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Abstract. We modify the probabilistic seismic hazard analy-
sis (PSHA) formulation by replacing the Gutenberg–Richter
power law with the SCP (Sotolongo-Costa and Posadas) non-
extensive model for earthquake size distribution and call it
NEPSHA. The SCP claimed to model the regional seismic-
ity better than the classical models. The proposed method
(NEPSHA) is implemented in the Tehran region, and the re-
sults are compared with the classic PSHA method. The haz-
ard curves show that NEPSHA gives a higher hazard, espe-
cially in the range of practical return periods. The uniform
hazard spectra of NEPSHA provide more spectral accelera-
tions, especially for the medium-height buildings, which are
the most common urban structures.

1 Introduction

PSHA (probabilistic seismic hazard analysis) is the most
widely used approach to estimate the seismic load for use in
engineering design processes. The main objective of PSHA
computations is to calculate ground motions with different
exceedance probabilities during a specific time interval (An-
bazhagan et al., 2019). This information is the gateway to
defining the possible scenario earthquakes and is used to de-
velop instructions for seismic codes and standard regulations
(Iervolino, 2022).

In the PSHA procedure, the average annual rate of exceed-
ing a particular threshold value, x, of a ground motion inten-

sity measure (IM), is computed as (Cornell, 1968)

λIM(x)=
∑nflt

i=1
υ

∫
m

∫
r

GIM|M,R(IM≥ x|m,r)

fM(m)fR|M (r |m)dmdr, (1)

where nflt is the number of causative faults, and υ is the mean
annual frequency of occurrence of earthquakes with magni-
tudes between a lower-bound threshold value, mmin, and an
upper-bound threshold value, mmax. Also, M and R denote
the moment magnitude and the source-to-site distance, re-
spectively. The term GIM|M,R provides the probability that
an IM exceeds a value of x given the occurrence of an earth-
quake of magnitude m at distance r . This term can be cal-
culated using ground motion prediction equations. The term
fM represents the probability density function (PDF) of the
earthquake magnitude and fR|M denotes the PDF of distance
r conditional on m.

Determining the function of fM is a challenging task in
PSHA computations. This function should be calculated us-
ing the frequency–magnitude relationship, which represents
the background seismicity of the study region. Previous stud-
ies showed that the characteristics of such a relationship sig-
nificantly affect the results of PSHA (Yazdani et al., 2015;
Motaghed et al., 2021). Thus, there has been a continued in-
terest in selecting the best representative expression for the
frequency–magnitude relation.

Currently, the most commonly used model to reflect the
frequency–magnitude distribution in the PSHA procedure is
based on the Gutenberg–Richter (GR) law (Gutenberg and
Richter, 1956). This model represents a linear relationship
between the logarithm of the frequency and magnitude as
log10N(m)= a-bM, where N is the number of events with
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a magnitude greater than or equal to m in a given region and
specified time period, and a and b are constants. So mag-
nitudes obey the power law distribution. The total number
of earthquakes with magnitudes greater than mmin is repre-
sented by 10a , and b (commonly referred to as b value) is
the slope of the fitted line. The b value describes the spe-
cific relationship between the magnitude and the total num-
ber of earthquakes commonly close to 1.0 in seismically ac-
tive regions. This simple linear relation can also be written in
the form of N(m)= exp(α-βM), in which α = aln(10) and
β = bln(10). The PDF of N(m) is then given by

fm(m)=
βe−β(m−mmin)

1− e−β(mmax−mmin)
;mmin ≤m≤mmax. (2)

This function is a double truncated form of the GR law (Žalo-
har, 2018).

Contrary to the widespread use of the GR model in the
PSHA studies, some researchers reported that earthquake
magnitudes do not always follow this distribution (Schwartz
and Coppersmith, 1984; Youngs and Coppersmith, 1985;
Wesnousky, 1994; Ishibe and Shimazaki, 2008). This is es-
pecially the case in situations where the seismic region con-
sists of individual faults or fault segments with regular ge-
ometries (Ishibe and Shimazaki, 2008). In these situations,
the GR model may not represent the seismicity over the en-
tire magnitudes range. Also, while the GR recurrence model
may well represent the distribution of small earthquake mag-
nitudes, it underestimates the frequency of large earthquakes
(Kramer, 1996; Youngs and Coppersmith, 1985; Parsons and
Geist, 2009).

