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Abstract. In early April 2021 several days of harsh frost
affected central Europe. This led to very severe damage in
grapevine and fruit trees in France, in regions where young
leaves had already unfolded due to unusually warm temper-
atures in the preceding month (March 2021). We analysed
with observations and 172 climate model simulations how
human-induced climate change affected this event over cen-
tral France, where many vineyards are located. We found
that, without human-caused climate change, such tempera-
tures in April or later in spring would have been even lower
by 1.2 ◦C (0.75 to 1.7 ◦C). However, climate change also
caused an earlier occurrence of bud burst that we character-
ized in this study by a growing degree day index value. This
shift leaves young leaves exposed to more winter-like con-
ditions with lower minimum temperatures and longer nights,
an effect that overcompensates the warming effect. Extreme
cold temperatures occurring after the start of the growing sea-
son such as those of April 2021 are now 2 ◦C colder (0.5
to 3.3 ◦C) than in preindustrial conditions, according to ob-
servations. This observed intensification of growing-period
frosts is attributable, at least in part, to human-caused cli-

mate change with each of the five climate model ensem-
bles used here simulating a cooling of growing-period annual
temperature minima of 0.41 ◦C (0.22 to 0.60 ◦C) since prein-
dustrial conditions. The 2021 growing-period frost event has
become 50 % more likely (10 %–110 %). Models accurately
simulate the observed warming in extreme lowest spring tem-
peratures but underestimate the observed trends in growing-
period frost intensities, a fact that yet remains to be ex-
plained. Model ensembles all simulate a further intensifica-
tion of yearly minimum temperatures occurring in the grow-
ing period for future decades and a significant probability
increase for such events of about 30 % (20 %–40 %) in a cli-
mate with global warming of 2 ◦C.

1 Introduction

Frost days and cold spells are decreasing in frequency
and intensity worldwide (IPCC, 2021; Van Oldenborgh et
al., 2019). Yet, severe cold spells continue to pound many
mid-latitude areas, due to the occasional invasion of polar air

Published by Copernicus Publications on behalf of the European Geosciences Union.



1046 R. Vautard et al.: Human influence on growing-period frosts

Figure 1. Stations with March (a) high records broken (pink ther-
mometer) and April (b) low records broken (since at least 20 years)
(blue thermometers) in 2021 in France. Symbols are superimposed
with the record value of the temperature.

being transported well into lower latitudes as a consequence
of the chaotic motion of Rossby waves. When occurring in
spring, such cold events can create a range of impacts on agri-
culture such as in April 2021, when young leaves and flow-
ers had started to develop into fruit trees or grapevines. The
frost event which took place from 6 to 8 April 2021 was
exceptional, with daily minimum temperatures below −5 ◦C
recorded in several places. In several places, such low tem-
peratures left no chance to save grapevines and fruit trees
with frost management strategies (e.g. local heating from
braseros or spreading water to keep frost moderate at the sur-
face of plants). The cold temperatures led to broken records
at many weather stations (see Fig. 1b). Unfortunately, this
cold event happened a week after an episode of record-
breaking high March temperatures in many places in France
and also in western Europe (Fig. 1a). This sequence caused
the growing season to start early, with bud burst occurring
in March and the new leaves and flowers left exposed to the
deep frost episode that followed.

In 2021, wine production had been historically low, with
33 billion hectolitres produced, a level that is 25 % below
the average production of the previous 5 years and that is
lower than the 2017 production, which was also hit by a
late frost (AGRESTE, 2021). Beyond the frost and its con-
sequences, the losses were amplified by a relatively cool and
wet summer season allowing for mildew and Botrytis de-
velopment. In general early varieties in vineyards were af-
fected by frost (for example sauvignon in Bordeaux). The
losses were widespread, but the frost hit the vineyard dif-
ferently. In the hardest hit places such as Burgundy or Jura,
about two-thirds of the production was destroyed. In other
places such as the Beaujolais, later-developing species made
the losses less severe. In the Champagne vineyards, and in
many places across France, the losses ranged from 30 % to
50 % (AGRESTE, 2021).

Fruit production was also severely hit for some fruits. Es-
timates of production losses are of about 50 % for pears and
cherries, ∼ 25 % for peaches, and ∼ 20 % for apples (with
large departures from averages depending on the region).
Some other productions were also impacted (such as sugar
beet emergence), but final yields were not finally affected
because of favourable production conditions (AGRESTE,
2021).

The occurrence of such an event called for investigating
the role of climate change. From a weather point of view,
the event is rather classical for cold outbreaks, when air
masses of polar origin invade western Europe. The large-
scale flow pattern was characterized by a strong high-latitude
anticyclone extending from Greenland to the northwestern
European coasts, which was found among the four most re-
current or stationary North Atlantic flows (the “Greenland
blocking” pattern of Michelangeli et al., 1995, and Vautard,
1990), inducing a negative value of the North Atlantic Oscil-
lation (NAO) index. The combination of polar air advection,
cloud-free sky and still long nights led to hours of intense
frost. Such dynamical events are not observed to have be-
come more frequent (Screen and Simmonds, 2013; Black-
port and Screen, 2020) despite the ongoing debate on the
role of narrower sea ice extent favouring the occurrence of
blocking anticyclones (Barnes and Screen, 2015). However,
human-induced changes in dynamical conditions, especially
leading to cold outbreaks, remain largely uncertain and can
be viewed from various indices (Shepherd, 2014), and their
understanding would require an in-depth, dedicated analysis.

