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Abstract. There is a clear need to improve and update land-
slide susceptibility models across the Philippines. This is
challenging, as landslides in this region are frequently trig-
gered by temporally and spatially disparate typhoon events,
and it remains unclear whether such spatially and/or tem-
porally distinct typhoon events cause similar landslide re-
sponses, i.e. whether the landslide susceptibility for one ty-
phoon event is similar for another. Here, we use logistic
regression to develop four landslide susceptibility models
based on three typhoon-triggered landslide inventories for
the 2009 Typhoon Parma (local name Typhoon Pepeng), the
2018 Typhoon Mangkhut (local name Typhoon Ompong),
and the 2019 Typhoon Kammuri (local name Typhoon Ti-
soy). The 2009 and 2018 inventories were mapped across
the same 150km? region of Itogon in Benguet Province,
whilst the 2019 event was mapped across a 490 km? region
of Abuan in Isabela Province. The four susceptibility models
produced are for the 2009, 2018, and 2019 inventories sepa-
rately, as well as for the 2009 and 2018 inventories combined.
Using the area under the receiver operator curve (AUROC)
validation, the accuracy of the models is found to be 78 %-—
82 % for the Itogon models and 65 % for the Abuan model.
To assess landslide time dependency, we use the AUROC val-
idation and the Itogon models to quantify the degree to which
susceptibility models derived from one event(s) in time can
forecast/hindcast the landslides triggered by another. We find
that using a susceptibility model for a typhoon event in one
year to forecast/hindcast a typhoon in another leads to a
6 %—10 % reduction in model accuracy compared to the ac-
curacy obtained when modelling and validating each event

separately. This suggests some degree of time dependency in
typhoon-triggered landslides in the Philippines. However, us-
ing a susceptibility model for two combined typhoon events
(2018 4 2009) to forecast/hindcast each typhoon event sep-
arately led to just a 1 %-3 % reduction in model accuracy.
This suggests that combined multi-event typhoon-triggered
landslide susceptibility models will be more accurate and re-
liable for the forecasting of future typhoon-triggered land-
slides. Finally, by undertaking a high-level comparison of the
Abuan and Itogon susceptibility models through space, we
preliminarily suggest that there may be spatial dependency in
typhoon-triggered landslides in the Philippines but that fur-
ther work into issues of spatial dependency in this region is
required.

1 Introduction

In the Philippines, landslide occurrences and hazards are
high (Kirschbaum et al., 2015; Lin et al., 2017; Abancé
et al., 2021), with hydrological hazards and associated land-
slides causing thousands of fatalities and millions of pesos
in damage every year. Indeed, across Southeast Asia, ap-
proximately 46 % of all rainfall-triggered landslides occur
in the Philippines, of which 42 % are triggered by typhoons
(Froude and Petley, 2018). However, despite the pervasive-
ness of landslides in the Philippines, high-quality country-
wide typhoon-triggered landslide susceptibility maps are
lacking, thus representing a major resource gap in efforts
aimed at better managing and mitigating future landslide
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hazard across the country. For example, whilst statistical
landslide susceptibility studies have been undertaken in the
Philippines (e.g. Oh and Lee, 2011; Javier and Kumar, 2019;
Nolasco-Javier and Kumar, 2021), these remain geographi-
cally limited and insufficient for use in planning purposes.
Indeed, as illustrated by Fig. 1a, the susceptibility maps cur-
rently held by the Philippines Mines and Geosciences Bureau
(MGB) use a heuristic approach and so only show very broad
categorisations of landslide susceptibility. Similarly, whilst
the landslide hazard maps held and produced by the Philip-
pines National Operational Assessment of Hazards (NOAH),
which are based on various landslide studies (e.g. Rabonza
et al., 2015; Lagmay and Eco, 2016; Luzon et al., 2016),
show more detail than the MGB maps (see Fig. 1b), the cat-
egorisation of the hazard remains very broad, with limited
catchment-scale detail.

One of the major challenges in developing improved
typhoon-triggered landslide susceptibility models is that it
is currently unclear whether spatially and temporally dis-
tinct typhoons trigger landslides with similar distributions
and susceptibilities, i.e. whether typhoon-triggered landslide
susceptibility in the Philippines is spatially and/or tempo-
rally dependent. The concept of rainfall-triggered landslide
spatial and temporal dependence is now well established
within the literature. For example, recent research by Jones
et al. (2021a, b) shows how landslides triggered by different
monsoon seasons and cloud outburst storms in Nepal have
distinctly different rates, spatial distributions, and suscepti-
bility through time.

Similarly, landslides in Italy have been shown to exhibit
transient spatial and temporal dependencies relating to the
locations of past landslides, a process termed “landslide path
dependency” (Temme et al., 2020; Samia et al., 2020), with
several other papers also highlighting how landslide suscep-
tibility is commonly both spatially and/or temporally depen-
dent (e.g. Gorsevski et al., 2006; Meusburger and Alewell,
2009; Lombardo et al., 2020; Ozturk et al., 2021b). How-
ever, to date, it remains unclear whether typhoon-triggered
landslides in the Philippines are also spatially and temporally
dependent. This is a problem because if typhoon-triggered
landslide susceptibility is spatially and/or temporally depen-
dent, then it will not be appropriate to use landslide suscep-
tibility models developed from one typhoon event to fore-
cast landslides triggered by future typhoon events or by ty-
phoon events in other regions. This uncertainty is particu-
larly concerning as rainfall in the Philippines is predicted
to increase by 22 %-32 % between 2006-2035 in Benguet
Province (Nolasco-Javier et al., 2015), with extreme rainfall
projected to increase in provinces such as Luzon (PAGASA,
2022). Therefore, rainfall-triggered landslides are likely to
become more frequent, and thus it will become increasingly
important to be able to understand, forecast, and mitigate this
hazard.

The overall aim of this paper is to use data from multi-
ple typhoon events to assess the temporal, and to a lesser
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degree spatial, characteristics of typhoon-triggered landslide
susceptibility in the Philippines. The specific objectives are
as follows.

1. The first is to use binary logistic regression (BLR) tech-
niques to develop four landslide susceptibility mod-
els across two regions (Itogon and Abuan; Fig. 2) us-
ing data from three typhoon events: the 2009 Typhoon
Parma and the 2018 Typhoon Mangkhut that occurred
in Itogon and the 2019 Typhoon Kammuri that occurred
in Abuan. The four models we developed are for each
typhoon event separately and for the 2009 and 2018 Ito-
gon events combined (2018 4 2009).

2. The second is to assess the similarities and differences
between the susceptibility results obtained from each
model. This will include discussion of the general dif-
ferences in model accuracy and consistency in the con-
text of the use of landslide susceptibility models in haz-
ard and risk planning and mitigation.

3. The third is to use the area under the receiver opera-
tor curve (AUROC) validation to quantify whether the
models developed for the 2018, 2009, and 2018 + 2009
models can be used to accurately classify (or fore-
cast/hindcast) the landslides triggered by the other in-
dividual typhoon event, i.e. to assess whether time-
independent modelling of typhoon-triggered landslides
in the Philippines is appropriate. This objective essen-
tially operates under the hypothesis that if typhoon-
triggered landslides are time dependent, then in a given
region there will be a reduced model accuracy when
using a model developed from one typhoon event to
classify another. It should be noted that we here use
the term “time dependent” to include landslides that ex-
hibit some form of temporal change/dependency across
a multi-typhoon-season period.

