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Abstract. This paper presents a new framework for
the seismic loss prediction of residential buildings in
Ōtautahi / Christchurch, New Zealand. It employs data
science techniques, geospatial tools, and machine learning
(ML) trained on insurance claims data from the Earthquake
Commission (EQC) collected following the 2010–2011
Canterbury earthquake sequence (CES). The seismic loss
prediction obtained from the ML model is shown to
outperform the output from existing risk analysis tools for
New Zealand for each of the main earthquakes of the CES.
In addition to the prediction capabilities, the ML model
delivered useful insights into the most important features
contributing to losses during the CES. ML correctly high-
lighted that liquefaction significantly influenced building
losses for the 22 February 2011 earthquake. The results are
consistent with observations, engineering knowledge, and
previous studies, confirming the potential of data science
and ML in the analysis of insurance claims data and
the development of seismic loss prediction models using
empirical loss data.

1 Introduction

In 2010–2011, New Zealand experienced the most damaging
earthquakes in its history, known as the Canterbury
earthquake sequence (CES). It led to extensive damage to
Ōtautahi / Christchurch (hereafter “Christchurch”) buildings,
infrastructure, and its surroundings, affecting both commer-

cial and residential buildings. The entire CES led to over
NZD 40 billion in total economic losses. Owing to New
Zealand’s particular insurance structure, the insurance sector
contributed to approximately 80 % of the losses for a total of
more than NZD 31 billion. NZD 21 billion and NZD 10 bil-
lion of the losses as a result of the CES were supported
by the private insurers and the Earthquake Commission
(EQC) respectively (King et al., 2014; Insurance Council
of New Zealand, 2021). Over NZD 11 billion of the losses
arose from residential buildings. Approximately 434 000
residential building claims were lodged following the CES
and were covered either partially or entirely by the NZ
government-backed EQCover insurance scheme (Feltham,
2011; Insurance Council of New Zealand, 2021).

In 2010–2011, EQC provided a maximum cover of
NZD 100 000 (+GST) per residential building for any
homeowner who previously subscribed to a private home
fire insurance (New Zealand Government, 2008). In the
process of resolving these claims, EQC collected detailed
financial loss data, post-event observations, and building
characteristics. The CES was also an opportunity for
the NZ earthquake engineering community to collect
extensive data on the ground-shaking levels, soil conditions,
and liquefaction occurrence throughout wider Christchurch
(Cousins and McVerry, 2010; Cubrinovski et al., 2010, 2011;
Wood et al., 2011).

This article presents the development of a seismic loss
prediction model for residential buildings in Christchurch
using data science and machine learning (ML). Firstly, a
background on ML and some of its applications in earth-
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quake engineering are provided. Key information regarding
ML performance and interpretability is also introduced.
Then, details regarding the data that were collected following
the CES are given. The challenges posed by the raw data are
also highlighted. The following section details the merging
process required to enrich the data collected. The data
preprocessing steps necessary before the application of ML
are then described, and the paper expands on the actual ML
model development. It subsequently describes the algorithm
selection and model evaluation and presents the insights
derived from the previously trained ML model. The next
section discusses the current limitations and challenges in the
application of ML to real-world loss damage data. Finally,
the ML performance is compared to outputs from risk
analysis tools available for New Zealand.

2 Machine learning

2.1 Machine learning applied in earthquake
engineering

In recent years, the application of ML to real-world problems
increased significantly (Sarker, 2021). Similarly, the use
of ML in structural and earthquake engineering gained
in popularity. Sun et al. (2020) gave a review of ML
applications for building structural design and performance
assessment, and Xie et al. (2020) presented an extensive
review of the application of ML in earthquake engineering.
A few notable relevant ML studies include the quality
classification of ground motion records (Bellagamba et al.,
2019), the derivation of fragility curves (Kiani et al., 2019),
the evaluation of post-earthquake structural safety (Zhang
et al., 2018), the classification of earthquake damage to
buildings (Mangalathu and Burton, 2019; Mangalathu et al.,
2020; Harirchian et al., 2021; Ghimire et al., 2022) and
bridges (Mangalathu and Jeon, 2019; Mangalathu et al.,
2019), and damage and loss assessment (Kim et al., 2020;
Stojadinović et al., 2021; Kalakonas and Silva, 2022a, b).

2.2 Machine learning performance

The performance of an ML model relates to its ability to
learn, from a training set, and generalize predictions on
unseen data (test data) (Hastie et al., 2009). To achieve
this objective, it is important to find a balance between the
training error and the prediction error (generalization error).
This is known as the bias–variance trade-off (Burkov, 2020;
Ng, 2021).

The performance of an ML model might, among other
parameters, be improved by using more complex algorithms
and feeding more training data to the model. However,
despite more training, the accuracy of an ML model will
plateau and never surpasses some theoretical limit which is
called the Bayes optimal error. It is complex to exactly define
where the Bayes optimal error lies for a specific problem.

In some cases, the perfect accuracy may not be 100 %.
Therefore, it is often simpler to compare the accuracy of
an ML model to some baseline performance on a particular
task. For some applications ML can be benchmarked against
the human-level performance (e.g., image recognition).
For others, ML is capable of surpassing human-level
performance, as it is able to identify patterns across large
data sets. Before evaluating the actual performance of an ML
model on a specific task, it is thus important to clarify the
context, background, and current baseline performance (Ng,
2021).

2.3 Interpretable machine learning

Depending on the aim and purpose of an ML model, obtain-
ing correct predictions only may be satisfactory. However,
recent applications of ML showed that interpretability of the
model could help the end user (Honegger, 2018). An ML
model can be inspected to identify relationships between
input variables, derive insights, and/or find patterns in the
data that may be hidden from conventional analysis (Géron,
2022).

