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Abstract. Enduring and extensive heavy precipitation events
associated with widespread river floods are among the main
natural hazards affecting central Europe. Since such events
are characterized by long return periods, it is difficult to ad-
equately quantify their frequency and intensity solely based
on the available observations of precipitation. Furthermore,
long-term observations are rare, not homogeneous in space
and time, and thus not suitable to running hydrological mod-
els (HMs) with respect to extremes. To overcome this is-
sue, we make use of the recently introduced LAERTES-
EU (LArge Ensemble of Regional climaTe modEl Simula-
tions for EUrope) data set, which is an ensemble of regional
climate model simulations providing over 12 000 simulated
years. LAERTES-EU is adapted for use in an HM to cal-
culate discharges for large river basins by applying quantile
mapping with a parameterized gamma distribution to correct
the mainly positive bias in model precipitation. The Rhine
basin serves as a pilot area for calibration and validation. The
results show clear improvements in the representation of both
precipitation (e.g., annual cycle and intensity distributions)
and simulated discharges by the HM after the bias correction.
Furthermore, the large size of LAERTES-EU also improves
the statistical representativeness for high return values above
100 years of discharges. We conclude that the bias-corrected

LAERTES-EU data set is generally suitable for hydrological
applications and posterior risk analyses. The results of this
pilot study will soon be applied to several large river basins
in central Europe.

1 Introduction

River (fluvial) floods are among the most disastrous and also
costliest weather-related hazards in central Europe (e.g., Al-
fieri et al., 2018). The damage caused by the devastating 2013
Elbe and Danube flood in Germany (e.g., Grams et al., 2014;
Kelemen et al., 2016) has been estimated at EUR 12 bil-
lion (Merz et al., 2014). Major flood events along the main
river networks are generally related to the occurrence of in-
tensive and/or long-lasting, mainly stratiform precipitation
(e.g., Maddox et al., 1979; Hilker et al., 2009; Schröter et al.,
2015).

Due to the huge impact of flooding on human activities,
economy, agriculture, infrastructure, and transport, there is
a high interest in quantifying the risk of flooding for cen-
tral Europe (e.g., Ward et al., 2011; Feyen et al., 2012; Jong-
man et al., 2014). Despite the occurrence of several promi-
nent events during the last few decades, extreme floods have
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typically long return periods of around or above 100 years
(e.g., Pauling and Paeth, 2007; Hirabayashi et al., 2013), and
thus only a few events are represented in short-term (obser-
vational) data sets. Long-term observational records of pre-
cipitation are limited and of heterogeneous quality across Eu-
rope. To overcome this shortcoming, observations are usually
extrapolated using statistical approaches like fitting various
probability density functions to a reduced data series (annual
maxima or peak over threshold), which show a rather large
uncertainty for high return periods (e.g., Lang et al., 2010;
Volpi et al., 2019). Nevertheless, it is expedient to use long-
term data sets to run hydrological models (HMs) for proper
flood risk estimation of high return periods (e.g., Feyen et al.,
2012), such as the 1-in-200-years event required by the insur-
ance regulation of Solvency II.

On the other hand, reanalyses products (e.g., Dee et al.,
2011) provide homogeneous data sets covering long time pe-
riods with the limitation of a comparatively coarse resolution.
Approaches to overcoming the shortcoming of small sam-
ple sizes focus on the development of stochastic precipitation
models (e.g., Richardson, 1981; Ehmele and Kunz, 2019) or
the downscaling of long-term reanalyses or global climate
models (GCMs) by regional climate models (RCMs; e.g.,
Gutmann et al., 2012; Ott et al., 2013; Stucki et al., 2016).
Additionally, combined approaches, so-called statistical–
dynamical downscaling methods, are also used (e.g., Fuentes
and Heimann, 2000; Reyers et al., 2015). The added value of
the high-resolution RCMs compared to GCMs is discussed,
for example, in Feser et al. (2011) or Feldmann et al. (2013).
One of the key benefits is the better representation of the
spatial and intensity distribution of precipitation, which is
crucial for hydrological modeling particularly over complex
terrain (Frei et al., 2000). However, the spatial resolution
of RCMs may still be too coarse to effectively model the
hydrological processes essential for quantifying flood risk.
Although expected further enhancement in model resolution
will undoubtedly improve the representation of precipitation,
especially for convective-scale events (e.g., Coppola et al.,
2020), significant challenges will remain for the foreseeable
future (Cloke et al., 2013).

Furthermore, several challenges remain when producing
precipitation statistics that are adequate for climate impact
studies regarding flooding (e.g., Teutschbein and Seibert,
2010). First, a bias correction of the simulated precipitation
is required (e.g., Berg et al., 2012; Ehret et al., 2012). This
necessity arises from the shortcomings of the RCMs, which
can result from an imperfect model structure, errors in the pa-
rameterization scheme, or an incorrect initialization, or they
can be inherited from the driving GCM (e.g., Ehret et al.,
2012; Chen et al., 2018). Moreover, RCMs generally over-
estimate precipitation across the distribution spectrum (e.g.,
Feldmann et al., 2008; Berg et al., 2012). An overview of dif-
ferent bias correction methods for hydrological impact stud-
ies can be found in Teutschbein and Seibert (2012) or Teng
et al. (2015).

The added value of a bias correction for hydrological mod-
eling has been assessed for example in Chen et al. (2019).
They focused on the Han Jiang in south-central China for the
period 1961–2000 and calculated streamflow metrics with
a 21-parameter lumped, conceptual, rainfall–runoff model
from corrected and uncorrected GCM ensemble data. They
concluded that a bias correction is important to simulate rea-
sonable discharges. However, in other studies (e.g., Chen
et al., 2018) the results were mixed.

Many studies have demonstrated the added value of a bias
correction for precipitation without any linkage to hydrolog-
ical applications (e.g., Dobler and Ahrens, 2008; Fang et al.,
2015). Dobler and Ahrens (2008) compared different down-
scaling approaches for precipitation in Europe and South
Asia as well as different bias correction methods (quantile
mapping and local intensity scaling). The authors concluded
that dynamical downscaling with an RCM in combination
with a bias correction (quantile mapping with a gamma dis-
tribution) is most suitable to simulating precipitation in Eu-
rope. Fang et al. (2015) focused on the comparison of differ-
ent bias correction methods and found that empirical quantile
mapping and power transformation performed best for pre-
cipitation. However, they mentioned that the selection of an
accurate correction method may be case sensitive.

The present study emanates from an interdisciplinary
project aiming to quantify the flood risk for large European
river basins using a model chain from meteorology over hy-
drology towards risk assessment. The novel RCM ensem-
ble LAERTES-EU (LArge Ensemble of Regional climaTe
modEl Simulations for EUrope), which was recently intro-
duced by Ehmele et al. (2020), is now adapted and applied
for hydrological applications. With this aim, daily precipi-
tation amounts and daily mean 2 m temperature are used as
input data to drive an HM for discharge simulations. Ehmele
et al. (2020) identified a positive bias in LAERTES-EU pre-
cipitation compared to observations, which would lead to an
overestimation of the HM discharge response without a pre-
vious bias correction. We elaborate the effects of the bias
correction to both precipitation and discharge statistics and
demonstrate the benefits of a data set like LAERTES-EU for
hydrological applications such as the estimation of extreme
discharges with high return periods and their statistical rep-
resentation. We focus on the Rhine basin as a pilot area and
address the following research questions:

1. Does the bias correction improve the representation of
precipitation in LAERTES-EU adequately?

2. Is the applied HM capable of reproducing observed his-
torical discharges?

3. Does the bias-corrected LAERTES-EU provide the po-
tential to derive statistically robust estimates of flood re-
turn levels above 100 years?

This paper is structured as follows: the data sets used and the
study area are introduced in Sect. 2. Section 3 contains the
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atmospheric part with the description and validation of the
bias correction method. In Sect. 4, the hydrological model is
introduced and validated. In Sect. 5, the benefit of a data set
such as LAERTES-EU for hydrological modeling is demon-
strated. The last section (Sect. 6) summarizes the results and
provides the conclusions.

2 Data sets and study area

This study is based on the LAERTES-EU ensemble of RCM
simulations (Ehmele et al., 2020), which is introduced in this
section, as well as different observational data sets used for
calibration and validation of both the HM and the bias cor-
rection.

2.1 LAERTES-EU

The RCM ensemble LAERTES-EU (Ehmele et al., 2020)
was produced within the German national research project
(BMBF) Mittelfristige Klimaprognosen (MiKlip; Marotzke
et al., 2016). The non-hydrostatic COSMO model in its cli-
mate mode (COSMO-CLM, http://www.cosmo-model.org,
last access: 28 February 2022, Consortium for Small-Scale
Modeling Climate Limited-area Model, hereafter CCLM;
Rockel et al., 2008) was used for dynamical downscaling of
global MPI-ESM (Max Planck Institute Earth System Model;
e.g., Giorgetta et al., 2013; Müller et al., 2018) simulations
to a horizontal resolution of 0.22◦ (∼ 25 km) covering the
EURO-CORDEX domain (http://www.euro-cordex.net, last
access: 28 February 2022).

LAERTES-EU consists of four data blocks (Table 1) dis-
tinguishing between different resolutions and initialization
of the MPI-ESM global model used as boundary conditions.
The RCM (CCLM) version, setup, and initialization method
remain the same for all simulations (Feldmann et al., 2019).
Data blocks 1 and 2 are forced with the low-resolution (T63,
≈ 200 km) version MPI-ESM-LR, while data blocks 3 and
4 use the high-resolution (T127, ≈ 100 km) MPI-ESM-HR
(Müller et al., 2018). For both MPI-ESM resolutions, one
data block contains long-term transient simulations (1 and
3) and the other consists of multiple-member decadal (10-
year) hind- and forecast simulations. As described in Ehmele
et al. (2020), a drizzle and dry-day correction is applied to the
LAERTES-EU data set to reduce well-known RCM artifacts
(e.g., too much drizzle).

For data block 1, three members of the 20CR reanaly-
sis data (Compo et al., 2011) are assimilated to the MPI-
ESM-LR and dynamically downscaled with CCLM provid-
ing 110 transient years each (Müller et al., 2015). Data block
3 consists of five members forced with so-called historical
simulations of MPI-ESM-HR using CMIP5-observed natu-
ral and anthropogenic climate forcing (Taylor et al., 2012).
Three members cover the time period 1900–2005 (106 years

Table 1. Overview of the RCM ensemble LAERTES-EU with the
classification into data blocks, the underlying forcing data, the time
period covered, and the number of members and simulation years.
Table adapted from Ehmele et al. (2020).

