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Abstract. This work aims to generate and evaluate regional
rainfall thresholds obtained from a combination of high-
resolution gridded rainfall data, developed by the National
Service of Meteorology and Hydrology of Peru, and informa-
tion from observed shallow landslide events. The landslide
data were associated with rainfall data, determining trigger-
ing and non-triggering rainfall events with rainfall proper-
ties from which rainfall thresholds are determined. The val-
idation of the performance of the thresholds is carried out
with events that occurred during 2020 and focuses on eval-
uating the operability of these thresholds in landslide warn-
ing systems in Peru. The thresholds are determined for 11
rainfall regions. The method of determining the thresholds is
based on an empirical—statistical approach, and the predic-
tive performance of the thresholds is evaluated with true skill
statistics. The best predictive performance is the mean daily
intensity—duration (Imean — D) threshold curve, followed by
accumulated rainfall E. This work is the first estimation of
regional thresholds on a country scale to better understand
landslides in Peru, and the results obtained reveal the poten-
tial of using thresholds in the monitoring and forecasting of
shallow landslides caused by intense rainfall and in support-
ing the actions of disaster risk management.

1 Introduction

Landslides are one of the most globally impactful hazards
causing casualties and damage to public and private property
and are responsible for at least 17 % of all natural hazard
deaths in the world (Chae et al., 2017; Segoni et al., 2018).
Rainfall is the main trigger for shallow landslides, which

are responsible for fatalities and economic losses worldwide
(Petley, 2012). In Peru, landslides are the fifth most common
natural hazard, generating the most emergencies in the last
16 years (INDECI, 2019) along with heavy rains, low tem-
peratures, strong winds, and floods. Most landslides occur
during the South American monsoon (Zhou and Lau, 1998)
between November and April, and most of them belong to the
category of the debris flow that is shallow in nature (Naidu
et al., 2018). However, consideration of the physiographic
and climatic environment of the country with regard to the
relationship between rainfall and landslides has not yet been
investigated. Therefore, knowing and understanding the re-
lationship between landslides and rainfall could be valuable
in objectively proposing warning and monitoring systems for
areas susceptible to landslides.

Terrain saturation is the main cause of landslide occur-
rence, and this saturation effect can arise in different ways
(intense rains; thaws; changes in the level of groundwater;
water discharge in lakes, lagoons, and reservoirs; and an in-
crease in stream flow). Out of all these factors that cause sat-
uration and affect soil stability conditions, rainfall is the most
frequent and important one in triggering landslides (Prenner
et al., 2018; Segoni et al., 2014). However, the maximum
probability of occurrence of landslides is not always associ-
ated with extreme conditions of heavy rainfall and soil mois-
ture; there is also the influence of the antecedent condition of
rainy days prior to the occurrence of landslides (Abraham et
al., 2020).

One of the techniques used in the study of rainfall as a trig-
gering factor for landslides is the determination of rainfall
thresholds, which has been widely studied worldwide using
various methods (empirical, statistical, manual, and proba-
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bilistic methods and with physically based models) (Guzzetti
et al., 2007; Segoni et al., 2018; Tang et al., 2019; Berti et
al., 2020). For rain-induced landslides, the threshold can be
defined as rainfall, soil moisture, or hydrological conditions
that, when reached or exceeded, are likely to trigger land-
slides. Thresholds have been developed at different times
(sub-hourly, hourly, daily, monthly) and spatial scales (slope
scales, local, basin, regional, national, global) depending on
the information available (Segoni et al., 2018). For example,
empirical—statistical approaches for the estimation of global
(Caine, 1980; Guzzetti et al., 2008; Kirschbaum and Stanley,
2018) and national (Leonarduzzi et al., 2017; Peruccacci et
al., 2017; Uwihirwe et al., 2020) thresholds have been de-
veloped. Empirical approaches to forecasting the occurrence
of landslides depend on the definition of rainfall thresholds
obtained from different hydrometeorological variables (Gar-
iano et al., 2015; Segoni et al., 2018). A large number of
analysis variables could be used to define thresholds (up to
22 were reported) (Guzzetti et al., 2007, 2008). Under this
approach, rainfall thresholds for landslide occurrence aim to
separate triggering from non-triggering rainfall events. Em-
pirical approaches are widely applied because their analysis
and implementation do not require the constant monitoring
of the other physical variables on which other types of most
robust models are based (e.g., physically based models), and
this drawback of the robust models is the main advantage of
empirical approaches and its applicability over large areas
(Rosi et al., 2012). Another advantage of its application is
that it is not subject to the challenges accompanied by other
models, mainly the many high-quality input data, such as soil
information that is needed, which are associated with high
uncertainties too.

Thresholds can be set for different spatial scales depend-
ing on the extent of the analysis. A regional scale is under-
stood to be the administrative subdivision of a nation, typi-
cally extending over 1000 km? (Segoni et al., 2018). In the
study of national territories, it is necessary to take into ac-
count the high meteorological and spatial physiographic vari-
ability of the study area, in order to obtain more accurate and
reliable rainfall thresholds. This is achieved through the re-
gionalization of the study area into areas with homogeneous
meteorological conditions (Segoni et al., 2014). Different ap-
proaches have been used for regionalization in the analysis
of thresholds; for example, rainfall indices have been used,
such as the annual average, daily maximum, monthly aver-
age, and monthly daily maximum rainfall, among others (Au-
gusto Filho et al., 2020; Segoni et al., 2014), as well as an
environmental subdivision within a national territory based
on erodibility and climatology represented by the maximum
daily intensity of a rainfall event (Leonarduzzi et al., 2017) or
on topography, lithology, land-use, land cover, climate, and
meteorology (Peruccacci et al., 2017). In this study, we refer
to regions, such as the subdivision of the Peruvian territory,
from a maximum daily rainfall perspective.
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The main objective of this work is to estimate rainfall
thresholds to test the feasibility of a potential early warn-
ing system of shallow landslides generated by rainfall from
a gridded rainfall database and shallow landslide inventory.
Additionally, this work focuses on implementing an objec-
tive methodology for empirical rainfall-based landslide early
warning at a regional scale, combining a gridded rainfall
database and shallow landslide inventory. The novelty of this
work is that this is the first approximation of rainfall thresh-
olds in Peru that combines gridded rainfall data and observed
event data for landslide monitoring.