Model interpretability is achievable in two main ways. It
could come from the possibility for humans to understand the
parameters of the algorithm (intrinsic interpretability). This
is for example the case for linear regression, which remains
interpretable due to its simple structure. For complex models,
interpretability could come from methods that analyze the
ML model after it has been trained (post hoc methods).
One method used to explain predictions from ML models
is the SHapley Additive exPlanations (SHAP) tool. SHAP
is a methodology originally conceived in game theory for
computing the contribution of model features to explain
the prediction of a specific instance (Lundberg and Lee,
2017). The SHAP methodology was later extended to the
interpretation of tree-based ML algorithms (Lundberg et
al., 2019). It can be used to rank the importance of the
model features. SHAP relies on the weight of feature
attribution rather than on the study of the decrease in
model performance. It is thus more robust compared to the
permutation of features in tree-based models (Lundberg et
al., 2019; Molnar, 2022). Developing post hoc solutions to
make complex model decisions understandable to humans
remains a topical research endeavor (Du et al., 2020; Molnar,
2022; Ribeiro et al., 2016a, b, 2018).

3 Data acquisition

3.1 Residential building loss data: EQC claims data set

This study uses the March 2019 version of the EQC claims
database. Over 95 % of the insurance claims for the CES
had been settled by that time. The raw version of the EQC
data set contains over 433 500 claims lodged for the CES.
Prior to any further data manipulation step, any instances
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of missing information about the building coordinates and
unique property identifier were filtered out as these attributes
are essential for mapping and merging. This led to a 5 % loss
in the number of claims related to the CES, leaving 412 400
instances in the filtered data set. However, this includes all
the claim statuses, among others, claims that were declined
and instances settled on associated claims. To maximize
the accuracy of the developed loss prediction model, only
claims for which the payment was complete were selected.
This ensured that the ML model learned from instances for
which the claim amount is final. Figure 1 shows the number
of instances for different claim statuses. The selection of
the complete claims induced a loss of approximately 50 %
in the number of instances for the 4 September 2010 and
22 February 2011 events. Figure 2 presents the number
of instances for earthquakes in the CES following the
selection of settled claims. For a particular earthquake event,
it sometimes happened that multiple claims pertaining to
the same building were lodged. Figure 2 thus specifically
differentiates between the number of claims and the distinct
number of buildings affected. Prior to merging and data
processing, only four events had more than 10 000 instances
(i.e., 4 September 2010, 22 February 2011, 13 June 2011,
and 23 December 2011).

The EQC claims data set provided included 62 attributes.
The data set contained information such as the date of
the event; the opening and closing date of a claim; a
unique property number; and the claim amount for the
building, content, and land. Among the 62 variables, the
data set also included information about the building (e.g.,
construction year, structural system, number of stories).
However, for those critical features that identify the building
characteristics, more than 80 % of the instances were not
collected, as it was not necessary for settlement purposes.
Key information such as the building height and primary
construction material could not be taken from the EQC
data set. The scarce information for building characteristics
combined with the necessity to have full data for key
variables led to the need to add information from other
sources.

3.2 Building characteristics

The RiskScape New Zealand Building inventory data set
(NIWA and GNS Science, 2015) had been adopted by this
project to deliver critical information on building characteris-
tics. The New Zealand Building inventory collected building
asset information for use within the RiskScape software
(NIWA and GNS Science, 2017). This data set contained
detailed engineering characteristics and other information for
every building in New Zealand. Much structural information
such as the construction and floor type, the material of the
wall cladding, as well as data about the floor area, year of
construction of the building, and deprivation index (measure
of level of deprivation for an area) could be obtained from

the New Zealand Building inventory. However, information
about the number of stories was found to be expressed as
a float rather than an integer (it seems that the number of
stories was calculated from the total floor area of the building
divided by the footprint area rather than observed). It was
thus decided not to include the number of stories in the model
as reliable data, for this attribute was not available.

3.3 Seismic demand

A key input for the damage prediction model is the seismic
demand for each individual building. This project utilized
recordings from the GeoNet strong motion database for
the CES earthquakes at 14 strong motion stations located
throughout Christchurch (GeoNet, 2012; Kaiser et al., 2017;
Van Houtte et al., 2017). While there are many possible
metrics to describe the seismic demand, this study focused
on using summary data such as the peak ground acceleration
(PGA). For this study, the GeoNet data were interpolated
across Christchurch for the four main events using the
inverse distance weighted (IDW) interpolation implemented
in ArcMap (Esri, 2019).

3.4 Liquefaction occurrence

During the CES, extensive liquefaction occurred during four
events: 4 September 2010, 22 February 2011, 13 June 2011,
and 23 December 2011. The liquefaction and related land
damage were the most significant during the 22 February
2011 event. The location and severity of the liquefaction
occurrence were based on interpretation from on-site
observations and lidar surveys. Geospatial data summarizing
the severity of the observed liquefaction were sourced
from the New Zealand Geotechnical Database (NZGD)
(Earthquake Commission et al., 2012). The land damage
and liquefaction vulnerability due to the CES have been
extensively studied. The interested reader is directed to the
report from Russell and van Ballegooy (2015).

3.5 Soil conditions

Information on the soil conditions in Christchurch was
obtained from the Soil map for the Upper Plains and Downs
of Canterbury (Land Resource Information Systems, 2010).
The most represented soil types include recent fluvial (RFW,
RFT), organic humic (OHM), gley orthic (GOO), brown
sandy (BST), pallic perch–gley (PPX), brown orthic (BOA),
melanic mafic (EMT), pallic fragic (PXM), and gley recent
(GRT).

4 Data merging

The final merging approach made use of the Land
Information New Zealand (LINZ) NZ Property Titles data set
(Land Information New Zealand, 2020a) as an intermediary
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Figure 1. Number of instances grouped by the status of the claim: (a) 4 September 2010 and (b) 22 February 2011.

Figure 2. Number of claims and property for events in the CES
after filtering for ClaimStatus. Only events with more than 1000
instances prior to cleansing are shown.

to constrain the merging process between the EQC and
RiskScape data within property boundaries. This was
necessary as the coordinates provided by EQC corresponded
to the street address (coordinates located close to the street),
while RiskScape information was attached to the center of
the footprint of a building. Initial merging attempts using
built-in spatial join functions and spatial nearest-neighbor
joins led to incorrect merging, as in some instances the
location of a building from a neighboring property was closer
to the EQC coordinates than the actual building (Roeslin et
al., 2020).