To cope with these problems, some alternative models to
the power law have been developed by researchers, such as
bilinear (Staudenmaier et al., 2018), quadratic law (Merz
and Cornell, 1973), generalized Pareto distribution-based
model, and random GR model (Dutfoy and Senfaute, 2021).
Nevertheless, one of the most exciting models for earth-
quake recurrence has been proposed by Sotolongo-Costa and
Posadas (2004), which is named the SCP model. The frame-
work of this model has been developed based on the Tsallis
non-extensive approach (Tsallis, 1988). Generally, the non-
extensive Tsallis entropy has been the focus of much atten-
tion over the last 4 decades (Vallianatos et al., 2016a). It is
thought that this non-extensive formulation presents an ap-
propriate tool for investigating complex systems, especially
in their nonequilibrium stationary states (Silva et al., 2006;
Vallianatos et al., 2016a, 2018). Vallianatos et al. (2014) use
the Tsallis entropy approach to identify precursors in the
earthquake generation process. The SCP model characterizes
two profiles interacting via fragments filling the gap between
them. This model has the advantage of representing the size
distribution of fragments on the energy distribution of earth-
quakes. Also, the SCP model deduced an energy distribu-
tion function, which gives the GR law as a particular case
(Telesca, 2012).

Despite its unique features, the SCP model has not yet
been included directly in PSHA computations. This study
aims to address this gap by providing a practical framework.
To this end, the PDF form of the SCP model should be cal-
culated and substituted in the classical PSHA integral. The
details of this approach will be described in the following
sections. This PSHA procedure that considers the seismic-
ity model based on the non-extensive statistical physics is
called here a non-extensive PSHA (NEPSHA). Finally, to in-
vestigate the differences between the results of the NEPSHA
and the classical framework of PSHA, we compare these ap-
proaches via a practical example.

2 On the SCP model

This section describes the non-extensive theoretical basis of
the SCP model. Generally, statistical mechanics uses sta-
tistical methods to describe systems with high degrees of
freedom. In this way, the randomness and chaos resulting
from internal imperfections can be processed (Englman et
al., 1988). To use this concept in the representation of fault
rupture, the Boltzmann–Gibbs statistics can be used. The
Boltzmann–Gibbs entropy, S, is given by

S =−k

W∑
i=1

pi lnpi, (3)

where pi is the probability of the microscopic state i, k is
Boltzmann’s constant, and W is the total number of small-
scale states (Sotolongo-Costa et al., 2000). Tsallis’ statis-
tics generalizes the Boltzmann–Gibbs statistics in what con-
cerns the concept of entropy. It should be noted that frac-
tioning is a paradigm of non-extensivity, since the fractured
object can be regarded as a collection of divided parts with
larger entropy than their union. So, if the parts or fragments
in which the object is denoted by Ai (s), its entropy, S, is
S(UAi) <

∑
iS(Ai), where U is the “Union” symbol. This

inequality defines a “superextensivity” (Tsallis et al., 1998)
in the system. So, it is necessary to use non-extensive statis-
tics instead of Boltzmann–Gibbs statistics (Sotolongo-Costa
et al., 2000). Such formalism has been proposed by Tsallis
(Tsallis, 1988) as

Sq 6=1 =−kB

∫
pq (σ ) lnqp(σ)dσ, (4)

where kB is the Boltzmann constant, p denotes the proba-
bility of finding a fragment of surface σ (defined as a char-
acteristic surface of the system), and q is the non-extensive
parameter. Accordingly, the q logarithmic function is defined
as

lnqp = (1− q)−1
(
p1−q

− 1
)
p > 0. (5)

The mechanism of triggering earthquakes is established
through the combination of the irregularities of the fault
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Table 1. Calculated seismicity parameters for the study area for GR
and SCP.

Approach GR SCP

Parameter aGR b value aSCP q value

Value 1.86 0.55 5.71× 10−9 1.67
Confidence [1.73, [0.51, [2.42× 10−9, [1.65,
interval 95 % 1.98] 0.58] 7.92× 10−9] 1.69]

planes and the distribution of fragments between them. The
basic idea in the SCP model is the fact that the surfaces of the
fault planes (interface) are irregular, and the fragments filling
the space between them have diverse irregular shapes. Previ-
ous studies reveal that the Boltzmann–Gibbs statistics cannot
account for the presence of scaling in the size distribution of
fragments (Englman et al., 1988). So, violent fractioning is
a nonextensive phenomenon, and a nonextensive representa-
tion is necessary for its explanation. In the SCP model, the
fragment distribution function emerges naturally from a non-
extensive framework. So, the energy distribution function is
given by (Sotolongo-Costa and Posadas, 2004)

log(N>m)= logN +
(

2− q
1− q

)
× log[

1+ aSCP(q − 1)(2− q)(1−q)/(q−2)
× 102m

]
, (6)

where aSCP is the constant of proportionality between re-
leased energy and fault rupture length. This expression de-
scribes the energy distribution in all detectable ranges of
magnitudes very well, unlike the empirical formula of GR
(Sotolongo-Costa and Posadas, 2004).