4. The fourth is to compare the results of the Itogon and
Abuan models to make some preliminary comments
about potential regional spatial dependencies in land-
slide susceptibility assessment and outline the need for
further study on this topic.

As well as allowing the development of improved and up-
dated landslide susceptibility maps for two regions of the
Philippines, the completion of these aims will provide impor-
tant wider insight into the spatial and temporal dependence
of landslide susceptibility modelling.

2 Regional setting

The climate in the Philippines is controlled by a variety of
interacting systems including the southeast monsoon, sum-
mer typhoons/cyclones, El Nifio and La Nifia cycles, and
the Intertropical Convergence Zone (ITCZ) (Nolasco-Javier
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Figure 1. (a) Current landslide susceptibility map of the Itogon region held by the Philippines Mines and Geosciences Bureau (Mines and
Geosciences Bureau, MGB, 2018). (b) Sample landslide hazard map from the NOAH National Operational Assessment of Hazards Portal

for the same approximate region of Benguet as shown in (a).

et al., 2015). The interplay between these systems typically
leads to drier conditions from November to April and wet-
ter conditions from May to October. As stated above, the fo-
cus of this paper is on typhoon-triggered landslides. As such,
the specific subregions selected for this study are a group of
catchments in Itogon Municipality, Benguet Province, and a
catchment of Abuan in Ilagan Municipality, Isabela Province
(Fig. 2). The Itogon region is located along the southern por-
tion of the Cordillera Central mountains. These catchments
all drain into the Agno River, which flows broadly north—
south along the eastern side of the study region. This re-
gion is located to the northeast of the city of Baguio, which
has a population of ~ 350 000 people. The Abuan catchment
forms the northeast part of the Pinacanauan de Ilagan catch-
ment, which is a major tributary of the Cagayan River. The
catchment is estimated to have a population of ~ 14 000 peo-
ple and supports large areas of agriculture (Balderama et al.,
2016). These regions were selected for this study as both
have experienced particularly significant landslide-triggered
typhoon events over the past few decades, most notably, the
2009 Typhoon Parma (known locally as Pepeng) and the
2018 Typhoon Mangkhut (known locally as Ompong) in Ito-
gon and the 2019 Typhoon Kammuri (known locally as Ti-
soy) in Abuan. The following paragraphs describe the key
characteristics and known landslide information of each of
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these three typhoon events, before outlining the geological
and geomorphological setting of the Itogon and Abuan sub-
regions.

2.1 Typhoon Parma (Pepeng)

Typhoon Parma formed on 27 September 2009 and dissi-
pated on 14 October 2009. The main impacts of this ty-
phoon occurred in northern Luzon, particularly across the
Itogon region, between 3 and 9 October, when the total rain-
fall reached over 1868 mm (Nolasco-Javier et al., 2015) and
there were wind speeds of 195 to 241 kmh~! near the cen-
tre (NDCC, 2009). The impacts of this typhoon were severe,
with some 500 reported fatalities, over USD 635 million in
damages, and at least 60 damaging landslide occurrences
(Nolasco-Javier et al., 2015; Liou and Pandey, 2020). The
severity of these impacts was in part due to the simultane-
ous occurrence of Typhoon Melor. The interaction between
Parma and Melor led to a phenomenon called the Fujiwhara
effect, whereby Typhoon Melor caused Typhoon Parma to
slow, rotate, and loop such that it actually made landfall
over northern Luzon three times (Shimokawa et al., 2011;
Nolasco-Javier et al., 2015; Liou and Pandey, 2020). Fur-
thermore, these typhoons occurred following several months
of El Nifio-induced higher than average rainfall, including
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Figure 2. Locations of the two study regions, including the three landslide inventories used throughout this paper.

storm Koppu in September (Yumul et al., 2013). This re-
sulted in high antecedent rainfall prior to the start of the ty-
phoon season, which likely enhanced the triggering of land-
slides (Nolasco-Javier et al., 2015). In terms of specific land-
slide impacts, at least 60 damaging landslides have been
reported (National Disaster Coordinating Council 2009). A
limited (rapid response) landslide assessment for this event
has been conducted in the Baguio region, with the predomi-
nant observed landslide types being slides, debris flows, and
earth flows, as well as a tentative minimum triggering rainfall
threshold of 70 mm in 24 h (Nolasco-Javier et al., 2015).
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2.2 Typhoon Mangkhut (Ompong)

Typhoon Mangkhut formed on 6 September 2018, made
landfall on the Philippines between 12—15 September, and
dissipated on 17 September. In terms of rainfall, the high-
est recorded total precipitation was 794mm at the city
of Baguio’s PAGASA (Philippine Atmospheric, Geophysi-
cal and Astronomical Services Administration) weather sta-
tion (Abancé et al., 2021). With maximum winds of 195-
241 kmh~! when it made landfall (PAGASA, 2018), the im-
pacts of this typhoon were severe, with extensive reported
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damage to buildings and homes, loss of power, and over 100
reported fatalities (Sassa 2018; Niu et al., 2020). Further-
more, Mangkhut is known to have triggered thousands of
landslides, including one large complex failure that caused
94 casualties alone (Abancd et al., 2021; Kim et al., 2021).
Recent research by Abancé et al. (2021) presents a detailed
inventory of over 1100 landslides triggered by Mangkhut,
most of which occurred across a region of Itogon affected by
360 mm of rainfall over a 44 h period, according to satellite-
based Integrated Multi-satellite Retrievals for Global Pre-
cipitation Measurement (IMERG) rainfall records. These
landslides were of all different types, though dominated by
shallow translational landslides and mud and debris flows,
with many of the landslides exhibiting complex behaviour,
whereby they initiated as shallow slides before transitioning
into flows. Most of these landslides occurred on grassland
or wooded east- to southeast-facing slopes underlain by su-
perficial clays (Abancé et al., 2021). Further details of the
mapping methodology and characteristics of this inventory
are provided in Sect. 3.

2.3 Typhoon Kammuri (Tisoy)

Typhoon Kammuri formed on 24 November 2019, made
landfall on 2 December, and dissipated on 6 December 2019.
When Kammuri made landfall, it was a category 4 storm with
wind speeds of up to 112-143 kmh~! (Sevieri and Galasso,
2020; PAGASA, 2019). Between 2 and 4 December this
event reportedly damaged or destroyed over 561 000 build-
ings, caused at least 17 fatalities, and led to economic losses
in excess of USD 116 million (LeComte 2020; Sevieri and
Galasso, 2020). In terms of landslides, initial reports from
aid groups suggested that landslide-induced damage to roads
and other infrastructure was widespread (NDRRMC, 2019;
IFRC, 2020). However, there appears to have been no subse-
quent mapping or assessment of the landslides triggered by
this event.