Block Forcing Period Member Years

1 20CR via 1900–2009 3 330
MPI-ESM-LR

2 MPI-ESM-LR 1911–2019 3 3000
DroughtClip

3 MPI-ESM-HR 1900–2005 5 410
historical

4 MPI-ESM-HR 1961–2026 5 2850
CMIP5
MPI-ESM-HR 1961–2026 10 5700
CMIP6

each); the two others cover the years 1960–2005 (46 years
each).

In the present study, we focus on data blocks 2 and 4,
which make up approximately 95 % of the whole LAERTES-
EU data set. Both data blocks consist of decadal simulations
which run free after the first initialization. Data block 2 has
three members, each with 100 simulated decades. The start-
ing conditions are derived from the transient simulations of
data block 1. Starting in 1910, all three members simulate a
10-year period. For the next hindcast, the initialization point
is shifted by 1 year until the last starting year 2009 (simu-
lation end in 2019). Data block 4 is divided into two parts,
both covering the time period 1961–2026. The initial condi-
tions for the first part are derived from the MPI-ESM-HR
with CMIP5 forcing and include 5 members. The second
part consists of 10 members using initial conditions from the
MPI-ESM-HR with CMIP6 forcing (Eyring et al., 2016).

For more details on the forcing data, the performance, and
the added value of LAERTES-EU in comparison to GCM
simulations, as well as on the advantages of the ensemble
approach, we refer to Ehmele et al. (2020).

2.2 Observational data

2.2.1 E-OBS

Observed daily precipitation sums and mean temperature on
a 0.22◦ resolution grid were obtained from the E-OBS data
set (v17; Haylock et al., 2008; Van den Besselaar et al., 2011)
in consistency with Ehmele et al. (2020). E-OBS is widely
used for model validation (e.g., Min et al., 2013) and for cli-
matological studies (e.g., van Oldenborgh et al., 2016). The
accuracy of E-OBS depends on the station network density
(Cornes et al., 2018), which is not homogeneous across Eu-
rope. Moreover, Haylock et al. (2008) pointed out that rain-
fall totals might be reduced in comparison to the raw station
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data. Nevertheless and with respect to the overall aim of a
consistent approach for several large European river basins,
not only the Rhine, E-OBS comprises the most suitable ref-
erence data for the applied bias correction.

2.2.2 HYRAS

To estimate the added value of the bias correction of precipi-
tation, we consider the highly resolved (5× 5 km2) HYRAS
(Hydrometeorologische Rasterdatensätze) data set provided
by the German Weather Service (DWD; Rauthe et al., 2013)
as an independent data set. Aggregated to the RCM grid
(25 km), HYRAS is used for the validation of the bias cor-
rection. In its original resolution, HYRAS is used for the cal-
ibration and validation of the HM. Note that HYRAS data are
not homogeneous over time due to the changing number, lo-
cation, and instrumentation of the observations. Furthermore,
there is a certain bias in precipitation totals especially over
complex terrain, where the number of observations is limited
(e.g., Piani et al., 2010; Kunz, 2011; Berg et al., 2012).

2.2.3 Discharge observations

For the calibration of the rainfall–runoff model, daily
mean values of runoff are required. We have selected 71
gauging stations in the Rhine basin, all of them hav-
ing at least 20 years of continuous observations. The
discharge data have various sources: the major part (40
gauging stations) is provided by the German Federal In-
stitute of Hydrology (Wasserstraßen- und Schifffahrtsver-
waltung des Bundes (WSV), provided by the Bunde-
sanstalt für Gewässerkunde (BfG)), and the rest is op-
erated by the individual state ministries of environment
from North Rhine-Westphalia (Land NRW; dl-de-by-2.0
https://www.govdata.de/dl-de/by-2-0, last access: 28 Febru-
ary 2022, https://www.elwasweb.nrw.de/elwas-web/index.
xhtml, last access: 28 February 2022), Rhineland-Palatinate
(Ministerium für Klimaschutz, Umwelt, Energie und Mobil-
ität Rheinland-Pfalz), Baden-Württemberg (Pegel- und Da-
tendienst der Landesanstalt für Umwelt, Messungen und
Naturschutz Baden-Württemberg (LUBW)), Hesse (Hessis-
ches Landesamt für Naturschutz, Umwelt und Geologie),
Bavaria (Bayerisches Landesamt für Umwelt, https://www.
lfu.bayern.de/index.htm, last access: 28 February 2022), and
Saarland (Ministerium für Umwelt und Verbraucherschutz
Saarland). Two gauging stations have been provided by the
Swiss Federal Office for the Environment (FOEN).

2.3 Study area and time period

The focus in this study is on the Rhine basin as a pilot
area. The river Rhine has a length of about 1200 km and
a total basin size of approximately 185 000 km2 (https://
www.eea.europa.eu/archived/archived-content-water-topic/
rivers/european-river-catchments, last access: 28 Febru-
ary 2022). The annual mean discharge close to the estuary

Table 2. List of gauging stations (full name, used abbreviation
(code), associated river system, and lengthL of the time series) used
for the validation of the hydrological model for selected historical
flood events sorted by the upstream catchment size (A).

Code Gauge name River A [km2] L [yr]

BETZ Betzdorf Sieg 756 63
BADV Bad Vilbel Nidda 1619 57
GROL Grolsheim Nahe 4012 39
ROCK Rockenau Neckar 12 710 66
FRAN Frankfurt Osthafen Main 24 764 53
EMME Emmerich Rhine 159 555 61

is 2173 m3 s−1 (Tockner et al., 2009; Hein et al., 2019). The
source of the Rhine is located in the high Alpine mountains.
The basin is characterized by various types of terrain with
mountains of up to 4000 m in the headwaters, rolling hills
with elevations of around 1000 m and below in the middle
part, and mostly flat lands in the northern part (Fig. 1a).
Furthermore, the study area covers different precipitation
climatologies. As shown for example by Ionita (2017), the
mean annual precipitation exceeds more than 2000 mm
over a large area of the Rhine spring area. Due to the high
elevation, a significant proportion falls as snow, especially
in winter. As snowmelt can be an important component for
HMs (see Sect. 4.1), the impact of the terrain is expected to
be higher for the Alpine catchments than elsewhere. For the
remaining study area, the annual precipitation amounts are
generally below 1000 mm (e.g., Tapia et al., 2015).

The Rhine basin is divided into 71 catchments associated
with the same number of gauging stations (see Sect. 2.2.3).
Out of these 71 stations, we selected 6 for this study with
various catchment sizes (Table 2 and Fig. 1b) to compare the
observed and simulated discharges for past flood events.

The investigation period is limited by the given data sets.
Using LAERTES-EU data blocks 2 and 4 and HYRAS, we
focus on the period 1961–2006 for validation and calibration,
which is covered by all precipitation data sets. Regarding the
statistical analysis, all available data are taken into account.

3 Bias correction of precipitation

In this section, we describe and validate the applied bias cor-
rection with respect to the statistical representation of precip-
itation within LAERTES-EU as the method itself has been
validated by numerous previous studies (see below).

3.1 Quantile mapping technique

Ehmele et al. (2020) showed that LAERTES-EU can produce
a reasonable evolution of areal precipitation extremes over
central Europe and the Alpine region for the last century. Al-
though a dry-day correction using E-OBS is already applied,
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Figure 1. Maps of the Rhine basin with (a) the elevation (in meters above mean sea level; basin marked with red contour) and (b) overview
of the location (triangles) and associated catchments (colored shading) of gauging stations that were chosen for model validation.

there is still an offset between observations and LAERTES-
EU for the considered yearly percentiles of spatial mean pre-
cipitation, indicating the need for further post-processing. As
a positive bias in precipitation would result in overestimated
discharges, a bias correction of LAERTES-EU is inevitable.

The review of Maraun (2016) or the study of Fang et al.
(2015) provide a detailed overview of various bias correc-
tion methods. The selection of the most suitable method often
depends on the application. Nevertheless, the gamma distri-
bution seems to be the most suitable for using the quantile
method for correcting precipitation. For this study, we there-
fore use the gamma quantile mapping (GQM) technique with
different correction functions for each month. The corrected
precipitation amount can be calculated as follows (e.g., Gut-
jahr and Heinemann, 2013):

xcorr,m,d = F
−1
obs,m

(
Fraw,m

(
xraw,m,d

))
, (1)

where x is the precipitation of either the raw model (raw) or
the bias-corrected model (corr), m denotes the month, and
d is the day within month m. F is the cumulative density
function of the gamma distribution and F−1 its inverse with
(obs) referring to the observations.

The applied bias correction aims to improve the intensity
of daily precipitation considering each month separately to
account for seasonality. Building F for both observed and
simulated precipitation, the probability of the model intensi-
ties is adjusted to those of the observations. Using a param-
eterized density function instead of an empirical approach
allows us to retain the heavy tail of the model distribution
to a high degree, which represents the unknown and not yet
observed range of intensities. The correction factors for the
gamma distributions were defined separately for each data
block and month. Therefore, all members within a data block
are first concatenated and treated as a single data set to which
in a second step a gamma distribution is fitted. We did not

correct the individual members independently as such an ap-
proach would force all members to the target (observed) dis-
tribution, which would result in a reduced ensemble spread
and, thus, an underestimated natural internal climate variabil-
ity (Chen et al., 2019).

Bias correction methods are statistical approaches and are
able to improve mean values and distributions in such a way
that they become closer to those of the reference data (e.g.,
White and Toumi, 2013). However, they are not able to im-
prove the simulated precipitation in terms of timing or un-
derlying dynamical processes (Ehret et al., 2012). Another
limitation of bias correction is that stationarity of the model
bias is assumed (Maraun, 2012; Chen et al., 2015). Further-
more, there are no suitable observations available for the pe-
riod prior to 1950 and the predictions until 2028, for which
we also assume stationarity of both model bias and precipi-
tation distribution.

Please note that daily mean 2 m temperature has also been
bias corrected using quantile mapping with a parameterized
Gaussian distribution (e.g., Piani et al., 2010). The bias-
corrected temperature data are used in line with the bias-
corrected precipitation to run the HM (see Sect. 4). Never-
theless, the focus of this study remains precipitation as the
model uncertainties are higher and it is the dominant factor
in the case of major flood events.

