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Abstract. Flooding is one of the most disruptive natural dis-
asters, causing substantial loss of life and property dam-
age. Coastal cities in Asia face floods almost every year
due to monsoon influences. Early notification of flooding
events enables governments to implement focused preven-
tive actions. Specifically, short-term forecasts can buy time
for evacuation and emergency rescue, giving flood victims
timely relief. This paper proposes a novel multi-strategy-
mode waterlogging-prediction (MSMWP) framework for
forecasting waterlogging depth based on time series predic-
tion and a machine learning regression method. The frame-
work integrates historical rainfall and waterlogging depth to
predict near-future waterlogging in time under future meteo-
rological circumstances. An expanded rainfall model is pro-
posed to consider the positive correlation of future rainfall
with waterlogging. By selecting a suitable prediction strat-
egy, adjusting the optimal model parameters, and then com-
paring the different algorithms, the optimal configuration of
prediction is selected. In the actual-value testing, the selected
model has high computational efficiency, and the accuracy
of predicting the waterlogging depth after 30 min can reach
86.1 %, which is superior to many data-driven prediction
models for waterlogging depth. The framework is useful for
accurately predicting the depth of a target point promptly.
The prompt dissemination of early warning information is
crucial to preventing casualties and property damage.

1 Introduction

With the development of globalization, extreme weather and
climate events occur frequently and cause series of disas-
ters. According to the Fifth Assessment Report of the In-
tergovernmental Panel on Climate Change (IPCC), global
extreme weather and climate events have increased and in-
tensified over the past 50 years, and such events will occur
more frequently in the future (Jefferson, 2015). According to
The Global Risks Report 2021 released by the World Eco-
nomic Forum (WEF), extreme weather and climate events
in 2017–2020 ranked first for 4 consecutive years in terms
of the probability of occurrence of the top 10 global risks.
Flood disaster is one of the most destructive natural disasters,
usually caused by extreme weather and climate events, in-
cluding river basin flooding, mountain flooding, storm surge,
urban waterlogging, and other disaster types. Urban water-
logging can cause great damage to human life, infrastructure,
agriculture, and social systems (Hu et al., 2021). From 21 to
22 July 2012, Beijing was hit by the heaviest rainstorm and
waterlogging in 61 years, resulting in 79 deaths and property
losses of CNY 11.64 billion. Population density and the land
utilization rate are increasing year by year, and urban water-
logging caused by extreme rainstorms has become one of the
most serious threats to urban security. Low-lying areas often
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suffer from waterlogging disasters, and the lack of drainage
capacity further exacerbates the risk.

From the perspective of disaster prediction, most previ-
ous research has focused on torrential and watershed floods,
but research into and the application of waterlogging dis-
aster prediction have been rare. Scenario simulation is the
main research method which simulates the flood routing pro-
cess. The submerged area, depth, and duration of waterlog-
ging can be obtained by establishing hydrodynamic mod-
els or other models. Facing severe waterlogging disasters,
governments need to build complete, reliable, and accurate
waterlogging prediction and risk identification systems, fo-
cusing on early warning, prevention, rapid decision-making,
and emergency rescue. Robust and accurate prediction con-
tributes highly to water resource management strategies, pol-
icy suggestions and analysis, and further evacuation model-
ing (Xie et al., 2017). However, waterlogging prediction is
complex and difficult due to the dynamics of meteorolog-
ical conditions (Mosavi et al., 2018). Timely and accurate
waterlogging monitoring is of great significance for disaster
prevention, early warning information to the public, targeted
blockading of affected roads, and reduction in casualties and
property losses caused by waterlogging (Wang et al., 2018).

2 Literature review

2.1 Physically based models

Conventional modeling approaches (1D and 1D–1D) can
simulate quite accurately drainage networks. But it is dif-
ficult to accurately simulate inundation depth and describe
the dynamic development process of waterlogging under se-
vere rainfall. A 2D raster-based diffusion-wave model was
applied to determine patterns of fluvial flood inundation in
urban areas by using high-resolution topographic data and
explored the effects of spatial resolution upon estimated in-
undation extent and flow-routing processes. The disadvan-
tage of the 2D model was that the raster data model faced
difficulties in predicting the submerged area changing with
time, and the performance of the flow process was relatively
simplified due to its poor description of momentum trans-
fer on a flood plain (Yu and Lane, 2006a). But its advan-
tages were also obvious: compared with the finite-element
method, finite-difference method, and finite-volume method,
the 2D model is easy to write, with high computational effi-
ciency and simplified calibration (Yu and Lane, 2006b). The
Soil Conservation Service curve number (SCS-CN) method
estimated surface runoff, superimposed a flow direction grid
and weight grid to obtain a flow length grid, and then ob-
tained a travel time grid (Abedin and Stephen, 2019; Wang et
al., 2017). Zhang et al. (2015) proposed a 3D flooding model,
which adopted an unstructured-mesh finite-element approach
to solve Navier–Stokes equations and was developed based
on fluidity. The CADDIES flood model can identify flooded

areas and construct a flood resilience model based on cellu-
lar automata, but the calculation time is long because all grids
need to be retraversed every time (Wang et al., 2019).

Physical models have shown great capabilities for predict-
ing a diverse range of flooding scenarios, but they often re-
quire various types of hydro-geomorphological monitoring
data sets. Development of physically based models often re-
quires in-depth knowledge and expertise (Kim et al., 2015).
Although relatively fine simulation results can be obtained,
comprehensive and large-scale calculations are commonly
required. Therefore, it is difficult to apply such models to
large-scale urban flood risk identification.

2.2 Statistical methods

Flood-vulnerable locations have been identified using statis-
tical techniques and sophisticated algorithms. A statistical
model based on static Bayesian networks has been used to
detect floods (Hong et al., 2016). A method using Bayesian
parameter estimation was proposed in 2014. It estimated the
topographic wetness index (TWI) threshold based on an in-
undation curve calculated by a spatial window and iden-
tified locations susceptible to waterlogging (Jalayer et al.,
2014). Taking into account nine types of factors, it could pre-
dict flood through weighted superposition processing by GIS
(Mukherjee and Singh, 2019). Statistical methods are sim-
ple, practical, easy to operate, and mainly used for risk as-
sessment and sensitivity analysis. However, they rely on his-
torical statistics and lack prediction processes, so they often
make semi-quantitative prediction.

2.3 Data-driven models

Data-driven models can numerically predict the flood solely
based on historical data without requiring knowledge about
underlying physical processes. They are used to induce reg-
ularities and patterns, providing easier implementation with
low computational cost, as well as fast being compared to
physical models (Faizollahzadeh Ardabili et al., 2018). Ma-
chine learning methods have contributed greatly to the de-
velopment of prediction systems over the past 2 decades,
providing better performance and cost-effective solutions.
Characteristics of the methods need to be clarified with re-
spect to the type and number of available training data and
the type of prediction task, e.g., water level and streamflow.
Jia et al. (2022) classified urban catchment areas to realize
the waterlogging risk prediction based on unmanned aerial
vehicle images and machine learning algorithms. Puttinao-
varat and Horkaew (2020) proposed a novel flood forecast-
ing system based on fusing meteorological, hydrological,
geospatial, and crowdsourced big data in an adaptive ma-
chine learning framework. The accuracy of prediction is im-
proved through discrete wavelet transform (DWT), which
decomposes the original data into bands, leading to an im-
provement of flood prediction lead times. Neural networks

Nat. Hazards Earth Syst. Sci., 22, 4139–4165, 2022 https://doi.org/10.5194/nhess-22-4139-2022



Z. Zhang et al.: MSMWP framework for urban flood depth 4141

have been widely used for flood prediction (Guimarães San-
tos and Silva, 2014). Kim et al. (2016) developed an artificial
neural network (ANN) forecast model for hourly lead times
consisting of meteorological and hydrodynamic parameters
of three typhoons. Danso-Amoako et al. (2012) provided a
rapid system for predicting floods with an ANN; an R2 value
of 0.70 for the ANN model proved that the tool was suit-
able for predicting flood variables with a high generalization
ability. Kourgialas et al. (2015) created a modeling system
for the prediction of extreme flow based on ANNs 3, 12, and
19 h ahead of flooding, which was more effective than con-
ventional hydrological models in hourly forecasting. Nonlin-
ear auto-regression with exogenous inputs (NARX) worked
better in short-term lead-time prediction compared to back-
propagation neural networks (BPNNs). The NARX network
produced an average R2 value of 0.7, showing that it is ef-
fective in urban flood prediction (Chang et al., 2014). Some
studies have defined waterlogging prediction as a classifica-
tion problem. By defining waterlogging prediction as a bi-
nary classification problem, Ke et al. (2020) divided their
disaster record into flood and non-flood events and used 14
models for comparison. Some studies have used regression
to predict the change in the waterlogging water level. Wu et
al. (2020) constructed a regression model with a deep learn-
ing algorithm, named the gradient boosting decision tree
(GBDT), to predict the depth of urban flooded areas. Com-
bined the GBDT model with hydrological variables, the au-
thors learned the relationship between each condition factor
and the occurrence of waterlogging through training and then
predicted the range and depth of waterlogging.

2.4 Hybrid machine learning methods

Most research has used a single algorithm or model to
make predictions and worked with different data sets to
test the generalization ability of models. To improve the
quality of prediction, an ever-increasing trend in build-
ing hybrid machine learning methods had been devel-
oped. Hybrid machine learning methods are numerous, such
as flash flood routing model (FFRM)–ANN (Hsu et al.,
2010), ANN–hydrodynamic model, support vector machine
(SVM)–frequency ratio (FR) (Tehrany et al., 2015), wavelet
neural network (WNN)–block bootstrap (BB), and recur-
rent neural network (RNN)–support vector regression (SVR)
(Hong, 2008). The application of machine learning methods
to predict waterlogging disasters also has many shortcom-
ings. If the data are scarce or do not cover varieties of tasks,
the ability of the algorithms to learn decreases. A second
aspect was the performance of each machine learning algo-
rithm, which might vary across different types of tasks. For
example, some algorithms might perform well for short-term
predictions but not for long-term predictions. These charac-
teristics of the algorithms need to be clarified with respect to
the available training data and the type of prediction task.