2 Materials and methods
2.1 Area of study

Peru is located on the west coast of South America and is
characterized by maximum rainfall rates that occur between
November and March in its Andean region, with most of the
rainfall being produced by convection (Lavado Casimiro et
al., 2011). Peru’s climate variability is determined by the
South American monsoon system, the southward shift of
the intertropical convergence zone (ITCZ), and differential
warming between the ocean and the land, which contributes
to a greater influx of moisture eastward from the tropical At-
lantic Ocean to the South American continent, and in which
the Andes mountain range plays an important role in modu-
lating rainfall on both the eastern and western slopes (Poveda
et al., 2014; Bookhagen and Strecker, 2008; Boers et al.,
2014; Lavado Casimiro et al., 2011; Llauca et al., 2021).

This study adopts the study domain defined for the Mon-
itoring System of Potential Mass Movements Generated by
Heavy Rains (SILVIA) (Millan, 2020; Millan et al., 2021) of
the National Service of Meteorology and Hydrology of Peru
(SENAMHI). This domain was obtained from the superpo-
sition of two databases. The first one was a map of land-
slide susceptibility from the Geological, Mining, and Metal-
lurgical Institute of Peru (Villacorta et al., 2012), which has
five categories of susceptibility. The second database con-
tained information regarding spatial discretization in basins
of the GEOGloWS ECMWF Streamflow Service (David et
al., 2011; Qiao et al., 2019; Souffront Alcantara et al., 2019;
Lozano et al., 2021), from which the domain of this study
was divided into 5373 basins with median areas of approx-
imately 105km?. The study area and spatial distribution of
the basins are shown in Fig. 1.

2.2 Rainfall data: PISCOpd_Op

The main source of information for this study was the grid-
ded daily rainfall dataset PISCOpd_Op (Gridded Daily Rain-
fall Operative data of PISCO). PISCOpd_Op is an opera-
tional rainfall dataset part of the Peruvian Interpolated data
of SENAMHI’s Climatological and Hydrological Observa-
tions (PISCO) with gridded data on rainfall (Aybar et al.,
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Figure 1. Study area. (a) Spatial distribution of the Global Landslide Catalog (red) and SENAMHI landslide inventory (yellow). (b) Eleven
landslide-susceptibility regions for Peru and distribution of calibration (blue) and validation (yellow) landslides.

2020), air temperature (Huerta et al., 2018), reference evap-
otranspiration (Huerta et al., 2022), and monthly discharges
(Llauca et al., 2021) at the scale of all of Peru. PISCOpd_Op
has a spatial resolution of 0.1° and a daily temporal res-
olution. PISCOpd_Op has data from 1981 and is updated
daily, accumulating daily rainfall (from 07:00 to 07:00 lo-
cal time, LT), generated from 416 conventional SENAMHI
rain gauge networks (see Fig. 1b). PISCOpd_Op is generated
based on a genRE interpolation method (van Osnabrugge et
al., 2017), which consists of an interpolation using inverse
distance weighting (IDW) and includes multipliers that are
based on the monthly climatology of PISCOp.

2.3 Landslide event data

The second main source of information used for this research
was two catalogs of landslide events: the Landslides Catalog
of SENAMHI-Peru (LCS) and the Global Landslide Cata-
log (GLC-NASA) (Kirschbaum et al., 2015a). Both catalogs
consider all types of shallow landslides triggered by rainfall
that have been reported in the media, in databases of agencies
associated with disasters, in scientific reports, and in other
available sources. Most of them belong to the debris flow
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category which is shallow in nature (Naidu et al., 2018). In
this sense, this study used shallow landslides for all types of
shallow landslide processes.

The LCS was implemented in January 2019 and has 330
records from the 2014-2020 period. The GLC has 6788
registrations for the whole world, while for Peru, 49 land-
slide events have been registered, which were temporarily
distributed between 2007 and 2014. To use these data, ex-
ploratory analyses were performed to avoid inconsistencies
in the recording of the events. The spatial correspondence of
the data was evaluated through spatial sub-setting between
the event locations and the study area. We also assessed data
consistency regarding typographical errors. As a result, two
incongruous events were determined: the first one was re-
ported in a place without landslide occurrence conditions
(out of the study area) and was therefore not considered in
the analysis. In the second event, an error in its tabulation was
determined; this error was corrected, and the event was in-
cluded in the analysis. The total number of landslide records
is 377, and the spatial distribution of these events is shown in
Fig. 1.
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2.4 Rainfall threshold model

An empirical-statistical approach was used to define rainfall
thresholds for landslide-susceptible regions, consisting of the
following steps: (1) determination of rainfall events from
a historical rainfall series, (2) definition of the variables of
rainfall events, (3) definition of landslide regions from max-
imum daily rainfall region and GEOGloWS basins for the
area studio, (4) threshold estimation for individual rainfall
event variables for the calibration period based on an objec-
tive maximization of predictive performance, (5) threshold
estimation for a combination of rainfall event variables for
the calibration period based on an objective maximization of
predictive performance, and (6) run thresholds models and
get metrics for analysis and discussions (the methodology is
presented in Fig. 2). Below are the details of the method.