As the LINZ NZ Property Titles did not directly include
information about the street address, it was first necessary
to merge the LINZ NZ Addresses data (Land Information

New Zealand, 2020b) with the LINZ NZ Property Titles
before being able to use the street address information related
to a property. Once the LINZ NZ Addresses data (points)
and the LINZ NZ Property Titles (polygons) merged, it was
found that some properties did not have a matching address
point, and some properties had multiple address points
within one polygon (see Fig. 3). Polygons with no address
point were filtered out. Properties with multiple addresses
induced challenges regarding the merging of the EQC claims
and RiskScape information. The merging process was thus
started with instances of having a unique street address per
property.

The RiskScape database contains information for residen-
tial buildings, as well as secondary buildings (e.g., external
garages, garden shed). Therefore, some properties contain
multiple RiskScape points within a LINZ property title
(Fig. 4). All RiskScape points present in a property were
merged to LINZ Addresses. The data were then filtered
to remove points associated with secondary buildings. The
RiskScape database includes two variables related to the
building size (i.e., building floor area and building footprint).
For properties having only two RiskScape points and under
the assumption that the principal dwelling is the building
with the largest floor area and footprint on a property, it was
possible to filter the data to retain RiskScape information
related to the main dwelling only. Some of the properties
have three or more RiskScape points. Automatic filtering of
the data using the largest building floor area is unreliable
for those instances. With the aim of retaining only trusted
data, where one street address had more than three RiskScape
instances in a property the data were discarded (27.1 % of the
selected RiskScape data for Christchurch had three or more
points within a LINZ property boundary).

In total 7 % of the LINZ property titles have two
street address points. As the number of instances used
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Figure 3. Satellite image of urban blocks in Christchurch overlaid with the LINZ NZ Addresses and LINZ NZ Property Titles layers. The
polygons with a bold red border represent LINZ NZ property titles having only one street address (background layer from Eagle Technology
Group Ltd; NZ Esri Distributor).

Figure 4. Satellite view of an urban block in Christchurch with RiskScape points and selected LINZ NZ Property Titles (background layer
from Eagle Technology Group Ltd; NZ Esri Distributor).

to train a supervised ML model often affects the model
accuracy, an attempt was made to retrieve instances that
were not collected via the previously mentioned approach.
Nevertheless, the philosophy followed here was to put
emphasis on the quality of the data rather than the number of

points. The effort is focused on retaining the cases when there
are two LINZ street addresses and two RiskScape points in
the same properties. Following the selection of RiskScape
points merged to their unique single LINZ points, the data
were appended to the previous RiskScape data set.
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Table 1. Overview of the action taken depending on the number of LINZ NZ street address and RiskScape points present per LINZ NZ
property title.

LINZ NZ street address RiskScape Action

One point per LINZ property title (89 %) One point per property title Direct selection

One point per LINZ property title (89 %) Two points per property title Select the RiskScape point with the largest
building floor area

One point per LINZ property title (89 %) Three or more points per property title Discarded

Two points per LINZ property title (7 %) One point per property title The automatic selection and filtering did not retain those
instances as it could not differentiate this specific case

Two points per property LINZ title (7 %) Two points per property title Retain these instances based on “spatial join”
(closest) combined with filtering

Two points per property LINZ title (7 %) Three or more points per property title Discarded

Three or more points per LINZ property title (4 %) Any configuration Discarded

Table 1 summarizes the merging steps depending on the
number of LINZ street address points and RiskScape points
per LINZ property title. While the current selection approach
is conservative, it ensured each EQC claim can automatically
be assigned to the corresponding residential building using
the street address. For cases with multiple street addresses
or residential buildings within the same property, a manual
assignment of RiskScape points to LINZ street address points
would enable the inclusion of more instances. However, this
was impractical and was applicable to only 4 % of the overall
LINZ property titles.

The overall merging process of EQC claims points to
LINZ street address points is similar to the process of
merging RiskScape to LINZ. The limitations related to the
combination of the LINZ NZ street address data with the
LINZ NZ property titles apply here as well. Hence, it was
only possible to merge EQC claims to street addresses for
points contained within LINZ property titles with one street
address and to some extent retain claims for properties with
two street addresses per title. Once the LINZ NZ street
address information was added to RiskScape and EQC, these
data sets were merged in Python using the street address as a
common field.

The final step of preparing the EQC claims data was to add
information related to the seismic demand, the liquefaction
occurrence, and the soil conditions. This was achieved within
ArcMap (Esri, 2019) by importing each of the data sets
as a separate GIS layer. The information contained within
each GIS layer was merged with the EQC claims previously
combined with RiskScape. Finally, using the street address
as a common attribute, the information was combined in one
merged data set.

Figure 5 shows the evolution of the number of instances
for 4 September 2010 and 22 February 2011 after each step
in the merging process. In its original form, the EQC raw
data set entails almost 145 000 claims for 4 September 2010
and 144 300 claims for 22 February 2011. Following all

the aforementioned merging steps, 38 607 usable instances
remain for 4 September 2010 and 42 486 instances for
22 February 2011.

5 Data preprocessing

5.1 Feature filtering

Before fitting an ML model to a data set, it is necessary
to remove any instance with missing values, as many
of the ML algorithms are unable to make predictions
with missing features. Underrepresented categories within
attributes are also carefully examined. Categories with few
instances introduce challenges for the ML algorithms, as
the model will have difficulties “learning” and generalizing
for a particular category. In some cases where the meaning
is not changed, it is possible to combine instances from
different categories. However, whenever a combination of
multiple classes is not possible, categories entailing a few
instances are removed. This section explains the filtering
steps performed on the EQC, RiskScape, and additional
attributes.