Non-extensive models have attracted the attention of re-
searchers in various branches of earth science. Some re-
searchers have made modifications in the SCP model and
tried to improve the seismicity description (Silva et al., 2006;
Telesca, 2012). Due to the advantage of the non-extensive
methods, researchers have tried to fit them to the regional
data, calculate the parameters of the models, and describe
the seismicity (Sarlis et al., 2010; Matcharashvili et al.,
2011; Valverde-Esparza et al., 2012; Vallianatos and Michas,
2020). Also, models based on Tsallis entropy have been used
to determine the precursors (Eftaxias, 2010). Interestingly,
these models have also been used to describe marsquakes
(da Silva and Corso, 2021). Vallianatos et al. (2016b, 2018)
have provided two comprehensive reviews of these methods.
In this way, trying to rewrite the well-known PSHA method
based on the non-extensive approach can be helpful.

3 PSHA based on the SCP model

Equation (6) indicates the number of earthquakes in magni-
tude bins. In order to include this relationship in the PSHA

Figure 1. The location of the North Tehran fault, the border of the
city, and selected sites for seismic hazard analysis. The spatial dis-
tribution of earthquakes used in the analysis (within a 100 km buffer
around the site) is also shown in this figure.

calculations, it must be written as a distribution function,
which is the core of this research and will be described in
this section.

Tectonic faults produce earthquakes of various sizes (i.e.
magnitudes). Regarding Eq. (6), the SCP model describes the
size distribution of earthquakes as

Nm/N =

[
1+ aSCP (q − 1)(2− q)

1−q
q−2 × 102m

]( 2−q
1−q

)
. (7)

If m=mmin, this equation yields

Nmmin/N =[
1+ aSCP(q − 1)(2− q)(1−q)/(q−2)

× 102mmin
]( 2−q

1−q

)
. (8)

Therefore, the cumulative distribution function (CDF) of the
magnitudes of earthquakes, FM(m), larger than mmin can be
written as

FM (m)= P (M ≤m|M >mmin)

=
Rateofearthquakeswithmmin <M ≤m

Rateofearthquakeswithmmin <M

=
λmmin − λm

λmmin

= 1−
λm

λmmin

= 1−

[
1+ aSCP (q − 1)(2− q)

1−q
q−2 × 102m

] 2−q
1−q

[
1+ aSCP (q − 1)(2− q)

1−q
q−2 × 102mmin

] 2−q
1−q

;

m>mmin, (9)

where λm = Nm
time×space and λmmin =

Nmmin
time×space . This equation

is similar to the non-extensive expression of Telesca (Telesca,
2012), except that it uses the minimum magnitude, mmin, in-
stead of the completeness magnitude. We can compute the
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PDF of M by taking the derivative of the CDF, as

fM (m)=
d

dm
FM (m)=

d

dm1−

[
1+ aSCP (q − 1)(q − 2)

1−q
q−2 × 102m

] 2−q
1−q

[
1+ aSCP (q − 1)(q − 2)

1−q
q−2 × 102mmin

] 2−q
1−q



=

[
1+ aSCP (q − 1)(2− q)

1−q
q−2 × 102m

] 1
1−q

×aSCP(2− q)
−1
q−2 × 2× 102m ln10[

1+ aSCP (q − 1)(2− q)
1−q
q−2 × 102mmin

] 2−q
1−q

;

m>mmin, (10)

where fM (m) denotes the PDF of M . Note that the PDF
given in Eq. (10) relies on the SCP formulation of Eq. (8),
which represents magnitudes without an upper limit. Earth-
quake magnitude essentially has an upper limit (mmax).
Rewritten Eq. (8) with the mmax is

FM (m)= P (M ≤m|mmin <M <mmax)

=
Rateofearthquakeswithmmin <M ≤m

Rateofearthquakeswithmmin <M <mmax

=
λmmin − λm

λmmin −mmax

=

[
1+ aSCP (q − 1)(2− q)

1−q
q−2 × 102mmin

] 2−q
1−q

−

[
1+ aSCP (q − 1)(2− q)

1−q
q−2 × 102m

] 2−q
1−q

[
1+ aSCP (q − 1)(2− q)

1−q
q−2 × 102mmin

] 2−q
1−q

−

[
1+ aSCP (q − 1)(2− q)

