficient of the equation yi = α+β ·yeari .
The losses were then determined following the equa-
tion Loss=max(0,K − y/K). The K variable is the
crop yield threshold value. It can be understood as the
threshold that divides unfavorable crop yields for farm-
ers (values below K) and favorable crop yields (values
above K).

3. Data clustering for evaluating the interaction between
hazards. The k-means clustering method (MacQueen,
1967), a widely used clustering method, was imple-
mented to understand the data better. The clustering was
applied for four relevant variables: pmax, SPI, TX90p,
and crop yield. The elbow method was used to define
the optimal value of clusters (also referred to as hyper-
parameter κ). This is the method most used in the lit-
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erature for defining κ . The method was implemented in
R Environment using the package stats (R Core Team,
2022).

4. Crop loss prediction modeling. Several models were
tested. However, two crop loss prediction models were
chosen to demonstrate the importance of multi-hazard
risk modeling, following a regression model and us-
ing the random forest algorithm: (i) the multi-hazard
model M1, a drought- and thermal-stressed model using
SPI and TX90p as inputs (M1(SPI,TX90p)), and (ii) the
multi-hazard model M2, an excessive precipitation- and
thermal-stressed model using SPI, TX90p, and pmax
as inputs (M2(SPI,TX90p,pmax)). The multi-hazard
model M1 was trained and validated using data from
clusters 2 and 4, and the multi-hazard model M2 was
trained and validated using data from cluster 6. The
standard cross-validation method was applied, follow-
ing best practices for machine learning workflows pre-
sented in the literature. The models were built using the
R package randomForest (Liaw and Wiener, 2002).

5. Risk pricing. The risk analysis is performed to deter-
mine pure risk premiums using stochastic methods. His-
torical burn analysis was performed on detrended crop
yields to determine reference pure risk premium val-
ues. Then, a stochastic analysis of premiums for multi-
hazard models M1(SPI,TX90p) and M2(SPI,TX90p)
was determined considering P = E[Loss]. The expec-
tation of loss E[Loss] was determined using the gen-
eration of 50 synthetic scenarios of weather data. The
synthetic weather data were simulated using a multi-
site multi-variable (daily precipitation and temperature)
weather-generator method. The stochastic simulation
was performed using a wavelet-based algorithm that
allows multi-site simulation. The simulation was im-
plemented in R Environment with the package PRSim
(Brunner et al., 2021).

The cluster analysis using climate indices and crop yield
losses allowed us to interpret the multi-hazard nature of the
historical loss events. We identified six clusters that are de-
scribed in Table 4. Three clusters reasonably explained ca.
70 % of soybean crop losses for the region and period stud-
ied. Cluster 2 represents years where losses were predomi-
nantly driven by precipitation deficit (single-hazard years).

Cluster 4 represents years where losses were driven by
precipitation deficit and thermal stress (multi-hazard year 1).
Cluster 6 is associated with relatively normal years in SPI but
heavy rainfall events and higher temperatures (multi-hazard
year 2). The underlying structure of the other clusters (1, 3,
and 5) can be related to other drivers of losses that were not
considered in the present analysis.

The coupling of high temperatures and droughts has been
a major cause of crop losses globally, and global warming
is pointed to increase coupled thermal–moisture threats to

Table 4. Description for each identified cluster, with the SPI, pmax,
and TX90p values used in the cluster analysis shown in italics. We
specifically highlight clusters 1, 2, and 6 in bold, as these clusters
were chosen for loss modeling.

Cluster No. of % of SPI pmax TX90p
obs losses

1 389 14.4 % 0.702 42.4 9.55
2 153 86.3 % −0.941 36.1 13.4
3 162 19.1 % −0.320 37.9 22.4
4 106 96.2 % −1.340 39.8 33.4
5 110 27.3 % 1.390 76.5 11.1
6 46 95.7 % −0.357 70.9 22.5

food production (Lesk et al., 2021). On the other hand, ex-
cessive precipitation can increase soil moisture, creating con-
ditions for plant hypoxia, which means that plants have less
access to oxygen and have a reduction in their energetic sta-
tus (Brandão and Sodek, 2009). Then, plants become more
vulnerable to other threats.

The illustrative example highlights the multi-hazard ef-
fects of extreme weather events on crop yield losses. We
used cluster analysis to identify what hazards were dom-
inant each year that a crop loss event occurred. This re-
sults in using a single-hazard approach or assuming indepen-
dence among hazards, which can be an oversimplification.
The cluster method used for assessing multi-hazard events
represents an option that can be used to visualize how to ap-
ply the proposed framework (Fig. 3), which may improve
decision-making in terms of index selection and vulnerability
assessment. Improving hazard identification by categorizing
historic data allows insurance designers to have new insights
in comparison to traditional methods, which conduct a sta-
tistical analysis of past crop losses associated with a single-
hazard index.

We summarize the multi-hazard risk analysis for a spe-
cific city (Toledo), which is essential for soybean produc-
tion and is severely impacted by extreme weather occur-
rences, in Fig. 5. It is possible to observe that (i) Toledo
had considerable losses in the multi-hazard periods (espe-
cially 2012); (ii) both models presented satisfying results for
predicting crop losses in the different periods; (iii) the mod-
els identified different aspects of the data, implying that a
model ensemble might produce the best results; and (iv) al-
though multi-hazard model M1(SPI,TX90p) suited the data
better (presenting a lower mean absolute error), multi-hazard
model M1(SPI,pmax,TX90p) better predicted the worst year
(2012), providing additional evidence that an ensemble ap-
proach could present better results. (v) The sum of the losses
estimated with models M1 and M2 (Fig. 5b) presented the
lowest overall error in comparison to the observed crop loss,
providing further evidence of the importance of using ensem-
bles for predicting crop loss probability.
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Table 5. Summary of pure risk premiums in terms of percentage of expected crop yields.