The EQC claims data set contains an attribute specifying
the number of dwellings insured on a claim. To avoid any
possible issue with the division of the claim value between
the multiple buildings, only claims related to one dwelling
were retained. Despite the previous selection of claims with
the status Claims Payments Complete (see Sect. 3.1), another
attribute capturing the status of the claims indicated that
some selected claims were not closed. To avoid any issues
that could be caused by non-closed claims, such instances
were discarded. Another important attribute from the EQC
data set is the building sum insured. At the date of the
CES, EQC provided a maximum cover of NZD 100 000
(+GST) or NZD 115 000 (including GST) for a residential
dwelling for each natural event (New Zealand Government,
2008). To ensure data integrity for the ML model, only the

Nat. Hazards Earth Syst. Sci., 23, 1207–1226, 2023 https://doi.org/10.5194/nhess-23-1207-2023



S. Roeslin et al.: Development of a seismic loss prediction model using machine learning 1213

Figure 5. The number of data points after each processing step for the event on (a) 4 September 2010 and (b) 22 February 2011.

instances with a maximum cover of exactly NZD 115 000
were selected. Finally, two similar attributes related to the
claim amount paid were not exactly matching for some
claims. To train the ML model on reliable data, instances
where the amount indicated by the building paid attribute
did not exactly match with the value of building net incurred
were excluded from the data set.

Section 4 presented the merging of the EQC data with
additional information related to the building characteristics
from RiskScape. Building characteristics encompassed the
use category, floor area, construction and floor type, wall
and roof cladding, and deprivation index. An exploratory
analysis of these attributes revealed that initial filtering
was required before further use. The use category was
the first RiskScape attribute explored. All instances not
having the use category defined as residential dwellings
were discarded. Once residential dwellings were selected,
the size of the building was examined. The analysis of the
floor area revealed the presence of outliers, with values
reaching up to 3809 m2 for a single house. To avoid the
induction of edge cases in the training set of the ML model,
a filtering threshold was set at 1000 m2 (Fig. 6). This led to
a minimal loss of instances (0.1 %) but eliminated outliers.
The following attribute inspected was related to the material
of construction. Table 2 shows the number of instances
for each construction type in the merged data set. Light
timber was the most prevalent construction type. Conversely,
steel braced frame, light industrial, reinforced concrete (RC)
moment-resisting frame, and tilt-up panel only appeared in
very few instances. Given that these categories have less
than 100 instances, it is unlikely ML models can make
correct predictions for those construction types. As a result,
these underrepresented categories were filtered out of the
data set. Selected, along with light timber dwellings, were
buildings where the main construction type was classified
as RC shear wall, concrete masonry, and brick masonry.

While the latter category only entails 347 and 371 instances
for 4 September 2010 and 22 February 2011 respectively, it
was deemed necessary from an engineering point of view
to retain brick masonry as a possible construction type in
the model. Along with the building material, RiskScape also
entailed information of the floor type. This attribute had
two categories: concrete slab and timber floor. Sufficient
instances were present in both categories such that no
filtering was required. The wall and roof cladding attributes,
however, had several underrepresented categories. When
possible similar categories were combined, and categories
with insufficient entries were discarded. The last attribute
sourced from the RiskScape data was the deprivation index.
The deprivation index set describes the socioeconomic
deprivation of the neighborhood where the building is
located. The deprivation index is defined according to 10
categories ranging from 1 (least deprived) to 10 (most
deprived) (Atkinson et al., 2020). In total 9 of the 10
categories were well represented. Only the category for
the deprivation index 10 (most deprived) had a lower 279
instances for 4 September 2010 and 316 for 22 February
2011. Nevertheless, all data were kept in order to capture the
full possible range of values related to the deprivation index
attribute.

The final merging included information about the seismic
demand, liquefaction occurrence, and soil. To ensure that
the ML can generalize, the soil types having less than a
hundred instances for 4 September 2010 or 22 February 2011
were removed. Each filtering operation induced a loss in the
number of instances. Figure 7 documents the evolution of the
number of points through the data preprocessing steps.

5.2 Processing of the target attribute

At the time of the CES in 2010–2011, EQC’s liability
was capped to the first NZD 100 000 (+GST) (NZD 115 000
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Table 2. Overview of features selected for the model with their distribution.

Parameter Data type 4 September 2010 22 February 2011

Categories Distribution Categories Distribution

Peak ground acceleration (PGA) Numerical 0.197 to 0.496 g See Fig. 6 0.168 to 1.338 g See Fig. 6

Construction type Categorical Light timber 85.4 % Light timber 85.9 %
RC shear wall 6.7 % RC shear wall 6.5 %
Concrete masonry 6.6 % Concrete masonry 6.3 %
Brick masonry 1.2 % Brick masonry 1.3 %

Liquefaction occurrence Binary No 90.3 % No 59.0 %
Yes 9.7 % Yes 41.0 %

Soil Categorical RFW 49.0 % RFW 46.0 %
OHM 19.3 % OHM 20.6 %
GOO 9.7 % GOO 10.2 %
BST 7.8 % BST 8.6 %
PPX 6.9 % PPX 7.9 %
RFT 2.9 % RFT 2.1 %
BOA 1.4 % BOA 1.4 %
EMT 1.3 % EMT 1.2 %
PXM 1.1 % PXM 1.1 %
GRT 0.7 % GRT 0.8 %

Construction year Numerical 1888 to 2012 See Fig. 6 1882 to 2012 See Fig. 6

Floor area Numerical 30 to 1000 m2 See Fig. 6 30 to 1000 m2 See Fig. 6

Floor type Categorical Concrete slab 77.0 % Concrete slab 77.9 %
Timber floor 23.0 % Timber floor 22.1 %

Wall cladding Categorical Brick 34.1 % Brick 35.0 %
Weatherboard 25.2 % Weatherboard 25.0 %
Stucco 14.2 % Stucco 14.5 %
Reinforced concrete 13.3 % Reinforced concrete 12.8 %
Concrete masonry 13.2 % Reinforced concrete 12.8 %

Deprivation index Categorical NZDep1 20.3 % NZDep1 20.0 %
NZDep2 12.4 % NZDep1 12.4 %
NZDep3 7.3 % NZDep3 6.4 %
NZDep4 13.6 % NZDep4 12.7 %
NZDep5 10.1 % NZDep5 10.4 %
NZDep6 7.4 % NZDep6 7.5 %
NZDep7 12.1 % NZDep7 11.8 %
NZDep8 10.1 % NZDep8 11.1 %
NZDep9 5.9 % NZDep9 6.6 %
NZDep10 1.0 % NZDep10 1.1 %

including GST) of building damage. Costs above this cap
were borne by private insurers if building owners previously
subscribed to adequate insurance coverage. Private insurers
could not disclose information on private claims settlement,
leaving the claims database for this study soft-capped at
NZD 115 000 for properties with over NZD 100 000 (+GST)
damage. Despite the data set having been previously filtered,
an exploratory analysis of the attribute BuildingPaid showed
that some instances were above NZD 115 000 and others
even negative. To be consistent with the coverage of

the EQCover insurance, only instances with BuildingPaid
between NZD 0 and NZD 115 000 were selected. Figure 8
shows the distribution of BuildingPaid within the selected
range for 4 September 2010 and 22 February 2011.
Following the filtering of the BuildingPaid attribute, 28 302
instances remained for 4 September 2010 and 27 537
instances for 22 February 2011.