The first step was the construction of a historical rain-
fall series from gridded rainfall data (PISCOpd_Op) for each
basin that had a minimum of one landslide event. After ob-
taining the rainfall series, rainfall events were defined along
with a historical series for each selected basin. For this work,
we define an independent rainfall event as a series of consec-
utive rainy days where it has rained above a minimum rain-
fall threshold (Fig. 3). Many authors use minimum thresholds
of 1 mm to define rainy days (Dai, 2006; Dai et al., 2007;
Leonarduzzi et al., 2017; Shen et al., 2021; Tian et al., 2007;
Yong et al., 2010). However, given the great climatology
spatial variability in the study area, it was determined that
there was not a single minimum threshold for the entire terri-
tory, but a minimum threshold was discretized from the bias
of PISCOpd_Op for non-rainy days. The PISCOpd_Op bias
was determined when rain gauges did not report rain (0 mm),
and the discretized minimum threshold (Upj,) of rain was
defined according to the following Eq. (1):

Up if s<U
s if s> Uy,

Unin = { ey
where s is the average of simple bias when rainfall stations
reported a value of 0 rainfall compared with the estimation in
PISCOpd_Op. And U is the initial minimum rainfall thresh-
old, and it is established as 1 mm for all regions with the ex-
ception of coastal Pacific regions at which it is considered
0.5 mm. Once rainfall events were defined, they were clas-
sified into triggering or non-triggering events, i.e., if a land-
slide occurred during the rainfall event.

The second step was to determine analysis variables for
each rainfall event, for which the maximum daily intensity
Inmax (mm per day), the accumulated rainfall £ (mm), the du-
ration D (day), and the mean daily intensity Ipean = E/D
(mm per day) were calculated. Concerning the triggering
rainfall events, two scenarios were considered. The first sce-
nario (entire event — EE) considers all the rainy days of the
rainfall event, including the rainfall of the landslide occur-
rence day, to determine the properties of the rainfall event
(Fig. 3). The second scenario (antecedent event — AE) con-
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siders only the antecedent rainy days to landslide occurrence
to determine the properties of the rainfall event; i.e., AE does
not consider the rainfall of the landslide occurrence day. The
reason for analyzing the second scenario was to evaluate the
level of incidence that is attributed only to antecedent condi-
tions for landslide occurrence, as this allows us to evaluate if
it is possible to forecast or warn landslides based only on the
antecedent conditions. The temporal evolution of hydromete-
orological variables provides an idea of how the critical con-
ditions of the activation of landslides develop (Prenner et al.,
2018; Segoni et al., 2018).

The third step consisted of dividing the study area into re-
gions based on clustering techniques (this step is explained
in more detail in Sect. 2.5). Next, GEOGIoWS basins were
merged with regions to determine their spatial correspon-
dence. The fourth and fifth step was to objectively select
a rainfall threshold that separates triggering rainfall events
from non-triggering rainfall events with the best level of
predictive performance. Rainfall thresholds were established
by maximizing predictive performance in two ways: the
first way includes every rainfall event property indepen-
dently (Imax, E, D, Imean), and the second one determined
was through curve-like thresholds that related two properties
(Imax— D and Ipean— D) in the form of V = a-D~?, where V
represents the rainfall properties (/max and Imean); @ and b are
the scale and shape parameters of the curve (while for loga-
rithmic space, a is the intersection parameter, and b denotes
the slope of the linear curve). Finally, the sixth step consisted
of applying the model to the rainfall events and comparing
it with the observed landslide events and getting the predic-
tive performance metrics for each region at calibration and
validation periods.

2.5 Regionalization

According to the study, on a national scale, it is necessary to
consider the meteorological and spatial physiographic high
variability governing the country to obtain reliable rainfall
thresholds, since a single global or national threshold can-
not represent such variability. To achieve rainfall thresholds
on a national scale, the approach used was the regionaliza-
tion of the study area in areas with homogeneous meteoro-
logical conditions (Segoni et al., 2014). Research related to
thresholds has used rainfall indices such as the annual aver-
age, daily maximum, monthly average, monthly daily max-
imum of rainfall, and other environmental variables for the
regionalization of study areas (Augusto Filho et al., 2020;
Leonarduzzi et al., 2017; Segoni et al., 2014).

This study uses SENAMHI’s Homogeneous Regions of
Maximum Daily Rainfall (Yupanqui et al., 2017) as input for
the regionalization of the study area. These regions were de-
termined based on clustering techniques from 535 automatic
rainfall stations, in which 10 macro-regions and 30 subre-
gions of maximum daily rainfall were identified. The cli-
matic regions established for the present study consisted of a
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Step 1: Prepare meteorological and landslides data

Extract rainfall from PISCO_Op and define triggering and non-triggering rainfall
events of shallow landslides occurrence

Step 2: Define variables associated to landslides

Generate a dataset of rainfall variables (Imax, Imean, E, D) for each rainfall event
(includes trigger and non-trigger events)

Step 3: Define landslides regions

Maximum rainfall regions regrouping through cluster techniques using
meteorological and physiographic parameters

Step 4: Estimate thresholds for individual rainfall events

Step 5: Estimate threshold curves for two rainfall event

variables

Make a ROC analysis and select the thresholds with the minimum
radial distance to the perfect classificatory test from the ROC space
for each variable (Imax, Imean, E, D) in each region

variables

Run the potential model (Imax-D, Imean-D, E-D) and optimize the
potential curve coefficients by maximizing the TSS score for each
region with SCE-UA

Step 6: Run threshold models

Evaluate each region with thresholds for the calibration and
validation periods and obtain TSS performance metrics

Figure 2. Methodology six steps.
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Figure 3. (a) Extract from the rainfall time series (rainy period 2019) for an example basin, where rainfall events are observed (each color is a
rainfall event, and the lead-colored ones are non-rainy days). (b) An example of a rainfall event associated with the occurrence of a landslide,
in this case, the rain event no. 5, where the variables analyzed for the estimation of thresholds are shown: the maximum daily intensity Imax
(mm per day), the accumulated rainfall £ (mm), the duration D (day), and the mean daily intensity Imean = E/D (mm per day).

grouping of the 30 maximum daily rainfall regions. The re-
grouping consisted of a multi-criteria analysis based mainly
on the fact that the grouped regions did not exceed a thresh-
old value of 10 in the heterogeneity test (Hosking and Wallis,
1997), which included events recorded in the databases in ad-
dition to sharing the similarity of the covariates of relief (alti-
tude) and climatology (mean rainfall). Although this value of
10 indeed exceeds the level of heterogeneity recommended
of 2, this tolerance is contemplated since they are regions

https://doi.org/10.5194/nhess-23-1191-2023

obtained from a regrouping. From this analysis, 11 regions
were obtained for the study area (see Fig. 1). Four thresh-
olds of independent variables (Imax, E, D, Imean) and three
curved thresholds (Iax — D and Iiyean — D) were defined for
each region. The total was 77 thresholds for the study area,
and 7 thresholds for each region. Figure 4 presents an accu-
mulated rain E box diagram showing its predictive power to

discriminate between triggering and non-triggering rainfall
events.