Here we perform a statistical attribution analysis of the
2021 late frosts to climate change from an impact perspec-
tive. The effects of climate change on late frosts and their
consequences are complex, because several processes are in
competition, in particular the earlier start of the growing sea-
son and the general regression of cold extremes and frost
days (IPCC, 2021). The advance at the start of the growing
season has increased the number of frost days occurring after
the start of the growing season in several places worldwide,
including in Europe (Liu et al., 2018). Using several indices
for grapevine exposure, it has been found that the date of
the last frost day has not regressed as fast as the date of the
growing season start (Sgubin et al., 2018). However, so far
no formal attribution study of a “growing period-frost” has
been carried out to quantify the role of anthropogenic cli-
mate change in these observed trends. In order to carry out
the attribution study, we use several indices and event defini-
tions characterizing cold temperatures in the growing season
and the well-established attribution methodology described
in Philip et al. (2020) and Van Oldenborgh et al. (2021b).

A rapid attribution analysis was carried out in June
2021 and reported in Vautard et al. (2021, https://www.
worldweatherattribution.org, last access: 15 June 2021), with
several indices developed and analysed, showing that while
spring frosts are generally becoming less severe and frequent,
frosts occurring after the growing season start are becoming
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more intense due to climate change. Since then, observations
were consolidated, more model data have been collected and
simulation data processing were homogenized. This article
reports the final results, which confirm the conclusions of the
preliminary analysis.

We present several definitions of the frost event in Sect. 2
and the corresponding indices chosen. In Sect. 3, we present
methods, observations and models used, and trends in obser-
vations are analysed, and in Sect. 4, results from observations
and model ensembles are analysed. This is followed by a syn-
thesis of results, a discussion and a conclusion in Sect. 5.

2 Event definition and indices used

The cold spell of 6–8 April 2021 hit much of central and
northern Europe (see Fig. 2a). However, we focus here on
central/northern France in order to investigate a relatively ho-
mogeneous, mostly plain or low-elevation area (see Fig. 2b).
This area (46 to 49◦ N, −1 to 5◦ E) covers most of the
grapevine agriculture areas of Champagne, Loire Valley and
Burgundy which were identified as specifically vulnerable
regions under climate change (Sgubin et al., 2018). The area
also covers regions with high crop and fruit production.

We use several event definitions, accounting for different
phenological aspects. Differences in results for these defini-
tions also test the robustness of the attribution. In each case,
the “event” is defined as the yearly minimum temperature
(TNn) obtained under specific conditions and then averaged
over the area or taken at specific station locations. A basic
reference conditioning is the fixed-season minimum temper-
ature and does not consider phenology: the TNn is calculated
over the April–July months (index TNnApr–Jul). The second
index accounts for phenology. The TNn is calculated condi-
tioned upon the growing degree day above 5 ◦C (hereafter
denoted “GDD”) being larger than thresholds characterizing
bud burst conditions, which depend on species. In this study,
our aim is not to tie thresholds to specific plants’ phenology
but to provide a general overview for different thresholds.
The GDD is calculated at each grid point with a starting date
of the previous winter solstice, in a similar approach used
by García de Cortázar-Atauri et al. (2009), assuming that the
dormancy break period for grapes is finished in the calcula-
tion period. The formula for the GDD at day t during year y

is therefore

GDD(t,y)=

k=t∑
k=tstart

max(TMk − 5,0) , (1)

where TM is the daily mean temperature and tstart is 21 De-
cember of the previous y year y− 1 (starting time of the
cumulation). In 2021, the values of the GDD obtained on
the day before the frost events in the concerned area vary
in the range of 150 to 350 ◦C d−1, with an average value on
5 April of 259 ◦C d−1 over the study domain. This value is

high for this calendar day (rank= 14th since 1921 in the E-
OBS extended dataset), but the record value was obtained in
2020, with a mean GDD of 320 ◦C d−1. Given the range of
values taken in the domain, we considered 3 thresholds for
GDD: 250 ◦C d−1 as a central value and 150 and 350 ◦C d−1

as sensitivity experiments. This range of values also helps
to capture a range of bud burst values of grapevine culti-
vars as found in García de Cortázar-Atauri et al. (2009).
For each GDD threshold, the yearly minimum TN values
(TNn), called hereafter “TNnGDD250”, “TNnGDD150” and
“TNnGDD350” for the three GDD thresholds, are calculated
over subsequent days and until the end of July at each grid
point and then averaged over the study area (46 to 49◦ N,
−1 to 5◦ E). Despite the fact that the average characterizes
the mean lowest temperature that can occur after crossing
the GDD threshold, the average can mix several dates as the
GDD threshold crossing, and the yearly minimum does not
necessarily occur on the same date over the whole domain.
In 2021, for instance, the TNnGDD250 was already reached
during the 6–8 April episode for most of the area, but not
in the easternmost part and in some other parts, because the
GDD did not exceed 250 ◦C d−1 during the April frosts.

In order to focus on specific phenological periods when
young leaves and flowers are sensitive to frost after bud burst
and flowering, we also define indices over limited ranges of
GDD values. The number of possibilities is large, in most
cases providing qualitatively similar results. The analysis is
reported here only for the range of 250–350 ◦C d−1, by using
the yearly minimal temperature over this GDD range (index
TNnGDD250-350). This index is again calculated at each
grid point before being averaged spatially over the study re-
gion, or is taken at stations.