3.2 Validation of bias-corrected precipitation

The bias of the corrected and uncorrected LAERTES-EU
data block 2 ensemble mean is shown in Fig. 2. For the un-
corrected precipitation, a positive bias is visible within al-
most the entire Rhine basin compared to E-OBS and HYRAS
(Fig. 2a, c). Overall, a clear improvement is found after bias
correction (Fig. 2b). The remaining precipitation bias relative
to E-OBS is mostly positive but below 0.2 mm. The residual
differences are higher up to 0.4 mm only in the southernmost
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part of the Rhine basin. As part of the Alpine mountains, this
area is characterized by complex topography and high spatial
variability in precipitation, which is difficult for the RCM to
capture. Furthermore, we do not bias correct each member of
LAERTES-EU separately but block-wise in order to preserve
the internal ensemble variability which affects the ensemble
mean as well. The small residual biases were expected be-
cause E-OBS was used as the training data in the bias correc-
tion.

A strong reduction in the bias is also shown when com-
paring LAERTES-EU with HYRAS. While the uncorrected
model precipitation is overestimated compared to the ob-
served precipitation in HYRAS (Fig. 2c), the bias correc-
tion clearly reduces this overestimation. This results in a
slight under-representation of rainfall at most grid points
(Fig. 2d). The mainly negative differences in the corrected
model data towards HYRAS derive from the differences be-
tween HYRAS and E-OBS, since E-OBS itself shows a neg-
ative precipitation bias (e.g., Haylock et al., 2008). Again, the
highest values are found in the Alpine region. Similar results
can be found for LAERTES-EU data block 4 (see Fig. S1 in
the Supplement). In contrast to LAERTES-EU data block 2,
the remaining bias of block 4 is mostly negative. The high-
est deviations occur mainly in mountainous terrain, which
may result from the initial resolution differences between E-
OBS/LAERTES-EU and HYRAS.

To validate the simulations in a statistical way, we use
intensity–probability curves (IPCs). Considering each grid
point at each time step, the IPC divides the total range of oc-
curred precipitation values (intensity) into discrete histogram
classes and returns their probability. Figure 3 shows the IPCs
of LAERTES-EU data blocks 2 and 4 before and after bias
correction in comparison with those of E-OBS and HYRAS.
After bias correction, the IPCs of LAERTES-EU are in good
agreement with the E-OBS curve but retain the heavy tail of
the distribution, which corresponds to not yet observed pre-
cipitation totals. Again an underestimation of E-OBS com-
pared to HYRAS is visible.

The annual cycle of spatially averaged monthly mean pre-
cipitation sums (Fig. 4) shows maxima in summer and winter
(in agreement with, e.g., Bosshard et al., 2014). Compared to
E-OBS and HYRAS, which show similar values, the course
of the annual cycle was already well captured in the un-
corrected LAERTES-EU data block 2 but with an enhanced
amplitude. However, there is a distinct positive bias for all
months. Without bias correction, LAERTES-EU data block 4
fails to capture the summer maximum. Instead, a local max-
imum of precipitation is observed during the spring month.
After correcting, the bias is significantly reduced, preserv-
ing the annual cycle of precipitation. For LAERTES-EU data
block 4, the bias correction leads to a stronger reduction in
winter and an increase in summer.

From the presented results we conclude that the bias cor-
rection provides a clear added value for precipitation fields,
distributions, and the annual cycle.

4 Hydrological modeling

In this section, we first introduce the HM used. The ability of
the HM to simulate extreme discharges is tested by a com-
parison of (a) observed and simulated discharges in general
and (b) a number of selected historical Rhine river floods.

4.1 The HBV model approach

The HM used in this study is based on the Hydrologiska
Byråns Vattenbalansavdelning model (HBV; Bergström and
Forsman, 1973; Lindström et al., 1997). The HBV is a con-
ceptual HM that has been widely used in various hydro-
logical applications ranging from flood forecasting to cli-
mate impact assessment (e.g., Lidén and Harlin, 2000; Hun-
ducha and Bardossy, 2004; Olsson and Lindström, 2008;
Van Pelt et al., 2009; Arheimer et al., 2011; Cloke et al.,
2013; Beck et al., 2013, 2016; Demirel et al., 2015; Vetter
et al., 2015; Jenicek et al., 2018; He et al., 2020). Many ver-
sions of the HBV model currently exist. The one used here is
based on the HBV-IWS model (He et al., 2011) and has been
adapted for spatially distributed input data. It consists of four
main routines: (i) snowmelt and snow accumulation, (ii) soil
moisture and effective precipitation, (iii) evapotranspiration
(ET), and (iv) runoff response. A triangular weighting func-
tion is used to simulate surface routing delays. Finally, the
Muskingum routing method (Cunge, 1969) is used to route
the flow from upstream to downstream. The model parame-
ters are calibrated towards observations for each catchment
(He et al., 2011). The model runs at a daily time step with
5 km grid spacing and requires inputs of daily precipitation,
temperature, and ET. Since ET is not directly provided by
LAERTES-EU, it is calculated from the mean daily tem-
perature following the approach of Oudin et al. (2005). The
model was calibrated and validated using the time series of
the 71 gauging stations (see Sect. 2.2.3). Therefore, the in-
vestigation period is split into a calibration part and a val-
idation part. Due to the data availability of all stations, the
calibration period is 1975–1985 (11 years) and the validation
period is 1986–2009 (24 years). All results are presented for
the validation period.

4.2 Validation of the HM

4.2.1 Discharge representation

In this study, the Nash–Sutcliffe model efficiency coefficient
(NSE, Eq. 2; Nash and Sutcliffe, 1970) is used for validat-
ing the HBV model. The NSE is a measure of how the sim-
ulated discharges match with the observed ones during the
validation period. Possible values range between (−∞,1]
with higher values representing a better match. NSE= 1 rep-
resents a perfect match between the observation and simula-
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Figure 2. Bias within the Rhine basin (bold black contour) of daily precipitation [in mm] for the LAERTES-EU ensemble mean based on
data block 2 (a) towards E-OBS uncorrected, (b) towards E-OBS after bias correction, (c) towards HYRAS uncorrected, and (d) towards
HYRAS after bias correction. Thin black lines show country borders; blue lines indicate rivers; cyan-shaded areas show lakes.

tion. The NSE is defined by

NSE= 1−

∑N
i=1
(
Qi,obs−Qi,mod

)2∑N
i=1
(
Qi,obs−Qobs

)2 , (2)

with the observed discharge Qi,obs at gauge i, the corre-
sponding simulated discharge Qi,mod, the mean of all obser-
vations Qobs, and the total number of considered observa-
tions N . If NSE= 1, the model in the mean is assumed to be
unbiased (numerator/sum of deviations equals zero), in the
case of NSE= 0, the predictive skill of the model is as good
as the mean of the observations (Krause et al., 2005; McCuen
et al., 2006).

The NSE for the 71 individual catchments of the Rhine
basin (see Sect. 2.3) is shown in Fig. 5 for HYRAS (Fig. 5a),
and E-OBS (Fig. 5b) as HM forcing. In both cases the NSE
shows a good general agreement between the observed and

simulated discharges. In fact, only a few of the smaller catch-
ments have a lower NSE. Nevertheless, it also illustrates a
better match for HYRAS, which has a higher spatial reso-
lution. As LAERTES-EU is bias corrected towards E-OBS
(due to its spatial availability for the whole of Europe), we
expect the discharge errors caused by the HM to be of the
same order, even assuming a perfect precipitation input.

4.2.2 Historical flood events

Additionally to the overall performance in the previous sec-
tion, we analyze in detail three major Rhine river flood events
within the validation period: March 1988, December 1993,
and January 1995. The time series of simulated and ob-
served discharges are shown exemplarily for the Emmerich
(EMME) station (see Table 2) in Fig. 6. The results for
the other gauging stations can be found in the Supplement
(Figs. S2–S6). For those selected case studies, the model is
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Figure 3. Intensity–probability curve (IPC) of daily rainfall totals
within the Rhine basin for LAERTES-EU data blocks 2 and 4,
HYRAS, and E-OBS. For LAERTES-EU, the IPCs for the original
data set (uncorr) and the bias-corrected data set (BC) are shown.

Figure 4. Annual cycle of the spatially averaged mean monthly pre-
cipitation sum [in mm] based on LAERTES-EU data block 2 and 4
for uncorrected model data (uncorr), bias-corrected data (BC), E-
OBS, and HYRAS.

capable of identifying flood peaks in terms of timing and in-
tensity. One limitation of the model is in capturing signifi-
cant day-to-day variations in discharge (BETZ, GROL, and
ROCK for January 1995), which would require a higher tem-
poral resolution of the HM than daily time steps. A second
limitation is the overestimation of flood peaks at EMME of
10 %–20 %, which is likely due to the relatively simple flood
wave routing procedure.

5 Added value of bias-corrected LAERTES-EU for
HM forcing

In the previous section we have provided evidence that the
HM used is capable of simulating realistic discharges on a
daily basis for different (sub-)catchment extensions. How-
ever, the results indicate that a proper representation of in-
put precipitation is beneficial due to the high model sensi-
tivity. We now analyze how far LAERTES-EU can provide
a stochastic data set to represent the statistical properties of
observed river discharges.

As LAERTES-EU (both uncorrected and bias corrected)
includes simulated precipitation data for thousands of years,
we can calculate discharges for different return periods (RPs)
from a sorted series of the yearly maxima using the plotting-
position approach of Weibull (Makkonen, 2006). For the his-
torical discharges, we have just about 50 years of measured
discharges and 68 (34) years of simulated discharges based
on E-OBS (HYRAS). To estimate higher return periods, we
need to make assumptions about the underlying distribution
of discharge extremes. Although various distributions are
used in hydrology, we mainly use a Weibull distribution fit-
ted by the L-moments method (Hosking, 1990) in this study.
To illustrate the uncertainty in the distribution selection, we
also use gamma and Gumbel distributions for the observed
discharges.

Discharge values derived from LAERTES-EU should have
similar distributions to river flow extremes. Figure 7 shows
exemplarily the distributions of discharge extremes for the
EMME station as described in Sect. 2.3 for return periods
of 2–2000 years. The results for the other gauges can be
found in the Supplement (Figs. S7–S11). There are concep-
tually two different kinds of distribution shown: parametric
distributions for short time series (discharge observations,
HYRAS, E-OBS) and empirical distributions for long time
series (LAERTES-EU). Parametric distribution never per-
fectly match the data, and thus, there is an uncertainty in
fitting the distribution parameters, which can be visualized
as confidence intervals (CIs) by bootstrapping. The empirical
distributions show all data values, so there is no mismatch be-
tween distribution and data. Figure 7 shows the 95 % CI for
two parametric distributions: Q Obs-Weibull and HYRAS-
Weibull. The Q Obs-Weibull CI represents the uncertainty
in the prediction of extreme discharges based on observa-
tions (no HM used), while the HYRAS-Weibull CI represents
the uncertainty in discharge extremes modeled with the pre-
sented HM using the most highly resolved data set as forcing,
which in this case is assumed to be the best available data.