2.4 Geological and geomorphological setting

The Itogon catchments are dominated by a bedrock geology
of Cretaceous and Tertiary quartz diorite and andesite—basalt
(DENR-MGB, 1995, 2000), with the remainder of the catch-
ment underlain by Quaternary sandstone, claystone, and con-
glomerates. The bedrock is typically overlain by superficial
deposits of clays, silty/sandy loams, and mountain soils, with
a land cover dominated by shrubland—-grassland and open
forest. Geomorphologically, the hillslopes across the Itogon
catchment have a mean elevation of 1140 m, mean and max-
imum hillslope angles of 28 and 71°, an equal distribution
of hillslope aspects, and predominantly (60 %) concave mor-
phologies. The Abuan catchment is almost 100 % charac-
terised by Cretaceous and Tertiary metamorphosed basic in-
termediate flows and/or pyroclastics and metamorphosed an-
desites and basalts (DENR-MGB, 1991a, b, 1976). These are

https://doi.org/10.5194/nhess-23-1095-2023

overlain by superficial deposits of mountain soil and a veg-
etation dominated by open forest. Geomorphologically, the
region is dominated by steep uplands and rugged hills, with
a lower mean elevation than Itogon of 560 m and similar hill-
slope angle (mean of 23° and max of 73°) and aspect dis-
tributions but with hillslopes that are dominated (60 %) by
convex morphologies.

3 Data: landslide inventories and predisposing factors

As outlined in subsequent sections, BLR landslide suscepti-
bility modelling requires data on both landslide and predis-
posing factors (e.g. geology, soil, land cover, topography).
The following sections outline the key datasets used through-
out this paper, including the mapping procedures and key
characteristics associated with each landslide inventory and
descriptions of all predisposing factor datasets (topographi-
cal, geological, land use, etc.).

3.1 Landslide inventories

This paper uses three landslide inventories (Fig. 2), each as-
sociated with one of the typhoons in 2018, 2009, and 2019.
The 2018 Mangkhut inventory is a slightly clipped version
(to maintain catchment boundaries for the modelling) of the
inventory presented by Abancé et al. (2021), whilst the 2009
Parma and 2019 Kammuri inventories are presented here for
the first time.

The employed mapping procedure was the same for all
three inventories. In each case, the landslides were ini-
tially mapped by one or two mappers and then indepen-
dently reviewed, checked, and amended as appropriate by
a different mapper. All landslides were mapped manually
via the visual inspection of pre- and post-typhoon imagery.
The 2009 Parma inventory was predominantly mapped with
Google Earth imagery dated 31 December 2003 for pre-
event images and 31 December 2009 for post-event im-
ages. The 2018 Mangkhut inventory was mapped using a
combination of 0.5m WorldView-2, 10 m Sentinel-2, and
3 m Planet Labs imagery, with pre-typhoon images dated be-
tween 18 February 2018 and 6 September 2019 and post-
typhoon images dated between 19 September 2018 and
2 March 2019. Finally, the 2019 Kammuri inventory was
predominantly mapped using 3—5 m resolution Planet Labs
imagery, with pre-typhoon images dated between 2 October
2019 and 28 October 2019 and post-typhoon images dated
between 7 January 2020 and 31 March 2020. For all inven-
tories, the limited availability of cloud-free imagery resulted
in gaps of several months between the pre- and post-typhoon
imagery used. As rainfall-triggered landslides in the Philip-
pines are so common, it is therefore possible that some of the
landslides visible in the imagery actually occurred before or
after the respective typhoon either due to other rainfall events
that occurred within the imagery window or due to human ac-
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tivity such as construction or mining. This issue was unavoid-
able but mitigated where possible by cross-checking each in-
ventory with other imagery (e.g. available Google Earth im-
ages) and by qualitative comparisons with local reports and
field surveys carried out by the Philippines Mines and Geo-
sciences Bureau (MGB) (Abancé et al., 2021).

For all inventories, landslides were delineated as poly-
gons that included the scar, deposition, and runout zones of
each event. Care was taken to avoid landslide amalgamation,
e.g. combining multiple overlapping or contiguous landslides
into one unionised polygon (Marc and Hovius, 2015), and to
avoid the erroneous mapping of non-landslide features such
as anthropogenic cut-and-fill- or road-tip-associated mass
wasting and processes such as channel bank erosion. In to-
tal, 1912 landslides were in the 2009 Parma inventory, 956
in the 2018 Mangkhut inventory, and 1964 in the 2019 Kam-
muri inventory. In terms of a comparison to other invento-
ries in this region, the 2018 Mangkhut inventory of Ember-
son et al. (2022) included 458 landslides compared to the
956 mapped here.

For each of the three inventories, to estimate landslide
types, the aspect ratios (ARs) of all landslides were calcu-
lated. ARs give the ratio between the length (longest) and
width (shortest) axes of each landslide. Landslides with AR
values between 1 and 2 are more isometric, and thus more
likely to be slumps or slides, whereas landslides with AR
vales > 4 are more likely to be long-runout flow-type land-
slides. For these inventories, 30 %, 21 %, and 35 % of the
landslides in the Parma, Mangkhut, and Kammuri invento-
ries, respectively, had AR values < 2, with 17 %, 28 %, and
13 % > 4. Unfortunately, due to recent travel restrictions it
was not possible to ground truth these inventories and their
estimated characteristics in the field.

3.2 Predisposing factor datasets

For both study regions, all topographic data were derived
from 5m resolution digital elevation models (DEMs) that
were obtained in 2013 using IFSAR (interferometric syn-
thetic aperture radar) techniques and provided by the Philip-
pines Department of Environment and Natural Resources’
National Mapping and Resource Information Authority
(DENR-NAMRIA). Topographic datasets including slope,
aspect, and curvature were derived from the DEM using the
Spatial Analyst toolbox in ArcGIS. Distance to streams was
also derived from the DEMs using the “STREAMobj” func-
tion in the MATLAB TopoToolBox (Schwanghart and Scher-
ler, 2014). Finally, datasets on bedrock geology, soil cover,
and land use were obtained from the following sources.

— Itogon Geology Map. Provided by the Department of
Environment and Natural Resources’ Mines and Geo-
sciences Bureau (DENR-MGB), this included the ge-
ological maps of the Baguio City Quadrangle, Sheet
3169 III (1995), and the Sison Quadrangle, Sheet 3168
IV (2000).
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— Abuan Geology Map. Provided by the Department of
Environment and Natural Resources’ Mines and Geo-
sciences Bureau (DENR-MGB), this included the ge-
ological map of the Ilagan Quadrangle, Sheet 3371 II
(1991), the Tumauini Quadrangle, Sheet 3371 I (1991),
and the municipality of Ilagan, Isabela, 1:90000 scale
(1976).

— Soil cover (both regions). This was provided by the De-
partment of Agriculture’s Bureau of Soils and Water
Management (DA-BSWM) (Carating 2013).

— Land cover (both regions). This was provided by the De-
partment of Environment and Natural Resources’ Na-
tional Mapping and Resource Information Authority
(DENR-NAMRIA). The data are from 2015.

4 Methods

The first objective of this section is to use binary logistic re-
gression (BLR) techniques to develop four typhoon-triggered
landslide susceptibility models and maps for two regions of
the Philippines using landslide data from three different ty-
phoon events. The third objective is to use the AUROC vali-
dation to quantify whether each model can be used to accu-
rately forecast/hindcast independent landslides triggered by
each other typhoon event. The following sections will there-
fore describe the relevant BLR and AUROC methodologies
used throughout this paper.