3 Methods, observations and models

3.1 Methods

Event attribution methods used in this study are well docu-
mented in previous studies. The rapid attribution methodol-
ogy is a classical probabilistic approach, described in Philip
et al. (2020) and Van Oldenborgh et al. (2021b), and has
been used in many case studies for heat waves (e.g. Kew et
al., 2019; Vautard et al., 2020), extreme precipitation (e.g.
Philip et al., 2018) or more complex events such as wildfire
weather (Van Oldenborgh et al., 2021a). It uses a stepwise
approach, analysing observations with a generalized extreme
value (GEV) with a global warming index as a covariate, then
it uses ensembles of models validated on the event indices
and their extreme value statistics by comparison with obser-
vations, and finally it uses the GEV with the covariate fit to
build a statistical model of the data under some assumptions.

In all cases (observations and models), we used data in the
1951–2021 period for the GEV fit for attribution, and for fu-
ture trend estimates for a global warming of 2 ◦C, we used
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Figure 2. (a) Minimum temperatures on 6 April 2021 in Europe from the E-OBS (Cornes et al., 2018) database (see Sect. 3); (b) focus on
France with a higher resolution dataset, using the Anastasia data (Météo-France, Besson et al., 2019). The study area is shown in this panel
by the bounded box in red; stars indicate the location of the three stations used to assess local trends; (c) spatial distribution of the growing
degree day index in Europe on 5 April 2021 as calculated from E-OBS.

the period from 2000 to 2050. For observations, the covari-
ate is the smoothed observed GISTEMP global mean sur-
face temperature (GMST), while for models the smoothed
global mean surface air temperature (GSAT) (5-year running
average) is used. The only exception is the High Resolution
Model Intercomparison Project (HighResMIP) SST-forced
ensemble (see below), for which the observed GMST was
used because of the ensemble forcing. Change statistics are
calculated with respect to the year 2021 and estimated return
period from observation as a reference.

3.2 Observations and model ensembles

The observations used here for the attribution are the E-
OBS v23e dataset of daily minimum temperatures (Cornes
et al., 2018). The above indices are calculated for each grid
point, spaced every 0.25◦ in this dataset, and then averaged
over the study area.

For the attribution of the frost event, we use five model
ensembles. Each simulation of each ensemble was bias-
adjusted using the cumulative distribution function transform
(CDFt) method (Vrac et al., 2016), using the daily minimum
and the daily average temperatures from E-OBS over the
1981–2020 period. Bias correction is an important step here,
since GDD calculations use a threshold. This method was as-
sessed for use in climate services in Bartók et al. (2019) and
showed good performance. We used statistics of pooled en-
sembles, using data until 2021 for the GEV fit of the distribu-
tions. Indices are calculated exactly as for the observations:
model GDD values are calculated at each grid point, using
Eq. (1), and the indices are averaged over the area of study
(rectangle in Fig. 2b).

The first model ensemble is the EURO-CORDEX (0.11◦

resolution, EUR-11) multi-model ensemble. It is composed
of 75 combinations (as of May 2021) of global climate mod-

els (GCMs) and regional climate models (RCMs) for down-
scaling (see Vautard et al., 2021 and Coppola et al., 2021 for
the description of the ensemble which has increased since
these publications). Each simulation consists of a historical
period simulation and an RCP8.5 scenario simulation with
fixed aerosol concentrations. For the attribution of past evo-
lutions historical and scenario are concatenated until 2020.
Some simulations start in 1971, whereas most simulations
start from 1951. Given that we need to use data from the pre-
vious year for starting GDD accumulation, all yearly indices
are calculated from their second simulation year (i.e. 1972
and 1952).

The second model ensemble used to study the influence
of internal variability was the IPSL-CM6A-LR model (see
Boucher et al., 2020, for a description of the model and Bon-
net et al., 2021, for a presentation of the ensemble). It is com-
posed of 32 extended historical simulations, following the
CMIP6 protocol (Eyring et al., 2016) over the historical pe-
riod (1850–2014) and extended until 2029 using all forcings
from the SSP2-4.5 scenario, with the exception of the ozone
concentration which has been kept constant at its 2014 level
(as it was not available at the time of performing the exten-
sions).

The third model ensemble is a selection of the CMIP6
historical and SSP3-7.0 simulations. To keep the ensemble
balanced we retained a maximum of three realizations per
model. Not all CMIP6 models could be processed at the time
of the study. Models are detailed in the Supplement and con-
stitute an ensemble of 45 simulations.

The fourth ensemble used is a set of 10 SST-forced High-
ResMIP simulations (Haarsma et al., 2016). For the histor-
ical time period (1950–2014), the SST and sea ice forcings
used are based on the observed dataset, and for the future
time period (2015–2050) the SST and sea ice are derived
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from CMIP5 RCP8.5 simulations and a scenario as close
to RCP8.5 as possible within CMIP6. The analysis of this
ensemble was carried out using the observed GMST as for
the observations. The fifth ensemble is the same set of mod-
els run in coupled mode, and the model GSATs were used.
Again, more details can be found in the Supplement.

Note that we bring together available simulations which
do not follow the same greenhouse gas emission scenarios,
which could lead to a large difference in climate response
for given times. Such would also be the case for individual
models’ responses. However, this should not be a problem as
long as results are compared with a fixed degree of warming.
Such an approach is also followed by the recent IPCC report
where changes in extremes are compared (see IPCC, 2021).

The differences with the rapid attribution in models are
(i) the homogeneous bias correction, while it was model-
dependent in the rapid attribution, and (ii) the addition of
the HighResMIP coupled runs, and the change in the CMIP6
selection which was based on least-biased models instead of
bias-corrected models. The present analysis is therefore more
consistent across ensembles.

