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Abstract. The change of climate and environmental condi-
tions has obviously affected the evolution and propagation
of drought in river basins. The Hun River basin (HRB) is
a region seriously troubled by drought in China, so it is
particularly urgent to evaluate the evolution of hydrologi-
cal drought and investigate the threshold of triggering hy-
drological drought in the HRB. In this study, the standard-
ized runoff index (SRI) was applied to reveal the evolution
characteristics of hydrological drought. Meanwhile, based
on drought duration and severity identified by the run the-
ory, the copula function with the highest goodness of fit
was selected to calculate the return period of hydrological
drought. Furthermore, the propagation time from meteoro-
logical to hydrological drought was determined by calcu-
lating the Pearson correlation coefficients between 1-month
SRI and multi-timescale standardized precipitation index
(SPI). Finally, based on the improvement of the drought
propagation model, the drought propagation thresholds for
triggering different scenarios of hydrological drought and
its potential influence factors were investigated. The results
show that (1) the hydrological drought showed a gradually
strengthened trend from downstream to upstream of the HRB
from 1967 to 2019; (2) downstream of the HRB were dis-
tricts vulnerable to hydrological drought with longer drought
duration and higher severity; (3) the most severe drought
with drought duration of 23 months and severity of 28.7 had
corresponding return periods that exceed the thresholds of
both duration and severity of 371 and 89 years, respectively;
(4) the propagation time from meteorological to hydrologi-

cal drought downstream of reservoir has been significantly
prolonged; and (5) the drought propagation threshold down-
stream of the HRB was remarkably higher than that upstream
in all drought scenarios. Additionally, midstream showed the
highest drought propagation threshold at moderate and se-
vere drought scenarios, while downstream showed the high-
est drought propagation threshold in the extreme drought sce-
nario.

1 Introduction

Drought is a complex natural disaster caused by the abnor-
mal decrease in precipitation, which can have serious effects
on agriculture, ecology, and social economy (Oladipo, 1985;
Huang and Chou, 2008; Huang et al., 2015; Fang et al., 2019;
Guo et al., 2019). Compared with other natural disasters,
droughts cause much more severe damage than other natural
disasters because of their extensive spatial impact and gen-
erally longer duration (Mishra and Singh, 2010). In the last
few decades, remarkable changes in global climate and envi-
ronment have aggravated the occurrence of hydrological ex-
treme events characterized by drought (Wilhite and Glantz,
2009; Palmer and Räisänen, 2002; Kunkel, 2003; Beniston
and Stephenson, 2004; Christensen and Christensen, 2004;
Leng et al., 2015).

Hydrological drought, usually lagging the occurrence of
meteorological drought, manifests in the case of long-term
lack of precipitation, resulting in the overall water sup-
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ply shortage in terms of river flow, groundwater, and reser-
voir storage (Vicente-Serrano and López-Moreno, 2005; Van
Lanen et al., 2013; Joetzjer et al., 2013). Developing re-
liable drought indices can reliably reveal the hydrological
drought status of the basin (Mishra and Singh, 2011; Wang et
al., 2020). The standardized runoff index (SRI), established
based on runoff variation, is commonly applied in hydrolog-
ical drought evaluation and has been widely used in drought
frequency analysis and drought risk management (Vicente-
Serrano et al., 2012; Rivera et al., 2017; Chen et al., 2018;
Xu et al., 2019; Yang et al., 2020). Therefore, based on
the SRI, the spatiotemporal evolution of drought events can
be analyzed quantitatively. Run theory (Yevjevich, 1967), a
time series analysis method, is widely applied to identify
drought events and extract drought characteristic values, such
as drought duration and severity (Kim et al., 2011; Z. P. Liu
et al., 2016; Z. Y. Liu et al., 2016; Wu et al., 2017; Sun et al.,
2019). The copula function can be suitable to combine multi-
ple drought characteristic variables and provides an effective
method for multivariate frequency analysis (Lee et al., 2013;
Vyver and Bergh, 2018; Dash et al., 2019; Lindenschmidt
and Rokaya, 2019). Thus, once a suitable copula function
is selected to model the joint distribution of drought dura-
tion and drought severity, the return period of hydrological
drought can be estimated, which has significant practical sig-
nificance for regional hydrological drought prediction (Kao
and Govindaraju, 2009; Mirabbasi et al., 2012).

In general, hydrological drought results from the accumu-
lation of meteorological drought conditions. Many scholars
have made lots of attempts to study the relationship between
hydrological drought and meteorological drought (Pandey
and Ramasastri, 2001; Van Loon et al., 2012; Leng et al.,
2015; Barker et al., 2016; Sattar et al., 2019). Amongst these
previous studies, more efforts have been focused on the cal-
culation of drought propagation time (Lorenzo-Lacruz et al.,
2013; Huang et al., 2017; Gevaert et al., 2018). The Pear-
son correlation coefficients between 1-month SRI and multi-
timescale standardized precipitation index (SPI) were calcu-
lated to determine the drought propagation time from me-
teorological drought to hydrological drought. Furthermore,
the timescale of SPI with the highest correlation with the
single-timescale SRI is regarded as drought propagation time
(i.e., PTMH) (Barker et al., 2016; Huang et al., 2017; Fang
et al., 2019). However, there are few studies on the sever-
ity of the meteorological drought that triggers hydrological
drought with different levels. Guo et al. (2020b) explored the
drought propagation thresholds of meteorological drought
for triggering hydrological drought at various levels based on
the copula-based conditional probability model. The duration
and severity of meteorological drought were used to charac-
terize the drought propagation threshold. However, it is not
ideal to use duration or severity of meteorological drought
to represent the drought propagation threshold for trigger-
ing hydrological drought because of its relative absolute
and inconvenient monitoring. Guo et al. (2020a) proposed

a drought propagation threshold model based on Bayesian
networks, which took cumulative precipitation deficit as the
condition and single-timescale SRI as the target to clarify the
impact of large reservoirs on watershed drought tolerance
by calculating cumulative deficit rainfall, triggering differ-
ent levels of hydrological drought. However, although single-
timescale SRI can capture hydrological regime changes sen-
sitively and accurately, a severe drought event usually lasts
for several months. Therefore, it is not accurate to take
the cumulative precipitation deficit calculated with a single-
timescale SRI as the threshold for triggering hydrological
drought in the drought propagation threshold model. Also,
it is highly necessary to select appropriate hydrological and
meteorological drought factors as targets and conditions to
improve the drought propagation threshold model so as to
obtain a more accurate propagation threshold for triggering
different scenarios of hydrological drought.

In view of this, this paper adopted the SRI to study the
hydrological drought in the HRB. The primary objectives of
this paper are

1. to reveal the spatiotemporal evolution characteristics of
hydrological drought,

2. to select the best-fit copula and calculate the hydrologi-
cal drought return period,

3. to determine the PTMH, and

4. to establish a drought propagation threshold model
based on a Bayesian network to determine the prop-
agation thresholds for triggering different scenarios of
hydrological drought.