The results for the two biggest catchments (EMME and
FRAN) reveal a clear advantage of using the bias-corrected
data. LAERTES-EU shows better results than the simulations
driven with observed precipitation from E-OBS or HYRAS.
The distribution of return periods estimated from LAERTES-
EU is in good agreement with those of the observations,
especially when considering different distribution functions
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Figure 5. Nash–Sutcliffe model efficiency coefficient (NSE) for the 71 catchments of the Rhine basin (validation period 1986–2009) with
(a) HYRAS and (b) E-OBS as HM forcing. Higher values indicate better agreement.

and CIs. At the ROCK station, the uncorrected discharge ex-
tremes are too high and outside the CI of the observations.
These extreme values are reduced by the bias correction, but
the reduction also leads to an underestimation of lower return
periods, where the historical data are reliable. For the smaller
catchments, the effect of bias correction is mixed (some-
times positive, sometimes negative). As LAERTES-EU was
corrected towards E-OBS, the bias correction has a nega-
tive impact. This is particularly true in medium and small
catchments where E-OBS shows significant differences from
HYRAS in terms of precipitation. At the GROL station,
the discharges forced by historical E-OBS precipitation are
underestimated, and thus, the bias-corrected stochastic dis-
charges are also underestimated. Possible reasons for this
are the relatively coarse resolution of LAERTES-EU and
the daily time resolution. Both facts prevent capturing small-
scale and/or convective phenomena with short duration. Nev-
ertheless, smaller catchments (and rivers) show a higher sen-
sitivity for such events.

The results presented in Figs. 7 and S7–S11 are used to
estimate the return interval of the historical flood events used
for the model validation in Sect. 4.2.2 and presented in Ta-
ble 3. Similarly to the figures, the results in Table 3 show a
rather large uncertainty range in most of the cases. For the
two biggest catchments (EMME and FRAN), the return pe-
riods from LAERTES-EU are close to those estimates from
observed discharges and within the CI of the observations
but closer to the lower CI boundary. This indicates that the
observed estimates tend to overestimate return periods. For
the medium-size catchment represented by the ROCK sta-

tion, the LAERTES-EU return periods are in the range of
the upper observed CI boundary or slightly above. For the
smaller catchments (GROL, BETZ, and BADV) the results
are mixed, but LAERTES-EU tends to overestimate the re-
turn periods. Again, possible reasons for this are the spatial
and temporal resolution of LAERTES-EU, which might not
be sufficient to capture flood events in these catchments.

6 Summary and conclusions

In this study, we have adapted, applied, and validated the
LAERTES-EU precipitation data set for hydrological appli-
cations in the Rhine basin. The main aims were to reduce the
positive precipitation bias of LAERTES-EU already stated
by Ehmele et al. (2020) compared to meteorological observa-
tions and to improve hydrological discharge simulations with
respect to a more robust statistical representation of extremes
characterized by high return periods. Following the formu-
lated research questions (Sect. 1), the main conclusions are
as follows:

1. The mainly positive precipitation bias of the original
LAERTES-EU data was reduced to a large extent by
the bias correction approach. The statistical distribution
of precipitation now follows that of the observations but
conserves the heavy tail representing not yet observed
(extreme) values. Typical characteristics like the annual
cycle are conserved but improved in terms of amplitude.

2. The applied HM can reproduce historical flood events
in terms of peak discharge and timing. Nevertheless, the
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Table 3. Return interval Tobs of the peak discharge Q for selected historical flood events and stations (sorted in descending order regarding
catchment size; see Table 2) estimated from theQ Obs-Weibull distribution and 95 % CI (T0.05 and T0.95) and bias-corrected LAERTES-EU
data TLAERTES.

Event Station Q Tobs T0.05 T0.95 TLAERTES
[m3 s−1] [yr] [yr] [yr] [yr]

Mar 1988 EMME 9930 17 10 81 24
FRAN 1760 26 13 206 30
ROCK 1810 14 8 36 37
GROL 291 < 2 < 2 3 5
BADV 62 4 3 5 5
BETZ 145 < 2 < 2 2 6

Dec 1993 EMME 10 600 30 15 313 42
FRAN 1220 5 3 8 5
ROCK 2140 37 16 188 110
GROL 727 55 14 810 1855
BADV 80 15 9 76 26
BETZ 214 5 3 8 36

Jan 1995 EMME 11 400 61 29 3590 82
FRAN 1990 57 23 1245 66
ROCK 1130 3 < 2 4 4
GROL 689 38 12 420 734
BADV 81 17 10 103 30
BETZ 222 6 4 10 46

results are case sensitive and depend on the catchment
size and related terrain characteristics. Moreover, the re-
sults demonstrate the necessity of a proper representa-
tion of the forcing data.

3. Discharge simulations for the Rhine basin demonstrate
a proper representation of discharge distributions even
for high return periods using LAERTES-EU as input
data due to the large ensemble size. The bias-corrected
precipitation input improves the representation of dis-
charge return values within the uncertainty in observa-
tions associated with the extrapolation required for re-
turn periods beyond the observed record. Nevertheless,
the results depend on the catchment size.

Regarding conclusion 1, we provide evidence that the
applied bias correction works properly across the whole
model chain. The positive precipitation bias of LAERTES-
EU (Ehmele et al., 2020) is reduced to a large degree. The
statistical distributions like IPCs and the annual cycle are
now in good agreement with the E-OBS reference data. The
applied methodology of adaptive correction functions (de-
pending on data block, month) has many advantages. For
example, it enables the consideration of different bias mag-
nitudes across the year, with a stronger adjustment during
winter months. Treating a LAERTES-EU data block as a
single data set, the internal variability in the single mem-
bers within a data block is conserved. Furthermore, the ap-
proach retains the heavy tail of the distribution representing
the not yet observed range of values, as can be expected from

such a long-running data set. However, the quality of the bias
correction strongly depends on the reference data set and is
therefore limited to the quality of observations. Following
Haas et al. (2014) for wind speed, a sparse data density or
availability can worsen the results after bias correction. In
the case of the Rhine basin, the data density is quite high,
and thus, the bias correction is expected be of good quality.
The IPCs point out that E-OBS has a negative bias compared
to the more highly resolved HYRAS data set, and thus, the
corrected LAERTES-EU also shows a negative bias towards
HYRAS. However, it is out of the scope of this study to de-
termine whether E-OBS or HYRAS is qualitatively better for
the bias correction in the case of the Rhine basin. Apart from
this, a broader context has to be considered the main aim is a
bias correction over the entire EURO-CORDEX domain, for
which only E-OBS has sufficiently long time series.

Regarding conclusion 2, we have applied the HM to his-
torical flooding events (three cases for the Rhine) using ob-
servations as forcing. We provide evidence that the HM can
reproduce these events properly in terms of timing and peak
discharge. Deviations from observed discharges can be at-
tributed to some limitations of the data sets and HM used,
like the relatively coarse spatial resolution and the daily time
step. The former has a significant impact mainly in mountain-
ous terrain or for small catchments, while the latter mainly
affects the flood wave propagation and timing. Nevertheless,
a timing error is identified in a few cases and magnitude de-
viations can be further post-processed.
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Figure 6. Time series of simulated and observed discharges
(black) at the Emmerich station (EMME) for the flood
events (a) March 1988, (b) December 1993, and (c) January 1995.
The simulations are forced with HYRAS (red), and E-OBS (or-
ange), respectively.

Regarding conclusion 3, the quality of the discharge sim-
ulations strongly depends on the catchment size. For entire
basins or large catchments, the bias correction clearly has an
added value, given that the estimated discharge return periods
are remarkably close to the observations which were extrap-
olated for high return periods using several distribution func-
tions. The uncorrected data lead to a general overestimation
of discharges. For smaller catchments, the results are more
mixed. In cases where E-OBS-driven simulations show low
discharges, the simulations after bias correction also show
an underestimation. This behavior can be explained with the
stronger sensitivity of the smaller catchments to small-scale
and/or convective phenomena as well as sub-daily effects

Figure 7. Return values of observed and simulated discharges Q
at EMME station. Given are the Weibull (solid black), Gumbel
(dashed black), and gamma (dot-dashed black) distributions for ob-
served discharges as well as the Weibull distributions for the sim-
ulation forced with observed precipitation from E-OBS (orange)
and HYRAS (red). The results from uncorrected LAERTES-EU-
driven simulations are given in green, and those driven by corrected
LAERTES-EU data are shown in blue. The shaded areas represent
the 95 % confidence intervals of HYRAS (red) and Q Obs-Weibull
(gray). The length of each time series is given in the legend.

(e.g., Seibert and Auerswald, 2020). Due to the limited length
of observational records, the estimated return values for high
return periods show a high uncertainty. From a statistical
point of view, the large number of data of LAERTES-EU
should enable more robust estimates in that context at least
for large- and medium-size catchments as seen in the esti-
mated return periods for selected historical flood events.

LAERTES-EU consists of various simulations of a single
RCM (CCLM) downscaling different realizations at differ-
ent resolutions of a single GCM (MPI-ESM). As the RCM
is identical for all simulations, differences mainly origi-
nate from the forcing GCM data and the internal variabil-
ity. Therefore, a proper representation of the typical weather
patterns associated with floods over Europe in the GCM is
important. As pointed out by, e.g., Cannon (2020), the MPI-
ESM used shows a good representation of the typical weather
patterns of the European sector. Comparable results should
be achieved using a GCM with similar quality and climate
sensitivity. Stronger diverging results are expected to emerge
only for GCMs with a different representation of the regional
climate and a stronger/weaker climate sensitivity.

The LAERTES-EU precipitation data were bias corrected
applying the quantile mapping technique with a parameter-
ized gamma distribution. Although the LAERTES-EU data
follow the extrapolated discharge observations (also using a
gamma distribution), the choice of parametric function for
the bias correction has only little or no influence on the statis-
tical distribution of discharges due to the high non-linearity
in the HM used. If a catchment consists of only one precip-
itation grid cell or is a small mountainous catchment, where
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most of the rain quickly triggers discharge, the linkage could
be stronger. For bigger catchments or the entire Rhine basin,
the overall precipitation sum over the area and also the timing
play a much bigger role.