3 Methodology

3.1 MSMWP framework

Accumulated rainfall is one of the most direct factors affect-
ing the formation of waterlogging. Through data correlation
analysis, we conclude that there is a certain functional rela-
tionship between rainfall and waterlogging depth, which is
related to the soil permeability, impervious area, air humid-
ity, and drainage system capacity in the area.

Due to the advantages of a black-box model in data-
driven methods, machine learning methods can summarize
these factors into an overall mechanism. Making full use of
the characteristics of accumulated-rainfall data will help im-
prove the accuracy of waterlogging prediction.

To improve the accuracy of waterlogging-depth predic-
tion, this paper proposes a prediction framework (as shown in
Fig. 1) for urban waterlogging depth called MSMWP (multi-
strategy-mode waterlogging prediction) based on a variety of
machine learning strategies, modes, and different algorithms
for time series data. In this framework, the process of water-
logging prediction is shown as follows.

3.2 Working process

Step 1: data preprocessing

Statistical analysis, box-plot tests, and correlation analysis
were used to deal with missing values and outliers. Re-
dundant data were eliminated according to the configura-
tion conditions of the model, and an interpolation method
was selected to impute the missing data after unifying the
data sampling rate. Data processing goes through five steps:
(1) correlation analysis, calculating the correlation of vari-
ous meteorological data (rainfall, wind speed, temperature,
minimum pressure, etc.) and waterlogging depth; (2) data
screening, using domain knowledge to set thresholds to iden-
tify abnormal data; (3) resampling, accounting for differ-
ent sensors having different working mechanisms, mean-
ing the sampling time interval is different by unifying the
sampling interval through the resampling function in Python
to prepare for model training; (4) data interpolation, using
data interpolation to complete the data after resampling to
make the time series continuous and fit the real situation;
(5) sliding-window segmentation and data integration, ac-
cording to the mode structure requirements, sliding-window
segmenting the time series and inputting them into the model
by data integration.

Step 2: training-mode setting

In this paper, an accumulated-rainfall data set (R) and a his-
torical waterlogging-depth data set (D) are used to predict
the waterlogging depth in the future. By adjusting the data
combination method 8, a new data set X can be constructed
by Eq. (1):
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Figure 1. The multi-strategy-mode waterlogging-prediction framework (MSMWP framework).

X =8(R,D). (1)

For each input data point xi , the vector com-
bining r i (r ∈ R) and d i (d ∈D) is in the set
sharding mode; vector r i can be represented by
[ri+1ri+2, . . ., ri+m−1ri+m], and vector d i can be rep-
resented by [di+1di+2, . . ., di+n−1di+n]. The sharding
mode is realized by adjusting the sliding-window size m
and n. The combined input vector xi can be represented
as [ri+1ri+2, . . ., ri+m−1ri+mdi+1di+2, . . ., di+n−1di+n].
Through the continuous iteration of i, the sliding window
can loop through all the training data and combine them into
the input data set X (Eqs. 2–9), which is a high-dimensional
matrix.

R = [r1r2r3r4, . . ., rl−1rl] (2)
r i = [ri+1ri+2, . . ., ri+m−1ri+m], r ∈ R (3)
D = [d1d2d3d4, . . ., dl−1dl] (4)
d i = [di+1di+2, . . ., di+n−1di+n], d ∈D (5)

xi = [r id i] = [ri+1ri+2, . . ., ri+m−1ri+mdi+1di+2,

. . ., di+n−1di+n] (6){
i ∈ (1, l−m+ 1), m≥ n

i ∈ (1, l− n+ 1), m < n
(7)

X=

r1 r2 . . . rm d1 d2 . . . dn
r2 r3 . . . rm+1 d2 d3 . . . dn+1
r3 r4 . . . rm+2 d3 d4 . . . dn+2
r4 r5 . . . rm+3 d4 d5 . . . dn+3
.
.
.

.

.

.
.
.
.

.

.

.
ri−1 r i . . . rm+i−1 di−1 d i . . . dn+i−1
r i ri+1 . . . rm+i d i di+1 . . . dn+i


(8)

y =



y1
y2
...
...

yi−1
yi


(9)

In the above, y is the label of the model, which stands
for the output of the regressor, and it is a vector with the
same length as X. There are five training modes under the
MSMWP framework.

Only multi-R input (R)

Through the analysis of data correlation, the maximum
correlation coefficient between rainfall and waterlogging
was 0.61. It can be concluded that there is an obvious positive
correlation between rainfall and waterlogging depth, which
proves that it is feasible to use accumulated rainfall to pre-
dict waterlogging.
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Multi-R and single-D input (mR&D)

In reality, waterlogging often occurs after raining for a period
of time. Therefore, waterlogging has a certain delay charac-
teristic compared with rainfall. The fluctuation of waterlog-
ging is a continuous physical process affected by multiple
factors, so the waterlogging depth at the next moment is often
the most closely related to the previous one. In multi-R and
single-D mode, only one historical waterlogging data point
is selected as input.

Single-R and multi-D input (R&mD)

This situation corresponds to multi-R and single-D mode, in
which both rainfall and waterlogging data are taken into con-
sideration as input, but the proportion of rainfall input is re-
duced while the proportion of waterlogging-depth input is
increased.

Multi-R and multi-D input (mR&mD)

This mode also covers more rainfall and waterlogging-depth
information because it can better extract the characteristics
of time series, balance the weight of the two data sets’ cou-
pling, and better conform to the law of time change in rainfall
waterlogging.

Expanded multi-R and multi-D (E-mR&mD)

This paper proposes a new training mode for waterlogging
prediction. Not only is the prediction value related to the past
rainfall and the rainfall at the current time point, but also
the subsequent change in rainfall will largely affect water-
logging depth. This mode makes up for the lack of future
rainfall information in mode (4) and can better reflect the
dominant role of accumulated rainfall. In real applications,
real-time rainfall forecast data will be added. Due to the lack
of rainfall forecast data for this area, sliding-window rain-
fall data are used as an approximation. There are two main
reasons for this. Firstly, the expanded part (15–30 min) only
accounts for 12.5 %–25 % of the sliding-window rainfall (2 h
or longer) and has little effect on the whole of it. Second,
rainfall forecasts, especially short-term forecasts of heavy
rains, are now more than 90 % accurate. It is important to
note that the article does not consider only the multi-D input
because this mode building of the input matrix X contains
only waterlogging-depth information changes over time and
does not consider the size of the accumulated rainfall. In this
mode, with the extension of prediction time, the prediction
ability of the model decreases rapidly, so it is not suitable for
long-term warning. In the latter part of this paper, the results
of this mode are discussed.

Step 3: machine learning regressor setting

The prediction of future data based on historical data is here
defined as a regression problem. We adopt the sliding win-
dow to slice the time series data into cycles. Traversal is per-
formed in order of the data index to preserve the characteris-
tics of continuous changes in the time dimension of the data.
In this paper, eight types of regression algorithms are se-
lected, which can simultaneously perform one-dimensional
and multidimensional regression output. They are linear re-
gression (LR), tree regression (TR), random forest regression
(RFR), k-nearest neighbors regression (KNN), ridge regres-
sion (RR), kernel ridge regression (KRR), lasso regression
(LaR), and elastic net (ETN). The above eight methods are
frequently employed in the field of time series prediction.
As a simple regression method, linear regression has good
applicability although it is sensitive to outliers. On the foun-
dation of general linear regression, the objective function of
ridge regression adds L2 regularization, which provides the
best fitting error and makes the parameters as simple as pos-
sible, giving the model excellent generalizability. Yu and Li-
ong (2007) realized hydrological time series prediction using
a ridge regression algorithm based on feature space. Addi-
tionally, the kernel ridge regression approach was effectively
used for the prediction of monthly mean precipitation (Ali
et al., 2020). Shen et al. (2021) took human action prediction
by electroencephalogram (EEG) signals as an example to
study multivariate time series prediction based on elastic net,
and high-order fuzzy cognitive map normalization of lasso
regression is achieved by applying L1 regularization to the
loss function. Wang et al. (2018) used lasso regression to ac-
curately predict stock market fluctuations. A tree regression
model was created to analyze and predict time series of air
pollution, since tree regression can describe complex nonlin-
ear data (Gocheva-Ilieva et al., 2019). Wu et al. (2017) used
a random forest regression algorithm to analyze the time se-
ries of weekly influenza-like incidence and made good find-
ings. Martínez et al. (2017) proposed a time series prediction
method using a KNN algorithm.

Step 4: evaluation of model performance

In this paper, the evaluation is mainly divided into two stages:
the test stage and prediction verification stage. The indica-
tors in the test stage mainly include the following three cate-
gories: R2 score, mean absolute error (MAE), and root mean
square error (RMSE). In the verification stage of actual val-
ues, a time series of a specific length is taken to carry out the
evaluation in two parts. Firstly, in order to test the model’s
ability to predict the variation trend of waterlogging depth,
time series covering water rising, platform, and falling are in-
tercepted. Secondly, by comparing the predicted value with
the actual value, the absolute percent error (APE) is used to
calculate the model’s ability of correct prediction, namely
accuracy (ACC). However, it is worth noting that the APE
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cannot be completely evaluated by the model, so absolute
error (AE) is needed to supplement the evaluation because
when the waterlogging depth is low, a large APE may corre-
spond to a small AE.

Step 5: prediction strategy setting

Different mode settings can greatly affect the training results
of the model, and training strategies are also crucial. This pa-
per compares three training strategies, which are recursive,
single-output coupling, and multi-output. The optimal pre-
diction strategy is selected by comparing their performance
applied to the test set of waterlogging prediction and the
actual-value test.
Y can be divided into two parts, the historical data YHIS

and the prediction data YPRE. The time interval of each data
set should be uniform. Even if the sensor sampling rate is
different, it should be processed uniformly. We define this
time interval as τ (Ben Taieb et al., 2012). In order to pre-
dict s time steps after the current time t , the total time of
prediction is defined as t , where t = τ × s, according to the
number of time steps covered by the time span of the desired
output variable. Therefore, the set of desired output variables
can be expressed as YT, where YT ∈ YPRE. In a certain span
of time T , between YHIS and YPRE, we use a common nota-
tion f ∗ in Eq. (11) to denote the functional dependency.

ypre = f (yhis)+ bi, (10)

where yhis is the inputs of each set; ypre stands for outputs;
the functional relationship between them can be expressed
as f ; and b stands for modeling error, disturbances, or noise.