3.3 Model evaluation

As stated in Philip et al.’s (2020) methodology, we only
keep model ensembles which have extreme statistics com-
patible with observations. We compared the model GEV
fit parameters over the overlapping model periods (1951–
2020 or 1971–2020) in order to check the ability of models
to simulate such extremes. For reference, such ability was
not confirmed for heat waves (e.g. Vautard et al., 2020). In
the current case, we found that model ensembles are com-
patible with the observations, accounting for uncertainties
(see Fig. 3) for most indices but not all. Models are said
to be compatible with observations when GEV scale and
shape parameters have overlapping 95 % confidence inter-
vals. The comparison is made for two indices for simplicity.
For TNnGDD250 the fitted model scale parameter is compat-
ible with the observed one. The shape parameter is very un-
certain in observations, leaving all model fits compatible with
them. The same occurs for the TNnApr–Jul, but in this case
all models have an overestimated scale parameter (in terms of
amplitude). Only EURO-CORDEX and HighResMIP-SST
appear to have a parameter compatible with observations.
Given this evaluation for this index, for the final model
“weighted average” (see Philip et al., 2020), only EURO-
CORDEX and HighResMIP-SST should in principle be con-
sidered for the statistical evaluation of probability ratio and
intensity change, while for the TNnGDD250 index, all en-
sembles can be considered. However, we have here consid-
ered all model ensembles even for the TNnApr–Jul index for
consistency across indices, and, because results are qualita-
tively similar, we kept all models or retained only the com-
patible models (see also discussion in Sect. 5).

Figure 3. Model evaluation, using two main indices, TNnApr–
Jul (a, c) and TNnGDD250 (b, d). The estimates of the scale pa-
rameters are displayed in the first row and the estimates for the
shape parameters in the second row. Results for TNnGDD250-350
are qualitatively similar to those for TNnGDD250.

4 Results

4.1 Observations

In Fig. 4, we show the annual time series of the indices as
obtained from E-OBS, together with simple trend statistics
for the 1951–2020 period. The April–July TNn has a slightly
upward linear trend of +0.13 ◦C per decade, which is how-
ever not significant at the 90 % (two-sided) level because of
the large interannual and interdecadal variabilities. By con-
trast, both TNnGDD250 and TNnGDD250-350 have a sig-
nificant cooling trend of −0.21 and −0.25 ◦C per decade re-
spectively. The warming trend in TNnApr–Jul is partly due
to larger values since 2000, but these higher values are not re-
flected in the other indices, because GDD has also increased
during this period, allowing lower daily minimum tempera-
tures to be counted earlier in the season. We conclude that,
on average, since 1950, extreme yearly minimum tempera-
tures for GDD > 250 have cooled by about 1.5–2.0 ◦C. Very
low growing-period frosts were also found in 1957 and 1991,
with lower values than in 2021.

For different thresholds we also find cooling trends, how-
ever with lower significance (Fig. 4b). The significance of the
signal remains. Interestingly, over the last 50 years (1971–
2020) the trends have increased and have become more
significant (for instance +0.29 ◦C per decade, p < 0.1 for
TNnApr–Jul and −0.37 ◦C per decade for TNnGDD250,
p < 0.1).

When considering trends in low extremes of these indices,
the results are qualitatively similar, but significance is in-
creased when considering GEV fitting using the smoothed
observed GMST as covariate instead of assuming a linear
trend (see Table 1). We estimate that the event, defined as
minimum temperatures over April–July, has a return period
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Figure 4. (a) Time series of the yearly indices and their respective linear trends calculated over the 1951–2020 period. (b) The same as
panel (a) but for TNnGDD250, TNnGDD150 and TNnGDD350.

of 78 years (at least 19 years), which means a very rare event
in the current climate. However, in a climate correspond-
ing to a global temperature 1.2 ◦C cooler, this would have
been about a 1-in-7-year event (best estimate). By contrast,
the minimum temperature, taken over the growing period as
characterized by the GDD index, instead of fixed month, has
significantly cooled by almost 2 ◦C with large varying un-
certainty ranges and significance depending on the chosen
index. The observational analysis is however not sufficient
to conclude the role of climate change, which would require
models with factual and counterfactual assumptions.

To assess the changes at a local scale, we also calcu-
lated trends for three specific stations in the domain (stars
in Fig. 2). We selected a subset of three Météo-France ref-
erence stations, which were selected in grapevine regions
(Beaucouzé: downstream Loire valley; Charnay-les-Mâcon:
Burgundy; Charmeil: Saint-Pourçain grapevine), with sev-
eral characteristics: for Beaucouzé, light frost and non-
exceptional event (−1.3 ◦C) but high GDD (321 ◦C d−1 on
5 April); for Charnay-les-Mâcon, record frost (−4.4 ◦C, with
266 ◦C d−1 on 5 April); and for Charmeil, the most se-
vere frost among stations at our disposal (−6.6 ◦C with
244 ◦C d−1 on 5 April). Detection results are shown in Ta-
ble 2 for these stations and for the three main indices:
TNnApr–Jul, TNnGDD250 and TNnGDD250-350. In most
cases, the trends are positive for the fixed season index and
negative for the growing season period. However, almost no
result is statistically significant. We conclude that at a local
scale, variability is dominating trend signals (Table 2).

Results here differ from the rapid attribution analysis
(Vautard et al., 2021) in the completion and adjustment of the
E-OBS dataset by the producers. This led to slightly different
values for the observed indices in 2021. For instance, the es-
timation of the TNnGDD250 index-based return period was
estimated here to be 8 years instead of 12 years in the rapid
attribution. However, the results are qualitatively similar to
those found in the preliminary analysis.