Besides the presented benefits, there are some limitations
to the data set. LAERTES-EU is not expected to reproduce
specific historical events in a deterministic way (like a short-
term weather forecast for a maximum of 10–14 d) but is
probabilistic with associated uncertainties. Another limita-
tion is the comparatively coarse resolution for impact studies
of approx. 25 km, which causes a distinct bias especially in
strongly structured mountainous terrain. Despite these short-
comings, LAERTES-EU provides robust spatially consistent
and time-consistent stochastic precipitation data to estimate
even high return levels. Another advantage is the provision
of a multivariate and to a large degree consistent precipita-
tion and temperature data set, which is necessary to also con-
sider the effects of snow accumulation and snowmelt. The
applied HM uses daily mean temperature to decide whether
precipitation should be treated as rain or snow. Furthermore,
temperature is used to calculate additional input variables
like ET. Although the physical relation between precipita-
tion and temperature might be changed after the bias correc-
tion, the large-scale dynamics that produce specific weather
patterns and precipitation fields remain largely unchanged.
Terink et al. (2010) argued that the correlation between tem-
perature and precipitation is rather small for the Rhine basin.
The comprehensive analysis of frequency and characteristics
of precipitation and flooding events for a wide range of re-
turn periods under present climate conditions is thus possi-
ble. Given the spatial and temporal consistency of the data
set, it is possible to investigate flood events that take place in
multiple basins at the same time.

The resulting methodology and obtained discharge data
can be used to develop probabilistic catastrophe models and
risk assessments. This can be performed not only for single
catchments but also on national and pan-European scales,
combining the extreme value statistics from multiple river
basins. In particular, adaptations and applications of the pre-
sented methodology are ongoing for several large central
European river basins such as the Danube, Elbe, Oder, or
Vistula basins. Regarding hydrology, some recalibration of
the HM setup to further improve the model performance
in these basins is ongoing. For instance, the results can
be post-processed (scaled) for further impact modeling us-
ing a quantile–quantile mapping technique. This calibration
step will fix the underestimation of peak discharge values
while maintaining the large spatial and temporal variabil-
ity in simulated floods from LAERTES-EU. Regarding the
atmospheric part, LAERTES-EU will be used in a follow-
up study investigating the relation between the spatial vari-
ability in precipitation over Europe and teleconnection pat-
terns. Further applications of LAERTES-EU can include a
statistical and/or combined statistical–dynamical downscal-
ing towards higher resolutions to improve both precipita-

tion and discharge representation, especially over mountain
ranges. Other extensions could be the evaluation of other
variables/hazards and the investigation of so-called com-
pound events, i.e., simultaneously occurring multiple hazards
(e.g., Zscheischler et al., 2018; Raymond et al., 2020). The
analysis can also be extended by considering climate projec-
tion scenarios (e.g., RCP4.5/RCP8.5; Jacob et al., 2014) to
estimate possible changes in the frequency, intensity, and ex-
tension of hydrometeorological extremes in the 21st century.
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after registration at https://www.ecad.eu/download/ensembles/
download.php (ECA&D, 2022). HYRAS (Rauthe et al., 2013) can
be requested at the German Weather Service (DWD). It is planned
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ing Center (DKRZ). Discharge observations can be requested from
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Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/nhess-22-677-2022-supplement.

Author contributions. FE and LAK contributed equally to this
study. FE, LAK, HF, and JGP designed the study. HF performed
(parts of) the RCM simulations. FE performed the bias correction
and some analyses and wrote the initial draft. FDK contributed to
the bias correction with programming expertise. YH and DM devel-
oped the hydrological model and wrote the model description. LAK
and HSL contributed some precipitation analyses. MK runs the hy-
drological model and made the corresponding analysis. All authors
contributed with discussions and revisions.

Competing interests. At least one of the (co-)authors is a member
of the editorial board of Natural Hazards and Earth System Sci-
ences. The peer-review process was guided by an independent ed-
itor, and the authors also have no other competing interests to de-
clare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We acknowledge the E-OBS data set from
the EU FP6 project ENSEMBLES (http://ensembles-eu.metoffice.
com, last access: 18 December 2020) and the data providers in
the ECA&D project (https://www.ecad.eu, last access: 18 Decem-
ber 2020). We also thank the German Weather Service (DWD) for
providing HYRAS. In addition, we thank the German Climate Com-
puting Centre (DKRZ, Hamburg) for computing and storage re-
sources in project 983. We also thank the Zentralanstalt für Me-
teorologie und Geodynamik (ZAMG) for providing SPARTACUS
and all national and regional competent authorities for providing
discharge observations. We thank Aon for funding the project “Hy-

Nat. Hazards Earth Syst. Sci., 22, 677–692, 2022 https://doi.org/10.5194/nhess-22-677-2022

https://www.ecad.eu/download/ensembles/download.php
https://www.ecad.eu/download/ensembles/download.php
https://doi.org/10.5194/nhess-22-677-2022-supplement
http://ensembles-eu.metoffice.com
http://ensembles-eu.metoffice.com
https://www.ecad.eu


F. Ehmele et al.: LAERTES-EU for hydrological modeling 689

drometeorological extreme events under recent climate conditions”.
We also thank BMBF MiKlip project II (FKZ 01 LP 1518 A/D)
and the ClimXtreme project (FKZ 01 LP 1901 A) for partial fund-
ing. Patrick Ludwig was partially funded by the Helmholtz Climate
Initiative REKLIM (regional climate change; https://www.reklim.
de/en, last access: 18 December 2020). Joaquim G. Pinto thanks
the AXA Research Fund for support (https://axa-research.org/en/
project/joaquim-pinto, last access: 18 December 2020). We thank
the open-access publishing fund of the Karlsruhe Institute of Tech-
nology (KIT). We thank the reviewers for their valuable comments
that helped to improve this study and the handling editor for guid-
ance throughout the entire process.

Financial support. This research has been supported by Aon
through the project “Hydrometeorological extreme events under
recent climate conditions”, BMBF MiKlip project II (FKZ 01 LP
1518 A/D), the ClimXtreme project (FKZ 01 LP 1901 A), the
Helmholtz Climate Initiative REKLIM, and the AXA Research
Fund.

The article processing charges for this open-access publica-
tion were covered by the Karlsruhe Institute of Technology
(KIT).

Review statement. This paper was edited by Piero Lionello and re-
viewed by two anonymous referees.

References

Alfieri, L., Dottori, F., Betts, R., Salamon, P., and Feyen, L.: Multi-
model projections of river flood risk in Europe under global
warming, Climate, 6, 1–19, https://doi.org/10.3390/cli6010006,
2018.

Arheimer, B., Lindström, G., and Olsson, J.: A sys-
tematic review of sensitivities in the Swedish flood-
forecasting system, Atmos. Res., 100, 275–284,
https://doi.org/10.1016/j.atmosres.2010.09.013, 2011.

Beck, H. E., Bruijnzeel, L. A., van Dijk, A. I. J. M., McVicar,
T. R., Scatena, F. N., and Schellekens, J.: The impact of for-
est regeneration on streamflow in 12 mesoscale humid trop-
ical catchments, Hydrol. Earth Syst. Sci., 17, 2613–2635,
https://doi.org/10.5194/hess-17-2613-2013, 2013.

Beck, H. E., van Dijk, A. I., De Roo, A., Miralles, D. G., McVicar,
T. R., Schellekens, J., and Bruijnzeel, L. A.: Global-scale region-
alization of hydrologic model parameters, Water Resour. Res.,
52, 3599–3622, https://doi.org/10.1002/2015WR018247, 2016.

Berg, P., Feldmann, H., and Panitz, H.-J.: Bias correction of high
resolution regional climate model data, J. Hydrol., 448, 80–92,
https://doi.org/10.1016/j.jhydrol.2012.04.026, 2012.

Bergström, S. and Forsman, A.: Development of a conceptual deter-
ministic rainfall-runoff mode, Nord. Hydrol., 4, 240–253, 1973.

Bosshard, T., Kotlarski, S., Zappa, M., and Schär, C.: Hydrologi-
cal climate-impact projections for the Rhine River: GCM–RCM
uncertainty and separate temperature and precipitation effects,
J. Hydrometeorol., 15, 697–713, https://doi.org/10.1175/JHM-
D-12-098.1, 2014.

Cannon, A. J.: Reductions in daily continental-scale atmospheric
circulation biases between generations of global climate mod-
els: CMIP5 to CMIP6, Environ. Res. Lett., 15, 064006,
https://doi.org/10.1088/1748-9326/ab7e4f, 2020.

Chen, J., Brissette, F. P., and Lucas-Picher, P.: Assessing the
limits of bias-correcting climate model outputs for climate
change impact studies, J. Geophys. Res.-Atmos., 120, 1123–
1136, https://doi.org/10.1002/2014JD022635, 2015.

Chen, J., Brissette, F. P., and Chen, H.: Using reanalysis-driven re-
gional climate model outputs for hydrology modelling, Hydrol.
Process., 32, 3019–3031, https://doi.org/10.1002/hyp.13251,
2018.

Chen, J., Brissette, F. P., Zhang, X. J., Chen, H., Guo, S., and
Zhao, Y.: Bias correcting climate model multi-member en-
sembles to assess climate change impacts on hydrology, Cli-
matic Change, 153, 361–377, https://doi.org/10.1007/s10584-
019-02393-x, 2019.

Cloke, H. L., Wetterhall, F., He, Y., Freer, J. E., and Pappen-
berger, F.: Modelling climate impact on floods with ensem-
ble climate projections, Q. J. Roy. Meteor. Soc., 139, 282–297,
https://doi.org/10.1002/qj.1998, 2013.

Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Al-
lan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G.,
Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I.,
Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger,
A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross,
T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley,
S. J.: The Twentieth Century Reanalysis Project, Q. J. Roy. Me-
teor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.

