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Abstract. Wildfires and hazard reduction burns produce
smoke that contains pollutants including particulate matter.
Particulate matter less than 2.5 µm in diameter (PM2.5) is
harmful to human health, potentially causing cardiovascu-
lar and respiratory issues that can lead to premature deaths.
PM2.5 levels depend on environmental conditions, fire be-
haviour and smoke dispersal patterns. Fire management
agencies need to understand and predict PM2.5 levels asso-
ciated with a particular fire so that pollution warnings can
be sent to communities and/or hazard reduction burns can be
timed to avoid the worst conditions for PM2.5 pollution.

We modelled PM2.5, measured at air quality stations in
New South Wales (Australia) from ∼ 1400 d when individ-
ual fires were burning near air quality stations, as a function
of fire and weather variables. Using Visible Infrared Imag-
ing Radiometer Suite (VIIRS) satellite hotspots, we identi-
fied days when one fire was burning within 150 km of at
least 1 of 48 air quality stations. We extracted ERA5 grid-
ded weather data and daily active fire area estimates from the
hotspots for our modelling. We created random forest models
for afternoon, night and morning PM2.5 levels to understand
drivers of and predict PM2.5.

Fire area and boundary layer height were important pre-
dictors across the models, with temperature, wind speed and
relative humidity also being important. There was a strong
increase in PM2.5 with decreasing distance, with a sharp in-
crease when the fire was within 20 km. The models improve
our understanding of the drivers of PM2.5 from individual
fires and demonstrate a promising approach to PM2.5 model
development. However, although the models predicted well
overall, there were several large under-predictions of PM2.5

that mean further model development would be required for
the models to be deployed operationally.

1 Introduction

Smoke from forest fires produces pollutants harmful to hu-
man health, which have been linked to tens or hundreds of
thousands of deaths per year globally (Chen et al., 2021;
Johnston et al., 2012). Particulates smaller than 2.5 µm,
i.e. PM2.5 measured as micrograms per cubic metre of air
(µg m−3), are of particular concern (Haikerwal et al., 2016;
Reid et al., 2016). PM2.5 is a criteria pollutant in regulatory
systems for air quality, for example, in the USA National
Ambient Air Quality Standards and the Australian National
Environment Protection (Ambient Air Quality) Measure.

Hazard reduction burns (HRBs; a.k.a. prescribed or
planned burns) and wildfires can both produce high levels
of PM2.5. The impact of wildfire-produced PM2.5 on popula-
tions, including hospitalisations and premature deaths, varies
yearly and spatially depending on wildfire occurrence (Matz
et al., 2020; Jaffe et al., 2008), which is driven by droughts,
high temperatures and strong winds. Health costs associated
with the 2019–2020 wildfires in eastern Australia were es-
timated to be around AUD 2 billion (Johnston et al., 2021).
Massive areas burnt, including over 5× 106 ha burnt in the
state of New South Wales alone (Filkov et al., 2020), predom-
inantly in eucalypt forests in the mountains and coastal ar-
eas between 28 and 38◦ south of the Equator. While wildfire
ignitions and sizes are unpredictable, HRBs are controlled
fires that are conducted to limit the spread and intensity of
future wildfires by reducing fuel amounts. There have been
notable instances when HRBs caused poor air quality in large
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cities (Broome et al., 2016; He et al., 2016; Miller et al.,
2019). Large areas of land can be burnt under HRBs; for ex-
ample, in Western Australia, ∼ 7 % of the forest is treated
via HRBs each year (Bradshaw et al., 2018), while in the
southeastern USA, millions of hectares are treated each year
(Zeng et al., 2008). HRBs also typically occur closer to pop-
ulation centres (Price and Bradstock, 2013) and burn under
calm, still weather conditions that may be more conducive
to high pollution levels (Di Virgilio et al., 2018). Borchers-
Arriagada et al. (2021) found, by comparing population-
weighted PM2.5 exposure on days dominated by HRBs or
wildfires, that HRBs in New South Wales (NSW), Australia,
imposed higher health costs per hectare burnt than wildfires.
Further research is required, but differences may stem from
different fuel consumption rates (Price et al., 2022), plume
behaviour and/or weather.