2 Study region and data

The HRB, as presented in Fig. 1, is located in Liaoning
Province, NE China, and covers an area of 11 481 km2,
among which the hilly area occupies 67 %, and plain area
33 %. The basin belongs to the temperate semi-humid and
semi-arid monsoon climate, with four distinct seasons and
the same season of rain and heat and weak climate differ-
ences within the basin. The warm and wet air flow from
the low-latitude tropical monsoon circulation prevails in the
summer and brings more rainy days, while the Siberia–
Mongolia high-pressure dry, cold continental air flow occurs
during the winter, with prevailing north wind and northwest
wind, resulting in low temperature and less precipitation. The
multi-year average precipitation is approximately 780 mm,
with obvious seasonal characteristics, and the precipitation
in the main flood season (July to August) accounts for about
48.5 % of the annual precipitation.

The Dahuofang (DHF) reservoir, located in the middle
and upper reaches of the HRB, is a large-scale water con-
trol project, with a total storage capacity of 2.268 billion cu-
bic meters. The DHF reservoir plays a vital function in flood
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control and water supply, as well as power generation and
fish farming. Since the opening of the DHF reservoir in 1958,
the irrigation, the river ecosystem of the region, and the hy-
drological condition of the river channel have been greatly af-
fected. Four hydrological stations in the HRB were selected
from upstream to downstream, Beikouqian (BKQ), Dahuo-
fang (DHF), Shenyang (SY), and Xingjiawopeng (XJWP),
to explore the spatial distribution of hydrological drought in
this study. The locations of the four hydrological stations are
shown in Fig. 1. The BKQ is located upstream of the DHF
reservoir, while SY and XJWP are successively arranged
downstream of the DHF reservoir. The four hydrological sta-
tions selected are located downstream of each basin, so the
hydrological information of each basin can be reflected by
the status of the corresponding hydrological stations (Fu et
al., 2004). They represent the hydrological conditions above
BKQ, from BKQ to DHF, from DHF to SY, and from SY
to XJWP. The monthly runoff data of these four hydrological
stations and monthly precipitation data of the 20 meteorolog-
ical stations during 1967–2019 were adopted in this study,
which were collected from the hydrological data of Liao
River basin from the Year Book of Hydrology PR China.
Among them, the runoff data of the DHF station is the in-
flow runoff of the DHF reservoir. Additionally, the Thiessen
polygon method was applied to calculate the precipitation of
meteorological stations to get the corresponding area precip-
itation of each hydrological station.

3 Methodology

In this study, SRI and SPI were employed to characterize me-
teorological drought and hydrological drought, respectively
(McKee et al., 1993; Shukla and Wood, 2008). Run the-
ory was applied to the SRI-1 series to identify hydrologi-
cal drought events and capture their corresponding drought
characteristic values, drought duration, and severity. SRI
and drought characteristic values were implied to quanti-
tatively reveal the evolution characteristics of hydrological
drought. Meanwhile, the copula functions with the highest
goodness of fit were selected to establish the joint distribu-
tion of drought duration and drought severity and calculate
the return period of hydrological drought. The Pearson cor-
relation coefficients between SRI-1 and multi-timescale SPI
were calculated to determine the PTMH. Based on the PTMH
and drought duration, the cumulative precipitation deficit of
each hydrological drought event was determined, which was
applied to characterize meteorological drought. Drought du-
ration and severity were used to describe a single hydrolog-
ical drought event. Then, based on the copula function and
Bayesian model, a improvement drought propagation thresh-
old model was established, including the cumulative precipi-
tation deficit, drought duration, and drought severity. Finally,
the drought propagation threshold interval would be deter-
mined according to the magnitude of the conditional prob-

Table 1. Definition of drought conditions based on the SPI (SRI).

State Condition Criterion

1 Non-drought SPI (SRI)> − 0.5
2 Mild drought −1.0<SPI (SRI)≤−0.5
3 Moderate drought −1.5<SPI (SRI)≤−1.0
4 Severe drought −2.0<SPI (SRI)≤−1.5
5 Extreme drought SPI (SRI)≤−2.0

ability of occurrence of hydrological drought events under
different cumulative precipitation deficit conditions.

3.1 Standardized precipitation index (SPI) and
standardized runoff index (SRI)

SPI was proposed by McKee et al. (1993) to characterize
the drought conditions in Colorado, USA, and it has been
recommended by the World Meteorological Organization as
the primary meteorological drought index to be used. SRI
was proposed by Shukla and Wood (2008) to reflect drought
from the perspective of hydrology. Both SPI and SRI, estab-
lished based on historical precipitation and runoff data re-
spectively, can monitor droughts over a range of timescales.
SPI and SRI were calculated in similar calculation proce-
dures, in which gamma distributions were used to describe
the variation in precipitation and runoff, respectively. The cu-
mulative probability of precipitation/runoff can be obtained
based on gamma distribution, and then cumulative probabil-
ity was converted to the standard normal distribution to ob-
tain SPI and SRI values. More details on the calculation can
be found in Huang et al. (2017). According to the SPI and
SRI values, droughts are classified into five classes. The cri-
teria are shown in Table 1.

3.2 The modified Mann–Kendall trend test method

The Mann–Kendall (M–K) trend test (Mann, 1945; Kendall,
1990), a non-parametric statistical testing method, is widely
used to access the trends of hydrological variables. The M–
K method assumes that the data are independent and ran-
domly ordered. However, the SRI series are autocorrelated,
which influences the significance of the test results. The mod-
ified Mann–Kendall (MMK) trend test method can elimi-
nate the autocorrelation components in the sequence and im-
proves the testing ability of the M–K method (Hamed and
Rao, 1998; Longobardi et al., 2021). Therefore, this paper
adopted the MMK method to investigate the trend character-
istics of hydrological drought in the HRB during 1967–2019
with the significance level of 0.05 and the corresponding
|U | = 1.96. The calculation procedure of the MMK method
was described in Longobardi et al. (2021).
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Figure 1. Locations of the HRB, DHF reservoir, and meteorological and hydrological stations.

3.3 Drought identification and copula estimation

Run theory is a time series analysis method which is widely
applied to identify drought events and extract drought char-
acteristic values (Yevjevich, 1967; Zhao et al., 2017; Sun
et al., 2019). It is worth mentioning that in the process of
drought recognition, some severe drought events may be in-
terrupted by some non-drought events with short drought du-
ration, causing severe drought events to be divided into sev-
eral less severe drought events, thus weakening the impact of
drought. Therefore, optimizing the threshold level of drought
recognition is crucial to improve the accuracy of run the-
ory in drought analysis (Wang et al., 2020). In this paper,
based on the three thresholds SRI0 (−0.5), SRI1 (−1.0), and
SRI2 (0.0), the run theory was used to identify three drought
characteristics, namely drought event, duration, and sever-
ity, from the 1-month scale SRI sequence. Figure 2 shows
the process of drought recognition based on the threshold
method, and the specific identification process is as follows.

1. Drought characteristics are considered to appear when
the SRI value is less than SRI0. Hence, it is prelimi-
narily determined that drought occurs during the period
from t1 when the SRI value is equal to or less than SRI0
to t2 when the SRI value is equal to SRI0 or even larger.
The run duration (i.e., t2− t1) and the absolute value of
the accumulated SRI during the drought are identified as
drought duration (D) and drought severity (S), respec-

Figure 2. Drought identification process and definition of drought
characteristic variables.

tively. For example, five drought processes (i.e., a, b, c,
d, and e) can be recognized in Fig. 2.