4.1 Binary logistic regression (BLR) modelling

BLR models can be understood as classification algorithms
that are used to classify the binary outcome (0 or 1) of a de-
pendent (or response) variable (e.g. landslide absence/pres-
ence in a given grid cell) given a set of independent predictor
variables (e.g. landslide predisposing factors such as eleva-
tion and geology). The key BLR equation to be used in this
paper is given in Eq. (1), which essentially describes how
the probability of landsliding (r7; the dependent variable) is
linked to a model intercept (Bp) and combinations of regres-
sion coefficients (8;) and independent variables (x;):

1
T= 14+ 10Bo+Bix1+Bixi)

ey

BLR models are commonly used within the literature to
assess landslide susceptibility (Pourghasemi et al., 2018; Re-
ichenbach et al., 2018). As such, the mathematics behind
Eq. (1) are well described elsewhere (e.g. Appendix A of
Lombardo and Mai, 2018) and will not be re-described here.
In this paper, we use the glmnet package (Hastie et al., 2021)
in the statistical software R to develop BLR models that are
implemented alongside a LASSO (least absolute shrinkage
and selection operator) (e.g. Lombardo and Mai, 2018; Jones
et al., 2021a) for variable selection.
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The LASSO is an algorithm that automatically determines
which independent predictor variables are most important for
classifying the response of the dependent variable. Full math-
ematical descriptions of the LASSO can be found in Fried-
man et al. (2010), Hastie et al. (2021), and Lombardo and
Mai (2018) and so will not be repeated here. However, in
effect, the LASSO works by cycling through different com-
binations of increasingly more independent variables by sys-
tematically setting different independent variables to zero un-
til it converges on a user-defined optimal solution (Friedman
et al., 2010). In this case, the optimal solution was to max-
imise the model success as defined by the AUROC (area un-
der the receiver operator curve; see Sect. 4.2), i.e. the success
of that model in classifying the data used to train the model.
The advantage of this methodology is that it provides objec-
tive information on which combinations of independent vari-
ables are having the most dominant influences on landslide
occurrence, as well as the usual information on independent
variable regression coefficients.

Before running the glmnet BLR models, datasets of com-
bined landslide and predisposing factor data were obtained
using the following steps.

1. We divide each study region into 5m x Sm grids
(2.4 x 107 cells in Ttogon, 3.9 x 107 cells in Abuan).

2. We take each landslide inventory and convert the poly-
gons to “highest points” at the assumed triggering lo-
cation of each landslide. Then, we combine the 2018
and 2009 high points so that we now have four invento-
ries of high points, one each for 2018, 2009, 2019, and
2018 +20009.

3. Using each of the four inventories, we then assign each
cell in the relevant study region a value of 1 if it ob-
served a landslide high point (landslide presence cell)
and a value of zero if not (landslide absence cell).

4. For each region, we then use the datasets described in
Sect. 3.2 to also assign each cell in each study region
a value for each predisposing factor of interest. In total,
there were nine predisposing factors, of which four were
categorical (geology, soil type, aspect, and land use) and
the rest were continuous (distance to channels, eleva-
tion, planform curvature, profile curvature, and slope
angle).

5. For each case, we then extract 50 random balanced
training sub-datasets, where each subset includes a ran-
dom selection of 70 % all of the landslide presence data
and an equal number of randomly selected landslide ab-
sence cells. Note that 50 sub-datasets were used for each
model to get an appreciation of error and uncertainty
within each model.

6. Finally, 50 random balanced testing sub-datasets were
also extracted for each case, where the testing subsets
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included the 30% of landslides not selected for the
training sets and an equal number of randomly selected
landslide absence cells. These testing sets were used for
the model AUROC validation; see Sect. 4.2.

Once the 50 subsets per model had been obtained, there
were also several processing steps that had to be completed
before running the models.

1. To ensure that the final regression coefficients assigned
to the different independent variables were objectively
comparable, all continuous variables were scaled us-
ing zero-mean unit variance (e.g. Lombardo and Mai,
2018).

2. As the models were to include several continuous in-
dependent variables, it was possible that some variables
would actually be collinear. This is potentially problem-
atic, as inter-variable collinearity can make regression
models unstable and inaccurate (Zuur et al., 2010). Con-
sequently, we tested for collinearity between all contin-
uous variables in all 200 sub-datasets (50 per model) us-
ing the variance inflation factor (VIF) functions of Zuur
et al. (2010). VIFs are a commonly used approach to
quantifying collinearity. VIFs were calculated for every
continuous variable of interest, where a VIF value > 5
suggests that the associated variable is collinear with
at least one other variable in the model and so should
be removed. However, in this case, no variables had
VIFs > 2, suggesting that none of the independent vari-
ables were collinear.

With these data subsetting and processing steps com-
pleted, the 50 datasets per case were run through the glm-
net model. The resulting intercept values, LASSO selection
percentages, and associated regression coefficients were then
averaged for each case based on the 50 respective model runs.
These averaged values were then inputted into Eq. (1) along-
side the relevant predisposing factor datasets (the x; parts of
Eqg. 1) and applied across the entirety of the respective study
regions to obtain the final landslide susceptibility maps for
each case. This was done using the ArcGIS raster calculator.

4.2 AUROC validation

The AUROC is a commonly used method to assess the
accuracy and validity of landslide susceptibility maps
(Pourghasemi et al., 2018; Reichenbach et al., 2018). In this
paper, AUROC methods are used to assess the initial accu-
racy of each susceptibility model, as well as to investigate
how well one model can classify independent landslide data
from the same or other typhoon events. A receiver operator
curve (ROC) is a probability curve obtained by plotting the
true positive rate (TPR), or sensitivity, against the false posi-
tive rate (FPR), or 1 — specificity, where in this case the TPR
is the proportion of landslide presence cells correctly clas-
sified as landslide presence cells by a model, and the FPR
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is the proportion of landslide absence cells incorrectly clas-
sified as landslide presence cells by a model. The area un-
der the ROC (the AUROC value) indicates the accuracy with
which a given binary model was able to correctly classify
the observed classes (in this case the landslide presences and
absences). An AUROC value of 1 means that a model was
100 % accurate, whilst an AUROC value of 0.5 indicates that
a model has zero classification capacity (i.e. is no better than
a random guess). An AUROC value < 0.5 indicates that a
model is actively inverting the classification (i.e. classify-
ing landslide presences as absences and vice versa), whilst
values of 0.7-0.75 are generally taken to represent a good
model and values > 0.8 a very good model (e.g. Marjanovic,
2013; Vakhshoori and Zare, 2018; Jones et al., 2021a). In
this paper, all AUROC values were calculated using 10-fold
cross-validation, whereby 100 AUROC validations between
the 50 models developed for a given inventory and the 50 in-
dependent testing sets from a given inventory were used to
calculate an average AUROC value and associated standard
deviation.

5 Results
5.1 BLR modelling

As outlined in the methods, four BLR models were devel-
oped: three for the Itogon region based on the 2018 inven-
tory, 2009 inventory, and combined 2018 + 2009 inventory
and one for the Abuan region based on the 2019 inventory.
The key outputs from the BLR models are the average in-
tercepts, average regression coefficients, LASSO selection
percentages, and initial model accuracies (as determined by
AUROC analysis), as well as the resulting landslide suscep-
tibility maps.

Table 1 summarises the average intercepts, regression co-
efficients, LASSO selection percentages, and initial model
accuracies of each model. The regression coefficients and
LASSO selection percentages essentially describe the influ-
ences of each independent factor on the model. A larger-
magnitude coefficient and higher selection percentage sug-
gest that a factor is more dominant in controlling landslide
occurrence, with a negative regression coefficient meaning
a factor is making landsliding less likely and a positive re-
gression coefficient meaning a factor is making landsliding
more likely. The regression coefficients and LASSO selec-
tions highlight several similarities and differences between
the landslides triggered by each typhoon event. The follow-
ing paragraphs will discuss the key results for the Abuna
(2019) and Itogon (2009, 2018, 2018 4 2009) regions.