Nat. Hazards Earth Syst. Sci., 23, 1191-1206, 2023
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Figure 4. Boxplot of triggering (yellow) and non-triggering (blue) total rainfall E for the 11 regions established in this study for Peru.
The boxplot graphs include outliers and show the potential predictive for the E variable to separate triggering and non-triggering events of
shallow landslides. Also, the plot shows the regional variability of the triggering rainfall events.

2.6 Calibration and validation of thresholds

Calibration and validation are fundamental processes for ob-
jectively defining thresholds. The purpose of calibration is to
estimate thresholds based on the maximization of predictive
or classifier performance capacity. Validation aims to show
the potential of the ability to predict or differentiate trigger-
ing and non-triggering rainfall events. Among the calibration
and validation approaches, the most recommended is to di-
vide the datasets for threshold estimation and another inde-
pendent set for validation (Segoni et al., 2018). In this work,
377 recorded landslide events were used to define rainfall
thresholds in Peru (Fig. 1). For the calibration, all events
occurring before 2020 were selected, representing approxi-
mately 70 % of the recorded events. Regarding the validation
process, it consisted of evaluating thresholds calibrated us-
ing the landslide events recorded in 2020, which represented
approximately 30 % of the recorded events. This process was
carried out for the year 2020, as we wanted to know how the
thresholds would perform when they were assimilated into a
regional early warning system. This method of calibration/-
validation that set 1 year of the dataset to the validation pro-
cedure is a method that has been used in other research (e.g.,
Kirschbaum et al., 2015b; Dikshit et al., 2019).

For the evaluation of thresholds in the calibration and val-
idation procedure, a confusion matrix (also called a contin-
gency table) was used. A confusion matrix is a tool used to
determine the accuracy of binary classification models (trig-
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gering and non-triggering rainfall events) and also used to
evaluate the analysis of concordance between the results of
the model and the observed data. A confusion matrix was
computed for each threshold and counted the number of
true successes or true positives (TPs), the number of false
positives (FPs), the number of true negatives (TNs), and
the number of false negatives (FNs), from which various
performance statistics can be calculated. Some of the most
common measures for landslide forecasting are the sensitiv-
ity (se = TP/(TP+FN)), specificity (s, = 1 —FP/(FP+TN))
and true skill statistic (TSS = s. +s5p — 1) (e.g., Staley et al.,
2013; Gariano et al., 2015; Leonarduzzi et al., 2017; Mirus et
al., 2018; Leonarduzzi and Molnar, 2020; Hirschberg et al.,
2021).

The TSS is an efficiency statistic that helps in the mea-
surement of the goodness-of-threshold models, as it is an in-
tegrative measure of the predictive performance of the model.
The TSS is more objective than simply a random manual es-
timation (Frattini et al., 2010). It varies between 1 and —1,
with its optimal score equal to 1, which indicates the max-
imum performance of the model. TSS = se — (1 —s;) is the
difference between the true positive rate (sensitivity se¢) and
false alarm rate (1-specificity sp), which are the two most
important components for providing early warnings (Leonar-
duzzi et al., 2017). The TSS is also referred to as the Peirce
skill score (Peirce, 1884), the Youden index (Youden, 1950),
or the Hanssen—Kuipers skill score (Hanssen and Kuipers,
1965). The benefit of using the specificity over the false pos-

https://doi.org/10.5194/nhess-23-1191-2023
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itive rate (FPR = FP/(FP + TN)) is that in a perfect model
TSS, sensitivity, and specificity all equal 1 (Hirschberg et al.,
2021).

For thresholds based on properties independently (/max, E,
D, or Ipean), the overall impression of the predictive power
was estimated with the so-called receiver operating charac-
teristic (ROC) curve (Fawcett, 2006), from which the mini-
mum radial distance to the perfect classificatory test (TSS =
1, with se = 1 and 1 — sp = 0) was used to select the individ-
ual variable threshold (e.g., Uwihirwe et al., 2020; Gariano
et al., 2015; Postance et al., 2018), while for the curve-like
thresholds (Imax — D and Ipean — D) the scale parameter a
and the shape parameter b of the curve model V =a- D
are simultaneously tuned to maximize the true skill statis-
tics (TSS) (e.g., Leonarduzzi et al., 2017; Hirschberg et al.,
2021), with an initial approximation of the curve based on
a = average of the variable V of the triggering rainfall events
and b = 0.5. This maximization was automatically calibrated
using the shuffled complex evolutionary algorithm (SCEA-
UA) (Duan et al., 1993), considering the TSS as the objec-
tive function. The methodology was applied for each region
within the study area, finding different thresholds for each of
them.

3 Results
3.1 Rainfall thresholds

The calibrated thresholds for the individual properties of the
events (Imax, E, D, Imean) are shown in Table 1, and the
curved thresholds (Imax — D and Iean — D) are shown in
Table 2. They are presented for two scenarios: the first one
describes the rainfall events that include rainfall on the land-
slide occurrence day, called the entire event (EE), and the
second one only includes the antecedent conditions up to
1d before the landslide occurrence, called the antecedent
event (AE), given that we are interested in analyzing land-
slide events under an approach that includes the predictive
capacity of antecedent conditions and their influence on the
occurrence of future events for the operation of early warning
services.