2. On the basis of (1), if a drought has a duration of just
1 month, it is considered a drought event only when its
corresponding SRI value is less than SRI1, otherwise it
is not (c).

3. If a drought event (e) occurs 1 month later than the pre-
ceding one (d), and the SRI value in between is less than
SRI2, these two drought events (d and e) are regarded as
one combined drought event, otherwise they are consid-
ered two independent drought events. The severity and
duration of the combined drought event are S = Sd+Se
and D =Dd +De+ 1, respectively.
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The sequences of drought duration and severity deter-
mined by the run theory were then fitted by five common
functions, including gamma (GAM), generalized extreme
value (GEV), exponential (EXP), lognormal (Logn), and
Weibull (WBL) distributions (Rad et al., 2017; Wang et al.,
2020). Furthermore, Kolmogorov–Smirnov (K–S) (Hand,
2005), root mean square error (RMSE), and Akaike infor-
mation criteria (AIC) (Akaike, 1974) tests were employed
to identify the best-fit marginal distribution functions. The
copula function is a multidimensional joint distribution func-
tion defined in [0, 1] and can integrate marginal distributions
of several dependent random variables to structure a joint
probability distribution with multiple features. Previous stud-
ies have proven that the copula function is a high-efficiency
tool for multivariate probability analysis of drought (Hao and
Singh, 2015; Salvadori and De Michele, 2015; Ren et al.,
2020). Its equation is expressed as follows:

C(u,v)= ϕ−1 (ϕ (u), ϕ (v)) , (1)

where C(u,v) represents the copula function combining two
random variables u and v, and ϕ is convex function.

In this study, according to the univariate empirical fre-
quency of drought duration and severity, three typical
drought scenarios were selected to analyze the return peri-
ods. The scenarios corresponding to the univariate cumula-
tive empirical frequency intervals of [0.5, 0.75), [0.75, 0.95)
and [0.95, 1] were defined as moderate, severe, and extreme
drought, respectively. The dependency structures of drought
duration and severity were modeled with the commonly used
binary copula functions, including Gumbel–Hougaard, Clay-
ton, Frank, t , and normal (Lee et al., 2013; Wang et al., 2020).
K–S, RMSE, AIC, and Cramér–von Mises (C–M) (Genest et
al., 2011; Rad et al., 2017) tests were applied to select the
best copula function with the highest goodness of fit (GOF).
In addition, several joint probability expressions correspond-
ing to bivariate return periods were used to further explore
the occurrence frequency of hydrological drought. The ex-
pressions of joint probability are defined as (Shiau, 2006;
Kwon and Lall, 2016)

Tand =
E(L)

P [(D > d)∩ (S > s)]
,

=
E(L)

1−FD (d)−FS (s)+F (d,s)
, (2)

Tor =
E(L)

P [(D > d)∪ (S > s)]
=

E(L)

1−F (d,s)
, (3)

where E(L) denotes the expected value of drought interval,
and FD(d) and FS(s) are marginal cumulative density func-
tions of drought duration and severity, respectively. F(d,s) is
the joint distribution function of drought duration and sever-
ity. Tand is the return period of drought events that both ex-
ceed the thresholds of duration (D ≥ d) and severity (S ≥ s),
and Tor is the return period of drought events that exceed the
threshold of duration (D ≥ d) or severity (S ≥ s).

3.4 The drought propagation time

In general, hydrological drought is a response to the accumu-
lation of meteorological drought conditions. Generally, the
change of hydrological regime can be characterized sensi-
tively by the single-timescale SRI, and the accumulation of
meteorological drought in the preceding n months can be re-
flected by the n-timescale SPI. The timescale of SPI with the
highest correlation with the single-timescale SRI is regarded
as drought propagation time (Barker et al., 2016; Fang et al.,
2019). Therefore, Pearson correlation between monthly scale
SRI and multi-timescale SPI (1–24 months) was adopted in
this study to determine the PTMH, which is denoted as TP.

3.5 The calculation of drought propagation threshold

In order to obtain more accurate propagation threshold trig-
gering hydrological drought in different scenarios, we im-
proved the drought propagation threshold model based on
a Bayesian network model by selecting appropriate hydro-
logical and meteorological drought factors in this study. Be-
fore analyzing joint probability and Bayesian networks, the
marginal distribution must be determined. In this study, the
drought duration (D) and severity (S) and cumulative pre-
cipitation deficit (CPD, mm) of each drought event were
selected to describe the hydrological and meteorological
drought, respectively. The D and S of each drought event
were identified from the SRI-1 sequence based on the run
theory. The CPD is the cumulative precipitation deficit of
each hydrological drought event during the PTMH, which
is defined as

CPDn = −
(∑t

i=min(t−TPt+1)

(
Pi −Pm

)
+

D∑
i=t+1

(
Pi −Pm

))
D ≥ t ≥ 1,

(4)

where CPDn is the corresponding CPD for the nth drought,
Pi denotes the precipitation during the period of i, Pm rep-
resents the multi-annual average monthly precipitation of
the actual mth month corresponding to i, TPt refers to the
drought propagation time of the month represented by t (i.e.,
when t equals 3 but the actual month is February, TPt refers
to the drought propagation time of February), and D is the
drought duration of the nth drought event. To make the cal-
culation process of CPD clearer, Fig. 3 was drawn to further
explain Eq. (4). As shown in Fig. 3, it is assumed that the nth
drought event occurred in February 2002 with the drought
duration of 3 months (February to April). At the same time,
it is assumed that drought propagation time of February,
March, and April is 9, 6, and 9 months, respectively. Ac-
cording to Eq. (4), when t is equal to 1 (corresponding to
February 2001), combined with the drought propagation du-
ration of February being 9 months, it is believed that precip-
itation conditions affecting this drought can be traced back
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to June 2001, as shown in Fig. 3. Similarly, when t equals 2
and 3 (corresponding to March and April 2002), the precip-
itation affected the drought dates back to October and Au-
gust 2001, respectively. Taking the above into consideration,
when t is equal to 1, the precipitation that affects this drought
can be traced furthest, so the CPD of this drought event is
the absolute value of the sum of monthly precipitation mi-
nus their monthly average precipitation from June 2001 to
March 2002.

A Bayesian network, a probabilistic graph model, is
widely used in drought impact assessment (Sattar et al.,
2019; Guo et al., 2020a). Therefore, a threshold model of
drought propagation based on a Bayesian network is estab-
lished in this study. Suppose X (x1, x2 . . . , xn) and Y (y1,
y2 . . . , yn) are two random variables, with X and Y as con-
ditions and targets, respectively. Then, in the case of X ≥ u,
the probability of Y ≥ v can be expressed as

P (Y ≥ v|X ≥ u)=
P (X ≥ u,Y ≥ v)

P (X ≥ u)

=
1− x (u)− y (v)+C (x (u),y (v))

1− x (u)
, (5)

where C(x(u), y(v)) represents the joint cumulative prob-
ability of X ≤ u and Y ≤ v, x(u) and y(v) denote the cu-
mulative probability of X ≤ u and Y ≤ v, and x and y are
the marginal cumulative distribution of two random variables
X and Y . In addition, when u2 ≥X ≥ u1, the probability of
Y ≥ v is expressed as

P (Y ≥ v |u1 ≤X ≤ u2)=
P (Y ≥ v,u1 ≤X ≤ u2)

u1 ≤X ≤ u2

=
x (u2)− x (u1)−C (x (u2) ,y (v))+C (x (u1) ,y (v))

x (u2)− x (u1)

= 1−
C (x (u2) ,y (v))−C (x (u1) ,y (v))

x (u2)− x (u1)
,

(6)

where u1 and u2 are the upper and lower limits of the given
interval.