Coppola, E., Sobolowski, S., Pichelli, E., Raffaele, F., Ahrens, B.,
Anders, I., Ban, N., Bastin, S., Belda, M., Belusic, D., Caldas-
Alvarez, A., Cardoso, R. M., Davolio, S., Dobler, A., Fernan-
dez, J., Fita, L., Fumiere, Q., Giorgi, F., Goergen, K., Güttler,
I., Halenka, T., Heinzeller, D., Hodnebrog, Ø., Jacob, D., Kart-
sios, S., Katragkou, E., Kendon, E., Khodayar, S., Kunstmann,
H., Knist, S.and Lavin-Gullon, A., Lind, P., Lorenz, T., Ma-
raun, D., Marelle, L., van Meijgaard, E., Milovac, J., Myhre,
G., Panitz, H.-J., Piazza, M., Raffa, M., Raub, T., Rockel, B.,
Schär, C., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L.,
Stocchi, P., Tölle, M. H., Truhetz, H., Vautard, R., de Vries, H.,
and Warrach-Sagi, K.: A first-of-its-kind multi-model convec-
tion permitting ensemble for investigating convective phenom-
ena over Europe and the Mediterranean, Clim. Dynam., 55, 3–34,
https://doi.org/10.1007/s00382-018-4521-8, 2020.

Cornes, R. C., van der Schrier, G., van den Besselaar, E. J., and
Jones, P. D.: An Ensemble Version of the E-OBS Tempera-
ture and Precipitation Data Sets, J. Geophys. Res.-Atmos., 123,
9391–9409, https://doi.org/10.1029/2017JD028200, 2018.

Cunge, J.: On the subject of a flood propagation computation
method (Musklngum method), J. Hydrol. Res., 7, 205–230,
https://doi.org/10.1080/00221686909500264, 1969.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,
P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-
lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,
A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey,
C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The

https://doi.org/10.5194/nhess-22-677-2022 Nat. Hazards Earth Syst. Sci., 22, 677–692, 2022

https://www.reklim.de/en
https://www.reklim.de/en
https://axa-research.org/en/project/joaquim-pinto
https://axa-research.org/en/project/joaquim-pinto
https://doi.org/10.3390/cli6010006
https://doi.org/10.1016/j.atmosres.2010.09.013
https://doi.org/10.5194/hess-17-2613-2013
https://doi.org/10.1002/2015WR018247
https://doi.org/10.1016/j.jhydrol.2012.04.026
https://doi.org/10.1175/JHM-D-12-098.1
https://doi.org/10.1175/JHM-D-12-098.1
https://doi.org/10.1088/1748-9326/ab7e4f
https://doi.org/10.1002/2014JD022635
https://doi.org/10.1002/hyp.13251
https://doi.org/10.1007/s10584-019-02393-x
https://doi.org/10.1007/s10584-019-02393-x
https://doi.org/10.1002/qj.1998
https://doi.org/10.1002/qj.776
https://doi.org/10.1007/s00382-018-4521-8
https://doi.org/10.1029/2017JD028200
https://doi.org/10.1080/00221686909500264


690 F. Ehmele et al.: LAERTES-EU for hydrological modeling

ERA-Interim reanalysis: Configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.

Demirel, M. C., Booij, M. J., and Hoekstra, A. Y.: The skill of sea-
sonal ensemble low-flow forecasts in the Moselle River for three
different hydrological models, Hydrol. Earth Syst. Sci., 19, 275–
291, https://doi.org/10.5194/hess-19-275-2015, 2015.

Dobler, A. and Ahrens, B.: Precipitation by a regional climate
model and bias correction in Europe and South Asia, Meteorol.
Z., 17, 499–509, https://doi.org/10.1127/0941-2948/2008/0306,
2008.

ECA&D: E-OBS gridded dataset, https://www.ecad.eu/download/
ensembles/download.php, last access: 28 February 2022.

Ehmele, F. and Kunz, M.: Flood-related extreme precipitation
in southwestern Germany: development of a two-dimensional
stochastic precipitation model, Hydrol. Earth Syst. Sci., 23,
1083–1102, https://doi.org/10.5194/hess-23-1083-2019, 2019.

Ehmele, F., Kautz, L.-A., Feldmann, H., and Pinto, J. G.: Long-
term variance of heavy precipitation across central Europe using
a large ensemble of regional climate model simulations, Earth
Syst. Dynam., 11, 469–490, https://doi.org/10.5194/esd-11-469-
2020, 2020.

Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert,
J.: HESS Opinions ”Should we apply bias correction to global
and regional climate model data?”, Hydrol. Earth Syst. Sci., 16,
3391–3404, https://doi.org/10.5194/hess-16-3391-2012, 2012.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-
tal design and organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Fang, G. H., Yang, J., Chen, Y. N., and Zammit, C.: Comparing bias
correction methods in downscaling meteorological variables for
a hydrologic impact study in an arid area in China, Hydrol. Earth
Syst. Sci., 19, 2547–2559, https://doi.org/10.5194/hess-19-2547-
2015, 2015.

Feldmann, H., Frueh, B., Schaedler, G., Panitz, H.-J., Keuler,
K., Jacob, D., and Lorenz, P.: Evaluation of the precipita-
tion for South-western Germany from high resolution simula-
tions with regional climate models, Meteorol. Z., 17, 455–465,
https://doi.org/10.1127/0941-2948/2008/0295, 2008.

Feldmann, H., Schädler, G., Panitz, H.-J., and Kottmeier, C.:
Near future changes of extreme precipitation over com-
plex terrain in Central Europe derived from high resolution
RCM ensemble simulations, Int. J. Climatol., 33, 1964–1977,
https://doi.org/10.1002/joc.3564, 2013.

Feldmann, H., Pinto, J. G., Laube, N., Uhlig, M., Moemken, J.,
Pasternack, A., Früh, B., Pohlmann, H., and Kottmeier, C.:
Skill and added value of the MiKlip regional decadal predic-
tion system for temperature over Europe, Tellus A, 71, 1618678,
https://doi.org/10.1080/16000870.2019.1618678, 2019.

Feser, F., Rockel, B., von Storch, H., Winterfeldt, J., and Zahn, M.:
Regional climate models add value to global model data: a review
and selected examples, B. Am. Meteorol. Soc., 92, 1181–1192,
https://doi.org/10.1175/2011BAMS3061.1, 2011.

Feyen, L., Dankers, R., Bódis, K., Salamon, P., and Barredo, J. I.:
Fluvial flood risk in Europe in present and future climates, Cli-
matic Change, 112, 47–62, https://doi.org/10.1007/s10584-011-
0339-7, 2012.

Frei, C., Davies, H. C., Gurtz, J., and Schär, C.: Cli-
mate dynamics and extreme precipitation and flood
events in Central Europe, Integrat. Assess., 1, 281–300,
https://doi.org/10.1023/A:1018983226334, 2000.

Fuentes, U. and Heimann, D.: An improved statistical-dynamical
downscaling scheme and its application to the Alpine pre-
cipitation climatology, Theor. Appl. Climatol., 65, 119–135,
https://doi.org/10.1007/s007040070038, 2000.

Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader,
J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K.,
Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T.,
Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajew-
icz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S.,
Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschnei-
der, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J.,
Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and
Stevens, B.: Climate and carbon cycle changes from 1850 to
2100 in MPI-ESM simulations for the Coupled Model Intercom-
parison Project phase 5, J. Adv. Model. Earth Sy., 5, 572–597,
https://doi.org/10.1002/jame.20038, 2013.

Grams, C. M., Binder, H., Pfahl, S., Piaget, N., and Wernli, H.:
Atmospheric processes triggering the central European floods
in June 2013, Nat. Hazards Earth Syst. Sci., 14, 1691–1702,
https://doi.org/10.5194/nhess-14-1691-2014, 2014.

Gutjahr, O. and Heinemann, G.: Comparing precipitation bias cor-
rection methods for high-resolution regional climate simulations
using COSMO-CLM, Theor. Appl. Climatol., 114, 511–529,
https://doi.org/10.1007/s00704-013-0834-z, 2013.

Gutmann, E. D., Rasmussen, R. M., Liu, C., Ikeda, K., Gochis,
D. J., Clark, M. P., Dudhia, J., and Thompson, G.: A com-
parison of statistical and dynamical downscaling of winter
precipitation over complex terrain, J. Climate, 25, 262–281,
https://doi.org/10.1175/2011JCLI4109.1, 2012.

Haas, R., Pinto, J. G., and Born, K.: Can dynamically downscaled
windstorm footprints be improved by observations through a
probabilistic approach?, J. Geophys. Res.-Atmos., 119, 713–725,
https://doi.org/10.1002/2013JD020882, 2014.

Haylock, M., Hofstra, N., Tank, A. K., Klok, E., Jones, P., and New,
M.: A European daily high-resolution gridded data set of surface
temperature and precipitation for 1950–2006, J. Geophys. Res.,
113, D20119, https://doi.org/10.1029/2008JD010201, 2008.

He, Y., Bárdossy, A., and Zehe, E.: A catchment classification
scheme using local variance reduction method, J. Hydrol., 411,
140–154, https://doi.org/10.1016/j.jhydrol.2011.09.042, 2011.

He, Y., Manful, D., Warren, R., Price, J., Forstenhäusler, N.,
Osborn, T., Wallace, C., and Yamazaki, D.: Quantification
of impacts between 1.5 ◦C and 4 ◦C of global warming on
flooding risks in six countries, Climatic Change, 170, 1–21,
https://doi.org/10.1007/s10584-021-03289-5, 2020.

Hein, T., Funk, A., Pletterbauer, F., Graf, W., Zsuffa, I., Haid-
vogl, G., Schinegger, R., and Weigelhofer, G.: Management
challenges related to long-term ecological impacts, complex
stressor interactions, and different assessment approaches in
the Danube River Basin, River Res. Appl., 35, 500–509,
https://doi.org/10.1002/rra.3243, 2019.

Hilker, N., Badoux, A., and Hegg, C.: The Swiss flood and landslide
damage database 1972–2007, Nat. Hazards Earth Syst. Sci., 9,
913–925, https://doi.org/10.5194/nhess-9-913-2009, 2009.