From the results, it is observed that thresholds with the
best average performance for entire events were E (TSS =
0.59) for individual properties and Imean — D (TSS = 0.65)
for combined curves. As expected, the integration of proper-
ties into curves produced a better overall performance com-
pared with the properties of individual events. Between the
two curves (Imax — D and Ipean — D), the Iean — D curve
performed the best (Fig. 5), with TSS = 0.65 for calibration
and TSS = 0.42 for validation.

The results show that the components with the lowest per-
formance for threshold determination were duration (D) for
both the calibration period and validation, followed by the
average rainfall rate (Ijmean). In the case of the combined
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curves, there is a smaller difference in their performances,
with the Ihax — D being the one with the lowest performance.
These thresholds do not have a good ability to discriminate
between triggering rainfall events and non-triggering events.

3.2 Impact of regionalization

The study area was regionalized into 11 regions based on
maximum daily rainfall information. The estimated results
show the rainfall variability of Peru in the magnitudes of the
thresholds for each region is presented in Table 1. Region-
ally, the best-performing threshold of a single variable, cu-
mulative rainfall E, averaging 33 mm, ranged from 4.23 mm
(Pacific 2) to 92.77mm (Amazon 2). Iy ranged from
4.55mmd~" (Pacific 2) to 20.73mmd ™' (Amazon 1) with
an average of 11.83mmd~!. The region with the best pre-
dictive performance was Andes 3, with a TSS of 0.8 for the
mean of the thresholds of individual variables and a TSS
of 0.89 for the mean of the threshold-type curve in sce-
nario 2. The threshold with the best performance for this
region was Imax = 16.72mmd~! (TSS = 0.92), which cor-
rectly separated 100 % of triggering rainfall events and only
had an 8 % rate of false alarms. Similarly, the /,x — D curve
(TSS = 0.91) correctly separated 100 % of triggering rainfall
events and only had a 9 % rate of false alarms. A summary
of the best single variable and curved thresholds based on
the TSS for calibration results for each region is presented in
Table 3.

Regionalization improves the separation between trigger-
ing and non-triggering rainfall events. The results for single-
variable thresholds are presented in Fig. 6. The calibrated
thresholds performed better overall in the Andes 3 (TSS =
0.83) areas compared with the Andes 1 (TSS = 0.4), Andes 4
(TSS =0.47), and Amazon 1 (TSS =0.5) regions, which
were the regions with the lowest performance. In fact, most
of the landslides recorded occurred in the Andes 3 region
(Fig. 7). With respect to the two Pacific regions, the Pacific 1
region (TSS = 0.66) performed better than the Pacific 2 re-
gion (TSS = 0.51). In the wettest regions of the Amazon, the
Amazon 1 region was the best performing, followed by the
Amazon 3 and Amazon 2 regions. This Amazon region and
the Altiplano region (Andes 6) were the regions with the least
calibration events.

The results do not show that any drainage (Pacific, An-
des, or Amazon) stands out in separating triggering and non-
triggering rainfall events; on the contrary, there are regions
with good performance and regular performance along the
Pacific, Andes, and Amazon. The Andes 6 (4 SL events),
Amazon 1 (6 SL events), and Amazon 3 (12 SL events) re-
gions were the ones that had the least number of events for
calibration and validation. The other regions included more
than 10 events (Fig. 7), highlighting the Andes 2 (98 SL
events), Andes 4 (65 SL events), Amazon 2 (54 SL events),
and Pacific 1 (46 SL events) regions.
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Table 1. Rainfall thresholds of independent variables (Th: threshold, Rad: minimum radial distance, Cal: calibration, Val: validation).

Scenario Region E 7 Imean 7 Imax 7 D
Th Rad TSS | Th Rad TSS | Th Rad TSS | Th  Rad TSS
Cal Val | Cal Val | Cal Val | Cal Val
Pacific 1 21.16 038 0.66 | 020 | 562 033 054 | 060 | 1011 043 068 | 058 | 8 049 0.56 | —0.09
Pacific 2 423 048 044 | 039 | 212 035 061 | 020 | 455 034 051 | 027 | 7 048 030| 039
Andes 1 1615 049 039 | 012 | 620 041 043 | 018 | 11.84 043 038 | 023 | 2 060 019 | —0.16
Andes 2 2392 029 058 | 041 | 517 030 051 | 028 | 859 029 058 | 047 | 8 031 054 | 033
Entire Andes 3 2535 021 078 | 041 | 601 019 083 | 0221672 008 092 | 034 |21 029 069 | 028
event Andes 4 3885 035 051 | 061 | 617 042 045 | 061 | 844 040 043 | 069 | 9 043 045 | 033
Andes 5 2552 027 0.67 | 039 | 425 035 052 | 037 | 975 029 061 | 051 | 4 033 054| 003
Andes 6 2432 036 0.64 | 066 | 405 057 040 | 044 | 556 054 045 | 046 | 6 031 068 | 0.69
Amazon1 3720 036 0.64 - | 1268 026 074 - 12073 034 0.66 -] 3 057 029 -
Amazon2 9277 031 057 | 052 | 888 044 041 | 034 | 1615 041 046 | 038 | 5 040 051 | 037
Amazon3 5399 032 068 | 066 | 11.14 059 041 | 039 | 1774 048 052 | 055 | 12 050 044 | —0.10
Pacific 1 1901 018 063 | 035| 487 030 051 | 090 | 1011 022 065| 091 ] 7 028 060 ]| —0.11
Pacific 2 18.60 027 053 | —0.17 | 298 033 043 | —0.21 | 1056 035 043 | —0.11 | 6 028 049 | 055
Andes 1 757 0.65 0.4 | 042 | 570 047 035 | 063 | 757 054 030 | 057 | 7 073 004 | —0.11
Andes 2 4003 028 059 | 042 | 526 029 051 | 030 | 974 027 059 | 033 | 7 032 054| 038
Antecedent  Andes3 12747 030 069 | 053 | 608 023 055| 033| 1672 016 077 | 044 |20 029 069 | 034
event Andes 4 3173 033 053 | 057 | 577 037 051 | 059 | 844 035 050 | 060 | 9 040 046 | 024
Andes 5 1577 031 057 | 032 | 222 056 043 | 028 | 825 031 057 | 031 | 3 041 044 | 001
Andes 6 1876 043 055 | 060 | 375 060 —0.14 | 041 | 475 064 033 | 044 | 5 038 061 | 067
Amazonl 7079 054 031 -] 1018 048 032 -] 1326 052 034 - | 15 083 0.14 -
Amazon2 17588 036 0.53 | 0.64 | 881 044 044 | 040 [ 1615 040 048 | 045 | 17 039 051 | 047
Amazon3 137.64 052 035 | 030 | 11.05 059 041 | 039 | 1690 049 051 | 053 | 11 050 0.10 | —0.10
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Table 2. Rainfall thresholds of two variables (Th: threshold, Cal: calibration, Val: validation).