1−q
q−2 × 102mmax

] 2−q
1−q

;

mmin <m<mmax, (11)

and Eq. (10) becomes

fM (m) =[
1+ aSCP (q − 1)(2− q)

1−q
q−2 × 102m

] 1
1−q

×aSCP(2− q)
−1
q−2 × 2× 102m ln10[

1+ aSCP (q − 1)(2− q)
1−q
q−2 × 102mmin

] 2−q
1−q

−

[
1+ aSCP (q − 1)(2− q)

1−q
q−2 × 102mmax

] 2−q
1−q

;

mmin <m<mmax. (12)

This doubly truncated magnitude distribution can be
termed a bounded SCP recurrence law.

Figure 2. Comparison of ECDF of observed and declustered data
with the GR and SCP models.

Figure 3. Hazard curves and 95 % confidence intervals based on
PSHA and NEPSHA approaches for peak ground acceleration
(PGA).

The appropriateness of this relationship can be evaluated
by its compliance with regional data. This issue is later ex-
amined in the practical example.

For our later PSHA equations, we will convert the contin-
uous distribution of magnitudes into a discrete set of mag-
nitudes. Probabilities of occurrence of these discrete sets of
magnitudes, assuming that they are the only possible magni-
tudes, are computed as follows:

P
(
M =mj

)
∼= FM

(
mj+1

)
−FM

(
mj
)
, (13)

where mj is the discrete set of magnitudes, ordered so that
mj <mj+1. This calculation assigns the probabilities asso-
ciated with all magnitudes between mj and mj+1 to the
discrete value mj . As long as the discrete magnitudes are
closely spaced, the approximation will not affect numerical
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Figure 4. The uniform hazard spectra and 95 % confidence intervals based on NEPSHA and PSHA for the probability of exceedance of
(a) 10 % in 50 years and (b) 2 % in 50 years.

results. In practice, magnitude spacing of 0.1 or less is ap-
propriate.

Now, by substituting Eq. (12) instead of Eq. (2) in the clas-
sical PSHA (i.e. Eq. 1), we present a non-extensive entropy-
based approach to PSHA. We call the new approach non-
extensive probabilistic seismic hazard analysis (NEPSHA).
In this way, the physics-based recurrence law of the non-
extensive SCP method will be entered into the hazard cal-
culations. As mentioned before, if the bounded SCP recur-
rence law shows a better match with regional data, the use
of NEPSHA will be on a more correct basis than the clas-
sical PSHA. It therefore may lead to more correct results of
regional hazard. Thus, this approach provides a new possi-
bility for modeling regional seismic conditions and hazard
calculation.

As mentioned in the previous section, some modifica-
tions have been suggested for the SCP model (Silva et al.,
2006; Telesca, 2012; Vallianatos et al., 2016a, b; da Silva and
Corso, 2021). Although these modifications are very helpful
in improving the method, the purpose of this paper is to pro-
vide a framework for incorporating the non-extensive models
into the seismic hazard analysis process. Therefore, the basic
approach of the SCP method is used as the basis of the work
in this article. Obviously, by providing such a framework, it
will be also possible to use modified SCP methods.

4 Application example

To highlight the effect of the proposed method on the hazard
results, we implement the proposed method as a case study
in the Tehran metropolitan area. This city is located in one of
the most active zones in the south of the Alborz seismic zone
(Berberian and Yeats, 1999). For simplicity, in this study, the
hazard of a single site from a single seismic fault was con-
sidered. Therefore, only one of the major active faults near
Tehran, i.e. the North Tehran fault, was considered. Figure 1

shows the location of the North Tehran fault seismic source.
The selected site for PSHA was located at latitude and longi-
tude coordinates of [35.59◦ N, 51.41◦ E].

In order to have a reliable estimate of the seismicity pa-
rameters, a homogeneous and complete earthquake cata-
log is required. In this study, the data were elicited from
the USGS catalog (USGS, 2022), which covers the earth-
quake events from the fourth century BCE to 2022. How-
ever, since there is no clear approach to include historical
earthquakes in the estimation of seismicity parameters us-
ing the SCP method, it was decided to neglect the historical
earthquakes in this study. So only instrumental earthquakes
(i.e. those earthquakes recorded after 1900 AD) are consid-
ered here. After unifying magnitude units using the Mousavi-
Bafrouei et al. (2014) relationships, the dependent shocks
have been removed from the earthquake catalog using the
time and distance windows methods proposed by Gardner
and Knopof (1974) and Uhrhammer (1986).