Nat. Hazards Earth Syst. Sci., 22, 677–692, 2022 https://doi.org/10.5194/nhess-22-677-2022

https://doi.org/10.1002/qj.828
https://doi.org/10.5194/hess-19-275-2015
https://doi.org/10.1127/0941-2948/2008/0306
https://www.ecad.eu/download/ensembles/download.php
https://www.ecad.eu/download/ensembles/download.php
https://doi.org/10.5194/hess-23-1083-2019
https://doi.org/10.5194/esd-11-469-2020
https://doi.org/10.5194/esd-11-469-2020
https://doi.org/10.5194/hess-16-3391-2012
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/hess-19-2547-2015
https://doi.org/10.5194/hess-19-2547-2015
https://doi.org/10.1127/0941-2948/2008/0295
https://doi.org/10.1002/joc.3564
https://doi.org/10.1080/16000870.2019.1618678
https://doi.org/10.1175/2011BAMS3061.1
https://doi.org/10.1007/s10584-011-0339-7
https://doi.org/10.1007/s10584-011-0339-7
https://doi.org/10.1023/A:1018983226334
https://doi.org/10.1007/s007040070038
https://doi.org/10.1002/jame.20038
https://doi.org/10.5194/nhess-14-1691-2014
https://doi.org/10.1007/s00704-013-0834-z
https://doi.org/10.1175/2011JCLI4109.1
https://doi.org/10.1002/2013JD020882
https://doi.org/10.1029/2008JD010201
https://doi.org/10.1016/j.jhydrol.2011.09.042
https://doi.org/10.1007/s10584-021-03289-5
https://doi.org/10.1002/rra.3243
https://doi.org/10.5194/nhess-9-913-2009


F. Ehmele et al.: LAERTES-EU for hydrological modeling 691

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Ya-
mazaki, D., Watanabe, S., Kim, H., and Kanae, S.: Global
flood risk under climate change, Nat. Clim. Change, 3, 816,
https://doi.org/10.1038/nclimate1911, 2013.

Hosking, J. R. M.: L-Moments: Analysis and Estimation of Distri-
butions Using Linear Combinations of Order Statistics, J. Roy.
Stat. Soc. B Met., 52, 105–124, https://doi.org/10.1111/j.2517-
6161.1990.tb01775.x, 1990.

Hunducha, Y. and Bardossy, A.: Modelling of the effect of land use
changes on the runoff generation of a river catchment through
parameter regionalization of a watershed model, J. Hydrol., 292,
281–295, https://doi.org/10.1016/j.jhydrol.2004.01.002, 2004.

Ionita, M.: Mid range forecasting of the German Waterways
streamflow based on hydrologic, atmospheric and oceanic data,
Berichte zur Polar-und Meeresforschung – Reports on polar and
marine research, 711, 5–7, 2017.

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B.,
Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski,
G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G.,
Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Ko-
vats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin,
E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann,
S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M.,
Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C.,
Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-
CORDEX: new high-resolution climate change projections for
European impact research, Reg. Environ. Change, 14, 563–578,
https://doi.org/10.1007/s10113-013-0499-2, 2014.

Jenicek, M., Seibert, J., and Staudinger, M.: Modeling of future
changes in seasonal snowpack and impacts on summer low
flows in alpine catchments, Water Resour. Res., 54, 538–556,
https://doi.org/10.1002/2017WR021648, 2018.

Jongman, B., Hochrainer-Stigler, S., Feyen, L., Aerts, J. C.,
Mechler, R., Botzen, W. W., Bouwer, L. M., Pflug, G., Ro-
jas, R., and Ward, P. J.: Increasing stress on disaster-risk
finance due to large floods, Nat. Clim. Change, 4, 264,
https://doi.org/10.1038/nclimate2124, 2014.

Kelemen, F. D., Ludwig, P., Reyers, M., Ulbrich, S., and
Pinto, J. G.: Evaluation of moisture sources for the Cen-
tral European summer flood of May/June 2013 based
on regional climate model simulations, Tellus, 68, 29288,
https://doi.org/10.3402/tellusa.v68.29288, 2016.

Krause, P., Boyle, D. P., and Bäse, F.: Comparison of different effi-
ciency criteria for hydrological model assessment, Adv. Geosci.,
5, 89–97, https://doi.org/10.5194/adgeo-5-89-2005, 2005.

Kunz, M.: Characteristics of large-scale orographic precipita-
tion in a linear perspective, J. Hydrometeorol., 12, 27–44,
https://doi.org/10.1175/2010JHM1231.1, 2011.

Lang, M., Pobanz, K., Renard, B., Renouf, E., and Sauquet, E.: Ex-
trapolation of rating curves by hydraulic modelling, with applica-
tion to flood frequency analysis, Hydrolog. Sci. J., 55, 883–898,
https://doi.org/10.1080/02626667.2010.504186, 2010.

Lidén, R. and Harlin, J.: Analysis of conceptual rainfall–
runoff modelling performance in different climates, J. Hydrol.,
238, 231–247, https://doi.org/10.1016/S0022-1694(00)00330-9,
2000.

Lindström, G., Johansson, B., Persson, M., Gardelin, M., and
Bergström, S.: Development and test of the distributed HBV-96
hydrological model, J. Hydrol., 201, 272–288, 1997.

Maddox, R. A., Chappell, C. F., and Hoxit, L. R.: Synoptic and
meso-α scale aspects of flash flood events, B. Am. Meteorol.
Soc., 60, 115–123, 1979.

Makkonen, L.: Plotting Positions in Extreme Value
Analysis, J. Appl. Meteorol. Clim., 45, 334–340,
https://doi.org/10.1175/JAM2349.1, 2006.

Maraun, D.: Nonstationarities of regional climate model
biases in European seasonal mean temperature and
precipitation sums, Geophys. Res. Lett., 39, L06706,
https://doi.org/10.1029/2012GL051210,, 2012.

Maraun, D.: Bias correcting climate change simulations-a
critical review, Curr. Clim. Change Rep., 2, 211–220,
https://doi.org/10.1007/s40641-016-0050-x, 2016.

Marotzke, J., Müller, W. A., Vamborg, F. S. E., Becker, P.,
Cubasch, U., Feldmann, H., Kaspar, F., Kottmeier, C., Marini,
C., Polkova, I., Prömmel, K., Rust, H. W., Stammer, D., Ul-
brich, U., Kadow, C., Köhl, A., Kröger, J., Kruschke, T., Pinto,
J. G., Pohlmann, H., Reyers, M., Schröder, M., Sienz, F., Timm-
reck, C., and Ziese, M.: MiKlip: a national research project on
decadal climate prediction, B. Am. Meteorol. Soc., 97, 2379–
2394, https://doi.org/10.1175/BAMS-D-15-00184.1, 2016.

McCuen, R. H., Knight, Z., and Cutter, A. G.: Evaluation of the
Nash-Sutcliffe Efficiency Index, J. Hydrol. Eng., 11, 597–602,
https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597),
2006.

Merz, B., Elmer, F., Kunz, M., Mühr, B., Schröter,
K., and Uhlemann-Elmer, S.: The extreme flood in
June 2013 in Germany, Houille Blanche, 1, 5–10,
https://doi.org/10.1051/lhb/2014001, 2014.

Min, E., Hazeleger, W., Van Oldenborgh, G., and Sterl, A.: Evalua-
tion of trends in high temperature extremes in north-western Eu-
rope in regional climate models, Environ. Res. Lett., 8, 014011,
https://doi.org/10.1088/1748-9326/8/1/014011, 2013.

Müller, W. A., Matei, D., Bersch, M., Jungclaus, J. H., Haak, H.,
Lohmann, K., Compo, G., Sardeshmukh, P., and Marotzke, J.: A
twentieth-century reanalysis forced ocean model to reconstruct
the North Atlantic climate variation during the 1920s, Clim. Dy-
nam., 44, 1935–1955, https://doi.org/10.1007/s00382-014-2267-
5, 2015.

Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bit-
tner, M., Budich, R., Bunzel, F., Esch, M., Ghosh, R.,
Haak, H., Ilyina, T., Kleine, T., Kornblueh, L., Li, H.,
Modali, K., Notz, D., Pohlmann, H., Roeckner, E., Stemm-
ler, I., Tian, F., and Marotzke, J.: A Higher-resolution Ver-
sion of the Max Planck Institute Earth System Model (MPI-
ESM1.2-HR), J. Adv. Model. Earth Sy., 10, 1383–1413,
https://doi.org/10.1029/2017MS001217, 2018.

Nash, J. and Sutcliffe, J.: River flow forecasting through conceptual
models, Part I – A discussion of principles, J. Hydrol., 10, 282–
290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

Olsson, J. and Lindström, G.: Evaluation and calibration of oper-
ational hydrological ensemble forecasts in Sweden, J. Hydrol.,
350, 14–24, https://doi.org/10.1016/j.jhydrol.2007.11.010, 2008.

Ott, I., Duethmann, D., Liebert, J., Berg, P., Feldmann, H., Ihringer,
J., Kunstmann, H., Merz, B., Schaedler, G., and Wagner, S.:
High-resolution climate change impact analysis on medium-
sized river catchments in Germany: an ensemble assessment, J.
Hydrometeorol., 14, 1175–1193, https://doi.org/10.1175/JHM-
D-12-091.1, 2013.

https://doi.org/10.5194/nhess-22-677-2022 Nat. Hazards Earth Syst. Sci., 22, 677–692, 2022

https://doi.org/10.1038/nclimate1911
https://doi.org/10.1111/j.2517-6161.1990.tb01775.x
https://doi.org/10.1111/j.2517-6161.1990.tb01775.x
https://doi.org/10.1016/j.jhydrol.2004.01.002
https://doi.org/10.1007/s10113-013-0499-2
https://doi.org/10.1002/2017WR021648
https://doi.org/10.1038/nclimate2124
https://doi.org/10.3402/tellusa.v68.29288
https://doi.org/10.5194/adgeo-5-89-2005
https://doi.org/10.1175/2010JHM1231.1
https://doi.org/10.1080/02626667.2010.504186
https://doi.org/10.1016/S0022-1694(00)00330-9
https://doi.org/10.1175/JAM2349.1
https://doi.org/10.1029/2012GL051210,
https://doi.org/10.1007/s40641-016-0050-x
https://doi.org/10.1175/BAMS-D-15-00184.1
https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597)
https://doi.org/10.1051/lhb/2014001
https://doi.org/10.1088/1748-9326/8/1/014011
https://doi.org/10.1007/s00382-014-2267-5
https://doi.org/10.1007/s00382-014-2267-5
https://doi.org/10.1029/2017MS001217
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/j.jhydrol.2007.11.010
https://doi.org/10.1175/JHM-D-12-091.1
https://doi.org/10.1175/JHM-D-12-091.1


692 F. Ehmele et al.: LAERTES-EU for hydrological modeling

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V.,
Anctil, F., and Loumagne, C.: Which potential evapotranspi-
ration input for a lumped rainfall–runoff model?: Part 2 –
Towards a simple and efficient potential evapotranspiration
model for rainfall–runoff modelling, J. Hydrol., 303, 290–306,
https://doi.org/10.1016/j.jhydrol.2004.08.026, 2005.

Pauling, A. and Paeth, H.: On the variability of return periods
of European winter precipitation extremes over the last three
centuries, Clim. Past, 3, 65–76, https://doi.org/10.5194/cp-3-65-
2007, 2007.