Figure 4 shows the schematic diagram for determin-
ing drought propagation thresholds based on bivariate cop-
ula functions and Bayesian networks. Figure 4a shows the
graphical model of the Bayesian network. It describes the
causal relationships among the CPD, D, S, and hydrological
drought levels (HDLs). HDL includes three drought scenar-
ios defined in Sect. 3.3 in terms of univariate empirical fre-
quencies of drought duration and severity, which are mod-
erate, severe, and extreme drought. The response variable
here is hydrological drought with two components D and S,
and the feature variable that characterizes the response vari-
able is CPD. Figure 4b shows the selection of the probabil-
ity distributions of D (S) and CPD and the determination of
their joint distributions. As Fig. 4b showed, according to the
method of determining the marginal distribution described in

Sect. 3.3, the best-fit marginal distribution functions of D,
S, and CPD under three drought scenarios were identified.
The commonly used bivariate theoretical copula functions,
including Clayton, Frank, and Gumbel copulas, were con-
sidered for modeling the dependence structure between CPD
and D (S). Furthermore, K–S, C–M, RMSE, and AIC tests
were applied to select the GOF copula function. Then, the
joint distributions of CPD andD (S) under three drought sce-
narios were established based on the GOF copula functions.
Figure 4c expresses the process of determining CPD thresh-
olds for triggering multiple hydrological drought scenarios.
As shown in Fig. 4c, in this model, the D and S of each
drought event are taken as the target, respectively, and the
corresponding CPD is identified as the condition. According
to Eqs. (5) and (6), the conditional probability of hydrolog-
ical drought under different CPD conditions would be cal-
culated for different scenarios. Generally, as the accumula-
tion of meteorological drought, the probability of occurrence
hydrological drought will be infinitely close to 1. The con-
fidence level in this study is 0.95, which means while the
conditional probability is equal to or greater than 0.95, the
corresponding CPD will be taken as the meteorological trig-
gering conditions of hydrological drought in this scenario.

4 Results and discussions

4.1 Spatiotemporal evolution of hydrological drought

Figure 5 depicts the temporal variation trend of hydrological
drought based on the SRI-1 in the HRB from 1967 to 2019,
which presented different temporal evolution characteristics
in upstream and downstream of the reservoir. It is clear from
Fig. 5a, b that the temporal evolution characteristics of the
SRI-1 sequence in BKQ and DHF were similar, showing a
non-significant downward trend, indicating that drought in
DHF and BKQ has a slight increasing trend. The significant
strengthening trend of drought occurred from March 1991
to October 2004, with an average SRI value of −0.29 and
−0.48 and minimum of −1.81 and −3.33, respectively. Fig-
ure 5c, d show that the temporal evolution characteristics
of hydrological drought were similar without obvious trend
characteristics in SY and XJWP. Droughts occurred mainly
from May 1977 to April 1984, November 1988 to July 1993,
and March 2000 to March 2005 in SY, with an average SRI
value of −0.56, −0.50, and −0.83, respectively. Similarly,
droughts occurred mainly from May 1977 to April 1984,
November 1988 to July 1993, and March 2000 to Septem-
ber 2003 in XJWP, with an average SRI value of −0.84,
−0.57, and −0.70, respectively.

The multi-timescale SRI applies to describe the mean hy-
drological regime during the preceding few months. There-
fore, the SRI-3 and SRI-12 were calculated to analyze the
seasonal and annual variation trend of hydrological drought.
The SRI-3 values in February, May, August, and Novem-

Nat. Hazards Earth Syst. Sci., 22, 995–1014, 2022 https://doi.org/10.5194/nhess-22-995-2022



S. Yue et al.: Hydrological drought in the Hun River basin 1001

Figure 3. The schematic diagram of determining the CPD.

Figure 4. The schematic of determining the drought propagation threshold based on bivariate copula functions and the Bayesian network.
(a) The graphical model of the Bayesian network about CPD, D, S, and HDL. (b) Selecting the probability distributions of D (S) and CPD
and determinating their joint distributions. (c) Quantifying the CPD threshold under multiple drought scenarios.

ber were applied to describe the variations in hydrological
drought in winter, spring, summer, and autumn, respectively.
It is worth mentioning that the irrigation and river ecolog-
ical water that occurs from May to August is supplied by
the reservoir through the river channel, which affects the
river runoff. Therefore, this paper considers the water sup-
ply period (WS–P) to be from May to August and the stor-
age period (S–P) from September to April of the following
year. Meanwhile, the SRI-4 values in August and SRI-8 val-
ues in April were applied to describe the variations in hy-
drological drought in WS–P and S–P, respectively. Figure 6
presents the temporal variation in hydrological drought on

seasonal scales, WS–P and S–P in the HRB from 1967 to
2019. From the seasonal perspective, the drought trend was
different in sub-regions, with the linear slope of SRI chang-
ing from −0.167/10 to 0.469/10 years. SRI showed a de-
creasing trend in summer, autumn, and winter in BKQ, with
the linear slope of SRI being −0.167/10, −0.053/10, and
−0.142/10 years, which indicated that drought was aggra-
vating in summer, autumn, and winter. SRI showed a de-
creasing trend in spring, summer, and autumn in DHF, with
the linear slope of SRI being −0.026/10, −0.008/10, and
−0.050/10 years, which indicated that drought was aggra-
vating in spring, summer, and autumn. The linear slope of
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Figure 5. Temporal variation in hydrological drought based on monthly scales in the HRB during 1967–2019. Panels (a)–(d) show BKQ,
DHF, SY, and XJWP, respectively.

SRI was 0.167/10 and 0.208/10 years in spring and winter
and−0.054/10 and−0.079/10 years in summer and autumn
in SY, indicating that drought was strengthening in sum-
mer and autumn and decreasing in spring and winter. Sim-
ilar to the temporal characteristics of SY, drought showed a
strengthening trend in summer and autumn and a decreas-
ing trend in spring and winter in XJWP, with the linear
slope of SRI being −0.083/10, −0.089/10, 0.319/10, and
0.469/10 years. From the WS–P and S–P perspective, the
drought trends were different in sub-regions at different peri-
ods. It can be observed from Fig. 6 that SRI showed a de-
creasing trend in both WS–P and S–P, while the decrease
was greater in WS–P than S–P in BKQ and DHF. Further-
more, SRI showed a decreasing trend in S–P and an increas-
ing trend in WS–P at both SY and XJWP. Considering the
above information, the drought was aggravating in BKQ and
DHF, while the drought was weakening in SY and XJWP at
WS–P.