In Itogon, the landslides from both the 2009 and 2018
typhoon events have similar relationships with distance to
channels, planform curvature, profile curvature, elevation,
slope angle, and aspect, all of which were consistently se-
lected factors by the LASSO. Increasing distance to chan-
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nels and planform curvature are found to make landslides
slightly more likely to occur, whilst increasing elevation and
profile curvature make landslides less likely to occur. It is
unclear why increasing distance from channels makes land-
slides more likely, but this could be related to rainfall dis-
tributions or slopes being steeper further from channels. Fu-
ture work should consider this result in more detail. As ex-
pected, higher slope angles made landslides more likely in
both Itogon typhoons. The control of aspect was also sim-
ilar for both typhoons, with north-, northwest-, and west-
facing slopes being consistently selected by the LASSO and
found to make landslides less likely, and east-, southeast-,
and south-facing slopes also being consistently selected but
found to make landslides more likely. For the categorical
model factors (geology, soil type, and land cover), the influ-
ences on landsliding are less consistent across the two Itogon
typhoon events. One of the few similarities is that mountain
soil and barren land both had > 50 % LASSO selection rates
and negative regression coefficients in 2018 and 2009, whilst
shrubland—grassland also had high selection rates and posi-
tive regression coefficients in both years. The other notable
result from the models in these years is that in 2018 the clay
unit and silty/sandy loam units had 100 % LASSO selection
rates, with the former making landslides more likely and the
latter making them less likely.

For the 2019 Typhoon Abuan (which was both spatially
and temporally distinct to the 2009 and 2018 events), the
model had relatively similar relationships as observed in the
Itogon models for distance to channels, planform curvature,
profile curvature, and elevation, which were again consis-
tently selected factors by the LASSO. However, it should be
noted that the regression coefficient for elevation during 2019
was notably larger (—0.28 compared to —0.06 and —0.09),
and thus more dominant, than it was in 2018 and 2009 in Ito-
gon. However, for the other topographical factors included
in the modelling, it is evident that their impacts on lands-
liding were different in 2019 compared to 2009 and 2018.
For example, as outlined above, in 2018 and 2009, higher
slope angles made landslides more likely. However, in 2019,
even though slope angles lower than 10° made landslides less
likely, slope angle was not found to be a dominant control
on landsliding, with less than 30 % of the model runs select-
ing slope as an important factor and those that did assigning
it a coefficient value near zero (i.e. it has little to no effect
on landsliding). Similarly, unlike in 2009 and 2018, the re-
gression coefficients for all aspects were near zero in 2019,
suggesting that aspect was not exerting a dominant con-
trol on landsliding in this case. This result is highlighted in
Fig. 3, which graphically displays the aspect regression coef-
ficient and LASSO selection results presented in Table 1. For
the categorical factors (geology, soil type, and land cover),
the 2019 Abuan event was markedly different to the Itogon
events. For example, no soil units were selected as control-
ling landslide distributions. In fact, the only categorical fac-
tors to be selected consistently by the LASSO in 2019 were
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Table 1. Summary of the BLR LASSO results obtained for each of the four developed models. All numbers are the mean of the 50 runs
undertaken for each model. The AUROC value is the accuracy of the model at classifying the landslide data used to train the model. Grey
highlighted cells are all those with > 50 % selection by the LASSO. Bold cells are those with a positive influence on landslide occurrence.

Itogon 2018 Itogon 2009 Itogen 2018+2009 Abuan 2019
Intercept -0.1101 -0.0149 01411 -5.0378
AURDC 0.83 +/- 0.00% 0.20 +/- 0.007 0.78+4/-0.006 0.68 +/- 0002
Ind ependent re:::snion LAS_SO rﬁ:;asr:oﬂ lAS‘?O re:::;sri'on SEL::SE;EOJI'I rezzsr:on LASSO
fector coefficient selection % coefficient selection % coefficient % coefficient selection %
Distance te channel 0.073 94 0.138 100 0.11% 100 0.033 66
Elevation =0.058 58 -(1.068 74 0076 94 -0.284 100
Planform curvature 0,555 100 0.167 100 0.230 100 0.385 100
Profile curvature -0.358 100 -0.201 100 0.253 100 -0.130 98
Slope 0.360 100 0.433 100 0.427 100 -0.003 28
N -0.995 100 -2.888 100 -1.478 100 -0.025 70
MNE - 1] -0.860 100 0.455 100 0.152 12
E 0.553 100 0.146 50 0.474 100 0.034 74
13 0.617 100 0.520 100 0.774 100 0.050 12
5 0.231 74 0.355 100 0.584 100 0.oo7 34
W -1.021 100 0.0897 [ - o) -0.037 48
W -1.255 100 0,931 100 0.974 100 -0.040 52
NW -1917 100 -2.872 100 <2346 100 -0.033 45
Alluvium - 1] - Q - 1] - g
Andesite/basalt -0.194 80 D075 24 0027 4 1.329 100
Dacite 0.138 52 -0.363 62 -0.312 34 - a
Limastone - 0 - 4] - 1] -1.047 93
Quarez diorite 0.189 68 D.050 0 0.083 94 -0.500 2
Schist - 1] - 4] - 0 - a
Sandfclaystone, conglomerate 0.156 a =0.400 100 -0.233 26 - g
Ultramafic - 1] - 0 - 1] - a
Beach sand - 1] - o - o - [y
Clay 0.416 94 0.023 L] 0.136 62 - a
Clay loam 0.015 2z 0.252 48 0.098 34 - ¢
Gravel loam -1.102 a2 -1.005 34 0.612 70 - 4}
Hydrosol - 0 - 0 - 0 - [y
Loam - i} - 4] - o - i}
Mountain sail -1.925 100 -2.74b 100 -3.069 100 - ¢
Sandy clay - 1] - 1] - 1] - a
Silty sandy loam -1.147 100 0.066 24 0284 92 - 0
Barran -0.418 54 -1.015 76 -1.167 95 - 4
Builtup -0.383 a0 -0.138 44 -0.289 94 - o}
Clased forest - o - o - o - o}
Cropland -0.479 54 -0.247 46 £.340 83 -0.454 6
Mangrowve - 1] - 0 . ] - a
Open forest 0136 10 -0.014 4 - 1] 3.805 100
Shrub/grassland 0.105 50 0.339 100 0.15% 100 =0.187 g
Water -1.208 38 -1.088 50 -1.689 90 -0.477 12

https://doi.org/10.5194/nhess-23-1095-2023 Nat. Hazards Earth Syst. Sci., 23, 1095-1115, 2023



1104

North
B N 100
g v
S -0.5 80 ¥
%G L 60 g
o€ -15 * 3
58 a0 B
3 25 El
o } 20
&
3.5 0
2018 2009 2018+2009 2019
Model
East
o 100
S 0.7
3 } 80 7
t ©
U —~ 0.5 } o
S £ “ 3
58 03 40 3
g ¢ E
g" 0.1 § 20
€ . I I A I — N
2018 2009  2018+2009 2019
Model
South
.~ 100
5 0.7
e 80 7
5 05 8
m
S £ % “ 3
g3 03 20 8
g 3
2 0.1 20 o
. .
0.1 0
2018 2009 2018+2009 2019
Model
West
. 0.2 100
5 0 : 4 —
2 -0.2 80 2
T — -0.4 k-3
SE€ -06 60
c o -0.8 ©
S a 40
2= 1 ¢ ¢+ e
()
=3 1.2 } 20 x
g -1.4