Min (%) Mean (%) Max (%)

Historical burn analysis 2.745 5.873 9.722
Model 1 synthetic scenario generation 2.894 3.253 3.630
Model 2 synthetic scenario generation 0.519 0.997 2.506

Figure 5. Risk analysis module applied to the city of
Toledo, Paraná, Brazil (1197.016 km2), demonstrating the
multi-hazard model M1(SPI,TX90p), multi-hazard model
M2(SPI,pmax,TX90p), sum of the two models, and observed
crop losses in the studied period. (a) Simulation of crop losses and
(b) crop loss probability in the studied period, including the sum of
the losses estimated with two loss models.

The study case conducted in this subsection illustrates one
possible application of the framework, considering several
analyses and visualizations that a stakeholder could use to
better understand the impacts of extreme weather events over
time on agricultural productivity, taking both the historical
values and the crop loss probability into consideration. This
information could improve insurance policy design and give
a better understanding of different regions’ situations. Gener-
ating charts such as the ones illustrated in Fig. 5 for multiple
regions on a dashboard would allow for a better overview of
the impacts of weather events on different crops and regions
and could be used to improve decision-making.

4 Conclusions

This study reviewed the development and design of index
insurance, focusing on multi-hazard risk analysis and food
security. We summarized the primary hazard analysis and in-

dex calculation methods, loss modeling, and risk pricing. We
observed that the lack of studies on multi-hazard risks is the
central gap in the literature. Therefore, we proposed a con-
ceptual framework with an illustrative example to give sug-
gestions for future work in the field.

Drought was the most studied hazard, and cumulative pre-
cipitation index (CPI) was the most frequently used index
in drought index insurance design. The literature review also
presents other hazards, such as excessive precipitation, tem-
perature variation, wind, and radiation. Since food security
is a multifaceted concept, agricultural, hydrological, and sus-
tainable energy insurance were also evaluated.

The vulnerability analysis for insurance design is com-
posed of a loss model selection and the definition of threshold
values. Multi-hazard loss models were composed of general-
ized or separate additive models to calculate losses caused
by different hazards when considering that the hazard occur-
rence was independent. Composite indices such as DOWKI
or ambivalent indices such as CPI and SPI could capture ex-
cessive rainfall and droughts and are suitable for analyzing
extreme conditions. Nonetheless, the reviewed papers did not
fully explore other hypotheses of multi-hazard interaction,
such as synergistic and cascade events.

As shown in Table 5, the historical burn analysis provides
a baseline risk range of 2.7 % to 9.7 % of the expected crop
production in the study area. Model 1 generates a risk range
of 2.8 % to 3.6 %, suggesting that this model could cover
most of the baseline risk in some regions. Model 2 gener-
ates a lower risk range of 0.5 % to 2.5 %. Further analysis
combining the two models would improve the explanation of
the baseline risk.

Trigger values, which are the index values that trigger pay-
outs, were attributed to both index values or losses estimated
by the index. In the first case, thresholds were defined by a
quantile or a range of quantiles, e.g., 70th to 80th quantiles.
We postulate that the threshold value is dependent on how
risk-averse the policyholder is. The case of losses estimated
by the index was typical in crop insurance, where the thresh-
old is a percentage of the expected crop yield for a given
year.

The determination of risk premiums followed methods
based on historical data evaluation. These methods are based
on the assumption that historical data provide enough infor-
mation to characterize regional risk. However, recent find-
ings (Cremades et al., 2018) demonstrate that this approach
might lead to an underestimation of future risk. In the in-
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depth analysis of the most relevant papers, we found burn-
ing rate, probabilistic fit, and index modeling to be the most
prevalent risk pricing models.

We proposed a conceptual framework with an illustrative
example of multi-hazard index insurance design for soybean
production in 42 municipalities in the state of Paraná, Brazil.
This application focused on categorizing multi-hazard events
using a clustering technique based on the k-means algorithm.
Droughts and coupled thermal–moisture events were found
in the study area. Two examples of multi-hazard events were
detected by the clustering analysis; one is the combination of
excessive rainfall and high temperature, and the other is the
combination of droughts and high temperatures.

The cluster model demonstrated that historic crop losses
were divided into three groups: the first was precipitation
deficit dominated, the second was precipitation deficit and
high temperatures, and the third was excessive rainfall and
high temperatures. Two different loss prediction models were
trained with historic data separated according to the cluster
analysis. This example illustrates that the problem of the mis-
match between actual losses and losses predicted from the
index insurance contract, also called basis risk, does not only
depend on having enough historical records of loss events
but also on having an adequate understanding of what the
major drivers of loss events in the historical records were.
Future work must explore this effect and compare it with ac-
tual yield.

Our paper demonstrates that despite the fact that index in-
surance for food security has gained attention in the past few
years, there are still important areas that require further atten-
tion and investigation in future studies, for example, (i) pro-
viding a clear definition and analysis of multiple hazards in-
stead of assuming single-hazard risk; (ii) testing different hy-
potheses of the interaction between hazards, especially for
coupled moisture–thermal events; (iii) evaluating how the
multi-hazard risk selection affects basis risk; and (iv) ana-
lyzing the trade-offs between the loss in model accuracy and
the policyholders’ willingness to pay.
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