We need better tools to help understand PM2.5 dispersal
and air quality impacts from individual fires. Improving the
tools available to forest fire management agencies would im-
prove pollution warnings and indicate changes that could
be made to HRB strategies to reduce community PM2.5 ex-
posure, e.g. identifying low-pollution-risk days to conduct
HRBs. Attributes of an individual fire that could affect their
PM2.5 output and/or exposure of people to PM2.5 are fire
size; the rate of heat and smoke production; fire proxim-
ity to human populations; and weather conditions includ-
ing temperature, humidity, wind speed, wind direction, at-
mospheric stability and differences in weather between the
HRB location and the PM2.5 monitor location (Price and
Forehead, 2021; Reisen et al., 2015). There is some knowl-
edge about the influence of weather on pollution, but this
has been investigated at a larger scale than individual fires.
For example, days with HRBs are likely to have poorer air
quality in Sydney when there are cool, stable conditions with
light westerly winds (Di Virgilio et al., 2018), while poor air
quality, as measured by ozone levels, tends to occur with a
high-pressure system to the east of Sydney with light north-
westerly winds and a sea breeze (Hart et al., 2006).

There are a variety of ways to improve our understand-
ing of PM2.5 from individual fires. Atmospheric dispersion
models can predict the spread of particulates from fires based
on modelled atmospheric dynamics and are routinely used in
many countries to guide burning operations and community
warnings for HRBs. However, while evaluations of such sys-
tems are rare, existing evaluations indicate a poor to mod-
erate agreement between predictions and observations (Yao
et al., 2014; Saide et al., 2015), possibly because the local
effects of HRBs are poorly captured by the models.

An alternative method is to relate air quality observa-
tions directly to real fires to calculate how far the smoke
impact is likely to spread and under what conditions. Air
quality measurements can be from ground-based stations or
via satellite-based measurements, e.g. aerosol optical thick-
ness (Gupta et al., 2007). For ground-based measurements,
studies have been carried out using monitors mostly sta-

tioned within ∼ 10 km of HRBs (Pearce et al., 2012; Price
and Forehead, 2021). Pearce et al. (2012) made 684 obser-
vations of daily mean PM2.5 by placing monitors around
55 HRBs. They found that PM2.5 concentrations fell to
near-background levels within 3 km of the fire perimeters.
Price and Forehead (2021) made 5445 hourly observations
of PM2.5 with a combination of fixed and mobile monitors
around 18 forest HRBs. They also found that PM2.5 con-
centrations had largely fallen to background levels by 3 km,
but this depended on weather conditions. One of the HRBs
caused poor air quality at monitors more than 30 km away.
These studies captured the local effects of the HRBs but did
not explain why HRBs can impact air quality much further
away.

Deploying air quality monitors to wildfires is difficult
due to the large size of wildfires, unpredictable ignition and
spread, and the safety risks of working near an active wild-
fire. However, large permanent air quality monitoring sys-
tems can be used to gather PM2.5 data for wildfires and
HRBs, for example, the NSW air quality monitoring net-
work. Here, we used historical fire and air quality data to
identify the occasions when an individual fire was burning
within 150 km of a monitor in the NSW air quality monitor-
ing network from 2012 to 2021, and we developed random
forest models of PM2.5 concentrations at individual monitors
as a function of fire area, distance and weather conditions.
Our aims were

1. to improve understanding of the fire and weather condi-
tions that influence smoke dispersal and PM2.5 levels;

2. to develop predictive models of PM2.5 output from indi-
vidual forest fires, as a complement to physical models,
to improve warnings; and

3. to make inferences about potential changes in HRB pro-
tocols that could reduce PM2.5 impacts.

2 Methods

2.1 Fire data

Our study period was from February 2012 to September
2021 because this was when our main fire dataset was avail-
able (see below). For the study period, we created a spa-
tial dataset of forest fires that were actively burning within
150 km of air quality monitoring stations (AQSs) main-
tained by the NSW Department of Planning and Environment
(DPE) (Fig. 1). The 150 km criterion captures most of the
eucalypt-dominated Blue Mountains that are subject to the
majority of fire activity near Sydney. We assigned attributes
of fire location, fire type (hazard reduction burn (HRB) or
wildfire (WF)), date of fire activity, and AQS name and lo-
cation. Each fire had at least one active date, and most burnt
on several days. As a fire could be within a 150 km buffer of
multiple AQSs, there was a separate row in our data for each
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Figure 1. Map of the study area (New South Wales, Australia)
showing air quality monitoring stations (AQSs, n= 48), coloured
by year of first PM2.5 record. Grey crosses are the locations of all
fires used in analysis, with one cross per fire per day. The 150 km
buffer is shown around Orange AQS as an example (all AQSs had
150 km buffers for analysis).

fire and AQS combination. For our modelling, we used only
cases where, for each AQS and day, only one fire was active
within 150 km of the AQS. We did not analyse cases where
multiple fires were burning on the same day near the same
AQS as it was unclear which fire produced the smoke that
reached the AQS.