2018 2009 2018+2009 2019
Model

J. N. Jones et al.: Multi-event assessment of typhoon-triggered landslide susceptibility in the Philippines

Northeast
- 0.2 . 100
c
S 0 80 T
"“_; ©
gy 02 60 =
25 04 § 2
S s 0 8
2~ -06 %
E (7]
@ -0.8 i 20
= 1 L1,
2018 2009 2018+2009 2019
Model
Southeast
» 100
S 0.9 0 B
‘O [%]
B 0.7 i =
[~ =
8E os § 0 -
S8 g3 a0 §
g ‘ e
& 0.1 20 ¢
g ad
01 | (. 1 f 0
2018 2009  2018+2009 2019
Model
Southwest
0.2 100
€ 0 * _
2 )4 80 @
£ 0.2 5
gz 04 60 =
< 06 2
[S]
22 .08 40 o
& -1 } 20 2
g 1.2 =
1.4 —/ 0
2018 2009  2018+2009 2019
Model
Northwest
~ N 100
g v
‘S -0.5 80 E
& o
U — =
S€ as €0 3
58 § 0 3
o= o
2 25 * g
5 { 20
&
3.5 0
2018 2009 2018+2009 2019

Model

Figure 3. Graphical display of the aspect regression coefficients presented in Table 1. Red line shows the “zero line” for the regression
coefficients, black markers show the regression coefficients and associated £1 SDs, and the bars show the selection percentages.

andesite—basalt and open forest, which had strong positive
coefficients, and limestone, which had a strong negative co-
efficient.

5.2 Landslide susceptibility maps

Figure 4 shows the final landslide susceptibility maps re-
sulting from the model parameters presented in Table 1. As
shown in Table 1, these maps had initial accuracies (i.e. the
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accuracies of classifying the data used to train them) of
68 %—83 %. However, to properly validate the accuracies of
these maps it was necessary to use AUROC analysis to as-
sess how well each model could classify independent testing
data from each of the respective events. The resulting AU-
ROC curves and AUROC values are shown in Fig. 5, which
show that the independently tested accuracies of each model
are 65 %—82 %. As highlighted in Sect. 4.2, these AUROC
values suggest that the three Itogon models are good to very
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good (accuracies of 78 %—82 %) but that the Abuan model is
poor (accuracy of 65 %).

5.3 Cross-model AUROC validation

To assess the temporal dependency of typhoon-triggered
landslides, we used cross-model AUROC validation to inves-
tigate how well one model could predict independent land-
slide testing data from the other typhoon event(s); i.e. we
assessed the AUROC for the 2018 + 2009 model’s ability
to classify independent landslide data from the 2018, 2009,
and 2019 typhoon events (Fig. 6); the AUROC for the 2018
model’s ability to classify the 2009 and 2019 events (Fig. 7a
and b); and the AUROC for the 2009 model’s ability to clas-
sify the 2018 and 2019 events (Fig. 7c and d). Note that, as
the 2019 model had low initial accuracy even when trying
to classify the landslides used to train it, we did not cross-
validate this model against the 2018 or 2009 landslide data.

This shows that the 2018 and 2009 models are 6 %—10 %
worse at classifying the other individual typhoon events com-
pared to the models developed specifically for those events
(e.g. Fig. 5). Conversely, the 2019 model is 32 %-33 % worse
at classifying the 2018 and 2009 models compared to the
models developed specifically for those events, with AU-
ROC values > 0.6 in both cases. Finally, the 2018 42009
model is 8 % worse at classifying the 2019 event compared
to the model developed specifically for 2019 but only 1 %—
3 % worse at classifying the 2009 and 2018 events compared
to the models developed specifically for those events.

6 Discussion
6.1 Landslide susceptibility modelling

The first and second aims of this paper were to develop new
and updated susceptibility models and maps for two regions
of the Philippines using three typhoon-triggered landslide
events and to assess the similarities and differences between
the susceptibility results of the different models. As shown
by the AUROC values, in the Itogon region this aim has been
met, with three models developed with good to very good
AUROC values of 78 %—82 %. The maps for Itogon can be
compared to the existing NOAH and MGB maps for this re-
gion presented in Fig. 1. By comparing the existing and new
maps, it is evident that these maps agree on the broad-scale
susceptibility classification, i.e. that much of the Itogon re-
gion has high to very high landslide susceptibilities. How-
ever, even when compared to the NOAH maps, the new maps
presented here have much more slope-scale detail, whereby it
is possible to distinguish differential susceptibility across dif-
ferent topographical characteristics of the landscape. Indeed,
as also highlighted by the regression coefficients (Table 1), it
is clear that typhoon-triggered landslide susceptibility in Ito-
gon is highest at eastern, southeastern, and southern aspects;
slope angles of 30—40°; convex curvatures; clay soil; and
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shrubland—grassland use but lower at western, northwestern,
and northern aspects; slope angles < 30°; concave curva-
tures; and mountain soil. These results are unsurprising given
the observations of Abancé et al. (2021) who found similar
topographical and geological relationships between the land-
slides associated with the 2018 Typhoon Mangkhut. As such,
due to the increased detail and information provided, the new
Itogon maps should be much more useful for the purposes
of hazard zonation and management than the existing MGB
map.

Conversely, the model developed for the Abuan region is
significantly less accurate, with AUROC values of just 65 %—
68 %. As discussed in Sect. 6.1.1, it is therefore not appro-
priate to conclude that a reliable susceptibility map has been
developed for this case. This raises the question of why the
Abuan model is so much less accurate than those developed
for Itogon. One explanation is that the model inaccuracies
are due to biases and incompleteness in the 2019 Kammuri
landslide inventory. Work by Steger et al. (2016, 2017, 2021)
outlines how inconsistent, biased, incomplete, or otherwise
inaccurate landslide inventories can lead to the development
of statistical susceptibility models with incorrect or unfeasi-
ble regression coefficients. It is difficult to quantify whether
this issue is relevant in this case. However, given that the
2019 inventory was mapped, checked, and reviewed by four
different people, and mapping was conducted using the same
methodology as was used for the 2018 and 2009 inventories,
it seems unlikely that mapping error can explain the signifi-
cant model inaccuracies. Furthermore, whilst the inventories
were based on imageries with slightly varying resolutions,
the number of landslides mapped for the Abuan case sug-
gests that this did not affect the completeness or accuracy of
the landslides in the inventory.