YPRE = f
∗(YHIS)+

∑
bi (11)

i. Recursive strategy (Rec)

The intuitive forecasting strategy is the recursive (also called
iterated or multi-stage) strategy. The result of the prediction
of the first step is embedded into the final element of the in-
put vector for the subsequent prediction, and the result of

the prediction of the second step is obtained. In Eq. (12),
when s = 1, yt ,yt−1, . . .,yt−n can be used to predict ŷt+1.
When s = 2, the previous predicted value ŷt+1 is used to re-
place the first element of the input vector, and the follow-
ing elements are replaced in turn. The original last element
yt−n is removed from the input vector. The model is iter-
ated recursively, and the mixed vector of historical data and
forecast data is used as the model input. The algorithm for
this method can be expressed as in Algorithm 1. The pre-
diction vector ŷpre[p] in the first step can be obtained based
on historical data. Then the final element of the input vec-
tor Xpre[p][ds − 1] is replaced by ŷpre[p− 1], and the new
ŷpre is obtained through the input model and so on, moving
the value of X forward one bit and adding the new predicted
value.

ŷt+s =


f̂ (yt ,yt−1, . . .,yt−n), s = 1

f̂ (ŷt+s−1,yt+s−2, . . .,yt+s−n), s = 2
...

f̂ (ŷt+s−1, . . ., ŷt+s−n), s ∈ (2,n]

(12)

ii. Single-output coupling strategy (SOC)

The single-output coupling strategy is similar to the direct
strategy proposed by Hamzacebi et al. (2009). Different ma-
chine learning models have been used to implement the direct
strategy for multi-step-ahead forecasting tasks, for instance
neural networks (Khashei and Bijari, 2010), nearest neigh-
bors (Sorjamaa et al., 2007), and decision trees (Guimarães
Santos and Silva, 2014). The strategy consists of forecast-
ing each horizon independently from the others. The biggest
difference from the recursive strategy is that single-output
coupling does not use any approximated values to com-
pute the forecasts, thus having no accumulation of errors.
In this strategy, error in the previous prediction results will
not have a great influence on the later prediction results.
Each f value is supported by a corresponding model and
trained with its own independent data (Eq. 13). When s = 1,
it is the same as one-step prediction. When s > 1, the model
makes prediction across the time interval of s steps. Fi-
nally, the results of single-output yt+1,yt+2, . . .,yt+s−1,yt+s
are coupled by Eq. (14) into a new forecast time series
[yt+1,yt+2, . . .,yt+s−1,yt+s].

yt+s = fs(yt ,yt−1, . . .,yt−n+1) (13)

yt+1 = f1(yt ,yt−1, . . .,yt−n+1)+ bi

yt+2 = f2(yt ,yt−1, . . .,yt−n+1)+ bi
...

...

yt+s = fs(yt ,yt−1, . . .,yt−n+1)+ bi

(14)
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iii. Multi-output strategy (MO)

The two previous strategies (recursive and single-output cou-
pling) may be considered single-output strategies, which ne-
glects the existence of stochastic dependencies between fu-
ture values and consequently affects the forecast accuracy.
The multi-output strategy requires the design of multiple-
response modeling techniques. The output is no longer a
scalar quantity but a vector of length s. Using only one
model, a time series of s time intervals is output (Eq. 15).
Compared with single-output coupling strategy, this strategy
involves simple operation and fast calculation. The disad-
vantage is that some regression algorithms such as Bayesian
regression, gradient boosting regression trees (GBRTs), and
AdaBoost do not support multidimensional output directly.

[yt+s,yt+s−1, . . .,yt+2,yt+1] = fm(yt ,yt−1, . . .,

yt−n+2,yt−n+1)+ bi, (15)

where fm is a vector-valued function and bi is a noise vector.

Step 6: actual-value testing

In order to prevent an over-fitting phenomenon or insuffi-
cient prediction, it is necessary to test the performance of the
framework in actual waterlogging data sets after completing
training and testing. N groups of continuous time series are
selected for actual-value testing, and the application results
with actual data will be discussed.

4 Case study

4.1 Research area

As an important city in south China and a representative of
China’s special economic zones, Shenzhen is one of the core
cities of the Guangdong–Hong Kong–Macao Greater Bay
Area.

In the process of rapid urban development, Shenzhen is
also facing many challenges from natural disasters and ac-
cidents, which often bring serious threats to urban public
safety and security. Shenzhen, located in the southeast coast
of China, has a subtropical monsoon climate. Influenced by
the Pacific monsoon current, it receives sufficient rainfall all
year round. The rainfall is unusually concentrated from June
to September every year, and heavy rains or extremely heavy
rains occur frequently. In particular, the frontal rainfall in the
Shenzhen area is subject to topography, which often forms
local sudden rainstorms with short duration. According to
the statistics of rainfall data in Shenzhen from 1960 to 2012,
there were on average 8.8 occurrences per year of heavy rain-
fall with daily rainfall of more than 50 mm, 75.2 % of which
were heavy rain, 21.4 % of which were torrential rain, and
3.4 % of which were extremely torrential rain (Shao et al.,
2021). In May 2014, Pingshan District, Shenzhen, was hit

by a sudden rainstorm, with 261 mm of rainfall in 3 h, caus-
ing 150 houses to be flooded and affecting 2600 people. The
rainstorm event on 11 April 2019 saw the heaviest rainfall
in April since Shenzhen began meteorological records, and it
led to 11 deaths (Liu et al., 2020).

This paper focuses on the areas vulnerable to waterlog-
ging in Shenzhen. A data-driven prediction model of urban
rainstorm waterlogging depth is established, which can real-
ize the advance perception and accurate prediction of water
level change of a waterlogging point.

4.2 Step 1: data preprocessing

There are two main sources of the data used in the study.
The first is the meteorological observation data of Shen-
zhen provided by the Shenzhen Meteorological Bureau. The
data cover the time ranging from 8 March 2019 to 17 Au-
gust 2020, including the meteorological observation data of
rainfall, wind speed, visibility, temperature, and humidity at
242 stations in the city. The second is the waterlogging-depth
sensor data of 170 observation stations in the city provided
by the Water Resources Bureau of Shenzhen Municipality,
with an accuracy of 1 cm. Changes in waterlogging depth
affect parameters such as the refractive index and pressure.
The sensor senses the changes and converts physical signals
into electrical signals, which are transmitted to the database
through optical fibers. The longest time range is from 1 Jan-
uary 2019 to 18 July 2020.

Observation points of meteorological data and
waterlogging-depth data cover all 10 districts of Shen-
zhen, and their spatial distribution is shown in Fig. 2. The
Tyson polygon algorithm is used to divide regions according
to the geographical location of meteorological stations, and
the rainfall coverage of each station is obtained. The polygon
surface of each region indicates that meteorological data
of this station are used in this region (Fig. 3) (Men et al.,
2020). Through this classification form, it is determined
that 170 observation stations of waterlogging depth have
unique corresponding meteorological input, which unified
the model input–output relationship in the spatial dimension.

Due to the fact that waterlogging sensors are configured
in batches, the total operating time and data storage capac-
ity of each sensor vary. Among 170 waterlogging sensors,
we selected sensor 123, with a long operation time and a
large number of data, as the research object. Through data
analysis and testing the consistency of meteorological data,
it has been determined that precipitation is the most in-
fluential element on waterlogging depth. Rainfall data in-
clude sliding-window rainfall with different window lengths:
R10M, R30M, R01H, R02H, R03H, R06H, R12H, R24H,
and R72H for 10 and 30 min and 1, 2, 3, 6, 12, 24, and 72 h
of sliding-window rainfall values.D means the waterlogging
depth. Through the data correlation analysis between sliding-
window rainfall and waterlogging-depth data of each station
(Fig. 4), it is concluded that R02H has the largest correlation
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Figure 2. Waterlogging sensors and weather stations in Shenzhen.

degree of 0.61 with waterlogging depth. In Fig. 4, the darker
the color, the lower the correlation, and the lighter the color,
the higher the correlation.

Due to the special working mechanism of the
waterlogging-depth sensor, the data sampling rate is
not uniform. In the period when there is no water accu-
mulation (the waterlogging depth is 0), it is collected at
irregular intervals of several hours or even several days.
In the period when the water level changes dramatically,
the sensor can collect data per minute at the fastest rate,
which introduces some difficulties into our research. Con-
sidering that the interval of rainfall data is 5 min, in order
to balance the model accuracy and training efficiency, the
data of waterlogging depth are resampled first, which is
consistent with the rainfall data on the timescale. Then
data interpolation is performed on the newly added blank
interval of resampling, which does not destroy the original
characteristic attributes of the data. Since the fluctuation
process of waterlogging is a smooth and continuous process,
the waterlogging-depth curve is smooth. Five commonly
used interpolation methods, cubic, quadratic, linear, zero,
and nearest, are used and compared in this paper. The

optimal interpolation method is determined by comparing
the mean APE (MAPE) of the interpolation data Yinsert
and the actual data Ytrue and observing the fitting of the
interpolation curve and the actual one. Finally, the linear
interpolation method is applied. (Cubic and quadratic may
have negative values, while zero and nearest have obvious
ladder characteristics, which are not consistent with the
continuous characteristics of the waterlogging depth.) After
analysis, we obtain a total of 527 non-zero interpolation data
points, accounting for 0.46 % of the total data set (143 424).
Interpolation data are mainly concentrated at the beginning
and end of the water, and the values are generally low. This
part of data preprocessing unified the model input–output
relationship in the time dimension, and the time range of the
final rainfall and waterlogging-depth data was unified from
00:00:00 on 8 March 2019 to 23:55:00 UTC+8 on 18 July
2020 with an interval of 5 min.