Scenario Region Imean — D Imax — D

|
Th \ TSS \ Th \ TSS
al b | Ca | Vval| a] b | Cal | Val

Pacific 1 11.55 | —0.44 | 0.68 026 | 16.73 | —0.17 | 0.71 0.28
Pacific 2 2.10 | =0.00 | 0.61 0.20 4.58 | —0.00 | 0.51 0.27
Andes 1 734 | —0.10 | 0.44 0.19 | 2097 | —0.98 | 0.36 0.09
Andes 2 14.28 | —0.53 | 0.62 028 | 13.62 | —0.17 | 0.64 0.34
Andes 3 10.84 | —0.25 | 0.89 0.33 | 16.77 | —0.01 | 091 0.34
Entire event Andes 4 25.69 | —0.81 | 0.52 0.68 | 4451 | —0.66 | 0.49 0.70
Andes 5 16.68 | —0.77 | 0.66 0.39 | 15.08 | —0.25 | 0.64 0.38
Andes 6 1693 | —0.81 | 0.62 0.63 | 19.25 | —0.69 | 0.56 0.63
Amazon 1 14.25 | —0.05 | 0.77 -1 2091 | —0.02 | 0.66 -
Amazon2 42.06 | —0.54 | 0.57 0.53 | 6635 | —0.56 | 0.57 0.48
Amazon3 36.74 | —0.45 | 0.73 0.68 | 49.54 | —0.42 | 0.73 0.70

Pacific 1 8.50 | —0.50 | 0.68 0.84 | 18.60 | —0.28 | 0.67 0.44
Pacific 2 1485 | —0.88 | 0.53 | —0.17 | 25.15 | —0.31 | 0.47 | —0.08
Andes 1 6.45 | —0.08 | 0.36 0.66 7.52 0.00 | 0.30 0.56
Andes 2 11.54 | —0.39 | 0.65 0.39 | 19.37 | —0.54 | 0.60 0.43
Andes 3 13.98 | —0.26 | 0.80 0.48 | 16.01 | —0.49 | 0.73 0.48
Antecedent event  Andes 4 19.29 | —0.72 | 0.56 0.66 | 34.81 | —0.69 | 0.51 0.66

Andes 5 8.59 | —0.63 | 0.53 041 | 23.61 | —0.66 | 0.62 0.22
Andes 6 16.39 | —0.92 | 0.55 0.59 | 1854 | —0.89 | 0.51 0.57
Amazon1 51.63 | —0.56 | 0.43 - | 4946 | —0.17 | 0.37

Amazon?2 2241 | —0.42 | 0.53 0.51 | 3370 | —0.32 | 0.54 0.49
Amazon3 16.81 | —0.14 | 0.55 0.55 | 16.83 | —0.01 | 0.50 0.53
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Figure 5. Mean intensity—duration (/mean — D) plots with regional threshold curves at logarithmic scale. The background with colored dots
on a green—blue—black scale shows the density of non-triggering rainfall events. The triggering rainfall events were plotted with the same
regional threshold color.
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Figure 6. The first column shows the spatial distribution of rainfall thresholds for independent variable magnitudes for Peru: (a) day D (days),
(b) total cumulative rainfall £ (mm), (¢) mean daily intensity /mean (mm per day), and (d) maximum daily intensity /max (mm per day). The
second and third columns show the bivariate maps, indicating the spatial distribution of the sensitivity (probability of correctly predicting
landslide triggering rainfall events) and specificity (probability of correctly predicting non-triggering rainfall events from landslide) of the
thresholds for calibration and validation.
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Table 3. Number of SL events and best thresholds for one and two variables for each region (Th: threshold, SL: number of landslides per

region, Cal: calibration, Val: validation).

Region SLtotal SLCal SLVal BestTh-1variable TSS BestTh-2 variables TSS
Pacific 1 46 43 3 Imax 0.68 Imax—D 0.71
Pacific 2 27 20 7  Imean 0.61 Imean—D 0.61
Andes 1 34 28 6  Imean 043  Imean—D 0.44
Andes 2 98 83 15 E and Imean 058 Imax—D 0.64
Andes 3 17 10 7 Imax 092 Imax—D 0.91
Andes 4 65 54 11 E 0.51  Imean—D 0.52
Andes 5 14 7 7 E 0.67 Imean—D 0.66
Andes 6 4 3 1 D 0.68 Imean— D 0.62
Amazon 1 6 6 —  Imean 0.74  Imean— D 0.77
Amazon 2 54 41 13 E 0.57 Imean — D and Iyax — D 0.57
Amazon 3 12 10 2 E 0.68 Imean — D and Imax — D 0.73
(a) Landslides events (b) Rainfall events (c) Debris flow events /

MM events
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Figure 7. Spatial distribution at regional scale of the number of landslide events (a), number of rainfall events (b), and a probability (c) of

landslides triggering rainfall event.