In the original EQC claims data set, BuildingPaid
is a numerical attribute. Initial modeling attempts using
BuildingPaid as a numerical target variable produced poor
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Figure 6. Distribution of the numerical attributes: (a) peak ground
acceleration (PGA) for 4 September 2010, (b) peak ground
acceleration (PGA) for 22 February 2011, (c) construction year for
the building claims related to the 4 September 2010 earthquake,
(d) construction year for the building claims related to the
22 February 2011 earthquake, (e) floor area for the building claims
related to the 4 September 2010 earthquake, and (f) floor area for
the building claims related to the 22 February 2011 earthquake.

model predictions in terms of both accuracy and ability for
generalization. BuildingPaid was thus transformed into a
categorical attribute. The thresholds for the cut-offs were
chosen according to the EQC definitions related to limits for
cash settlement, the Canterbury Home Repair Programme,
and the maximum coverage provided (Earthquake Com-
mission, 2019). Any instances with less than and equal to
NZD 11 500 were classified as the category “low”, reflecting
the limit of initial cash settlement consideration. Next, while
the maximum EQC building sum insured was NZD 115 000,
it was found that many instances that were overcap showed a
BuildingPaid value close to but not exactly at NZD 115 000.
In consultation with the risk modeling team at EQC, the
threshold for the category “overcap” was set at NZD 113 850,

as this represents the actual cap value (nominal cap value
minus 1 % excess). Instances with BuildingPaid values
between NZD 11 500 and NZD 113 850 were subsequently
assigned to the category “medium”. Figure 9 shows the
number of instances in each category for 4 September 2010
and 22 February 2011.

6 Model development

The selected data for the model development included nine
attributes (PGA, construction type, a flag for liquefaction
occurrence, soil type, construction year, floor area, floor type,
wall cladding material, deprivation index) plus the target
attribute BuildingPaid. The preprocessed data are complete
with no missing value for all the instances.

6.1 Training, validation, and test set

For the application of ML, the data were split into three
distinct sets, the training, validation (or development), and
test set. Figure 10 shows a schematic overview of the splitting
and the use of the sets in the development of the ML model.
The training, validation, and test sets were coming from the
same data set, using 80 % of the data for training, 10 %
for validation, and 10 % for testing. The 4 September 2010
preprocessed data had 27 537 instances. Thus, there were
22 030 instances in the training set and 5507 instances in the
test set. 22 February 2011 entailed 28 302 instances in total,
thus leading to 22 642 examples in the training set and 5660
in the test set. The next most represented events were 13 June
and 23 December 2011 (see Fig. 2). Instances from those two
events were also merged and preprocessed to enable their use
in the training, validation, and testing process.

6.2 Handling categorical features

Categorical attributes were transformed into binary arrays
for adoption by ML algorithms. For the model in this study,
strings in categorical features were first transformed into
an ordinal integer using the scikit-learn OrdinalEncoder
(Pedregosa et al., 2011). Once converted to integers, the
scikit-learn OneHotEncoder (Pedregosa et al., 2011) was
used to encode the categorical features as a one-hot numeric
array.

6.3 Handling numerical features

Numerical features were checked against each other for
correlation prior to the ML training. If two features are
correlated, the best practice is to remove one of them. The
numerical data were also normalized prior to the training
process according to best practice. This step is called
feature scaling. The most common feature scaling techniques
are min–max scaling (also called normalization) and
standardization. Both these techniques can be implemented
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Figure 7. Evolution of the number of instances after each feature filtering step: (a) 4 September 2010 and (b) 22 February 2011.

Figure 8. Distribution of BuildingPaid after selection of the instances between NZD 0 and NZD 115 000: (a) 4 September 2010 and
(b) 22 February 2011.

Figure 9. Number of instances in BuildingPaid categorical in the
filtered data set: (a) 4 September 2010 and (b) 22 February 2011.

in scikit-learn (Pedregosa et al., 2011). In this study, a min–
max scaling (normalization) approach was used to scale the
numerical features.

6.4 Addressing class imbalance

Figure 9a shows the number of instances for each category
in the target variable BuildingPaid for the 4 September
2010 data. While the categories low and medium had
respectively 16 558 and 9970 instances, the category overcap
had only 1404 instances. The overcap category was thus the
minority class with a significant difference in the number
of instances compared to the two other categories. Training
an ML algorithm using the data in this form would lead to
poor modeling performance for the overcap category. Thus,
before training the model, the imbalanced-learn Python
toolbox (Lemaître et al., 2017) was applied to address
the class imbalance. The toolbox encompasses several
undersampling and oversampling techniques; however not
all of them apply to a multiclass problem. The following
oversampling and undersampling techniques suitable for
multiclass problems were trialed: random oversampling
(ROS), cluster centroids (CC), and random undersampling
(RUS). For the 4 September 2010 data, ROS delivered the
best results regarding the overall model predictions, as well
as the prediction for the minority class overcap.
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Figure 10. Overview of the training, validation, and test data sets and their usage in the development of an ML seismic loss model for
Christchurch.