After determining the location correlation between rainfall
stations and waterlogging observation stations and unifying
the timescale, the two data sets were integrated into one data
set. From Fig. 5, it can be seen that in most of the time inter-
val, when the rainfall is 0, the frequency of waterlogging ac-
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Figure 3. Rainfall region division obtained by the Tyson polygon algorithm in Shenzhen.

cumulation data is lower. This is because there is no rainfall
in most time intervals, which is consistent with the reality.
Despite the fact that the proportion of the impervious water
surface in urban construction areas increases annually, the
frequency of waterlogging accumulation caused by surface
runoff has decreased due to the continuous improvement of
drainage system construction and the application of sponge
city engineering. However, in the event of strong typhoons or
heavy rain, the drainage volume still cannot meet the needs of
urban drainage. This would overload the drainage system and
allow large amounts of urban surface runoff to accumulate in
low-lying areas. In this study, considering the factors of sur-
face infiltration, the vegetation leaf canopy interception ef-
fect, and evaporation, surface runoff cannot be formed under
extremely low rainfall and non-rainfall, so the waterlogging
depth is always 0. In order to avoid the interference of such
factors with model training, the minimum rainfall threshold
is set here as 5 mm. By searching the entire data set and lock-
ing the start and end time stamps of each rainfall event inter-
val, named R_STA and R_END, rainfall duration is denoted
by R_DUR. In the entire data set, R_STA and R_END are
paired to represent the rainfall start and end index. A to-

tal of 251 rainfall event time series (982.34 h in total; av-
erage rainfall duration is 3.91 h) were obtained by screen-
ing 143 424 data points from this site, and a new data set
Rain_Set with 12 309 data points (Fig. 6) was constructed.
This method eliminates the interference of a large number of
sunny weather inputs to the model, which is proved to im-
prove the efficiency and accuracy of the model calculation.

4.3 Step 2: training-mode setting

Based on the MSMWP framework, after data preprocessing,
different training modes are constructed by changing φ to ad-
just the R-and-D combination mode. Each rainfall time series
is processed by cyclically cutting in the form of sliding win-
dows; we can obtain a matrix R as Eq. (16). In the five modes,
input vectors of different dimensions can be constructed by
adjusting the values of m and n, and multiple models can be
trained. The goal of the model is to accurately predict the
waterlogging depth at a certain time. Assume that the cur-
rent time is t and the predicted target value of the waterlog-
ging depth in the future is yt+1,yt+2,yt+3, . . .,yt+s−1,yt+s .
When m= 6 and n= 1, the model selects rainfall in 30 min
and waterlogging in 5 min before time t as input for training.
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Table 1. Modes (1) to (5) with different m and n parameters.

(1) Only multi-R (2) Multi-R and (3) Single-R and (4) Multi-R and (5) Expanded multi-R
input single-D input multi-D input multi-D input and multi-D

m= 6 m= 6, n= 1 m= 1, n= 6 m= 6, n= 3 m= 6 (3 : 3), n= 3
m= 12 m= 12, n= 1 m= 1, n= 12 m= 12, n= 3 m= 12 (9 : 3), n= 3
m= 18 m= 18, n= 1 m= 1, n= 18 m= 18, n= 3 m= 18 (12 : 6), n= 3
m= 24 m= 24, n= 1 m= 1, n= 24 m= 24, n= 3 m= 24 (18 : 6), n= 3
– – – m= 6, n= 6 m= 6 (3 : 3), n= 6
– – – m= 12, n= 6 m= 12 (9 : 3), n= 6
– – – m= 18, n= 6 m= 18 (12 : 6), n= 6
– – – m= 24, n= 6 m= 24 (18 : 6), n= 6

Figure 4. Data correlation analysis of rainfall data at weather sta-
tion G3795 and waterlogging-depth data at sensor 123; the maxi-
mum correlation coefficient with D is 0.61 (D and R02H), and the
minimum is 0.26 (D and R06M).

When m= 12 and n= 3, the model selects the rainfall in 1 h
and waterlogging in 15 min before time t as input for train-
ing. Under different combination conditions of m and n, the
five combination modes are selected as shown in Table 1:

rainfall set

R=


5 18 41 63 . . . 97 99 130 147

18 41 63 74 . . . 99 130 147 151
41 63 74 83 . . . 130 147 151 158
. . . . . . . . . . . . . . . . . . . . . . . . . . .
6 4 2 1 . . . . . . 0 0 0
4 2 1 1 . . . . . . 0 0 0

 . (16)

Since rainfall is the fundamental factor affecting waterlog-
ging, the dimension of rainfall in the latter two modes is ba-
sically higher than that of waterlogging. In expanded multi-R
and multi-D, the rainfall input is split with t as the dividing
line to emphasize the influence of the subsequent continu-
ous rainfall input on the model. For example, m= 12(9 : 3)

means that rainfall 45 min before t and rainfall 15 min after t
are selected as input.

The strategy in Step 5 influences the label selection of
the model. The recursive strategy requires direct prediction
of yt+1 and then recursion with label yt+1.

4.4 Step 3: machine learning regressor setting

In this paper, eight regression algorithms are selected. They
are linear regression (LR), tree regression (TR), random for-
est regression (RFR), k-nearest neighbors regression (KNN),
ridge regression (RR), kernel ridge regression (KRR), lasso
regression (LaR), and elastic net (ETN) and can simulta-
neously perform one-dimensional and multidimensional re-
gression output.

4.5 Step 4: evaluation of model performance

The data set constructed was divided into a training set and
test set at a ratio of 70 % and 30 %. Different modes, strate-
gies, and regression algorithms were applied for training and
evaluated by RMSE, MAE, and the R2 score. The curve fit-
ting of the predicted data on the test set was compared with
the actual data, and the test results of each configuration were
analyzed and sorted.

MAE=
1
m

m∑
i=1

∣∣∣ŷ(i)− y(i)∣∣∣ (17)

RMSE=

√√√√ 1
m

m∑
i=1
(ŷ(i)− y(i))2 (18)

R2
= 1−

∑
i(ŷ

(i)
− y(i))2∑

i(y− y
(i))2

(19)

4.6 Step 5: prediction strategy setting

The Rec policy is set to replace only the last value of the wa-
terlogging vector at a time. The single-output coupling strat-
egy outputs at 5 and 10 min until the moment (s× 5)min of
waterlogging, so the label is yt+1,yt+2,yt+3, . . .,yt+s . The
multi-output strategy outputs the waterlogging value vector
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Figure 5. Rainfall and waterlogging from 00:00:00 on 8 March 2019 to 23:55:00 on 18 July 2020 (with an interval of 5 min). Each x-axis
data point represents 5 min.

Figure 6. Rainfall (solid blue line) and waterlogging (dotted red line) according to Rain_Set.

of minutes at (5 to s× 5) at the same time, so its label is
[yt+1,yt+2,yt+3, . . .,yt+s].

4.7 Results and discussion

This section presents and discusses the testing results of the
different mode and forecasting strategies. For each mode, we
report the results obtained with the eight different regression

methods. Based on the results of actual-value verification,
different prediction strategies are discussed.
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4.7.1 Testing results

The time series intercepted with rainfall events were inte-
grated into a new data set, with a total of 12 039 data points.
The first 70 % constituted a training set with 8428 points of
data, and the last 30 % constituted a testing set with 3611
points of data. In the testing set, eight regression methods
were used to test five modes, and the model structure inside
each mode was changed by adjusting the input parameters m
and n. The testing results of different modes are shown in
Tables A1 to A4. The numbers in parentheses represent the
ranking of evaluation indicators (MAE, RMSE, R2 score)
among different modes of the same algorithm. Bold font in-
dicates the top results of the same algorithm with different
modes. The italic number indicates that the indicator is in the
top 50 % of the best results (bold) between different algo-
rithms. Taking mode (3) – KRR – as an example, in the KRR
optimal indicator, RMSE is 0.0051 ranking second; MAE is
0.0013, ranking third; and the R2 score is 0.9779, ranking
third, so the italic indicator of KRR is 3.

Among the five modes, mode (1) only uses rainfall data
to predict waterlogging accumulation and has the worst test-
ing result. When m changes from 6 to 24, the R2 score of
RR changes from 0.1209 to 0.3954, which is 3.27 times the
initial value. In this mode, the larger m is, the more informa-
tion the model learns and the better the testing performance
is. By comparing the predicted value with the actual value,
the results of the eight kinds of regression methods all have
large noise when the actual waterlogging depth is 0. Even
though KRR and LR can achieve good trend prediction at
the peak, there are still large noise fluctuations most of the
time (Fig. 7). This phenomenon may be caused by the lack
of historical waterlogging time series input, so the noise sup-
pression is not good.

In mode (2), the prediction performance of LR and TR be-
comes better as m increases, which is the same as mode (1).
However, RFR, RR, and KRR are not sensitive to parameter
changes.

In mode (3), the larger the parameter n is, the better the
model may not be. For example, the optimal results of RFR,
RR and KRR are obtained when n= 6, while the R2 score
of the three exceeds 0.977, indicating that the early infor-
mation of waterlogging depth is not helpful to the predic-
tion of waterlogging depth in the future and may cause some
interference. For LR, with the same number of parameters,
the result of mode (3) is better than that of mode (2). The
main reason for this is that mode (3) extracted more histori-
cal waterlogging-depth information, which changes by a con-
tinuous process in short-term prediction. However, this does
not mean that the model has the best performance, because
it contains insufficient rainfall information and may not per-
form well in the practical application of prediction.

Mode (4) coupled multiple rainfall and waterlogging in-
puts. Overall, the results of mode (4) are better than those
of modes (2) and (3) with one-dimensional input (m= 1 or

n= 1). In this mode, the TR and RFR methods achieved
the best testing results. TR achieved a 0.9778 R2 score and
0.0050 RMSE (m= 24, n= 3). The R2 score and RMSE of
RFR reached 0.9803 and 0.0049 respectively (m= 6, n= 3).