3.3 Effect of antecedent conditions

It is known that the antecedent conditions of the soil play
an important role in the occurrence of landslides, especially
in their magnitude. This is the reason why this study was
analyzed and included the separation of rainfall events that
only consider the rate of rain until a day before the day of
landslide occurrence (Table 1). It is observed that, in the cal-
ibration phase, the antecedent event scenario obtained lower
returns than the integer event scenario. However, in the vali-
dation stage for the year 2020, it was observed that, for some
thresholds in isolation, their performance was higher; for ex-
ample, for the Pacific 1 region, the Iax and Iyean thresholds
obtained higher performances than the entire event scenario
(including the rainfall rate of the mm event day). This means
that in the days prior to the day of occurrence, there was a
day with intense rain greater than that on the day of occur-
rence, and this allows the separation of that event as a trig-
gering event, in addition to altering the average rainfall rate
associated with said event.

https://doi.org/10.5194/nhess-23-1191-2023

3.4 Evaluation of threshold performance

Validation was carried out for the events that occurred in
2020 by simulating the operability of the calibrated thresh-
olds in a regional alert system. The Amazon 1 region did not
contemplate landslide events for that year, so it did not enter
this assessment. The validation shows that in most thresholds
there was a clear magnitude decrease (Tables 1 and 2). For
example, the Inax threshold, which obtained the best perfor-
mance in calibration, decreased for this period, except for the
Andes 4, Andes 6, and Amazon 3 regions, which improved in
this validation; this means that the threshold allowed for the
separation of the rainfall events of 2020 better than expected
in calibration.

The variable D was confirmed to be, by itself, a bad thresh-
old separator for the separation of triggering rain events
from those that are not triggering. Even with negative per-
formances (Pacific 1, Andes 1, and Amazon 3), this negativ-
ity was associated with the sensitivity (correct prediction of
landslides) of the model for these regions, which was 0; i.e.,
the estimated threshold in the calibration was not able to sep-
arate the rainfall events. However, this variable shows that we

Nat. Hazards Earth Syst. Sci., 23, 1191-1206, 2023
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can associate landslides with continuous rainfall events with
an antecedent duration of 8d.

Regarding the variability of the thresholds (Fig. 5), we can
explain it mainly to the rainfall climatology in Peru. It can be
seen that the magnitudes have a relationship concerning the
spatial distribution of rainfall in Peru, that is, low thresholds
related to rainfall of lesser magnitude in the arid zones in the
western part of Peru (Pacific), thresholds intermediates re-
lated to the increase in the magnitude of rainfall in the middle
part or mountainous region (Andes) and the highest thresh-
olds related to wet regions (Amazon). However, the Andes 1,
Andes 3, and Andes 6 regions do not have this relationship,
so this discussion is not conclusive and is considered to be
related to limited data, so it is suggested that this variability
be confirmed in future research that includes more shallow
landslides events data.

Regarding the validation period, 61 events were used
in total, resulting in the TSS statistic being more sensi-
tive, mainly due to the increased sensitivity of the model
(i.e., the probability of correctly predicting triggering rain-
fall events of landslide), while specificity remained approxi-
mately the same (i.e., the probability of correctly predicting
non-triggering rainfall events of landslide). This effect points
to the importance of obtaining wide and robust inventories of
landslides.

4 Discussions

In this research, rainfall thresholds were determined that al-
low for the separation of triggering and non-triggering rain-
fall events for shallow landslide occurrence in two scenarios
based on rainfall event variables. This type of analysis has
already been objectively developed in previous studies (Pe-
ruccacci et al., 2017, 2012; Segoni et al., 2014; Rosi et al.,
2012; Leonarduzzi et al., 2017; Uwihirwe et al., 2020; Abra-
ham et al., 2019). But, this work is the first approximation of
regional thresholds on a national scale in Peru and will serve
as a starting point and reference for the continued develop-
ment of this type of research in Peru.

The estimated thresholds are shown in Table 1 for in-
dependent variables and Table 2 for curve thresholds. The
thresholds with the best performance were E for the individ-
ual variables and Ijean — D for curve thresholds. The vari-
able that had the lowest performance was the duration of the
event, D, so it should not be used independently but rather
combined with other event variables. However, it allows us
to associate landslide events with the antecedent rain condi-
tions of the last 8 d, an association that can be used for future
research.

Concerning the curve-like thresholds, the TSS had a slight
improvement, all exceeding 0.5 in the calibration of the
Imean— D (the threshold with the best performance for curved
thresholds), except for Andes 1. The selection of these
thresholds is based on an optimization model (maximizing

Nat. Hazards Earth Syst. Sci., 23, 1191-1206, 2023

the TSS), through which a high detection rate of landslides
(sensitivity) is sought, maintaining, as far as possible, a low
rate of detection of false positives (specificity). However, it
was observed that to seek this optimization, the detection of
landslides is sacrificed (giving false negatives), though false
alarms are reduced, and this is a dilemma in terms of alert
systems, but TSS is a good balance between landslides de-
tection and false alarms.

The Pacific 1 region is constantly impacted by shallow
landslides and also contains most of the cities with the high-
est population density in Peru, so their evaluation is highly
relevant. In this region, it was observed that the I, (TSS =
0.68) and Inax — D (TSS =0.71) were the best thresholds
for the entire event scenario, which indicates that the catch-
ments in this region are highly susceptible to events of max-
imum intensity. While the Iiyax (TSS = 0.65) and Iyean — D
(TSS = 0.68) thresholds were the best thresholds for the an-
tecedent event scenario. The Iy variable had the best per-
formance, which suggests that high-intensity rains have a
high conditioning impact on landslide development. Regard-
ing the fact that validation performances in the antecedent
scenario were higher in the calibration performances, it may
be because the validation set is too small.