The GR seismicity parameters (i.e. the rate of seismic-
ity and b value) are computed using the Kijko’s maximum
likelihood method (Kijko and Sellevoll 1989; Kijko, 2004).
For this end, a MATLAB program (HA3) written by Kijko
et al. (2016) has been utilized. Also, the SCP seismicity pa-
rameters have been calculated using a code written in the R
language (R Core Team, 2021) based on the maximum like-
lihood method (Telesca, 2012). In this study, the parameters
of both GR and SCP methods have been calculated based
on the same data and assumptions. Table 1 demonstrates the
seismicity parameters of the GR and SCP methods. Figure 2
shows the fitted curves of GR and SCP. In this figure, the em-
pirical cumulative distribution function (ECDF) of observed
data and declustered data is also shown. Note the initial cur-
vature of the SCP model which differs from the GR model.
Visually, the SCP has a better fit for the data. The resid-
ual sum of squares of SCP and GR models are 0.01453 and
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0.03563, respectively, which supports the previous conclu-
sion.

Other required information for seismic hazard analysis, in-
cluding the fault geometry and location, the earthquake mag-
nitude limits in the given region, Mmin,and Mmax, and local
site characteristics, were considered identical in both PSHA
and NEPSHA and extracted from eligible studies (Gholipour
et al., 2008; Yazdani et al., 2017). In this study, the ground
motion prediction equation of Yazdani and Kowsari (2013) is
used in hazard calculation. This relationship provides spec-
tral acceleration at different spectral periods.

Figure 3 shows the results of PSHA and NEPSHA for the
selected site in the Tehran metropolitan area in terms of haz-
ard curves for the selected site in Tehran. As shown in Fig. 3,
the annual probability of exceedance (APE) is identical for
both approaches (PGA= 0.01 g). As the PGA increases, the
difference between the two hazard approaches also increases.
The APE obtained from the NEPSHA is greater than the
value obtained from the PSHA. For PGAs greater than 0.1 g,
the difference is approximately constant. Therefore, it can be
concluded that the NEPSHA approach gives higher results,
especially in higher PGAs. The 95 % confidence intervals for
PSHA and NEPSHA are also shown in this figure.

Also, the uniform hazard spectra (UHS) with 5 % damp-
ing, based on the classic PSHA and NEPSHA with a proba-
bility of exceedance of 10 % and 2 % in 50 years, are shown
in Fig. 4. These spectra are essentially derived from hazard
curves and cover a broad range of spectral periods. To con-
struct UHS from a set of hazard curves, one can conceptu-
alize this process as simply extracting from multiple hazard
curves all of the intensity measure levels for a given APE. In
the hazard spectrum curves for 2 % exceedance probability
in 50 years (Fig. 4a), the values obtained based on NEPSHA
are higher than those obtained from classic PSHA. The dif-
ference is considerable in the period range of 0.2 to 1 s, cor-
responding to the height range of usual urban buildings. The
difference gets smaller for tall buildings. In the uniform haz-
ard spectra for 10 % exceedance in 50 years (Fig. 4b), the
same behavior is observed, but in the high periods, the two
curves are closer to each other than in the previous case. The
95 % confidence intervals for PSHA and NEPSHA are also
shown in this figure.

5 Conclusions

Magnitude-frequency or recurrence relationship is an essen-
tial component of PSHA, which provides the cumulative rate
of occurrence of earthquakes within a seismic source zone
as a function of magnitude. For many years, the Gutenberg–
Richter relationship has been the governing paradigm in the
energy distribution of earthquakes. However, the Gutenberg–
Richter relationship still fits well with medium-sized earth-
quakes, but in small and large magnitude earthquakes it devi-
ates significantly. The core idea of this paper is that replacing

the statistics-based equation of Gutenberg–Richter’s with an
equation based on the physics of events can improve the haz-
ard results. Here, the model presented by Sotolongo-Costa
and Posadas (2004) on the interaction of barrier and asperity
(SCP model) was developed and included in the PSHA pro-
cess. The irregular geometry of the interacting plates and the
fragments filling the space between them is the main factor
considered in the numerical modeling of the SCP model. To
this end, first, we derived the bounded SCP recurrence law.
Then, by fitting this curve to the regional seismicity data,
regional seismicity parameters are extracted. The better fit
of this curve can be measured compared to the Gutenberg–
Richter law. We founded the NEPSHA approach by rewriting
the PSHA equation with a bounded SCP recurrence law. The
numerical example in the Tehran region shows the signifi-
cant increase in the hazard of NEPSHA compared to PSHA.
The difference is more considerable in the range of ordinary
building height.
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