In order to further explore the temporal evolution charac-
teristics of hydrological drought, the trend characteristic U
values of the MMK trend test of multi-timescale SRI were
calculated. Table 2 shows the calculation results of trend
characteristic value U at the seasonal scale, WS–P, S–P, and
annual scale. It is clear from Table 2 that the characteristics
of drought trends in different periods and stations are obvi-
ously different. On the annual scale, the U values of BKQ,
DHF, SY, and XJWP stations were −2.26, −1.58, −0.34,
and −0.10, indicating a significant strengthening trend of
drought in the HRB. In addition, the drought trend gradually
increased from the lower reaches to the upper reaches and
strengthened significantly in BKQ. On the seasonal scale, the

U values of each sub-basin in summer and autumn were less
than zero, which indicated that drought was strengthening in
summer and autumn in the HRB. Furthermore, the U val-
ues of BKQ and XJWP in summer were less than −1.96,
which indicated that drought was significantly strengthen-
ing in summer at BKQ and XJWP. The U values of BKQ
in spring and winter were 2.14 and−2.24, respectively, indi-
cating that drought showed a weakening trend in spring and
a strengthening trend in winter, both of which reached a sig-
nificant level. The U values of DHF were less than zero in
spring and winter, which indicated that drought showed a
strengthening trend in spring and winter at DHF. However,
the U values of SY and XJWP stations were 3.04, 2.76, 3.30,
and 9.90 in spring and winter, respectively. These trend char-
acteristic U values passed the significance test, indicating
that the drought showed a significant strengthening trend in
spring and winter at the SY and XJWP of the HRB. From the
WS–P and S–P perspective, the U values of each sub-basin
in S–P were less than zero, which indicated that drought was
strengthening in S–P at the HRB. The U values of WS–P
were less than zero in BKQ and DHF, while they were greater
than zero in SY and XJWP. In addition, the trend characteris-
tic U values of BKQ and XJWP passed the significance test.
Thus, the drought showed a strengthening trend at BKQ and
DHF, while it showed a weakening trend at SY and XJWP in
WS–P, which can be confirmed with the conclusions of the
previous section.

Based on the run theory, three drought factors, namely
drought events, duration, and severity, were identified from
the 1-month scale SRI sequence. Drought events which were
detected sum up to 186 in four districts of the HRB during
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Table 2. U values of SRI at different scales in the HRB during 1967–2019.

Sub-region BKQ DHF SY XJWP

U value Trend U value Trend U value Trend U value Trend

Spring 2.14 upward −0.61 downward 3.04 upward 2.76 upward
Summer −2.67 downward −0.71 downward −1.94 downward −2.41 downward
Autumn −1.17 downward −1.14 downward −1.48 downward −1.45 downward
Winter −2.24 downward −0.02 downward 3.30 upward 9.90 upward
WS−P −2.61 downward −0.39 downward 0.28 upward 4.18 upward
S−P −1.35 downward −0.95 downward −1.57 downward −1.73 downward
Year −2.26 downward −1.58 downward −0.34 downward −0.10 downward

The bold letters denote that the Uvalues passed the MMK trend test of α = 0.05.

1967–2019. DHF was most frequently affected by drought,
with a total of 57 drought events, followed by BKQ, XJWP,
and SY with 53, 39, and 37 drought events, respectively. The
box chart of drought duration and severity was drawn, and
the spatial distribution of drought was discussed (Fig. 7). Fig-
ure 7 shows that the districts with a mean of drought dura-
tion of more than 5 months included SY and XJWP, where
the mean of drought duration differs greatly from the me-
dian. Furthermore, the mean of drought duration in BKQ
and DHF was smaller than that of SY and XJWP, and the
difference between their mean and median was small. Be-
sides, SY and XJWP experienced extremely long and per-
sistent drought events lasting more than 20 and 23 months,
respectively. Taking the above two points into consideration,
the drought duration downstream (BKQ and DHF) of the
reservoir is longer than that upstream (SY and XJWP), and
downstream is more likely to experience long-duration ex-
treme drought events. Drought severity and drought duration
maintained a highly consistency. The mean drought sever-
ity of drought events downstream of the reservoir was higher
than that upstream, and the drought events with the maxi-
mum severity occurred in XJWP (Fig. 7). In summary, the
downstream district of the reservoir was vulnerable to hy-
drological drought, whereas the drought duration and sever-
ity were more serious than upstream. Nevertheless, the up-
stream district of the reservoir was more sensitive to short-
duration drought, which was dominated by 2-month and 3-
month drought events.

4.2 Return period analysis

In order to grasp the occurrence frequency of hydrological
drought in the HRB, the recurrence was analyzed by cal-
culating the return period. In this study, five common func-
tions including gamma, EXP, GEV, Logn, and WBL were
used to fit the sequence of duration and severity of hydro-
logical drought events in the three sub-basins of the HRB.
AIC, RMSE, and K–S tests were applied to select the best-fit
marginal distribution, and the results are shown in Table 3.
Table 3 illustrates that the optimal distribution for different

drought characteristics passed the K–S test (α = 0.05) in all
four sub-regions. The joint distribution of drought duration
and severity in the HRB was determined with the application
of copula functions. According to the values of K–S, C–M,
RMSE, and AIC, the GOF copula functions were selected as
the best joint distribution of drought duration and severity in
the HRB (Table 4).

Figure 8 shows the contour plots of return period levels
of drought events based on the optimal copula, and the re-
turn period Tand and Tor of drought events in each sub-region
can be observed. The drought return period increased with
the increase in drought duration and severity in the HRB.
For the same drought event, return period Tand would be
higher than Tor. Meanwhile, regarding the same return pe-
riod, drought duration and severity from large to small were
SY, BKQ, DHF, and XJWP. In BKQ, the drought occurring
from December 1981 to October 1982 was the most severe,
lasting 11 months, with severity of 11.5, and the return peri-
ods Tand and Tor were 46 and 11 years, respectively. In DHF,
the drought occurring from September 2001 to July 2002 was
the most severe, lasting 11 months, with severity of 16.2,
and return periods Tand and Tor were 33 and 17 years, re-
spectively. In SY, the most severe drought happened from
May 2000 to November 2001, lasting 19 months, with sever-
ity of 24.1, and return periods Tand and Tor were 152 and
24 years, respectively. Similarly, the drought occurring from
August 1981 to June 1983 was the most severe in XJWP, last-
ing 23 months, with severity of 28.7, and return periods Tand
and Tor were 371 and 89 years, respectively.

Table 5 exhibits the drought return periods Tand and Tor
under different drought scenarios and their corresponding
drought duration and drought severity in BKQ, DHF, SY, and
XJWP. For moderate drought, the return periods Tand and Tor
had similar regularity in BKQ, DHF, SY, and XJWP, with the
largest value in SY, followed by XJWP, DHF, and BKQ. The
distribution of Tand and Tor about severe and extreme drought
was consistent in BKQ, DHF, SY, and XJWP, which showed
that SY has the highest return period Tor, followed by XJWP,
DHF, and BKQ, while the return period Tand in XJWP was
greater than in SY, BKQ, and DHF. It should be noted that

https://doi.org/10.5194/nhess-22-995-2022 Nat. Hazards Earth Syst. Sci., 22, 995–1014, 2022



1004 S. Yue et al.: Hydrological drought in the Hun River basin

Figure 6. Temporal variation in hydrological drought at seasonal scales in the HRB from 1967 to 2019. Panels (a)–(d) show BKQ, DHF, SY,
and XJWP, respectively.

the drought presented the characteristics of a smaller return
period with low drought duration and small severity down-
stream of the reservoir. It is foreseeable that downstream
of the reservoir will be more likely to suffer from serious
drought events with long duration.