Mode (5) expanded the rainfall input and considered the
influence of future rainfall. When parameters are adjusted to
m= 6 (3 : 3) and n= 6, the LR evaluation indicator (MAE=
0, RMSE= 0, and R2 score= 1) is abnormal. This problem
also exists in RFR, TR, etc. The main reason for this is that
the prediction label has been included in the input time series,
so the result of m= 6 (3 : 3) and n= 6 in mode (5) should
be removed in the discussion. Based on the performance of
mode (5) for the test set, the performance of mode (5) will
improve after the predicted time is expanded. The reason for
this is that mode (5) expands the rainfall input and considers
the influence of future rainfall. Especially the rainfall model
with short duration and high intensity is more suitable for
this mode. As shown in Fig. 8, (a) only 30 min of waterlog-
ging data was used for prediction and (b) 30 min of water-
logging with 90 min of expanded rainfall was used as input.
With the increase in prediction time, the difference in pre-
diction performance between them increases gradually. In
the prediction of 40 min waterlogging, the R2 score of (b)
(0.6841) is 2.4 times that of (a) (0.2847) when the TR method
is applied. Using the RFR method, the R2 score and MAE
of (b) (R2 score= 0.7428, MAE= 0.0044) also significantly
exceeds (a) (R2 score= 0.6488, MAE= 0.0053). Especially
for the prediction of medium–high values, in the case of a
high value (0.30 m) and medium value (0.13 m), the predic-
tion results of (a) are 0.82 m and 0.73 m, and the large error
leads to poor accuracy in the prediction of medium- to large-
scale waterlogging.

From the perspective of the comparison of regression
methods, the performances of LR, TR, RFR, RR, and KRR
are relatively good, which is reflected in the strong general-
ization ability of the model (Fig. 9). KRR, as ridge regres-
sion with a kernel function added, is more suitable for high-
dimensional data. In this study, it shows a slightly stronger
regression performance than RR. It can be seen from the
comparison (Fig. 9a and b) that LR and KRR have strong
prediction ability for high values but poor noise suppression
for low values and 0 values, and the model fluctuates con-
stantly around the x axis. The prediction of RFR for the high-
est value is insufficient, but the prediction performance for
other high values is better. Its noise control for low values
is better. TR has the best noise control effect for a 0 value,
but the curve is not smooth or ladder shaped at high values.
Of course, this is related to the principle of the algorithm.
When applying RFR, selecting the parameter n_estimators
which is equal to 100 can solve the problem of TR (Fig. 9c).
LR, RFR, KRR, and TR show strong fitting ability in the
training set (TR has MAE= 0.0000, RMSE= 0.0000, and
R2 score= 1.0000) (Fig. 10); KNN and ETN show relatively
poor fitting ability. KNN, LaR, and ETN have weak ability
of fitting and generalization and are not suitable for regres-
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Table 2. Testing results of mode (5), expanded multi-R and multi-D. The numbers in parentheses represent the ranking of evaluation indica-
tors (MAE, RMSE, R2 score) among different modes of the same algorithm. Bold font indicates the top results of the same algorithm with
different modes. Italic numbers indicate that the indicator is in the top 50 % of the best results (bold) between different algorithms.

Evaluation Regression methods
indicator

Mode LR TR RFR KNN RR KRR LaR ETN

m= 6 (3 : 3) MAE 0.0011 (8) 0.0014 (6) 0.0010 (2) 0.0168 (1) 0.0024 (5) 0.0024 (8) 0.0199 (7) 0.0191 (7)
n= 3 RMSE 0.0046 (8) 0.0076 (6) 0.0053 (2) 0.0336 (1) 0.0061 (8) 0.0061 (8) 0.0308 (7) 0.0314 (7)

R2 score 0.9826 (8) 0.9528 (5) 0.9766 (2) 0.0659 (2) 0.9697 (6) 0.9698 (6) 0.2183 (7) 0.1877 (7)
m= 12 (9 : 3) MAE 0.0010 (6) 0.0013 (3) 0.0010 (2) 0.0176 (5) 0.0024 (5) 0.0023 (4) 0.0197 (5) 0.0189 (5)
n= 3 RMSE 0.0039 (4) 0.0077 (7) 0.0061 (3) 0.0351 (3) 0.0060 (4) 0.0059 (3) 0.0303 (5) 0.0307 (5)

R2 score 0.9870 (5) 0.9506 (7) 0.9686 (3) −0.0358 (3) 0.9701 (4) 0.9702 (4) 0.2256 (5) 0.2040 (5)
m= 18 (12 : 6) MAE 0.0009 (4) 0.0012 (2) 0.0011 (4) 0.0181 (7) 0.0023 (4) 0.0023 (4) 0.0194 (3) 0.0185 (3)
n= 3 RMSE 0.0039 (4) 0.0061 (2) 0.0063 (4) 0.0367 (7) 0.0059 (3) 0.0059 (3) 0.0299 (3) 0.0299 (3)

R2 score 0.9871 (4) 0.9687 (2) 0.9665 (5) −0.1485 (7) 0.9704 (3) 0.9704 (3) 0.2382 (3) 0.2373 (3)
m= 24 (18 : 6) MAE 0.0008 (2) 0.0016 (8) 0.0011 (4) 0.0171 (3) 0.0020 (2) 0.0019 (2) 0.0191 (1) 0.0179 (1)
n= 3 RMSE 0.0029 (2) 0.0141 (8) 0.0073 (8) 0.0358 (5) 0.0054 (2) 0.0054 (2) 0.0293 (1) 0.0284 (1)

R2 score 0.9924 (2) 0.8246 (8) 0.9532 (8) −0.1241 (5) 0.9742 (2) 0.9744 (2) 0.2474 (1) 0.2947 (1)
m= 6 (3 : 3) MAE 0.0000 (1) 0.0001 (1) 0.0001 (1) 0.0168 (1) 0.0005 (1) 0.0005 (1) 0.0199 (7) 0.0191 (7)
n= 6 RMSE 0.0000 (1) 0.0007 (1) 0.0005 (1) 0.0336 (1) 0.0025 (1) 0.0025 (1) 0.0308 (7) 0.0314 (7)

R2 score 1.0000 (1) 0.9996 (1) 0.9998 (1) 0.0661 (1) 0.9948 (1) 0.9948 (1) 0.2183 (7) 0.1877 (7)
m= 12 (9 : 3) MAE 0.0010 (6) 0.0013 (3) 0.0011 (4) 0.0176 (5) 0.0024 (5) 0.0023 (4) 0.0197 (5) 0.0189 (5)
n= 6 RMSE 0.0040 (7) 0.0076 (5) 0.0063 (4) 0.0351 (3) 0.0060 (4) 0.0060 (6) 0.0303 (5) 0.0307 (5)

R2 score 0.9868 (7) 0.9510 (6) 0.9666 (4) −0.0358 (3) 0.9699 (5) 0.9701 (5) 0.2256 (5) 0.2040 (5)
m= 18 (12 : 6) MAE 0.0009 (4) 0.0013 (3) 0.0011 (4) 0.0181 (7) 0.0024 (5) 0.0023 (4) 0.0194 (3) 0.0185 (3)
n= 6 RMSE 0.0039 (4) 0.0064 (3) 0.0065 (6) 0.0367 (7) 0.0060 (4) 0.0060 (6) 0.0299 (3) 0.0299 (3)

R2 score 0.9870 (5) 0.9648 (3) 0.9635 (6) −0.1485 (7) 0.9695 (7) 0.9696 (7) 0.2382 (3) 0.2373 (3)
m= 24 (18 : 6) MAE 0.0008 (2) 0.0014 (6) 0.0011 (4) 0.0171 (3) 0.0022 (3) 0.0021 (3) 0.0191 (1) 0.0179 (1)
n= 6 RMSE 0.0030 (3) 0.0070 (4) 0.0071 (7) 0.0358 (5) 0.0060 (4) 0.0059 (3) 0.0293 (1) 0.0284 (1)

R2 score 0.9924 (2) 0.9566 (4) 0.9557 (7) −0.1241 (5) 0.9687 (8) 0.9690 (8) 0.2474 (1) 0.2947 (1)

Italicized indicator 6 4 6 0 2 2 0 0

sion prediction of such data (Fig. 11). KNN methods have
a negative R2 score in mode (1), mode (2), mode (4), and
mode (5). For most data sets with eigenvalues of 0, the pre-
diction performance is often poor, which can explain why
the results of the KNN method are the worst (Fig. 11a). LaR
and ETN are mode-insensitive and have the same results in
modes (1) and (2). However, within each mode, as m and
n change, the results will be different. The poor results of the
LaR method (Fig. 11c) may be because the method is suit-
able for multi-variable models and the variables are selected
by adjusting the λ value to change the compression variable
coefficient, but there are fewer variables in this study. Simi-
larly, considering that ETN (Fig. 11b) works well when many
features are interconnected, this model has a small number of
features and the model with similar basic principles to lasso
regression also has poor performance.

To sum up, mode (5) performs better than any other
modes, indicating that the short-term prediction of water-
logging considering the change in the future rainfall trend
is more realistic. LR seems to have achieved good predic-
tion results in all five modes. However, the factor that cannot
be ignored is that the original waterlogging-depth data are

sparse and uneven, which must be due to resampling inter-
polation processing. It is necessary to go through an actual-
value test to judge whether the LR method is really applica-
ble to prediction.

4.7.2 Step 6: actual-value verification

Actual-value verification takes a subset of the testing set, so
the first 85 % of the full data set is selected as the training
set, which can increase the number of training samples and
improve the training ability of the model. The time series
from 26 May 2020 at 13:00 to 26 May 2020 at 17:30 was se-
lected, lasting 4.5 h (Fig. 12), covering the complete process
of waterlogging fluctuation. In this way, the waterlogging-
depth prediction ability of the model can be verified. The
changes in rainfall and waterlogging in this period are shown
in Fig. 12. The time series was divided into six groups on av-
erage. The waterlogging-depth changes of 30 min were pre-
dicted by six sequential steps.