4.2 Simulated mean trends

The trends in the two main indices for the five model ensem-
bles are analysed in the form of histograms (Fig. 5), in order
to examine the variability across ensemble members. There
is a large range of minimum temperature trends from April
to July, which are almost all positive. The observed trend in
the minimum temperature from April to July is close to the
median middle of the distribution for the EURO-CORDEX
and the CMIP6 ensemble, while it is closer to the lower
tail of the distribution of the remaining three ensembles. A
large range of possibilities is also found for the trends of
the TNnGDD250 index, with a large part of the simulations
showing negative and lower trends than those of the mini-
mum temperature from April to May, consistent with the ob-
servations. We conclude from these figures that, despite the
general trend towards cooling of the growing-period frosts,
the expected trend, for a given singular member, can also be a
warming one, albeit with a smaller chance than for a cooling
one. This large uncertainty also has to be taken into account
in any adaptation strategy.

4.3 Simulated growing-period frost extreme trends and
attribution

Figure 6 shows, as an example, the change in return values
vs. return periods for indices TNnApr–Jul and TNnGDD250
for the EURO-CORDEX ensemble, and Table 3 shows the
extreme value statistics for all indices for this ensemble, as
well as other ensembles used. Models show large agreement
with observations on changes in return periods and intensities
between the preindustrial and current climates for the fixed-
calendar TNn index (TNnApr–Jul). The trends in all models
seem however underestimated compared to observations for
the indices with a GDD conditioning (TNnGDD250).

The behaviour present in all model analysis is illustrated
in Fig. 6: a clear, significant increase in TNnApr–Jul and an
opposite trend sign for TNnGDD250. Despite being weaker,
this increasing trend in low extremes is significant for all en-
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Table 1. Extreme value statistics and observations for the various indices and using the 1951–2020 period and a GEV fit with GMST
covariate. Bold font denotes statistical significance at the two-sided 95 % level. The observed value of each index is shown in the first row;
the calculated return periods from the GEV fit of the yearly data series for 2021 and for the preindustrial climate (assumed to have a global
temperature 1.2 ◦C lower than today) are shown in rows no. 2 and no. 3. The probability ratio (the ratio of the return periods) is shown in
row no. 4, and the resulting intensity change from the GEV fit is shown in row no. 5 (see Philip et al., 2020 for methodological details).

E-OBS statistics TNnApr–Jul TNnGDD250 TNnGDD250-350 TNnGDD150 TNnGDD350

Observed 2021 (◦C) −3.4 ◦C −2.1 ◦C −2.0 ◦C −3.5 ◦C 1.6 ◦C

Return period 2021 (year)
78 8 12 9 2

[19, inf] [4, 25] [5.0, 70] [4, 57] [1.4, 3.2]

Return period −1.2 ◦C (year)
7.2 88 780 26 9

[3.8, 19] [24, inf] (> 53) (> 10) [3.7, 31]

Probability ratio
0.09 11 63 3 4.4

[0, inf] [2.0, inf] (> 2.3) (> 0.6) [1.3, 21]

Intensity change (◦C)
+1.4 −2.0 −2.0 −0.80 −2.0

[0.2, 2.7] [−3.3,−0.50] [−3.5,−0.53] [−2.0,0.34] [−3.4,−0.38]

Table 2. Return periods, probability ratios (PRs) and changes in intensities (1I ) obtained from the observations at three stations located as
in Fig. 2b. Italics indicate a warming change and bold a cooling change.

Beaucouzé Charnay-lès-Mâcon Charmeil

Value
Ret. Per.

PR
∆I

Value
Ret. Per.

PR
∆I

Value
Ret. Per.

PR
∆I

TNnAprJul -1.3°C
11 yr

0.3 [0.02;1.2]
1.4 [-0.3;3.0]

-4.4°C
>100 yr

0.03 [0;0.9]
1.5 [0.1;2.8]

-6.6°C
85 yr

0.2 [0.01;7.2]
1.2 [-0.7;3.0]

TNnGDD250 -1.3°C
5 yr

1.4 [0.2;9.0]
-0.4 [-2.2;1.8]

-4.4°C
>50 yr

>1e-4
0.2 [-2;2]

-5.3°C
18 yr

3.0 [>0.2]
-1.0 [-3;1]

TNnGDD250-350 -1.3°C
7 yr

1.1 [0.14;7.2]
-0.2 [-2.5;2.3]

-4.4°C
>90 yr

Infinite
0.3 [-2.0;2.6]

-6.6°C
83 yr

>0.7
-1.5 [-4;1]

1

sembles but HighResMIP-SST (Table 3), with a clear sig-
nal of increase in coldest temperatures when considered over
the growing period, and with a threshold of 250 ◦C d−1.
Such a trend is also clear and significant in most ensem-
bles when considering the sensitive range 250 < GDD < 350
where young leaves and flowers are vulnerable to frost. For
the other indices, trends are also significant in most cases but
not all.

Despite an agreement on the sign between models and ob-
servations on trends, models generally simulate much weaker
trends for the GDD-conditioned indices than the observed,
a fact that remains unexplained, just as the underestima-
tion in extreme temperatures in summer heat waves (see
e.g. Vautard et al., 2020; Van Oldenborgh et al., 2022). For
TNnGDD250, all ensembles simulate an increase in the fre-
quency of growing-period low extreme temperatures ranging
from 10 % to 110 % with a weighted best estimate of 50 %
(see also Sect. 5). For the other indices the range of fac-
tors is rather similar, despite lower values for TNnGDD350.
Changes in intensities are also all negative but remain below
1 ◦C.