4.3 The propagation from meteorological to
hydrological drought

Based on the superiority of SPI that it can be calculated at
multi-timescales, the Tp values were determined by calculat-
ing the Pearson correlation coefficient between the monthly

Nat. Hazards Earth Syst. Sci., 22, 995–1014, 2022 https://doi.org/10.5194/nhess-22-995-2022



S. Yue et al.: Hydrological drought in the Hun River basin 1005

Table 3. Optimum marginal distribution function of drought characteristics (D, S, and CPD).

Sub-region Drought Optimal AIC RMSE K–S
characteristics distribution

BKQ Duration (D) EXP −283.37 0.068 0.190∗

Severity (S) Logn −310.04 0.053 0.123∗

CPD GAM −374.31 0.029 0.062∗

DHF Duration (D) EXP −333.89 0.053 0.094∗

Severity (S) GEV −386.58 0.033 0.072∗

CPD WBL −404.9 0.028 0.061∗

SY Duration (D) EXP −204.75 0.061 0.148∗

Severity (S) GEV −249.64 0.033 0.098∗

CPD GEV −239.9 0.038 0.098∗

XJWP Duration (D) GEV −239.43 0.045 0.105∗

Severity (S) Logn −251.49 0.039 0.106∗

CPD GEV −236.55 0.047 0.113∗

Asterisks denote that the optimal distribution passed the K–S test of α= 0.05.

Table 4. GOF evaluation of different copula functions about drought duration and severity in the HRB.

Copulas GOF test BKQ DHF SY XJWP

Clayton K–S 0.122 0.119 0.129 0.115
C–M 0.151 0.14 0.079 0.084
RMSE 0.053 0.049 0.046 0.046
AIC −308.51 −340.68 −225.69 −237.35

Gumbel–Hougaard K–S 0.13 0.092 0.099 0.141
C–M 0.144 0.079 0.058 0.098
RMSE 0.052 0.037 0.04 0.05
AIC −311.13 −373.13 −237.05 −231.59

Frank K–S 0.124 0.103 0.109 0.138
C–M 0.133 0.094 0.051 0.089
RMSE 0.05 0.041 0.037 0.048
AIC −315.51 −363.3 −241.88 −235.26

Normal K–S 0.302 0.091 0.107 0.131
C–M 1.147 0.082 0.056 0.088
RMSE 0.147 0.038 0.039 0.048
AIC −201.14 −371.35 −238.47 −235.51

t K–S 0.236 0.091 0.106 0.126
C–M 1.05 0.08 0.059 0.088
RMSE 0.141 0.038 0.04 0.048
AIC −205.83 −372.16 −236.11 −235.6

Bold letters represent the optimal copula functions.

SRI and the multi-timescale SPI. The Tp was indicated by
the month with the strongest correlation. However, the cor-
relation is high for a large variety of SPI timescales in some
months, which makes the identification of Tp values highly
uncertain. Therefore, in order to overcome this issue, the un-
certainty of the correlation coefficients was calculated, and
the Tp was expressed on the SPI timescale with strong cor-
relation and low uncertainty. The Pearson correlation coef-

ficient and the Tp of BKQ, DHF, SY, and XJWP are shown
in Fig. 9. It can be seen from Fig. 9 that the Tp of SY and
XJWP was significantly higher than that of BKQ and DHF
in all months. As shown in Fig. 1, the BKQ and DHF are
located in the eastern part of the HRB with mountainous ter-
rain, while SY and XJWP are in the western plain. The slope
of BKQ and DHF is greater than that of other sub-basins,
indicating that the underlying surface has less water reten-
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Table 5. The drought return periods Tand and Tor under different drought scenarios and their corresponding drought factors in the HRB.

Sub-region Drought scenario Tand Tor Drought duration Drought severity
(year) (year) (month)

BKQ Moderate drought 2.2 1.8 3 3.3
Severe drought 5.0 3.4 6 5.3
Extreme drought 49.6 12.8 13 10.4

DHF Moderate drought 2.3 1.7 3 2.6
Severe drought 4.5 3.1 5 4.3
Extreme drought 22.8 14.9 11 11.9

SY Moderate drought 3.3 2.7 4 2.8
Severe drought 6.7 4.8 7 5.3
Extreme drought 71 18.6 16 20.7

XJWP Moderate drought 3.2 2.6 4 3.5
Severe drought 7.3 4.4 6 6.1
Extreme drought 79 16.3 13 13.8

Figure 7. Box chart of duration and severity of hydrological
drought.

tion and buffer capacity than other regions. Meanwhile, the
runoff process in the downstream of the reservoir can be re-
distributed on the spatial and temporal scale through the op-
eration of the reservoir (Shiklomanov et al., 2000; Chang et
al., 2019). Therefore, under the combined action of stronger
water retention and buffer capacity and the redistribution of
runoff processes by DHF reservoir operation, the Tp of SY
and XJWP was higher than that of other regions.

In order to further reveal the changes of Tp, the Tp in dif-
ferent periods is calculated. Figure 10 expresses the results
of the Tp including the four seasons, WS–P, S–P, and full
series (F series) in the four regions in the HRB. It is clear
from Fig. 10 that, from the point of view of the F series, the
Tp of SY (17.2 months) and XJWP (15.8 months) was obvi-
ously higher than the DHF’s (4.5 months), which indicates
that the Tp in the area downstream of the DHF reservoir was
significantly postponed. In order to explore the reasons for
the postponement of Tp, the evolution of the meteorological
factor was explored. The annual precipitation and its varia-
tion trend in the control areas of four hydrological stations

during 1967–2019 are shown in Fig. 11. It was clear from
Fig. 11 that there was no significant trend in annual precip-
itation in four sub-regions during 1967–2019, implying that
the prolonged drought propagation is not due to the change
of meteorological factors. Meanwhile, as Fig. 10 showed, the
Tp of BKQ (4.5 months) was equal to DHF’s, whilst obvi-
ously lower than that of SY and XJWP. Therefore, the con-
struction and operation of the DHF reservoir are the main
reasons for the significant extension of Tp downstream of
the reservoir. Many studies have also confirmed the impact
of reservoir operation on hydrological drought (Wu et al.,
2016, 2018; Wang et al., 2019). Moreover, the Tp of SY was
higher than XJWP’s, implying that the improvement effect
is weaker with the rising of the interval from hydrological
stations to the DHF reservoir.