7 Algorithm selection and training

The model was trained using the merged data set, which
included information on the model attributes, as well as the
target attribute BuildingPaidCat, thus making the training a
supervised learning task. Given the nine attributes selected
for the model development, the objective of the model
was to predict if a building will fall within the category
low, medium, or overcap (expressed via the target variable
BuildingPaidCat), thus leading to a categorical model for
three classes. Several ML algorithms can perform supervised
learning tasks for categories (e.g., logistic regression; support
vector machine, SVM; random forest, RF; artificial neural
networks, ANN). Those algorithms differentiate themselves
by their complexity. More complex algorithms can develop
more detailed models with a potentially improved prediction
performance, but complex algorithms are also more prone
to overfitting. For this study, the prediction performance was
an essential metric. Nevertheless, the human interpretability
of the model was also of significant interest. The goal was
to produce a “greybox” model enabling the derivation of
insights. In this project, the logistic regression, decision trees,
SVM, and random forest were trialed.

Training data were obtained from the four main events
in the CES (4 September 2010, 22 February 2011, 13 June
2011, 23 December 2011). Once the model trained, the
scikit-learn function RandomizedSearchCV (Pedregosa et
al., 2011) was used for the hyperparameter tuning of the
model. RandomizedSearchCV was applied in combination
with k-fold cross validation. For this exercise of predicting
building loss, it was critical to limit the number of
false negatives (i.e., actual overcap claims which are not
predicted correctly). Using the recall as the scoring for the

hyperparameter tuning put the emphasis on the ML model to
classify buildings with large losses in the overcap category.
Recall was thus chosen as the primary evaluation metric over
the accuracy, precision, or F1 score. This paper only presents
outputs and findings for 4 September 2010 and 22 February
2011. For findings related to 13 June and 23 December 2011,
the reader is directed to Roeslin (2021).

8 Model evaluation

Figure 10 shows the process for the model development. As
explained in Sect. 7, multiple ML classification models were
trained using data from the four main earthquakes in the
CES, and different ML algorithms were trialed. Figure 11
shows confusion matrices for the logistic regression, decision
trees, SVM, and random forest trained and validated on
data from 22 February 2011. Despite a limited prediction
performance, the models trained using the random forest
algorithm showed the most promising predictions compared
to outputs from the model trained with logistic regression,
SVM, and decision tree. The final ML model thus used
the random forest algorithm. Following the hyperparameter
tuning, the models were evaluated using validation data
previously separated from the training set (see Sect. 6.1).
Validation sets were also sourced from different events to see
how each model would generalize.

Figure 12a and d show the confusion matrix for the
random forest model for 4 September 2010 and 22 February
2011 validated on the same event respectively. Figure 12b
shows the confusion matrix for the random forest model
developed with the 4 September 2010 data and validated
on the 22 February 2011 instances. Figure 12c presents the
confusion matrix for the random forest model developed with
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Figure 11. Confusion matrices for models trained and validated on data from 22 February 2011: (a) logistic regression, (b) support vector
machine (svm), (c) decision tree, and (d) random forest.

the 22 February 2011 data and applied to the 4 September
2010 instances. For each confusion matrix, the diagonal
represents the correct predictions. The top integer numbers in
each of the upper-left boxes display the number of instances
predicted, and the percentages in the bottom rows represent
that instance as a percentage of the entire set. The closest
the value on the diagonal sum is to 100 %, the better the
prediction. Mistakenly predicted instances are shown off
the diagonal. Despite a limited model performance, random
forest showed the best overall prediction performance and
was deemed the best-performing algorithm in this study.

Figure 12a shows that model 1, trained and validated on
4 September 2011 data, properly classified over 62 % of the
instances. However, it underpredicted 67.4 % of the overcap
claims and had difficulties with some of the predictions for
the low and medium categories; 40.5 % of the buildings
for which a medium claim was lodged were predicted as
low, and 28.1 % of the low instances were assigned to the
medium category. While the latter might be acceptable for
this use case (i.e., leading to larger fund reserves), the former
underpredicted the losses. Model 2 (trained and validated on

22 February 2011 data) was only able to classify 52 % of
the claims correctly but performed better for overcap cases;
56.5 % of the overcap instances were properly assigned to
the overcap category. The better performance of model 2
on overcap instances might be related to the larger number
of overcap instances in the training set for the 22 February
2011 event (see Fig. 9). For the medium category the model
underpredicted 27.0 % of the medium instances as low.
Overall, model 2 underpredicted 22.6 % of the instances in
the validation set. Despite the optimization of the model on
recall, 36.9 % and 6.6 % of the overcap claims were wrongly
assigned to the medium and low categories respectively.

Figure 12b and c help to understand how each model,
trained on the 4 September 2010 and 22 February 2011
data respectively, performed when applied to another event.
Figure 12b shows that the recall for the overcap category
of the model trained on 4 September 2010 applied to
22 February 2011 reached 0.24. For the model trained on
the 22 February 2011 data applied to the 4 September
2010 event, the recall was limited to 0.07 for the overcap
category with only 7.4 % of the overcap claims being
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Figure 12. Confusion matrices for the random forest algorithm: (a) 4 September 2010 model validated on 4 September 2010, (b) 4 September
2010 model applied to 22 February 2011, (c) 22 February 2011 model applied to 4 September 2010, and (d) 22 February 2011 model validated
on 22 February 2011.

correctly assigned to the overcap category. This shows that
besides assessing the performance of a model on a validation
set coming from the same earthquake as the training set,
it is important to evaluate any ML model on a different
earthquake event before making any generalizations.

9 Insights

The SHapley Additive exPlanations (SHAP) post-hoc
method was applied to the random forest models for
analyzing the relative influence of the different input
features. Figure 13 shows the SHAP feature importance
for the random forest models for 4 September 2010 and
22 February 2011. The influence of PGA on the residential
building losses was highlighted for all the key events of
the CES. It was satisfying to observe that ML, which has
no physical understanding or prior knowledge related to
building damage and loss, was capable of capturing the
importance of PGA from empirical data alone.

For 22 February 2011, PGA significantly stood out and
was followed by the liquefaction occurrence and soil type. It
thus seemed that the building damage and losses due to the
2011 Christchurch earthquake were driven by liquefaction.
This result corroborated the findings from previous studies,
which highlighted the influence of liquefaction on building
damage for the 22 February 2011 event (Rogers et al.,
2015; Russell and van Ballegooy, 2015). The year of
construction appeared second for the 4 September 2010
event; however, it was only fifth for the 22 February
2011 event. It is possible that the feature ConstructionYear
captured information related to the evolution of the seismic
codes which appears more significant for the events less
affected by liquefaction.