4.4 Future trends

Indices have similar future projected trends as in the past few
decades in the ensembles and scenarios considered here. Fi-
gure 7 shows evolutions of the ensemble median and 10th
and 90th percentiles for EURO-CORDEX (RCP8.5) and
CMIP6 (SSP3-7.0), for example, but similar results hold for
the other ensembles, which have less members or shorter
time coverages. In both cases, the median of April–July mini-
mum temperatures over the region continues to increase with
mean values around 2 ◦C, while they are below frost level in
2021. By the end of the century, frost such as in 2021 will
become a very rare occurrence in April or after in these sce-
narios. However, frost can still be expected earlier in the year,
while at the same time the growing season starts earlier. This
can be seen in the development of the TNnGDD250 index
throughout the 21st century which shows a weak decreasing
trend. It is noteworthy that in the second half of the century,
the 10th percentile often nears or exceeds the 2021 value.
More frequent events like that in 2021 are therefore expected.
By the end of the century for this scenario, we also expect
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Figure 5. Histogram of the daily minimum temperature trend calculated from (a) the IPSL ensemble, (b) the EURO-CORDEX ensemble,
(c) the CMIP6 ensemble, (d) the HighResMip ensemble and (e) the HighResMipSST ensemble (see Sect. 4.1 and the Supplement for more
details about these ensembles). The observations are represented with the vertical lines. The trends are calculated over the 1971–2020 period
for (green) GDD > 250 and (red) from April to May.

Figure 6. Return value vs. return period for EURO-CORDEX and the indices TNnApr–Jul (a) and TNnGDD250 (b) averaged over the study
area (the rectangle shown in Fig. 2b). The observed values from E-OBS are marked by the purple line. Note however that the observed values
were not the values used to calculate the probability ratio of the event in the EURO-CORDEX ensemble, as the ensemble has a bias toward
higher values.

deep frosts in the growing period with intensities which have
never been met in 2021 or in earlier years.

Figure 7 also includes the observed time series for the
two indices. For TNnGDD250, even though points generally
fit well into the 10 %–90 % model range (expected because
the models are bias-corrected), we observe a bias in low ex-
tremes with variability in the observations inducing frequent
excursion in temperatures far below the 10 % quantile. Such
bias is not found in the TNnApr–Jul index.

We restrict the analysis of future trends in extremes to the
2 ◦C warming level above the P.I. conditions, which is as-

sumed to be 0.8 ◦C above the current level in 2021. This re-
striction is made to be on the safe side with potential non-
linearity of response of the extreme indices to global warm-
ing, while we assume linearity here with the covariate GEV
method. In this future case the GEV fit is carried out over
the 2000–2050 period, and probability ratios and intensity
changes are given for events with a similar return period as
for the 2021 event.

Results are shown along with attribution results in Ta-
ble 3. Extreme cold temperatures for the April–July period
will continue to become less extreme. EURO-CORDEX sim-
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Table 3. Change in extreme value statistics for all model ensembles and observations, with the GEV model fitted from data over the 1951–
2020 period for the past trend estimates and over the 2000–2050 period for future trends (when estimating the changes for a 2 ◦C warming
above preindustrial levels). We assume here that the preindustrial (p.i.) global warming level is 1.2 ◦C cooler than the 2021 one; and therefore,
the 2 ◦C warming level is reached when the warming is 0.8 ◦C above the current level. In each row, the values of the probability ratio (the
ratio between inverse return periods) are shown, as well as the intensity change, obtained by using the same return period threshold as in the
observations, together with their 95 % confidence levels as obtained from a bootstrap estimate using 1000 samples. Numbers in blue indicate
a decrease of TN and in red an increase of TN. The last row indicates changes for a 2 ◦C warming level. Boldface numbers indicate statistical
significance against a “no change” assumption.

Model ensemble / Observation Index Probability Ratio
2021 vs 2021
-1.2°C

Intensity change
(°C)
2021 vs 2021 -1.2°C

Observation TNnApr-Jul RP=78 [19,
Inf]

0.09 [0;inf] +1.4 [0.22;2.7]

Euro-Cordex
2C changes relative to 2021
(+0.8°C)

2021 vs p.i.
2C vs 2021

0.24 [0.14;0.37]
0.50 [0.29;0.67]

+1.0 [0.67;1.2]
+0.36 [0.21;0.57]

IPSL-CM6A-LR 2021 vs p.i. 0.19 [0.13;0.25] +1.3 [1.1;1.5]

CMIP6
2C changes relative to 2021
(+0.8°C)

2021 vs p.i.
2C vs 2021

0.23 [0.15;0.28]
0.23 [0.12;0.29]

+1.0 [0.86;1.2]
+0.71 [0.60;0.81]

HighResMip-SST 2021 vs p.i. 0.07 [0.03;0.16] +1.8 [1.2;2.1]

HighResMip 2021 vs p.i.
2C vs 2021

0.10 [0.03;0.16]
0.09 [0.;0.17]

+1.3 [1.0;1.6]  
+0.64 [0.54;0.89]

Model average
2C changes relative to 2021
(+0.8°C)

2021 vs p.i.
2C vs 1.2C

0.18 [0.08;0.37]
0.31 [0.004;2.0]

+1.2 [0.75;1.7]
+0.58 [0.24;0.92]

Observation TNnGDD250 RP=8 [4-25] 11 [2;Inf] -2.0 [-3.3, -0.5]

Euro-Cordex
2C changes relative to 2021
(+0.8°C)

2021 vs p.i.
2C vs 1.2C

1.5 [1.1;1.9]
1.3 [1.1;1.6]

-0.39 [-0.60;-0.05]
-0.34 [-0.48;-0.07]