We relied on two data sources to identify fire loca-
tions, type and active dates: NSW fire history GIS poly-
gons (NPWS Fire History – Wildfires and Prescribed Burns,
2022), maintained by the NSW National Parks and Wildlife
Service (NPWS), and Visible Infrared Imaging Radiometer
Suite (VIIRS) – Suomi National Polar-orbiting Partnership
(SNPP) hotspots, downloaded from NASA’s Fire Informa-
tion for Resource Management System (FIRMS; Schroeder
et al., 2014). VIIRS SNPP hotspots were available beginning
20 January 2012.

The fire history dataset is a spatial polygon dataset of the
final burnt area of fires across NSW and has attributes of fire
identity (name and number), fire type (HRB or WF), and start
and end dates. We did not rely solely on the fire history to
identify fire locations and dates because an initial inspection
suggested some issues for our analysis. These included fires

identifiable from VIIRS hotspots that were missing from the
fire history; occasional errors in the start and end date record-
ing; the final fire polygon being the combination of separate
fires that eventually merged; and the data identifying only fire
start and end date, not whether a fire was actively burning on
each day between those dates (e.g. fires may have been ex-
tinguished then reignited on different days). Also, the data
captured only the final fire boundary and not daily fire pro-
gression, meaning the location of fire activity on the first day
(perhaps a few hectares) was not well represented by the fi-
nal fire polygon (perhaps tens or hundreds of thousands of
hectares), which was particularly an issue for WF.

We employed a process to identify active fire dates and lo-
cations from clusters of VIIRS SNPP hotspots. We used VI-
IRS SNPP hotspots instead of MODIS as VIIRS has higher
resolution (at nadir, 375 m vs. 1 km for MODIS) and thus can
detect more hotspots per fire than MODIS, which reduces the
chance that an active fire is missed (Schroeder et al., 2014).
The process to create hotspot clusters for each day for each
AQS was as follows:

1. Extract all hotspots within 150 km of the AQS. Hotspots
for one “day” in our analysis included those acquired in
the early afternoon (day hotspots) and over the follow-
ing night (night hotspots).

2. Focus on forest fires, and remove hotspots that were in
grassland or open woodland by removing hotspots with
a low foliage projective cover score (Gill, 2012; Gill
et al., 2017). This measure of canopy density is equal
to the proportion of ground that the vertically projected
area of the green foliage covers. We removed hotspots
with a cover fraction of less than 0.25 so that our anal-
ysis only included dense woodlands, open forests and
closed forest types (Specht and Specht, 1999).

3. Buffer each hotspot by 2.5 km, and dissolve overlapping
buffers into a single polygon, thus creating hotspot clus-
ter polygons (Fig. 2).

4. Remove clusters that did not have at least five day or
night hotspots. This was our minimum threshold for
fire activity, as we wanted to exclude small fires such
as burning heaps on farmland that can be detected by
VIIRS. We also tested three as a minimum threshold,
which produced similar but slightly less accurate mod-
els.

5. For each cluster, calculate the daily active fire area by
intersecting the hotspot points with a 500 m× 500 m
grid (25 ha cells). The area assigned to each cluster was
the number of unique intersecting cells × 25 ha.

6. Repeat the process for each combination of date and
AQS.

Where a fire identified from the above process (a “VIIRS
fire”) intersected an NPWS fire history polygon between its

https://doi.org/10.5194/nhess-22-4039-2022 Nat. Hazards Earth Syst. Sci., 22, 4039–4062, 2022



4042 M. A. Storey and O. F. Price: Statistical modelling of air quality impacts from individual forest fires

Figure 2. Example of creating clusters from VIIRS SNPP hotspots.
Black dots are hotspots; red asterisks are fire centroids, i.e. the arith-
metic mean of the hotspot coordinates. The image has two sepa-
rate fires. Each hotspot is buffered by 2.5 km, with all overlapping
buffers merged and hotspots given separate identity numbers based
on which final buffer they fell within. Two separate fires are cre-
ated here because of distinct fires where buffers do not overlap,
i.e. greater than two buffer widths (5 km) apart. Fire 1 (grey) has
> 50 hotspots; fire 2 (blue) has 5 hotspots. Note that the fire area
used in analysis was calculated via an intersection of hotspots with
a 500 m× 500 m grid and not via buffer size (see Methods).

start and end date, we assigned the fire name, number and
type (HRB or WF) to the VIIRS fire. If multiple VIIRS fires
intersected the same fire history polygon, we merged them
into a single fire with the same attributes for analysis. If a
VIIRS fire intersected multiple fire history polygons, we as-
signed the attributes from the fire history polygon with the
largest overlapping area. NPWS fire history polygons were
excluded from analysis either if the start or end date was
missing or if a polygon had no intersecting VIIRS hotspots.
If a VIIRS fire did not intersect a fire history polygon, we as-
signed the fire type based on the date: from October to Febru-
ary (inclusive) was WF, and all other months were HRB. For
each fire identified we added attributes of distance and direc-
tion from AQSs to fire centroids (Fig. 2), i.e. the arithmetic
mean of the hotspot coordinates, with a separate row for each
fire and AQS combination (within 150 km).