The study of the feature importance of the ML models
seemed to distinguish two types of events: shaking-
dominated events such as the 4 September 2010 event
and liquefaction-dominated like the 22 February 2011
earthquake.
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Figure 13. SHAP feature importance for the random forest model: (a) 4 September 2010 and (b) 22 February 2011.

10 Model application

Once evaluated, a possible scenario was run to test the
applicability of the model. As shown in Fig. 10, the
proposed framework required the retraining of the ML
model, including a sample of buildings from the new
earthquake. As claims data were available for the four main
earthquakes of the CES, it was possible to demonstrate the
applicability of the framework to the Christchurch region
using data from previous earthquakes to train an ML model.
The date of application chosen for this simulated scenario
was in the days following the 13 June 2011 earthquake
after the loss assessment on the representative sample was
performed. Claims information was thus available for the
representative set of buildings (the selection of the best
representative set of buildings for the Christchurch portfolio
was not part of this case study. It could be done by asking for
expert opinions or by using sampling methods as described
in Stojadinović et al., 2022). For simplification, it was also
assumed that the damage extent and related claims from
previous earthquakes were known, thus meaning that the
ML model was able to make use of the entire claims data
pertaining to the 4 September 2010 and 22 February 2011
events. The ML model was retrained following the steps
detailed in Fig. 10.

Figure 14a shows the confusion matrix for model 3,
trained and validated on the 4 September 2010 and
22 February 2011 data with the representative sample
pertaining to 13 June 2011. The model was trained putting
emphasis on recall. On the validation set, the model achieved
0.59 recall on the overcap category with 41.2 % of the
overcap instances underpredicted. The model was then
applied to the rest of the building portfolio. It predicted 2975
buildings in the low, 3385 in the medium, and 998 buildings
in the overcap category. In a real situation, loss assessors

could then focus their attention on further assessing subsets
of buildings classified in the overcap and medium categories.

As the actual claims are now known, it was possible
to assess the model predictions against the ground truth
(claims lodged for the 13 June 2011 event). Figure 14b
shows the confusion matrix for model 3 applied to the rest
of the portfolio of buildings for 13 June 2011. Model 3
underpredicted 70.7 % of the overcap instances with 13.1 %
of the overcap claims classified as low. The model had
difficulties differentiating between the categories medium
and low. A total of 34.1 % of the medium claims were
underpredicted as low, meaning that if the loss assessment
efforts focused on the medium and overcap categories, 1090
buildings (14.8 % of the portfolio) would not have received
appropriate focus in the first instance.

11 Model performance and error analysis

Table 3 presents a sample of 10 buildings for which claims
were lodged during the CES. Details about the nine attributes
used in the ML model and the actual BuildingPaid are given
for each building. The predictions from the random forest
model trained on 4 September 2010 (model 1), 22 February
2011 (model 2), and a combination of both events plus
a representative sample from 13 June 2011 (model 3) are
shown in the last three columns of the table. It is then possible
to identify the cases in which the models did not perform
well.

Examples 1 to 5 are light timber buildings. Building 1
did not experience any liquefaction occurrence during any
of the main events for which a claim was lodged. The only
attribute which changed between the events is PGA. Despite
a higher level of PGA for the 22 February 2011 event, the
reported losses were at the highest for the 4 September
2010 earthquake with the actual value of BuildingPaid being
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Figure 14. (a) Confusion matrix for the random forest algorithm trained and validated on 4 September 2010 and 22 February 2011 data with
a representative sample from 13 June 2011 (Model 3) and (b) performance of model 3 on the rest of the building portfolio for the 13 June
2011 earthquake.

overcap for the 4 September 2010 event and medium for
the 22 February and 13 June 2011 events. This example
shows that higher PGA levels were not always linked to
actual higher claims. Such behavior was difficult to capture
in an ML model. Model 3 underpredicted the losses for
all the events. The second example presents a light timber
building which experienced similar PGA levels during the
4 September 2010 and 13 June 2011 events but higher during
the 22 February 2011 earthquake. Liquefaction was only
present on 13 June 2011. Model 3 was able to identify
the overcap losses of the 22 February 2011 event but
overpredicted the losses for the 13 June 2011 earthquake.
Building 3 experienced a PGA level above 1 g during the
22 February 2011 earthquake but no liquefaction. Despite the
high PGA, the losses were medium’. Model 3 overpredicted
the losses for the 22 February 2011 event but correctly
predicted the overcap for 13 June 2011. Example 4 has
similar PGA levels for 4 September 2010 and 13 June 2011
and higher PGA for 22 February 2011 with liquefaction also
present for this event. However, the building losses were
different with medium values for 4 September 2010 and
22 February 2011 and overcap for 13 June 2011. None of the
models were able to predict the overcap for 13 June 2011.
Building 5 experienced liquefaction on both 22 February and
13 June 2011. Despite the higher PGA levels on 22 February
2011, the losses were larger on 13 June 2011. Model 3
accurately predicted the overcap status for 13 June 2011 but
overpredicted the losses for 22 February 2011. Cases 6 to
10 show examples having a construction material different
from light timber. Despite the higher PGA level during the
22 February 2011 event, building 6 suffered the most losses
during the 13 June 2011 earthquake. None of the models

were able to assign the 13 June 2011 claim to the overcap
category. Nevertheless, with a prediction in medium, model 3
was the closest to reality. Although the PGA levels and
liquefaction occurrence were different across the events, the
claims related to building 7 were all in the medium category.
Besides the prediction for the 4 September 2011 event,
model 3 captured the medium level for both the 22 February
and 13 June 2011 events. Building 8 suffered major losses
during the 13 June 2011 event. Model 3 overpredicted the
losses for 4 September 2010 and 22 February 2011 but
underpredicted the amount for 13 June 2011. Model 3 also
underpredicted building 9. However, for example 9 the claim
for 13 June 2011 was overcap despite limited levels of PGA
and no presence of liquefaction. Finally, example 10 shows
an example where model 3 correctly predicted the losses for
each of the events capturing the medium and overcap levels
for 22 February and 13 June 2011 respectively.