Regionalization was necessary given the high climatic
variability in Peru, evidenced by the differences in magni-
tude between the thresholds. This regionalization helped us
to observe the regions of Peru where there is greater land-
slide occurrence and the response to this type of daily thresh-
old. For example, we observed that the Andes 2 (the region
with the highest number of events) had a better response for
Imax in the calibration and validation process. Peruccacci et
al. (2012) found that the number of events must be greater
than 175 to limit the relative uncertainty below 10 %, but this
figure may change for a different dataset. Based on this, it is
observed that only four regions (Andes 2, Andes 4, Pacific 1,
and Amazon 2) have a number of events that are acceptable.
The other regions have a greater source of uncertainty due to
the quantity of the data. A summary of the number of shallow
landslide events used for the research and the thresholds with
the best performances per region is presented in Table 3.

The evaluation of the performance of the thresholds was
carried out through validation with the events of 2020. How-
ever, it was observed that the performances decreased, which
may be due to the fact that, in the year 2020, there were no
extreme rainfall events as in other years, and the number of
landslides was lower than in other years. Even the Amazon 1
region had no record of activation events; thus, we can state
that the low performance was because the thresholds do not
represent landslide events with low-impact magnitude, and
this is associated with one of the focuses of the model, which
is to reduce the rate of false alarms.

The calibration/validation methodology, based on taking
1 year of observations for the validation set, which was used
in other research works (e.g., Kirschbaum et al., 2015b; Dik-
shit et al., 2019), is quite short, and there is the risk of overin-
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Table 4. TSS comparison between validation approaches (1 year: 1-year selection and Random: random selection).

Procedure TSS comparison between validation approaches
Imean — D | Imax — D | E-D
lyear Random ATSS ‘ lyear Random ATSS ‘ lyear Random ATSS
Calibration ~ 0.65 0.61 —-0.04 | 0.62 0.59 —-0.03 | 0.59 0.58 —0.01
Validation 0.42 0.50 0.08 | 042 0.45 0.03 | 043 0.40 —0.02

terpretation. For this reason, this method was compared with
other validation methods based on a random selection of the
dataset (e.g., Brunetti et al., 2021; Gariano et al., 2020). Ac-
cording to this method, the data were divided randomly into
70 % for calibration and 30 % for validation. The compar-
ison of both validation approaches is shown in Table 4. In
this regard, the comparison between the validation methods
did not indicate significant changes between each method.
The results are very similar probably because the data size
is not large enough to note the variations between the meth-
ods. It is highly recommended for future research to focus on
the expansion of the dataset and then compare the validation
method efficiency.

There are still many limitations to rainfall threshold study
at the regional scale in Peru. Mainly, the landslide short
records are not enough to limit uncertainty in the thresh-
old definition (Peruccacci et al., 2012; Hirschberg et al.,
2021). Another important source of uncertainty was the use
of coarse temporal rainfall data resolution that cause a sys-
tematic underestimation of the thresholds (Marra, 2019; Gar-
iano et al., 2020). Another is the spatial rainfall data resolu-
tion because a 10km cell may cover several streams. And
finally, the regionalization can be not enough representative
of the high variability of descriptor landslide variables. These
limitations must be taken into account in future research.

5 Conclusions

This study is the first approximation of the regional rainfall
thresholds for landslide occurrence in Peru. It was conducted
to estimate and analyze the relationship between rainfall and
its landslide trigger effect in 11 rainfall regions in Peru using
an empirical method. The advantage of this study is the use
of landslide datasets available at the national scale to objec-
tively determine and compare rainfall thresholds. Daily grid-
ded rainfall data and landslide data were used to estimate
triggering and non-triggering rainfall events for the occur-
rence of landslides. With these data it was possible to es-
timate and validate rainfall thresholds for the activation of
shallow landslides triggered by rainfall. Our main conclu-
sions are

a. The generation of thresholds using the empirical—
statistical method and calibrations based on minimum

https://doi.org/10.5194/nhess-23-1191-2023

radial distance and maximum true skill statistics (TSS)
were successful in defining rainfall thresholds for land-
slides. The best predictive performance was obtained
using the mean intensity—duration (Imean — D) threshold
curve, followed by the total rainfall E. The duration of
the event independently has very low predictive power.

b. The performances of the calibrated thresholds had a
high variability between regions. These differences in
performance are associated with the high variability of
rainfall events in each region, where best performances
occur in areas where it is easier to separate triggering
and non-triggering rainfall events for shallow landslides
occurrence (e.g., Andes 3, Amazon 1, Amazon 3, and
Pacific 1 regions). However, in other regions, this sepa-
ration between rainfall events is more complex to carry
out, since there are a lot of non-triggering rainfall events
with high magnitudes, reflecting in lower performances
(e.g., Andes 1, Andes 4, and Amazon 2). Thus, the re-
gionalization shows that there exist regions where the
climate component had more predominance in the shal-
low landslide occurrence in comparison with other re-
gions where lithology could have more influence in the
occurrence of shallow landslides than just the rains. Fu-
ture studies can explore regionalization based on lithol-

ogy.

c. Through the rainfall and landslides databases, it is pos-
sible to generate daily rainfall thresholds for shallow
landslide occurrence. However, the uncertainties asso-
ciated with these databases are the main source of un-
certainty for the thresholds. The few landslides recorded
made the validation performance highly sensitive to the
few data (i.e., a single event could lead to a high or low
value of the performance statistics). Thus, only four re-
gions (Andes 2, Andes 4, Pacific 1, and Amazon 2) have
enough events to limit these uncertainties. Despite these
uncertainties, the framework set up of this work allows
for systematic updates of the thresholds as the records
grow.

The results of this work demonstrate the potential of rain-
fall thresholds based on the characteristics of rainfall events
associated with landslides for implementation in landslide
monitoring in Peru. Future work should focus on three main
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perspectives based on the limitations and sources of uncer-
tainty: (i) improvement in the spatio-temporal resolution of
gridded rainfall; (ii) improvement in the spatial discretization
of regions where the greatest number of landslides take place,
which is dependent firstly on improving the spatio-temporal
resolution of rainfall; and (iii) the assimilation of landslide
databases to improve the certainty of the thresholds and re-
duce their sensitivity.
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