In order to highlight the prediction performance of each
strategy, we set s = 6 for 30 min prediction. That is a long
forecast for real-time water levels. In practical application,
15 to 20 min prediction may be a common prediction time,
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Figure 7. Testing results using the LR and KRR methods when m= 18.

Figure 8. Testing results of mode (5) and only-D prediction using TR and RFR (when n= 6 for both).

and 20 min prediction has fully met the requirement of re-
leasing early warning information in advance and dispatch-
ing the nearest traffic and fire personnel to the scene for
disposal (Georgiadou et al., 2010). We will make evalua-
tion from multiple indicators such as absolute error (AE),
absolute percent error (APE), and time cost. Mode (5) with
m= 18 (12 : 6) and n= 6 was selected as the basic param-
eters of the model to evaluate the model performance under
each strategy. Figure A1 in the Appendix represents the iso-

metric segmentation of the verification data set with different
strategies. The first 30 min of the time series is taken to show
the curves between the actual values in each group and the
predicted values for each method. KNN, LaR, and ETN per-
form poorly in the application of prediction and have high
values of AE and APE. Therefore, we will not discuss these
three poor methods in the analysis of results. The absolute
error of the predicted value and actual value of each strategy
was also discussed (Fig. A2). We set a tolerance of 0.02 m
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Figure 9. Testing results using different methods when m= 24 and n= 3. (a) For KRR; (b) for LR; (c) for RFR; (d) for TR.
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Figure 10. Fitting performance of different regression methods applied to the training set when m= 18 and n= 6.

to exclude reasonable error. APE reflects the accuracy of
the model, but at low values it does not independently re-
flect the performance of the model because even small errors
(< 0.01 m) can cause APE to rise (Fig. A3). Therefore, the
mean value of AE and APE (MAE and MAPE) was used
to evaluate the model accuracy, and the variance in AE and
APE (V-AE and V-APE) was used to evaluate the robustness.
Since real-time sensor data are used in prediction, continu-
ous calculation is required to update the model. Time cost is
adopted as an indicator to evaluate the continuous computing
capability of the model.

Tables 3 to 5 show the evaluation results of different
strategies. As seen in Table 6, MAE of the Rec strategy is
0.0153 m, which is better than 0.0184 m of the SOC and
0.0165 m of the MO strategies. Of course, the MAE of the
three is within the tolerance (0.02 m). Under the Rec strat-
egy, the model replaces the last data point of the input vector
with the predicted value every step. The reason for the op-
timal Rec result is that the fluctuation of the waterlogging
is basically a monotonically increasing or decreasing pro-
cess, and generally there is no fluctuation in a short period of
time. In addition, the input vector is long enough to minimize
the cumulative error caused by the predicted value deviation.
The application of recursive algorithm can better continue
the prediction trend of the model, so the MAE result of Rec
is the best.

Rec and MO strategies have better performance and ro-
bustness. Rec and MO have lower MAPE, corresponding ac-

curacy can reach 86.1 % and 85.7 %. The accuracy of SOC
was only 81.4 %. The primary cause of this phenomena is
the operating process of SOC, which combines the find-
ings of six distinct models into a final prediction vector.
When predicting the s step, there will be a loss of yt+1,
yt+2, . . . , yt+s−1 in the middle, resulting in a large error in
the following part. In contrast, the V-AE and V-APE of the
SOC strategy are the lowest, indicating poor performance
and model robustness.

MO has the best V-APE (0.01036), indicating that the ac-
curacy of this strategy has the smallest fluctuation, and the
model has the best robustness. The V-AE (0.00026) of Rec
was similar to that of MO (0.00022), but the V-APE of Rec
was 69 % larger than that of MO. The reason is that APE fluc-
tuated greatly when TR and RFR were applied under Rec
strategy, and V-APE was 3.05 times and 2.49 times of MO
strategy respectively. Therefore, we infer that under the same
conditions, the decision tree algorithm has smaller fluctua-
tion when applied to multidimensional output and can obtain
better robustness.

Considering the time cost, the model must be updated
within the 5 min interval for data prediction. This paper
used tower workstation with 8 core Intel(R) Xeon(R) W-
2123 3.60 GHz CPU, 64.0 GB RAM and NIVDIA Quadro
RTX4000 GPU. MO strategy has a faster speed in calcu-
lation. The average time cost of Rec and SOC is about
2.54 times that of MO. Under the MO strategy, the output
form of the model is a six-dimension vector. The advantage

Nat. Hazards Earth Syst. Sci., 22, 4139–4165, 2022 https://doi.org/10.5194/nhess-22-4139-2022



Z. Zhang et al.: MSMWP framework for urban flood depth 4155

Figure 11. Performance of the KNN, ETN, and LaR methods applied to the testing set when m= 18 and n= 6. (a) For KNN; (b) for ETN;
(c) for LaR.

Figure 12. Actual-value verification time series from 26 May 2020,
13:00 to 17:30.

of this strategy is that it only needs to perform one training
and prediction process and does not need recursion or mul-
tiple model coupling, so it is more convenient to use. There-
fore, the calculation time of each regression method is greatly
reduced. The time cost of KRR was shortened from 240.39
to 83.28 s. It should be noted that although the KRR algo-
rithm has good model performance and robustness, its time
cost is too high, reaching 241.28 s under the Rec strategy,
which makes it difficult to meet the requirements of update
calculation within 5 min. LR, TR, and RR can all be updated
within 3 s due to their simple structures. RFR has a high time
cost because it has to traverse all trees. However, it can meet
the requirement of the update time (only 65.13 s under MO
strategy).
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Table 3. Model performance using the Rec strategy. EI denotes evaluation indicator. “S” denotes segments.

S EI LR TR RFR RR KRR S EI LR TR RFR RR KRR

1 MAE 0.0284 0.0223 0.0139 0.0443 0.0436 4 MAE 0.0112 0.0076 0.0058 0.0045 0.0042
MAPE 0.2109 0.1661 0.1062 0.3469 0.3419 MAPE 0.2063 0.1388 0.1144 0.0829 0.0780
V-AE 0.0003 0.0002 0.0001 0.0003 0.0002 V-AE 0.0001 0.0001 0.0000 0.0001 0.0000
V-APE 0.0085 0.0079 0.0037 0.0036 0.0034 V-APE 0.0085 0.0042 0.0091 0.0021 0.0020

2 MAE 0.0264 0.0317 0.0119 0.0060 0.0061 5 MAE 0.0003 0.0035 0.0025 0.0010 0.0002
MAPE 0.0976 0.1179 0.0446 0.0221 0.0222 MAPE 0.0096 0.0999 0.0705 0.0291 0.0069
V-AE 0.0001 0.0003 0.0001 0.0000 0.0000 V-AE 0.0001 0.0001 0.0000 0.0000 0.0000
V-APE 0.0020 0.0048 0.0012 0.0001 0.0001 V-APE 0.0001 0.0033 0.0012 0.0002 0.0000

3 MAE 0.0233 0.0483 0.0553 0.0195 0.0196 6 MAE 0.0009 0.0028 0.0064 0.0034 0.0025
MAPE 0.1398 0.2819 0.3151 0.1219 0.1219 MAPE 0.0486 0.1446 0.3544 0.1776 0.1319
V-AE 0.0005 0.0014 0.0013 0.0005 0.0005 V-AE 0.0001 0.0001 0.0000 0.0000 0.0000
V-APE 0.0266 0.0789 0.0756 0.0273 0.0272 V-APE 0.0015 0.0155 0.1017 0.0100 0.0059

Table 4. Model performance using SOC strategy. EI denotes evaluation indicator.

S EI LR TR RFR RR KRR S EI LR TR RFR RR KRR

1 MAE 0.0349 0.0515 0.0229 0.0554 0.0549 4 MAE 0.0060 0.0047 0.0043 0.0032 0.0037
MAPE 0.2608 0.3846 0.1878 0.4263 0.4228 MAPE 0.1261 0.1320 0.1488 0.1003 0.1054
V-AE 0.0005 0.0008 0.0002 0.0006 0.0006 V-AE 0.0001 0.0001 0.0001 0.0001 0.0001
V-APE 0.0179 0.0289 0.0121 0.0129 0.0128 V-APE 0.0048 0.0257 0.0237 0.0098 0.0093

2 MAE 0.0284 0.0237 0.0274 0.0176 0.0178 5 MAE 0.0015 0.0302 0.0071 0.0018 0.0008
MAPE 0.1103 0.1103 0.0847 0.0697 0.0702 MAPE 0.0574 0.7403 0.1732 0.0659 0.0407
V-AE 0.0001 0.0013 0.0002 0.0001 0.0001 V-AE 0.0002 0.0010 0.0000 0.0001 0.0000
V-APE 0.0028 0.0191 0.0029 0.0021 0.0022 V-APE 0.0026 1.1122 0.0350 0.0026 0.0023

3 MAE 0.0276 0.0400 0.0334 0.0200 0.0202 6 MAE 0.0020 0.0039 0.0022 0.0034 0.0022
MAPE 0.1804 0.2680 0.2216 0.1423 0.1434 MAPE 0.1257 0.1872 0.1612 0.1939 0.1399
V-AE 0.0006 0.0013 0.0006 0.0005 0.0005 V-AE 0.0000 0.0000 0.0000 0.0000 0.0000
V-APE 0.0352 0.0633 0.0333 0.0297 0.0302 V-APE 0.0110 0.0178 0.0144 0.0138 0.0099

In conclusion, LR, TR, RFR, RR, and KRR are superior
to other methods, which is consistent with the results based
on the testing set. Models using Rec or MO strategies have
better performance and robustness, with average accuracy
more than 85 % for predicting waterlogging depth in the next
30 min. For short-term prediction, such as 15 min prediction,
the accuracy can reach 93 %, and the robustness of the model
will be further improved. As can be seen from Figs. A1 to A3,
when s = 3, the prediction curves of RFR, LR, KRR, and
other methods basically match actual values, and AE and
APE of each group are almost within tolerance.