Despite the thorough attribute filtering, selection, prepa-
ration, and model development addressing class imbalance
and carefully checking for underfitting and overfitting, the
prediction accuracy of the final ML model remained limited.
Possible reasons that influence the model performance are
discussed in Sect. 12. The error analysis section also
highlights the uniqueness of the loss extent related to the
CES. Some of the samples presented in Table 3 shows that,
for a specific building, higher PGA and the presence of
liquefaction did not always lead to the largest claims. This
created inherent specificities which were difficult to capture
within a global ML model for Christchurch. Nevertheless,
the authors are convinced by the potential of applying ML
for rapid earthquake loss assessment.
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12 Current challenges

There are numerous possible reasons for the limited ML
model accuracy. Some are listed here.

Having more direct information collected on site about
the building characteristics would improve the completeness
of the EQC data set, which could benefit the model
performance.

The issues faced during the merging of the EQC data
set with RiskScape building characteristics and LINZ
information highlighted the need for an improved solution
to identify each building in New Zealand. It is believed that
the establishment of a unique building identifier common to
several databases will introduce consistency, thus opening
new opportunities for the application of data science
techniques and the derivation of insights.

At the time of the CES, EQC only provided building
coverage up to NZD 100 000 (+GST), which led to the
EQC data set being capped at NZD 115 000. Losses
above the NZD 115 000 threshold were covered by private
insurers, given that the building owner subscribed to
appropriate private insurance. Any detail for building loss
above NZD 115 000 was not available for this study. For
4 September 2010, there was a significant class imbalance
between the classes of the target variable with overcap
instances being mostly underrepresented. The access to data
from private insurances would enlarge the range of the
target attribute BuildingPaid, giving more information on the
buildings which suffered significant losses.

A more in-depth analysis of the actual value of Build-
ingPaid might also bring an improved model performance.
Taking into account apportionment between the events in
the CES would provide a more accurate allocation of loss
to each event and enable one to capture more details about
overcap instances. To mitigate issues related to sequential
damage throughout the CES, the data could be segregated
by geographical area where the majority of damage occurred
for each event. This might lead to a “cleaner” training set and
thus might deliver more accurate predictions.

The prediction accuracy also depends on the attributes
present in the model. Section 6 presented the target variable
and nine selected model attributes. These attributes were
selected based on domain knowledge as possible features
that could affect the building losses. There may be other
attributes that were not considered in this study that have
direct and indirect impacts on the value of a claim. It is thus
possible that the inclusion of additional attributes might be
beneficial to the overall model accuracy. The introduction of
additional parameters related to properties and social factors
for example might deliver an improved model accuracy, as
well as new insights.

13 ML loss model performance vs. current tools

Section 8 and Fig. 12 presented the ML model performance
for the random forest model trained on the 4 September
2010 and 22 February 2022 data. Figure 12c showed
that the lowest recall score for the overcap category was
for the 22 February 2011 model tested on 4 September
2010. Section 2.2 highlighted the importance of providing
context and information related to the maximum achievable
performance of ML for a specific task. While it was difficult
to give an exact value of the Bayes error for this task due
to the inherent complexity of loss prediction, it was possible
to compare the accuracy of the developed ML model to the
performance of current tools employed for the damage and
loss prediction.

The outputs of the ML model were compared to
predictions obtained from the RiskScape v1.0.3 software
(NIWA and GNS Science, 2017). Loss prediction scenarios
for the 4 September 2010 and 22 February 2011 events were
performed in RiskScape using the hazard information and
building data available within the software. RiskScape out-
puts loss predictions for all the buildings in the Canterbury
region. Samples of 25 000 residential buildings located in
Christchurch were selected for both the 4 September 2010
and 22 February 2011 events. The buildings in the samples
were carefully selected to only encompass buildings for
which at least one claim was lodged to EQC during the CES.
This later enabled the comparison of the RiskScape software
predictions to the actual level of building loss captured by
EQC. Figure 15a and b present the confusion matrix of
the RiskScape predictions for the 4 September 2010 and
22 February 2011 events respectively. The recall for the
overcap category on the 4 September 2010 prediction is 0.08
and 0.11 for the 22 February 2011 earthquake. While the
former is slightly better than the worst-performing ML model
on 4 September 2010, the latter is significantly lower than
any of the recall values achieved for the overcap category
using ML for the 22 February 2011 earthquake. Despite
limitations in the ML models, ML overall outperformed the
RiskScape v1.0.3 software.

14 Conclusions

This paper introduced a new framework for the seismic
loss prediction of residential buildings. It used residential
building insurance claims data collected by the Earthquake
Commission following the 2010–2011 Canterbury earth-
quake sequence to train a machine learning model for loss
prediction in residential buildings in Christchurch, New
Zealand. The random forest algorithm trained on claims data
delivered the most promising outputs. The model application
was demonstrated using a scenario whereby an ML model
was trained on data from 4 September 2010, 22 February
2011, and a representative sample from 13 June 2011. The
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Figure 15. Confusion matrices for the predictions from the RiskScape v1.0.3 software on a sample of 25 000 buildings located in
Christchurch, New Zealand: (a) predictions for the 4 September 2010 earthquake and (b) predictions for the 22 February 2011 earthquake.

ML model was then used to make loss predictions on the rest
of the building portfolio. Results from the machine learning
model were compared to the performance of current tools
for loss modeling. Despite limitations, it was found that
the machine learning model outperformed loss predictions
obtained using the RiskScape software. It was also shown
that machine learning was capable of extracting the most
important features that contributed to building loss.

Overall, this research project demonstrated the capabilities
and benefits of applying machine learning to empirical
data collected following earthquake events. It showed that
machine learning was able to extract useful insights from
real-world data and outperformed current tools employed for
the damage and loss prediction of buildings. It confirmed that
data science techniques and machine learning are appropriate
tools for the rapid seismic loss assessment.
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