IPSL-CM6A-LR 2021 vs p.i. 1.5 [1.2;2.0] -0.36 [-0.61;-0.18]

CMIP6
2C changes relative to 2021
(+0.8°C)

2021 vs p.i.
2C vs 1.2C

1.4 [1.3;1.7]
1.1 [1.0;1.3]

-0.39 [-0.54;-0.23]
-0.14 [-0.23;-0.02]

HighResMip-SST 2021 vs p.i. 1.2 [0.65; 1.8] -0.21 [-0.58;0.41]

HighResMip 2021 vs p.i.
2C vs 1.2C

2.3 [1.6;3.6]
1.3 [1.1;1.6]

-0.73 [-1.1;-0.38]
-0.21 [-0.41;-0.06]

Model average 2021 vs p.i.
2C vs 1.2C

1.5 [1.1;2.1]
1.2 [1.1;1.4]

-0.41 [-0.60;-0.22]
-0.20 [-0.30;-0.08]

Observation TNnGDD250-350 RP=12 [5.0;70] 63 [2.3;Inf] -2.0 [-3.5;-0.57]

Euro-Cordex 2021 vs p.i.
2C vs 2021

1.7 [1.2;2.7]
1.1 [0.98;1.7]

-0.50 [-0.80;-0.14]
-0.14 [-0.47;0.01]

IPSL-CM6A-LR 2021 vs p.i. 1.9 [1.4;2.8] -0.54 [-0.82;-0.29]

2
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Table 3. Continued.

CMIP6 2021 vs p.i.
2C vs 2021

1.5 [1.3;2.0]
1.1 [0.99;1.3]

-0.43 [-0.64;-0.27]
-0.09 [-0.23;0.01]

HighResMip-SST 2021 vs p.i. 1.0 [0.44;1.8] -0.03 [-0.54;0.69]

HighResMip 2021 vs p.i.
2C vs 2021

2.8 [2.1;8.9]
1.3 [0.93;1.6]

-0.82 [-1.3;-0.58]
-0.21 [-0.36;0.05]

Model average
2C changes relative to 2021
(+0.8°C)

2021 vs p.i.
2C vs 2021

1.7 [0.89;3.2]
1.1 [1.0;1.3]

-0.50 [-0.94;-0.07]
-0.12 [-0.23;-0.04]

Observation TNnGDD150 9 [5;82] 3 [>0.7] -0.80 [-2.1;0.35]

Euro-Cordex 2021 vs p.i. 1.3 [1.1;2.0] -0.29 [-0.74;-0.12]

IPSL-CM6A-LR 2021 vs p.i. 1.2 [1.0;1.4] -0.28 [-0.46;-0.02]

CMIP6 2021 vs p.i. 1.4 [1.2;1.6] -0.36 [-0.52;-0.19]

HighResMip-SST 2021 vs p.i. 1.1 [0.61;1.4] -0.09 [-0.40;0.54]

HighResMip 2021 vs p.i. 1.7 [1.3;3.9] -0.62 [-0.95;-0.21]

Observation TNnGDD350 2 [1.4;3.2] 4.4 [1.3;21] -2.0 [-3.4;-0.38]

Euro-Cordex 2021 vs p.i. 1.1 [0.98;1.3] -0.24 [-0.49;+0.05]

IPSL-CM6A-LR 2021 vs p.i. 1.2 [1.0;1.3] -0.27 [-0.45;-0.07]

CMIP6 2021 vs p.i. 1.1 [1.0;1.2] -0.19 [-0.41;-0.08]

HighResMip-SST 2021 vs p.i. 1.4 [1.1;1.7] -0.54 [-0.94;-0.11]

HighResMip 2021 vs p.i. 1.4 [1.2;1.8] -0.56 [-0.87;-0.21]

3
Figure 7. Time evolution of the median (thick line) and the 10th and 90th percentiles (dashed lines) of the ensembles EURO-CORDEX (75
members) and CMIP6 (45 members) for the indices TNnApr–Jul (red) and TNnGDD250 (blue). Black dots represent the observations from
E-OBS, on panel (a) for EURO-CORDEX, on panel (b) for CMIP6.

ulations, which are the only ones consistent with observed
trends, project that events similar to the 2021 event would
become about half as frequent in a 2 ◦C warming climate.
The other models predict factors ranging from between 3
and 10 times less frequent. In contrast, the growing-period
extreme frost intensity is increasing, and the 2021 event
with a GDD > 250 is projected to have an increasing fre-
quency by about 30 % (10 %–60 %) for a 2 ◦C warmer cli-
mate than preindustrial in EURO-CORDEX, 10 % (0 %–

30 %) for CMIP6 selections and 30 % (10 %–60 %) for High-
ResMIP (coupled).

5 Synthesis, summary and discussion

The individual assessments described above for probability
ratio and intensity changes in the past period are summarized
in Fig. 8. Given the large differences between models and
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Figure 8. Changes between the past and present: summary of observational (blue) and model (red) results for probability ratio (a, c, e, giving
the change in the probabilities between the climate with a 1.2 ◦C cooler global temperature and the current climate, as well as change in
intensity [◦C] (b, d, f) in the three indices, TNnApr–Jul (a, b), TNnGDD250 (c, d) and TNnGDD250-350 (e, f), as averaged over the study
area (see rectangle in Fig. 2b). Extent of the bars gives the two-sided 95 % confidence intervals accounting for internal variability (pink) of
each ensemble and model spread added (white), calculated as explained in Philip et al. (2020), with the black marker indicating the best
estimate. A weighted average of model results is shown in bright red (label “models”). Note that, for the index TNnApr–Jul, only EURO-
CORDEX and HighResMIP-SST passed the validation step, but other models are included in the weighted average for reasons described in
the text.

observations for the growing-period indices TNnGDD250
and TNnGDD250-350, we do not combine the observational
and model results to form a single “synthesis”, but instead
we present the models’ weighted average for comparison
with the observations. In the case of the TNnApr–Jul index,
only two ensembles, EURO-CORDEX and HighResMip-
SST, pass the validation criteria. However, the three addi-
tional models (IPSL-CM6A-LR, CMIP6 and HighResMip)
that validate well for TNnGDD250 and TNnGDD250-350
give similar results to the other ones. Incorporating them in
the weighted average has no impact on the high significance
of the change found and makes the comparison across indices
consistent.