5 Conclusions

The prediction and early warning of urban rainstorm and wa-
terlogging disaster have always constituted a key problem. It
is challenging and meaningful to predict the rapid water level
rise caused by short-term heavy rainfall in advance.

Waterlogging caused by rainstorms usually accumulates in
low-lying areas of cities, such as poorly drained blocks and
roads, underpass tunnels, bridge culverts, municipal plumb-
ing manholes, and underground shopping malls or parking
lots. Accurate prediction of waterlogging is essential for
emergency decision-making and disaster response. Govern-
ment emergency departments can issue timely warning infor-
mation to the public and notify traffic management depart-
ments to rush to the scene to block the relevant roads, cul-
verts, tunnels, etc. Effective prediction and monitoring will
help minimize casualties and property losses.

A multi-strategy-mode waterlogging-prediction frame-
work for waterlogging is proposed, which contains how to
preprocess raw data and select training modes for different
machine learning algorithms. In this framework, different
prediction strategies are discussed and used to predict multi-
ple dimensions of waterlogging. Results show that the mode
of expanded multi-R and multi-D performs better than any
other mode; five regression algorithms are more suitable for
waterlogging prediction. Recursive and multi-output strate-
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Table 5. Model performance using MO strategy. EI denotes evaluation indicator.

S EI LR TR RFR RR KRR S EI LR TR RFR RR KRR

1 MAE 0.0349 0.0536 0.0284 0.0554 0.0549 4 MAE 0.0060 0.0074 0.0045 0.0032 0.0037
MAPE 0.2564 0.4092 0.2119 0.4257 0.4217 MAPE 0.1077 0.1353 0.0833 0.0561 0.0659
V-AE 0.0005 0.0006 0.0003 0.0006 0.0006 V-AE 0.0001 0.0001 0.0001 0.0001 0.0001
V-APE 0.0168 0.0155 0.0082 0.0128 0.0125 V-APE 0.0030 0.0065 0.0039 0.0014 0.0020

2 MAE 0.0284 0.0100 0.0230 0.0176 0.0178 5 MAE 0.0015 0.0027 0.0071 0.0018 0.0008
MAPE 0.1052 0.0370 0.0834 0.0659 0.0664 MAPE 0.0430 0.0779 0.2127 0.0518 0.0223
V-AE 0.0001 0.0001 0.0001 0.0001 0.0001 V-AE 0.0002 0.0002 0.0000 0.0001 0.0000
V-APE 0.0025 0.0010 0.0009 0.0019 0.0020 V-APE 0.0009 0.0016 0.0392 0.0009 0.0002

3 MAE 0.0276 0.0183 0.0328 0.0200 0.0202 6 MAE 0.0020 0.0039 0.0011 0.0034 0.0022
MAPE 0.1641 0.1075 0.1844 0.1243 0.1256 MAPE 0.1065 0.2029 0.0544 0.1771 0.1135
V-AE 0.0006 0.0003 0.0004 0.0005 0.0005 V-AE 0.0003 0.0003 0.0000 0.0001 0.0001
V-APE 0.0334 0.0145 0.0231 0.0280 0.0285 V-APE 0.0066 0.0273 0.0019 0.0096 0.0037

Table 6. Model performance statistics with different strategies applied. TimeC denotes time cost. Bold is the optimal indicator for different
regression methods and prediction strategies.

Strategy ACC Average Evaluation Regression methods
30 min indicator indicator

LR TR RFR RR KRR

Rec 86.17 % Avg (MAE) 0.01526 MAE Rec 0.0905 0.0194 0.0160 0.0131 0.0127
Avg (MAPE) 0.13834 MAPE Rec 0.1188 0.1582 0.1675 0.1301 0.1171
Avg (V-AE) 0.00022 V-AE Rec 0.0002 0.0003 0.0003 0.0002 0.0001
Avg (V-APE) 0.0175 V-APE Rec 0.0079 0.0339 0.0321 0.0072 0.0064
Avg (TimeC) 75.914 s Time cost Rec (s) 0.19 2.38 135.60 0.12 241.28

SOC 81.40 % Avg (MAE) 0.01842 MAE SOC 0.0167 0.0257 0.0162 0.0169 0.0166
Avg (MAPE) 0.18604 MAPE SOC 0.1435 0.3037 0.1629 0.1664 0.1537
Avg (V-AE) 0.00034 V-AE SOC 0.0003 0.0008 0.0002 0.0002 0.0002
Avg (V-APE) 0.05334 V-APE SOC 0.0124 0.2112 0.0202 0.0118 0.0111
Avg (TimeC) 77.194 s Time cost SOC (s) 0.20 2.40 142.84 0.14 240.39

MO 85.69 % Avg (MAE) 0.01648 MAE MO 0.0167 0.0160 0.0162 0.0169 0.0166
Avg (MAPE) 0.14332 MAPE MO 0.1305 0.1616 0.1384 0.1502 0.1359
Avg (V-AE) 0.00026 V-AE MO 0.0003 0.0003 0.0002 0.0003 0.0002
Avg (V-APE) 0.01036 V-APE MO 0.0105 0.0111 0.0129 0.0091 0.0082
Avg (TimeC) 29.94 s Time cost MO (s) 0.09 1.14 65.13 0.06 83.28

gies have better performance and robustness, but the MO pre-
diction strategy not only has higher performance but also is
more efficient. We note that the recursive strategy is poor in
the research of Ben Taieb et al. (2012). This is mainly be-
cause of the periodic characteristics of the data. In this study,
physical characteristics of waterlogging determine that water
level change is generally a monotonically increasing or de-
creasing process, so Rec can also have a good performance
in the prediction of non-periodic data with obvious trends.

In this paper, we were concerned only with the lead time
for an identified site. In the future, increasing the number of
sensors could improve the geographic information of water-
logging point locations, including more DEM, slope, positive
and negative terrain, infiltration rate, and other information.
This kind of model can be extended to the spatial dimension
for prediction. Through grid analysis, all position points in
the study area can be traversed and a waterlogging risk map
can be drawn.
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Appendix A

Table A1. Testing results of mode (1), only multi-R input. The numbers in parentheses represent the ranking of evaluation indicators (MAE,
RMSE, R2 score) among different modes of the same algorithm. Bold font indicates the top results of the same algorithm with different
modes. The italic number indicates that the indicator is in the top 50 % of the best results (bold) between different algorithms.

Evaluation Regression methods
indicator

Mode LR TR RFR KNN RR KRR LaR ETN

m= 6 MAE 0.0191 (4) 0.0191 (2) 0.0189 (4) 0.0177 (4) 0.0191 (4) 0.0204 (4) 0.0199 (4) 0.0191 (4)
RMSE 0.0325 (4) 0.0434 (2) 0.0338 (4) 0.0337 (1) 0.0325 (4) 0.0329 (4) 0.0306 (4) 0.0312 (4)
R2 score 0.1209 (4) −0.5649 (1) 0.0474 (4) 0.0540 (1) 0.1209 (4) 0.1008 (4) 0.2206 (3) 0.1905 (4)

m= 12 MAE 0.0181 (3) 0.0198 (3) 0.0181 (3) 0.0174 (2) 0.0181 (3) 0.0191 (3) 0.0194 (3) 0.0186 (3)
RMSE 0.0310 (3) 0.0444 (4) 0.0324 (3) 0.0347 (2) 0.0310 (3) 0.0313 (3) 0.0300 (2) 0.0304 (3)
R2 score 0.1800 (3) −0.6803 (3) 0.1078 (2) −0.0264 (2) 0.1800 (3) 0.1632 (3) 0.2339 (2) 0.2133 (3)

m= 18 MAE 0.0168 (2) 0.0198 (3) 0.0180 (2) 0.0174 (2) 0.0168 (2) 0.0175 (2) 0.0191 (1) 0.0181 (2)
RMSE 0.0286 (2) 0.0442 (3) 0.0323 (2) 0.0366 (4) 0.0286 (2) 0.0289 (2) 0.0293 (1) 0.0290 (2)
R2 score 0.2808 (2) −0.7160 (4) 0.0861 (3) −0.1730 (4) 0.2808 (2) 0.2666 (2) 0.2465 (1) 0.2648 (2)

m= 24 MAE 0.0156 (1) 0.0189 (1) 0.0168 (1) 0.0168 (1) 0.0156 (1) 0.0163 (1) 0.0191 (1) 0.0175 (1)
RMSE 0.0261 (1) 0.0432 (1) 0.0307 (1) 0.0359 (3) 0.0261 (1) 0.0264 (1) 0.0301 (3) 0.0276 (1)
R2 score 0.3954 (1) −0.6576 (2) 0.1654 (1) −0.1438 (3) 0.3954 (1) 0.3825 (1) 0.1980 (4) 0.3269 (1)

Italicized indicator 3 0 0 0 3 3 0 0

Table A2. Testing results of mode (2), multi-R and single-D input. The numbers in parentheses represent the ranking of evaluation indicators
(MAE, RMSE, R2 score) among different modes of the same algorithm. Bold font indicates the top results of the same algorithm with
different modes. The italic number indicates that the indicator is in the top 50 % of the best results (bold) between different algorithms.