Similar to the F series, the Tp of SY and XJWP was ob-
viously higher than BKQ’s in the four seasons, while the Tp
of DHF was not significantly different from that of BKQ.
Meanwhile, on the whole, the seasonal variations in Tp in
DHF, SY, and XJWP were brought into line with that of
BKQ, showing long Tp in spring and winter and short Tp
in summer and autumn. Vegetation can consume more wa-
ter through evapotranspiration during the season with higher
temperatures. Higher temperatures in summer and autumn
may be the reason for the relatively long Tp of spring and
winter. In addition, there is a large amount of snow in winter,
and most of the snow melts in the next spring in the HRB.
Therefore, the longer Tp in winter and spring may be caused
by the lower temperature in spring and winter and the melt-
ing of snow in spring. In addition, it is worth mentioning
that the Tp of XJWP was longer than that of SY in sum-
mer compared to other seasons. This change indicated that
the duration of drought propagation at XJWP in summer was
prolonged, which may be due to the partial agricultural wa-
ter supply from the DHF reservoir directly reaching down-
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Figure 8. The return periods Torand Tand of 1-month-scale drought events in BKQ (a, e), DHF (b, f), SY (c, g), and XJWP (d, h).

Figure 9. The correlation between monthly SRI and multi-timescale SPI and the Tp in BKQ (a), DHF (b), SY (c), and XJWP (d).

stream (XJWP) through channels without passing through
SY in summer.

For S–P, the Tp of SY and XJWP was longer than BKQ,
and with the rising of the interval between the hydrological
station and the DHF reservoir, the Tp showed a decreasing
trend, which showed similar characteristics with the F series.
It is worth mentioning that the Tp of XJWP is longer than
SY during WS–P, which was inconsistent with the conclu-
sion that the Tp decreases with the increase in the interval
between hydrological station and reservoir during S–P. The
reason for this is most likely that part of the agricultural wa-
ter supply from the DHF reservoir directly reaches down-

stream (XJWP) through channels without passing through
SY, which increased runoff at XJWP while SY runoff was
little affected. Moreover, agricultural water supplies mostly
occur in the summer, which can be mutually verified with
the results of seasonal perspective.

In conclusion, the Tp of SY and XJWP was higher than
that of BKQ and DHF in different periods. The Tp down-
stream of the DHF reservoir has been remarkably strength-
ened in each period. Moreover, with the rise of the interval
between the hydrological station and the DHF reservoir, the
improvement effect was weakened. Meanwhile, the Tp was
longer in spring and winter, while it was shorter in summer
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Figure 10. The Tp of BKQ, DHF, SY, and XJWP from meteorological to hydrological drought in different periods.

and autumn. The Tp of XJWP was longer than that of SY in
WS–P because of the effect of agricultural water supply on
the DHF reservoir.

4.4 The drought propagation thresholds for triggering
hydrological drought

In this study, drought propagation threshold model was es-
tablished to explore the CPD thresholds for triggering hydro-
logical drought. In the model, moderate, severe, and extreme
hydrological droughts defined in Sect. 4.2 were selected as
specific hydrological drought scenarios. The drought dura-
tion and severity of each hydrological drought event were
taken as the target, and the corresponding CPD was regarded
as the condition. Five common functions including gamma,
EXP, GEV, Logn, and WBL were used to fit the sequence of
CPD in the four sub-basins in the HRB. The AIC, RMSE, and
K–S tests were applied to select the best-fit marginal distri-
bution, and the consequences are shown in Table 3. The com-
monly used bivariate theoretical copula functions, includ-
ing Clayton, Frank, and Gumbel copulas, were considered
for modeling the dependence structure between CPD and
drought duration (D-CPD) and severity (S-CPD). Based on
the K–S, C–M, RMSE, and AIC tests, the GOF copula func-
tions were selected and shown in Table 6. Figure 12 shows
the conditional probabilities of occurrence for different sce-
narios of hydrological droughts characterized by drought du-
ration and severity under the condition of various CPDs in
four sub-regions. It can be seen from Fig. 12 that the CPD
corresponding to the same probability in the four regions in-
creased with the enhancement of drought level. Under the
same probability, the CPD of upstream regions (BKQ and
DHF) of the HRB reservoir is smaller than that of midstream
(SY) and downstream regions (XJWP) with the same level of
drought.

In order to quantitatively reveal the threshold triggering
different scenarios of hydrological drought, the CPD thresh-

old interval was obtained based on the drought propagation
threshold model introduced in Sect. 3.5 (Table 7). It was clear
from Table 7 that the CPD threshold of hydrological drought
at all scenarios in the upstream region of the HRB reservoir is
significantly lower than that in the downstream basins. The
upstream region is located in the eastern part of the HRB
with mountainous terrain, while the downstream region is in
the western plain. The slope of the upstream region is greater
than that downstream, indicating that the underlying surface
of upstream region has less water retention and buffer ca-
pacity. Meanwhile, due to the operation of the DHF reser-
voir, which provides agricultural and ecological water sup-
ply to downstream in May–August, it can provide a strong
supply downstream and alleviate the hydrological drought
(Guo et al., 2020a). Therefore, under the combined action
of the stronger stagnant water and buffer capacity of the un-
derlying surface, and the water supply by the operation of the
DHF reservoir, the CPD threshold in the downstream region
of the DHF reservoir is significantly higher than that in the
upstream basins.

For the DHF and BKQ, both of them are located in moun-
tainous areas with higher slope, but the vegetation coverage
rate of BKQ is relatively larger than that of DHF, which
is indicated by the normalized difference vegetation index
(NDVI) of the HRB (Fig. 13). Therefore, BKQ has strong
water retention and buffering capacity, which leads to the
CPD of BKQ relatively greater than DHF. As for the SY and
XJWP, both of them are located in the plain area with little
difference in slope. However, the XJWP showed lower CPD
in all scenarios of hydrological drought than SY. On the one
hand, large reservoirs can postpone the propagation from me-
teorological drought to hydrological drought, and the effect
decreases with the increase in the distance from the reservoir
(Guo et al., 2020a). The distance between SY and the DHF
reservoir is greater than that from XJWP to the DHF reser-
voir. On the other hand, as the urbanization process of SY
is much faster than that of XJWP, the vegetation coverage
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Figure 11. The variation trend of annual precipitation in the four sub-regions during 1967–2019. Panels (a)–(d) show BKQ, DHF, SY, and
XJWP, respectively.

Table 6. GOF evaluation of different copula functions between CPD and drought duration and severity in four sub-regions.

Zones BKQ DHF SY XJWP

Copulas GOF test D – CPD S – CPD D – CPD S – CPD D – CPD S – CPD D – CPD S – CPD

Clayton K–S 0.146 0.108 0.108 0.074 0.117 0.102 0.103 0.117
C–M 0.099 0.102 0.184 0.053 0.112 0.071 0.075 0.056
RMSE 0.043 0.044 0.057 0.031 0.055 0.044 0.044 0.038
AIC −330.95 −329.45 −324.83 −395.81 −212.48 −229.21 −242.11 −253.53

Gumbel–Hougaard K–S 0.110 0.112 0.091 0.054 0.102 0.068 0.107 0.095
C–M 0.092 0.137 0.090 0.037 0.069 0.037 0.077 0.046
RMSE 0.042 0.051 0.040 0.025 0.043 0.032 0.044 0.034
AIC −334.98 −313.61 −365.50 −416.43 −230.42 −267.49 −240.88 −260.96

Frank K–S 0.120 0.110 0.098 0.048 0.109 0.077 0.105 0.097
C–M 0.084 0.114 0.108 0.032 0.075 0.047 0.073 0.045
RMSE 0.040 0.046 0.044 0.024 0.045 0.036 0.043 0.034
AIC −339.81 −323.44 −355.05 −424.55 −227.24 −257.85 −243.17 −262.23

The bold letters represent the selected optimal copula functions.

rate of SY is lower than that of XJWP, which was confirmed
in Fig. 13. During extreme meteorological droughts, vegeta-
tion is in a state of water shortage and consumes more water
through evapotranspiration, which would aggravate drought
in the basin (Teuling et al., 2013; Niu et al., 2019). There-
fore, the higher vegetation coverage in XJWP is another rea-
son why the CPD of the XJWP for extreme drought is lower
than the SY.