While uncertainties are comparably large for the quanti-
tative assessment of probability ratios, there is a significant
decrease in the likelihood of cold waves as defined above
for TNnApr–Jul. The event that occurred in 2021, taken as
a fixed-season extreme, has become rare, with a return pe-
riod of at least 19 years and with a best estimate of 78 years.
The intensity of a cold wave as observed in April is also de-

creasing by a well-constrained best estimate of 1.2 ◦C. When
considering the lowest temperatures after the growing sea-
son start simulated by the GDD thresholds, models and ob-
servations quantitatively disagree with respect to probability
ratio and intensity, but the qualitative agreement is clear and
shows an increase in the likelihood of damaging frost, as well
as an increase in the intensity across all indices. This is cor-
roborated by the fact that these trends continue under future
warming (see below). This allows for a clear qualitative attri-
bution of these trends to anthropogenic climate change with
the model results serving as lower bounds.

In Fig. 9 we summarize the projected changes in proba-
bility and intensity between the present and +2 ◦C climate,
showing an unweighted average for the three model ensem-
bles EURO-CORDEX, CMIP6 and HighResMIP. We again
use all available models for TNnApr–Jul despite CMIP6 and
HighResMIP ensembles not passing the validation over the
historical period. We do so because (i) all models are in-
cluded for the other two indices, and we do not know how
well they validate for the future, and (ii) no synthesis is
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Figure 9. Projected changes between the present and+2◦C climate. Summary of results for probability ratio (a, c, e) and change in intensity
[◦C] (b, d, f) in the three indices TNnApr–Jul (a, b), TNnGDD250 (c, d) and TNnGDD250-350 (e, f). Extent of the bars gives two-sided 95 %
confidence intervals accounting for variability within the datasets, with the black marker indicating the best estimate. A weighted average of
the results is shown in bright red.

formed, so the unweighted average shown is only of quali-
tative use. Probability ratios are less than unity for TNnApr–
Jul, indicating that the current trend for decreasing frequency
of cold snaps is likely to continue in the future. Projections
indicate a decrease by a factor of about 5 in the type of event
witnessed in 2021. Likewise, the projections for change in
intensity indicate that April–July cold snaps will continue to
warm by a best-estimated increase of about 0.6 ◦C. Growing-
period minimum temperatures with GDD= 250 ◦C d−1 con-
tinue to decrease with a best estimate of about 0.2 ◦C and an
increase in frequency of about 20 %.

While the growing season is starting earlier, necessary
plant dormancy characteristics also change, and the lack of
chilling winter days may delay the bud burst in many species
(Chuine et al., 2016). This effect is not taken into account
here and could alter our results concerning changes in bud
burst dates. Such dates are also dependent on species. We
have tested the dependence on thresholds of a simple GDD
index, which provide similar results than the central thresh-
olds discussed in the synthesis. Dormancy effects, as well as
other specific plant effects, can only be studied through im-
pact models, which was not the goal in this study.

The applicability of our results at a local scale is limited
in quantitative terms. The local station analysis and the trend
histograms show that given locations are more likely to ex-
hibit cooling of extreme growing-period temperatures than
warming, but a warming cannot be excluded at these scales
and at present-day warming levels.

The discrepancy between trends in models and in observa-
tions in the historical periods currently remains unexplained.
It shows that either large variability inhibits an accurate esti-
mation of trends of cold extremes or that other factors come
into play which may not be well simulated such as trends in

radiation or cloudiness as a response to either warming or
aerosols. These factors should be investigated in future stud-
ies.

Above all, the finding that trends identified up until now
continue under future warming indicates that anthropogenic
climate change is an important driver of the observed trends
and suggests that the models indeed underestimate the ef-
fect of change due to forcing factors and that the discrepancy
between observed and simulated trends is not entirely ex-
plainable by unmodelled factors other than human-induced
climate change.

In conclusion, we identify two key attributable effects, the
decrease in likelihood and intensity of minimum tempera-
tures and the increase of likelihood and intensity of minimum
temperatures when conditioned on growing degree indices.
These findings are consistent across the different lines of evi-
dence pursued despite the quantitative differences. The GDD
indices are however a crude representation of the vulnerabil-
ity of different species to frost. Thus, our findings highlight
that growing-season frost damage is a potentially extremely
costly impact of climate change already damaging the agri-
cultural industry, but to inform adaptation strategies for spe-
cific species, impact-based modelling will need to comple-
ment our assessment. Other studies, in particular, have indi-
cated that impacts may be highly variable across locations
and species (Leolini et al., 2018), emphasizing this need.

Code and data availability. All datasets are available from the Cli-
mate Explorer at https://climexp.knmi.nl/francespring_timeseries.
cgi?id=5f4fa945dc278ae21c3c6df2f705243d (last access: 1 Febru-
ary 2023). The freely available Climate Explorer code was used for
the analysis and can be downloaded from Royal Netherlands Me-
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