Evaluation Regression methods
indicator

Mode LR TR RFR KNN RR KRR LaR ETN

m= 6 MAE 0.0013 (4) 0.0016 (4) 0.0011 (2) 0.0167 (1) 0.0022 (2) 0.0020 (1) 0.0199 (4) 0.0191 (4)
n= 1 RMSE 0.0044 (4) 0.0079 (4) 0.0055 (1) 0.0331 (1) 0.0050 (4) 0.0050 (4) 0.0306 (4) 0.0312 (4)

R2 score 0.9842 (4) 0.9477 (4) 0.9731 (1) 0.0917 (1) 0.9791 (4) 0.9792 (4) 0.2206 (3) 0.1905 (4)
m= 12 MAE 0.0012 (3) 0.0015 (3) 0.0012 (4) 0.0171 (3) 0.0021 (1) 0.0020 (1) 0.0194 (3) 0.0186 (3)
n= 1 RMSE 0.0043 (3) 0.0069 (3) 0.0057 (1) 0.0346 (2) 0.0049 (3) 0.0049 (3) 0.0300 (2) 0.0304 (3)

R2 score 0.9845 (3) 0.9591 (2) 0.9721 (2) −0.0167 (2) 0.9794 (3) 0.9795 (3) 0.2339 (2) 0.2133 (3)
m= 18 MAE 0.0011 (2) 0.0013 (2) 0.0011 (2) 0.0174 (4) 0.0022 (2) 0.0020 (1) 0.0191 (1) 0.0181 (2)
n= 1 RMSE 0.0036 (2) 0.0068 (2) 0.0067 (4) 0.0365 (4) 0.0046 (1) 0.0046 (1) 0.0293 (1) 0.0290 (2)

R2 score 0.9888 (2) 0.9589 (3) 0.9606 (4) −0.1713 (4) 0.9815 (1) 0.9815 (1) 0.2465 (1) 0.2648 (2)
m= 24 MAE 0.0010 (1) 0.0010 (1) 0.0010 (1) 0.0167 (1) 0.0024 (4) 0.0023 (4) 0.0191 (1) 0.0175 (1)
n= 1 RMSE 0.0035 (1) 0.0055 (1) 0.0058 (3) 0.0359 (3) 0.0048 (2) 0.0047 (2) 0.0301 (3) 0.0276 (1)

R2 score 0.9894 (1) 0.9730 (1) 0.9706 (3) −0.1410 (3) 0.9800 (2) 0.9801 (2) 0.1980 (4) 0.3269 (1)

Italicized indicator 3 2 3 0 2 3 0 0
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Table A3. Testing results of mode (3), single-R and multi-D input. The numbers in parentheses represent the ranking of evaluation indicators
(MAE, RMSE, R2 score) among different modes of the same algorithm. Bold font indicates the top results of the same algorithm with
different modes. The italic number indicates that the indicator is in the top 50 % of the best results (bold) between different algorithms.

Evaluation Regression methods
indicator

Mode LR TR RFR KNN RR KRR LaR ETN

m= 1 MAE 0.0008 (4) 0.0014 (1) 0.0010 (2) 0.0073 (4) 0.0016 (1) 0.0016 (4) 0.0199 (4) 0.0191 (4)
n= 6 RMSE 0.0039 (3) 0.0073 (2) 0.0052 (1) 0.0233 (4) 0.0052 (1) 0.0051 (1) 0.0306 (4) 0.0312 (4)

R2 score 0.9871 (3) 0.9558 (2) 0.9797 (1) 0.5474 (4) 0.9779 (1) 0.9779 (1) 0.2206 (3) 0.1905 (4)
m= 1 MAE 0.0007 (2) 0.0014 (1) 0.0011 (4) 0.0073 (4) 0.0016 (1) 0.0014 (3) 0.0194 (3) 0.0186 (3)
n= 12 RMSE 0.0040 (4) 0.0076 (3) 0.0062 (4) 0.0226 (3) 0.0055 (2) 0.0055 (2) 0.0300 (3) 0.0304 (3)

R2 score 0.9866 (4) 0.9512 (3) 0.9674 (3) 0.5669 (3) 0.9745 (2) 0.9746 (2) 0.2339 (2) 0.2133 (3)
m= 1 MAE 0.0007 (2) 0.0015 (4) 0.0010 (2) 0.0071 (2) 0.0017 (3) 0.0013 (1) 0.0191 (1) 0.0182 (2)
n= 18 RMSE 0.0029 (1) 0.0079 (4) 0.0062 (4) 0.0220 (2) 0.0057 (3) 0.0056 (3) 0.0293 (1) 0.0291 (2)

R2 score 0.9925 (1) 0.9447 (4) 0.9665 (4) 0.5742 (2) 0.9718 (3) 0.9721 (3) 0.2467 (1) 0.2558 (2)
m= 1 MAE 0.0006 (1) 0.0014 (1) 0.0009 (1) 0.0070 (1) 0.0018 (4) 0.0014 (3) 0.0192 (2) 0.0180 (1)
n= 24 RMSE 0.0029 (1) 0.0068 (1) 0.0053 (2) 0.0217 (1) 0.0058 (4) 0.0057 (4) 0.0298 (2) 0.0281 (1)

R2 score 0.9925 (1) 0.9594 (1) 0.9750 (2) 0.5828 (1) 0.9705 (4) 0.9710 (4) 0.2143 (4) 0.2993 (1)

Italicized indicator 3 1 3 0 2 3 0 0

Table A4. Testing results of mode (4), multi-R and multi-D input. The numbers in parentheses represent the ranking of evaluation indicators
(MAE, RMSE, R2 score) among different modes of the same algorithm. Bold font indicates the top results of the same algorithm with
different modes. The italic number indicates that the indicator is in the top 50 % of the best results (bold) between different algorithms.

Evaluation Regression methods
indicator

Mode LR TR RFR KNN RR KRR LaR ETN

m= 6 MAE 0.0010 (7) 0.0012 (2) 0.0010 (1) 0.0166 (1) 0.0022 (7) 0.0020 (7) 0.0199 (7) 0.0191 (7)
n= 3 RMSE 0.0039 (5) 0.0062 (4) 0.0049 (1) 0.0330 (1) 0.0058 (4) 0.0058 (5) 0.0306 (7) 0.0312 (7)

R2 score 0.9872 (5) 0.9684 (4) 0.9803 (1) 0.0918 (2) 0.9723 (3) 0.9725 (4) 0.2206 (5) 0.1905 (7)
m= 12 MAE 0.0008 (1) 0.0012 (2) 0.0010 (1) 0.0171 (5) 0.0021 (4) 0.0019 (5) 0.0194 (5) 0.0186 (5)
n= 3 RMSE 0.0039 (5) 0.0060 (3) 0.0057 (3) 0.0346 (3) 0.0058 (4) 0.0058 (5) 0.0300 (3) 0.0304 (5)

R2 score 0.9870 (7) 0.9692 (3) 0.9726 (3) −0.0167 (4) 0.9713 (6) 0.9715 (6) 0.2339 (3) 0.2133 (5)
m= 18 MAE 0.0008 (1) 0.0012 (2) 0.0010 (1) 0.0174 (7) 0.0019 (1) 0.0017 (1) 0.0191 (1) 0.0181 (3)
n= 3 RMSE 0.0029 (1) 0.0065 (5) 0.0068 (8) 0.0365 (7) 0.0055 (2) 0.0055 (2) 0.0293 (1) 0.0290 (3)

R2 score 0.9924 (1) 0.9628 (6) 0.9593 (8) −0.1713 (7) 0.9723 (3) 0.9735 (2) 0.2465 (1) 0.2648 (3)
m= 24 MAE 0.0008 (1) 0.0010 (1) 0.0010 (1) 0.0167 (3) 0.0019 (1) 0.0017 (1) 0.0191 (1) 0.0175 (1)
n= 3 RMSE 0.0029 (1) 0.0050 (1) 0.0060 (5) 0.0359 (5) 0.0054 (1) 0.0054 (1) 0.0301 (5) 0.0276 (1)

R2 score 0.9924 (1) 0.9778 (1) 0.9678 (6) −0.1410 (5) 0.9739 (1) 0.9742 (1) 0.1980 (7) 0.3269 (1)
m= 6 MAE 0.0010 (7) 0.0013 (5) 0.0010 (1) 0.0166 (1) 0.0022 (7) 0.0020 (7) 0.0199 (7) 0.0191 (7)
n= 6 RMSE 0.0039 (5) 0.0071 (8) 0.0049 (1) 0.0330 (1) 0.0057 (3) 0.0057 (3) 0.0306 (7) 0.0312 (7)

R2 score 0.9871 (6) 0.9586 (8) 0.9796 (2) 0.0920 (1) 0.9730 (2) 0.9733 (3) 0.2206 (5) 0.1905 (7)
m= 12 MAE 0.0008 (1) 0.0013 (5) 0.0010 (1) 0.0171 (5) 0.0020 (3) 0.0018 (3) 0.0194 (5) 0.0186 (5)
n= 6 RMSE 0.0039 (5) 0.0067 (7) 0.0060 (5) 0.0345 (3) 0.0058 (4) 0.0057 (3) 0.0300 (3) 0.0304 (5)

R2 score 0.9869 (8) 0.9623 (7) 0.9696 (4) −0.0166 (3) 0.9717 (5) 0.9720 (5) 0.2339 (3) 0.2133 (5)
m= 18 MAE 0.0008 (1) 0.0013 (5) 0.0010 (1) 0.0174 (7) 0.0021 (4) 0.0018 (3) 0.0191 (1) 0.0181 (3)
n= 6 RMSE 0.0030 (4) 0.0065 (5) 0.0064 (7) 0.0365 (7) 0.0060 (7) 0.0059 (7) 0.0293 (1) 0.0290 (3)

R2 score 0.9924 (1) 0.9631 (5) 0.9639 (7) −0.1714 (8) 0.9685 (7) 0.9690 (7) 0.2465 (1) 0.2648 (3)
m= 24 MAE 0.0008 (1) 0.0012 (2) 0.0010 (1) 0.0167 (3) 0.0021 (4) 0.0019 (5) 0.0191 (1) 0.0175 (1)
n= 6 RMSE 0.0029 (1) 0.0056 (2) 0.0059 (4) 0.0359 (5) 0.0062 (8) 0.0062 (8) 0.0301 (5) 0.0276 (1)

R2 score 0.9923 (4) 0.9725 (2) 0.9694 (5) −0.1410 (5) 0.9660 (8) 0.9664 (8) 0.1980 (7) 0.3269 (1)

Italicized indicator 3 3 3 0 0 2 0 0
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Figure A1. Predicted values and actual values of different strategies. (The x axis represents predicted steps within each group.)
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Figure A2. Absolute error (AE) of different strategies. (The x axis represents predicted steps within each group.)
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Figure A3. Absolute percent error (APE) of different strategies. (The x axis represents predicted steps within each group.)
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