Another explanation for the reduced accuracy of the 2019
model could lie in the input data. For the Itogon region,
the categorical inputs for geology, soil, and land cover in-
cluded multiple classes, with landslides occurring within sev-
eral of these classes (Fig. 8a—c). However, in the Abuan
region, these inputs were of a lower resolution, with near-
homogenous classes across the entire region and almost
all landslides just occurring in one class of each variable
(Fig. 8a—c). Indeed, in Abuan there is only one soil type,
“mountain soil”, so it is impossible for the regression model
to use soil as an input type (hence why there are no regres-
sion coefficient values for soils in Abuan in Table 1). Conse-
quently, there were far fewer input data available for the BLR
model to use in the Abuan case compared to the Itogon case.
Indeed, the Itogon region has several soils, which will all
likely have different geotechnical characteristics (e.g. shear
resistance), which may aid the model in differentiating land-
slide susceptibility classes. Similarly, it is evident that the
landslides included in the 2019 inventory had significantly
different distributions to the landslides associated with the
2018 and 2009 typhoons. Whilst the 2018 and 2009 land-
slides were preferentially distributed at certain aspects and
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Figure 4. The final susceptibility maps produced from (a) the 2018 landslide inventory, (b) the 2009 landslide inventory, (¢) the combined
2018 and 2009 inventories, and (d) the 2019 inventory. Here (a)—(c) correspond to the Itogon region and (d) to the Abuan region.

slope angles (e.g. Fig. 8d and e), with these factors proving
very important for the BLR model classifications, the 2019
landslides occurred across the whole landscape, with no pref-
erential occurrence at any aspects or slope angles (e.g. Fig. 8d
and e). This, combined with the homogenous categorical in-
put data, meant that there was very little spatial information
for the BLR model to use when attempting to classify land-
slide occurrence and non-occurrence.

However, whilst this may offer an explanation as to why
the 2019 model was inaccurate, it raises the question of why
the landslides in 2019 were so evenly distributed across the
landscape. One potential explanation is based on the land-
slide storm cell model proposed by Crozier (2017). This
model describes patterns of landsliding associated with at-
mospheric storms cells, whereby landslides are assumed to
occur in a circular pattern radiating from the storm cen-
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tre. The model defines three main zones. The core zone is
where a storm has maximum rainfall totals and intensity (typ-
ically > 500 mm of total rainfall) and associated landslides
that are distributed at all landscape locations regardless of
variations in land use, geology, and topography. The middle
zone has enough rainfall to trigger widespread landsliding
but only where the landscape is particularly susceptible to
failure due to factors such as higher slope angles, as well as
more failure-prone lithologies, land use, and soil cover. The
peripheral zone is where landslide occurrence is restricted
by insufficient rainfall, and therefore only limited landslid-
ing occurs in portions of the landscape where rainfall can
accumulate. In this case, if the Abuan catchment occurred
within the core zone of Typhoon Kammuri, then this could
explain why the landslides occurred across all portions of the
landscape. To test this, daily PERSIANN-CCS-CDR (Pre-
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cipitation Estimation from Remotely Sensed Information us-
ing Artificial Neural Networks and Cloud Classification Sys-
tem Climate Data Record) rainfall data for the 2019 Typhoon
Kammuri in Abuan and the 2018 Typhoon Mangkhut and the
2009 Typhoon Parma in Itogon were obtained. These data
show that the maximum daily rainfall across Abuan during
the 2019 Typhoon Kammuri was actually lower than that
which occurred across Itogon during both the 2018 and 2009
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typhoons (78 mm compared to 97 and 108 mm). This sug-
gests either that the PERSIANN-CCS-CDR data are signifi-
cantly underestimating the 2019 event rainfall, which such
satellite-derived rainfall products are prone to doing (Zhu
et al., 2016; Jiang et al., 2017), or that particularly intense
rainfall is not the cause of the observed landslide distribu-
tions. Given that the Abuan region was never in the centre
of the path of Typhoon Kammuri (where you would expect
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Figure 6. Receiver operator curves (ROCs) showing the performance of the 2018 + 2009 model at classifying independent testing data from
(a) 2018, (b) 2009, and (c) 2019. In each case the reference ROC for a “random” model with 50 % accuracy is shown, as is the AUROC

value for all ROCs.

the core zone to occur), the latter is potentially more likely.
Another factor that could be causing the unexpected relation-
ships with rainfall is the fact that rainfall products struggle to
capture spatial rainfall patterns and locate storm centres (Oz-
turk et al., 2021a), and as such it may not appear to spatially
correlate with the highest landslide densities.

Another possible explanation for the 2019 landslide dis-
tributions could be the directionality of the 2019 typhoon.

Nat. Hazards Earth Syst. Sci., 23, 1095-1115, 2023

It has been proposed that the direction of storm wind cir-
culations influences the aspects at which landslides occur
(e.g. Gorokhovich and Vustianiuk, 2021). As such, if the
2019 Typhoon Kammuri changed direction several times,
and thus wind circulations changed orientation, then this
could explain why landslides occurred at all aspects and
slope angles. However, for several reasons this explanation
also seems unlikely. First, rainfall analysis by Abanc6 et al.
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(2021) found that typhoon rain and wind direction could not
explain the aspect response of the 2018 Mangkhut landslides,
suggesting that typhoon directionality is not as important a
process as might be expected. Second, we could find no evi-
dence that the 2019 typhoon changed direction, with it seem-
ingly following a relatively constant east to west path.

As such, overall, it is suggested that the inaccuracies in the
2019 model are due to a combination of poor input data and
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the fact that the 2019 Kammuri landslides were distributed
evenly across the landscape (therefore giving little spatial
correlation for the BLR method to use for classification).
However, it remains unclear why the landslides triggered by
the 2019 typhoon were distributed like this, with the rainfall
in 2019 being no more intense than the other events and there
being no obviously strange directional behaviour of Typhoon
Kammuri. Future work should investigate this issue further,
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with a particular focus on an analysis of the 2019 event rain-
fall, as understanding why certain typhoon events may trig-
ger unpredictable landslides has important implications for
the forecasting and managing of future landslide hazard.

Implications of an unreliable susceptibility map for
hazard management

Another question raised by the inaccuracies of the 2019
Abuan model is a general point about whether it is better to
have no susceptibility map or a poor susceptibility map. In-
stinct may be to assume a mantra of “something is better than
nothing”. However, in reality, this is unlikely to be the case.
Susceptibility maps are commonly used for important haz-
ard management purposes. As such, inaccurate or unreliable
landslide susceptibility maps could lead to ineffective, inap-

Nat. Hazards Earth Syst. Sci., 23, 1095-1115, 2023

propriate, or insufficient hazard management strategies being
implemented. Not only is this likely to waste resources, but
it could also present a danger to life and development. For
example, if regions incorrectly classified as low susceptibil-
ity are subsequently built on, then human and infrastructure
vulnerability could be increased. As such, in this case, given
the poor overall accuracy and reliability of the Abuan model
(which is likely linked predominantly to the quality of the
available input data), it may be better to conclude that a new
reliable susceptibility model was not produced rather than
that a “poor” model was produced.
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6.2 Landslide time dependency and its implications for
hazard management

As described in the aims, the final objective of this paper is
to provide insight into the potential time-dependent nature
of typhoon-triggered landslide susceptibility in the Philip-
pines. This objective essentially operates under the hypothe-
sis that if typhoon-triggered landslides are time dependent,
then in a given region there will be a reduced model ac-
curacy when using a model developed from one typhoon
event to classify another. In this case, we tested this by us-
ing AUROC cross-validation to compare the 2018, 2009, and
2018 42009 typhoon-triggered landslide susceptibility mod-
els. It should be noted that we do not consider the 2019
Abuan model here as this event occurred in a different re-
gion, which would therefore introduce issues of spatial de-
pendency, which, whilst briefly considered, are not the focus
of this paper.