Piani, C., Weedon, G., Best, M., Gomes, S., Viterbo, P., Hage-
mann, S., and Haerter, J.: Statistical bias correction of global
simulated daily precipitation and temperature for the appli-
cation of hydrological models, J. Hydrol., 395, 199–215,
https://doi.org/10.1016/j.jhydrol.2010.10.024, 2010.

Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A., and
Gratzki, A.: A Central European precipitation climatology –
Part I: Generation and validation of a high-resolution grid-
ded daily data set (HYRAS), Meteorol. Z., 22, 235–256,
https://doi.org/10.1127/0941-2948/2013/0436, 2013.

Raymond, C., Horton, R. M., Zscheischler, J., Martius, O.,
AghaKouchak, A., Balch, J., Bowen, S. G., Camargo, S.
J., Hess, J., Kornhuber, K., Oppenheimer, M., Ruane, A.
C., Wahl, T., and White, K.: Understanding and managing
connected extreme events, Nat. Clim. Change, 10, 611–621,
https://doi.org/10.1038/s41558-020-0790-4, 2020.

Reyers, M., Pinto, J. G., and Moemken, J.: Statistical–dynamical
downscaling for wind energy potentials: evaluation and applica-
tions to decadal hindcasts and climate change projections, Int. J.
Climatol., 35, 229–244, https://doi.org/10.1002/joc.3975, 2015.

Richardson, C. W.: Stochastic simulation of daily precipitation,
temperature, and solar radiation, Water Resour. Res., 17, 182–
190, https://doi.org/10.1029/WR017i001p00182, 1981.

Rockel, B., Will, A., and Hense, A.: The regional climate
model COSMO-CLM (CCLM), Meteorol. Z., 17, 347–348,
https://doi.org/10.1127/0941-2948/2008/0309, 2008.

Schröter, K., Kunz, M., Elmer, F., Mühr, B., and Merz, B.: What
made the June 2013 flood in Germany an exceptional event? A
hydro-meteorological evaluation, Hydrol. Earth Syst. Sci., 19,
309–327, https://doi.org/10.5194/hess-19-309-2015, 2015.

Seibert, S. P. and Auerswald, K.: Hochwasserminderung im
ländlichen Raum: Ein Handbuch zur quantitativen Planung,
Springer Nature, https://doi.org/10.1007/978-3-662-61033-6,
2020.

Stucki, P., Dierer, S., Welker, C., Gómez-Navarro, J. J., Raible,
C. C., Martius, O., and Brönnimann, S.: Evaluation of
downscaled wind speeds and parameterised gusts for recent
and historical windstorms in Switzerland, Tellus, 68, 31820,
https://doi.org/10.3402/tellusa.v68.31820, 2016.

Tapia, C., Guerreiro, S., Dawson, R., Abajo, B., Kilsby, C., Feliu,
E., Mendizabal, M., Martinez, J., Fernández, J., Glenis, V.,
Eluwa, C., Laburu, T., and Lejarazu, A.: High level quanti-
fied assessment of key vulnerabilities and priority risks for
urban areas in the EU, RAMSES project deliverable D, 3,
https://climate-adapt.eea.europa.eu/metadata/publications/high-
level-quantified-assessment-of-key-vulnerabilities-
and-priority-risks-for-urban-areas-in-the-
eu/ramses_2016_quantifiedassessmentkeyvulnerabilities.pdf
(last access: 2 March 2022), 2015.

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of
CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.

Teng, J., Potter, N. J., Chiew, F. H. S., Zhang, L., Wang, B.,
Vaze, J., and Evans, J. P.: How does bias correction of regional
climate model precipitation affect modelled runoff?, Hydrol.
Earth Syst. Sci., 19, 711–728, https://doi.org/10.5194/hess-19-
711-2015, 2015.

Terink, W., Hurkmans, R. T. W. L., Torfs, P. J. J. F., and Ui-
jlenhoet, R.: Evaluation of a bias correction method applied
to downscaled precipitation and temperature reanalysis data
for the Rhine basin, Hydrol. Earth Syst. Sci., 14, 687–703,
https://doi.org/10.5194/hess-14-687-2010, 2010.

Teutschbein, C. and Seibert, J.: Regional climate models for hy-
drological impact studies at the catchment scale: a review of
recent modeling strategies, Geography Compass, 4, 834–860,
https://doi.org/10.1111/j.1749-8198.2010.00357.x, 2010.

Teutschbein, C. and Seibert, J.: Bias correction of regional climate
model simulations for hydrological climate-change impact stud-
ies: Review and evaluation of different methods, J. Hydrol., 456,
12–29, https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012.

Tockner, K., Uehlinger, U., and Robinson, C. T.: Rivers of Europe,
edited by: Tockner, K., Zarfl, C., and Robinson, C., Academic
Press, https://doi.org/10.1016/C2017-0-03745-X, 2009.

Van den Besselaar, E., Haylock, M., Van der Schrier, G., and
Klein Tank, A.: A European daily high-resolution observational
gridded data set of sea level pressure, J. Geophys. Res., 116,
D11110, https://doi.org/10.1029/2010JD015468, 2011.

van Oldenborgh, G. J., Philip, S., Aalbers, E., Vautard, R., Otto, F.,
Haustein, K., Habets, F., Singh, R., and Cullen, H.: Rapid attribu-
tion of the May/June 2016 flood-inducing precipitation in France
and Germany to climate change, Hydrol. Earth Syst. Sci. Dis-
cuss. [preprint], https://doi.org/10.5194/hess-2016-308, 2016.

van Pelt, S. C., Kabat, P., ter Maat, H. W., van den Hurk, B.
J. J. M., and Weerts, A. H.: Discharge simulations performed
with a hydrological model using bias corrected regional cli-
mate model input, Hydrol. Earth Syst. Sci., 13, 2387–2397,
https://doi.org/10.5194/hess-13-2387-2009, 2009.

Vetter, T., Huang, S., Aich, V., Yang, T., Wang, X., Krysanova, V.,
and Hattermann, F.: Multi-model climate impact assessment and
intercomparison for three large-scale river basins on three conti-
nents, Earth Syst. Dynam., 6, 17–43, https://doi.org/10.5194/esd-
6-17-2015, 2015.

Volpi, E., Fiori, A., Grimaldi, S., Lombardo, F., and Koutsoyian-
nis, D.: Save hydrological observations! Return period esti-
mation without data decimation, J. Hydrol., 571, 782–792,
https://doi.org/10.1016/j.jhydrol.2019.02.017, 2019.

Ward, P. J., de Moel, H., and Aerts, J. C. J. H.: How are flood risk
estimates affected by the choice of return-periods?, Nat. Hazards
Earth Syst. Sci., 11, 3181–3195, https://doi.org/10.5194/nhess-
11-3181-2011, 2011.

White, R. and Toumi, R.: The limitations of bias correcting re-
gional climate model inputs, Geophys. Res. Lett., 40, 2907–
2912, https://doi.org/10.1002/grl.50612, 2013.

Zscheischler, J., Westra, S., Van Den Hurk, B. J. J. M., Senevi-
ratne, S. I., Ward, P. J., Pitman, A., AghaKouchak, A., Bresch,
D. N., Leonard, M., Wahl, T., and Zhang, X.: Future climate
risk from compound events, Nat. Clim. Change, 8, 469–477,
https://doi.org/10.1038/s41558-018-0156-3, 2018.

Nat. Hazards Earth Syst. Sci., 22, 677–692, 2022 https://doi.org/10.5194/nhess-22-677-2022

https://doi.org/10.1016/j.jhydrol.2004.08.026
https://doi.org/10.5194/cp-3-65-2007
https://doi.org/10.5194/cp-3-65-2007
https://doi.org/10.1016/j.jhydrol.2010.10.024
https://doi.org/10.1127/0941-2948/2013/0436
https://doi.org/10.1038/s41558-020-0790-4
https://doi.org/10.1002/joc.3975
https://doi.org/10.1029/WR017i001p00182
https://doi.org/10.1127/0941-2948/2008/0309
https://doi.org/10.5194/hess-19-309-2015
https://doi.org/10.1007/978-3-662-61033-6
https://doi.org/10.3402/tellusa.v68.31820
https://climate-adapt.eea.europa.eu/metadata/publications/high-level-quantified-assessment-of-key-vulnerabilities-and-priority-risks-for-urban-areas-in-the-eu/ramses_2016_quantifiedassessmentkeyvulnerabilities.pdf
https://climate-adapt.eea.europa.eu/metadata/publications/high-level-quantified-assessment-of-key-vulnerabilities-and-priority-risks-for-urban-areas-in-the-eu/ramses_2016_quantifiedassessmentkeyvulnerabilities.pdf
https://climate-adapt.eea.europa.eu/metadata/publications/high-level-quantified-assessment-of-key-vulnerabilities-and-priority-risks-for-urban-areas-in-the-eu/ramses_2016_quantifiedassessmentkeyvulnerabilities.pdf
https://climate-adapt.eea.europa.eu/metadata/publications/high-level-quantified-assessment-of-key-vulnerabilities-and-priority-risks-for-urban-areas-in-the-eu/ramses_2016_quantifiedassessmentkeyvulnerabilities.pdf
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.5194/hess-19-711-2015
https://doi.org/10.5194/hess-19-711-2015
https://doi.org/10.5194/hess-14-687-2010
https://doi.org/10.1111/j.1749-8198.2010.00357.x
https://doi.org/10.1016/j.jhydrol.2012.05.052
https://doi.org/10.1016/C2017-0-03745-X
https://doi.org/10.1029/2010JD015468
https://doi.org/10.5194/hess-2016-308
https://doi.org/10.5194/hess-13-2387-2009
https://doi.org/10.5194/esd-6-17-2015
https://doi.org/10.5194/esd-6-17-2015
https://doi.org/10.1016/j.jhydrol.2019.02.017
https://doi.org/10.5194/nhess-11-3181-2011
https://doi.org/10.5194/nhess-11-3181-2011
https://doi.org/10.1002/grl.50612
https://doi.org/10.1038/s41558-018-0156-3

	Abstract
	Introduction
	Data sets and study area
	LAERTES-EU
	Observational data
	E-OBS
	HYRAS
	Discharge observations

	Study area and time period

	Bias correction of precipitation
	Quantile mapping technique
	Validation of bias-corrected precipitation

	Hydrological modeling
	The HBV model approach
	Validation of the HM
	Discharge representation
	Historical flood events


	Added value of bias-corrected LAERTES-EU for HM forcing
	Summary and conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