The mean value of CPD thresholds under different drought
scenarios and the increase rate (IR) of CPD thresholds as the
drought scenario intensified were calculated to investigate
the difference of CPD increase rate in each sub-basin with
the aggravation of hydrological drought. Table 8 shows the
mean of CPD thresholds and the IR of CPD under extreme
and severe drought relative to moderate drought in each sub-
basin. It can be seen from Table 8 that the IR of CPD thresh-
old in BKQ and XJWP was less than that of DHF and SY
with the intensifying of drought scenario. Moreover, the IR

of the CPD threshold from severe drought to extreme drought
was much lower than that from moderate drought to severe
drought in BKQ and XJWP. These suggest that BKQ and
XJWP are more sensitive to CPD in the event of drought, and
a slight increase in CPD may trigger a more severe drought.
Especially in the severe drought scenario, a small increase in
CPD is likely to trigger extreme drought. As shown in Fig. 1,
DHF and SY are located around the DHF reservoir, while
BKQ and XJWP are far away from the DHF reservoir. There-
fore, the cause of this result is most likely the operation of the
DHF reservoir, which needs further research to confirm.

Meanwhile, for a specific hydrological drought, the higher
the CPD that triggered this hydrological drought, the stronger
the drought resistance of this basin (Guo et al., 2020a).
Therefore, the CPD thresholds for triggering hydrological
drought can be employed to characterize the drought re-
sistance of the basin in this study. According to the above
CPD threshold analysis results of sub-basins, the drought re-
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Figure 12. Conditional probabilities of occurrence of extreme (a), severe (b), and moderate (c) hydrological drought under various CPDs in
the HRB.

sistance of the downstream region of the DHF reservoir is
stronger than that of the upstream region under all hydrolog-
ical drought scenarios. SY showed the strongest resistance
for all scenarios of hydrological drought. The difference of
drought resistance of each sub-basin mainly depends on the
topography of the basin, the influence of reservoir operation
on the watercourse hydraulic conditions, and the change of
underlying surface conditions caused by urbanization.

5 Conclusions

In this paper, SPI and SRI were adopted to characterize
meteorological and hydrological drought, respectively, and
the spatiotemporal variation characteristics of hydrological
drought were investigated in the HRB from 1967 to 2019.
Meanwhile, the joint distribution of drought duration and
severity was established by using copula functions to cal-

Figure 13. Normalized difference vegetation index (NDVI) of the
HRB.
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Table 7. CPD threshold intervals for triggering different scenarios of hydrological drought in the HRB.

Drought scenario Moderate Severe Extreme

BKQ CPD (mm) [204.3, 222.4] [238.2, 239.8] [246.5, 253.1]

DHF CPD (mm) [146.8, 172.5] [188.7, 213.8] [234.4, 253.7]
SY CPD (mm) [258.0, 321.7] [339.3, 346.6] [357.6, 461.7]
XJWP CPD (mm) [217.0, 226.3] [253.8, 255.5] [265.9, 271.1]

Table 8. The mean and the IR of CPD thresholds in each sub-basin.

Drought scenario BKQ DHF SY XJWP

CPD (mm) IR (%) CPD (mm) IR (%) CPD (mm) IR (%) CPD (mm) IR (%)

Extreme 249.8 244.1 409.7 268.5
4.5 21.3 19.4 5.5

Severe 239.0 201.2 343.0 254.6
12.0 26.1 18.3 14.9

Moderate 213.4 159.6 289.9 221.6

culate the return period of hydrological drought. Further-
more, the Tp values were determined by calculating the Pear-
son correlation coefficients between 1-month SRI and multi-
timescale SPI. Finally, the CPD threshold intervals for trig-
gering hydrological drought are obtained by the drought
propagation threshold model. From the results, primary con-
clusions are given as follows.

The hydrological drought showed a gradually strengthen-
ing trend from downstream to upstream of the HRB from
1967 to 2019, and strengthened significantly in BKQ. From
a seasonal perspective, drought presented a strengthening at
each sub-basin in summer and autumn. Nevertheless, drought
showed a significant strengthening trend in spring and winter
at the SY and XJWP. From the WS–P and S–P perspective,
drought presented a strengthening in S–P at each sub-basin.
Furthermore, the drought showed a strengthening trend at
BKQ and DHF, while it showed a weakening trend at SY
and XJWP in WS–P.

1. Downstream of the HRB were vulnerable districts to
hydrological drought with longer drought duration and
higher severity. Furthermore, the upstream region of
the HRB was more sensitive to short-duration drought,
which was dominated by 2-month and 3-month drought
events.

2. The return periods Tand of moderate, severe, and ex-
treme hydrological drought in BKQ, DHF, SY, and
XJWP were 2.2, 5.0, 49.6, 2.3, 4.5, 22.8, 3.3, 6.7, 71.0,
3.2, 7.3, and 79.0 years, respectively. Furthermore, the
return periods Tor of moderate, severe, and extreme hy-
drological drought in DHF, SY, and XJWP were 1.8,
3.4, 12.8, 1.7, 3.1, 14.9, 2.7, 4.8, 18.6, 2.6, 4.4, and 16.3
years, respectively.

3. The average Tp values in BKQ, DHF, SY, and XJWP
were 4.1, 4.3, 14.9, and 1.9 months, respectively, which
indicated that the Tp downstream of the DHF reservoir
has been significantly improved owing to the operation
of DHF. Moreover, with the increase in interval be-
tween hydrological station and the DHF reservoir, the
improvement effect was weakened.

4. The mean CPD thresholds of moderate hydrological
drought at BKQ, DHF, SY, and XJWP were 213.4,
159.6, 289.9, and 221.6 mm; for severe they were
239.0, 201.2, 343.0, and 254.6 mm; and for extreme
they were 249.8, 244.1, 409.7, and 268.5 mm, respec-
tively. The midstream of the HRB showed the high-
est drought propagation threshold in moderate and se-
vere drought scenarios, while downstream showed the
highest drought propagation in extreme drought sce-
nario. Furthermore, the difference of CPD thresholds
of each sub-basin mainly depends on the topography of
the basin, the evolution of river hydraulic condition by
reservoir operation, and the change of underlying sur-
face conditions caused by urbanization.

Generally, the findings of this study help to reveal the spa-
tiotemporal evolution, return period characteristics, and me-
teorological triggering conditions of hydrological drought.
In particular, the improved drought propagation threshold
model helps to further enhance the understanding of the
drought propagation process, thus contributing to the devel-
opment of efficient hydrological drought early warning sys-
tem, which is of great significance for local drought assess-
ment and management. Note that the framework and method-
ology of drought research in this paper are universal and gen-
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eralized, so it can be extended to other regions without re-
striction.
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