As outlined in the results, we see a 9 %—10 % reduction in
model accuracies when using the single-event models from
2018 or 2009 to classify independent landslide data from
the other typhoon event compared to the accuracies obtained
when training/testing using each typhoon event separately
(Figs. 5 and 7). This therefore supports our initial hypothesis,
suggesting that, as observed in other regions and landslides
(e.g. monsoon-triggered landslides in Nepal: Jones et al.,
2021b), there is some degree of time dependency in the sus-
ceptibility of typhoon-triggered landslides. It is challenging
to quantify exactly what causes this temporal change. As out-
lined in the previous sections, it could be due to differences
in rainfall distributions between the two events. A further
complication in the case of comparing the differences be-
tween 2009 and 2018 through time is that the 2009 event
was impacted by the Fujiwhara effect, whereby two nearby
typhoons interacted to worsen their effects. The lack of high-
resolution rainfall data for these events makes it challenging
to determine what effect this might have had, but it is nev-
ertheless important to point out that it may have had an im-
pact. The apparent time dependency between the 2009 and
2018 events could also stem from temporal changes in the
other factors used within the modelling. For example, Itogon
is estimated by the Global Forest Watch to have had signifi-
cant tree cover loss since 2010 (Hansen et al., 2013). The re-
sults of our modelling do not directly support this accounting
for the differences between the two models (with tree cover
being a largely unselected factor across all models), but it
highlights how changes in input factors through time could
account for observed temporal dependencies. For example,
path dependency (the transient impacts on the landscape of
past landslide locations) could also be having an effect. This
could be particularly pertinent in this case as the impacts
of smaller passing tropical cyclones and typhoons between
2009 and 2018 will have triggered other landslides not in-
cluded in this assessment. As we do not yet have inventories
for events between 2009 and 2018, we cannot at this stage

https://doi.org/10.5194/nhess-23-1095-2023

present a full assessment of path dependency in this region.
As such, future work should focus on mapping landslides in
between 2009 and 2018 to allow a more robust assessment of
the specific causes of temporal dependency such as land-use
change and path dependency.

But what are the implications of this for landslide hazard
management? It is well described that landslide susceptibility
models are regularly used for purposes that involve the fore-
casting of future landslide events (Reichenbach et al., 2018;
Palau et al., 2020). Consequently, in the Philippines, issues of
time dependency mean that a hazard manager cannot be con-
fident that a landslide susceptibility model developed from
a single past typhoon event will actually be accurate and re-
liable when forecasting landslides associated with a future
typhoon. This is clearly a problem, as it fundamentally af-
fects the use of susceptibility models for their primary (or at
least common) application. So what are the solutions to this
problem?

One solution could be to ensure that typhoon-triggered
landslide susceptibility models are always developed using
landslide data from multiple typhoon events. As shown in
Fig. 6, the susceptibility model developed using the training
landslide data from the 2018 and 2009 events combined had
higher overall accuracies when classifying the independent
data from each event separately. Indeed, the 2018 + 2009
model was only 1 % less accurate at classifying the 2009 data
than the 2009 model was and only 4 % less accurate at clas-
sifying the 2018 data than the 2018 model was. Statistically,
this result is logical, as, in effect, the combined 2018 + 2009
model coefficients will be an average of the optimum coef-
ficients that would be obtained when modelling each event
in isolation, and therefore the multi-event model has a more
generalised ability to classify both events. In contrast, the
single-event-model coefficients are very specific to one event
and therefore are notably less accurate when used to clas-
sify a different event. This suggests that whilst a single-event
model will likely be more accurate at classifying the spe-
cific event used to train that model, a multi-event model will
be more generalisable and thus appropriate for forecasting
an unknown future typhoon event. Furthermore, it would be
logical to assume that the more events there are combined in
the training of a susceptibility model, the more generalisable
that model will be. This idea is corroborated by several other
studies. For example, Ozturk et al. (2021b) find that suscep-
tibility model accuracy increases with increasing landslide
inputs until a saturation point occurs when a large enough
portion of a study region has observed a landslide and been
included in the model training. Similarly, Jones et al. (2021a)
found that monsoon-triggered susceptibility model accuracy
increased significantly as you moved from using a single
monsoon season of data to using approximately 10 mon-
soon seasons of data, with a levelling off of the accuracy
as you added more seasons of landslide data beyond this.
In this case, it is therefore reasonable to assume that given
more typhoon-triggered landslide data, the generalisability
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and overall forecasting reliability of the multi-event model
could be improved. This of course requires robust testing in
future work when more typhoon-triggered landslide data be-
come available.

6.3 Landslide spatial dependency

Though not the main focus of this paper, our results still
have some important “high-level” insights into landslide spa-
tial dependency. The results from Sect. 5 suggest that there
are some significant differences in landslide susceptibility
through space, particularly relating to topographical factors
such as slope aspect and rock and soil types (Table 1). Un-
fortunately, given the aforementioned overall poor accuracy
and reliability of the Abuan map, it is challenging to make
any concrete conclusions from the inter-model AUROC anal-
ysis presented in Sect. 5. This analysis suggests similar re-
ductions in model accuracy when comparing the Itogon to
Abuan models through space (Fig. 7), as were observed
when comparing the Itogon models through time. However,
as the Abuan model already had a low baseline accuracy
even when attempting to model independent data from the
same typhoon, the impact of applying susceptibility models
through space cannot definitely be assessed. However, anec-
dotally, from our experience of working in countries such as
the Philippines, it is commonplace for regional maps from
one area to be applied to other regions. As such, it is recom-
mended that future studies take a more detailed consideration
of potential spatial dependencies in the Philippines using ad-
ditional landslide inventories.

7 Conclusions

In conclusion, using BLR techniques we have developed new
and updated susceptibility maps for the Itogon and Abuan
regions of the Philippines, with the 2009, 2018, and com-
bined 2018 4+ 2009 models being considerably more accu-
rate (78 %—82 %) than the 2019 model (65 %). We find that
the three typhoon events caused quite different landslide re-
sponses. Most notably, landslides in [togon were heavily dis-
tributed across east-, southeast-, and south-facing slopes and
at slope angles > 30°, whereas landslides in Abuan occurred
across all aspects and slope angles. The uniform distribution
of 2019 landslides across all parts of the landscape combined
with homogenous input datasets for geology, soil, and land
cover is likely to be the cause of the lower accuracy of the
2019 model. Given the low accuracy and reliability of the
Abuan model, from a hazard management perspective, it may
be better to conclude that an acceptable model was not de-
veloped in this case. Finally, the AUROC validation shows
that using a susceptibility model for one typhoon event to
forecast/hindcast another through time leads to a 6 %—10 %
reduction in model accuracy compared to the accuracy ob-
tained when modelling and validating each event separately.
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This suggests that typhoon-triggered landslides in the Philip-
pines display some degree of time dependency. However, us-
ing a susceptibility model for two combined typhoon events
(2018 4-2009) to forecast/hindcast each typhoon event sepa-
rately led to just a 1 %—3 % reduction in model accuracy. This
suggests that combined multi-event typhoon-triggered land-
slide susceptibility models will be more accurate and reliable
for the forecasting of future typhoon-triggered landslides.

Code and data availability. The landslide inventories developed as
part of this paper are available at the NERC Environmental In-
formation Data Centre (EIDC) depository: https://eidc.ac.uk/ (last
access: 12 March 2023; Environmental Information Data Cen-
tre). No custom developed code is used in this research; all code
used was derived directly from the existing glmnet package: https:
/[cran.r-project.org/web/packages/glmnet/ (Friedman et al., 2022).
The soil and geological data used within this paper were obtained
from https://www.geoportal.gov.ph/ (geoportal PH, 2023).
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