2.2 PM2.5 data

We modelled PM2.5 (µg m−3) as a function of several en-
vironmental predictors. We downloaded all available PM2.5
data (hourly averages) from the NSW DPE for the period
2012–2021, which comprised 48 AQSs. Data were available
free online at https://data.airquality.nsw.gov.au/docs/index.
html (last access: 1 June 2022). We calculated mean PM2.5
for each AQS for three 6 h periods:

1. Afternoon, 14:00 to 19:00 AEST inclusive. This period
covered peak burning conditions in the afternoon and
after sunset, although sunset and fire ignition times var-
ied.

2. Night, 21:00 to 02:00 AEST inclusive. This covered the
night period starting on the same day as the fire.

3. Morning, 05:00 to 10:00 AEST inclusive, next day after
fire day. This captured conditions early the next morning
after the main periods of fire activity were likely to have
ended, although some fires may have burnt through the
night and smoke may still have lingered.

Note that there were some missing PM2.5 values in the data,
which meant some summary afternoon/night/morning values
had < six records. However, > 98 % of records were sum-
marised from = four hourly PM2.5 values.

We chose these times to represent different periods in the
daily cycle that may have distinct smoke, weather and fire
behaviour characteristics. All fires identified in the hotspot
analysis were matched to AQS summary PM2.5 for active
days when the fire was within 150 km. Not all AQSs had
records for all years, as some were not operational until later
in the study period (Fig. 1). Note that we modelled PM2.5
observed at air quality stations, which included primary and
secondary PM2.5. Secondary PM2.5 can be formed via atmo-
spheric chemistry processes that transform emitted gases into
particulates, with the processes influenced by factors includ-
ing season, solar radiation, temperature and relative humidity
(Cope et al., 2014; Fine et al., 2008).

2.3 Predictor variables

We sampled hourly weather variables at each AQS and each
fire centroid from ERA5 weather grids, which constitute an
atmospheric reanalysis product with multiple weather vari-
ables and atmospheric levels available at 30 km spatial and
hourly temporal resolution (Hersbach et al., 2018b, a) (Ta-
ble 1). We calculated the mean weather values for both sur-
face and upper atmospheric conditions (Table 1) for the af-
ternoon, night and morning periods as described for PM2.5.
We calculated additional variables describing the spatial re-
lationship between the fire and each AQS. We used the AQS-
to-fire direction and wind direction to calculate the percent
of time period when the surface wind was blowing directly
to the AQS, with directly meaning ±22.5◦ of the AQS-to-
fire bearing. We also used the daily active fire area based
on the intersection of hotspots and a 500 m by 500 m grid
(area=N intersecting cells× 25 ha) as a predictor. We in-
cluded a month variable (i.e. month of the active fire date)
as a predictor variable to account for any seasonal variation
in background PM2.5 levels. The month was represented as a
cyclic variable, where the sine and cosine of the month (1–
12) were both included in the modelling. We included the
latitude and longitude of the AQS to account for spatial de-
pendence, and we included fire type as a factor variable to
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account for differences not captured by the weather or fire
area variables. We also experimented with making separate
models for each fire type (HRB model and WF model) for
each time period but found that resulting accuracy statistics
on the training and test sets were similar, so instead we just
used one model for each time period with fire type as a factor
variable.

2.4 Random forest modelling

Our data consisted of three separate tables (afternoon, night
and morning data tables) for three models. In each table,
there were 11 187 rows with unique combinations of fire,
AQS and date. For each fire, there could be multiple ac-
tive dates, and each fire could be associated with more than
one AQS (i.e. it was within 150 km of multiple AQSs). Our
data had 48 different AQSs and 1429 different days with at
least one active fire near an AQS. There were 1883 differ-
ent combinations of fire and day (we refer to these combi-
nations as “fire–days”) consisting of 727 fire–days that had
VIIRS hotspots and a fire history record and 1156 fire–days
that had only VIIRS hotspots. The fire–days from solely VI-
IRS hotspots were on average smaller than the fire–days with
a matching NPWS fire history record (209 ha vs. 854 ha re-
spectively). A total of 1182 fire–days were from HRBs (mean
daily active fire area= 254 ha), and 701 were from WFs
(mean daily active fire area= 802 ha). Each fire was observed
at a minimum of 1 AQS, with a mean of 6 AQSs and a max-
imum of 35 AQSs associated with a single fire.

We trained a random forest model using the “ranger” pack-
age in R (Wright and Ziegler, 2017). Random forests are ro-
bust and efficient machine learning algorithms that involve
fitting and averaging of randomised decision trees and have
been applied to a range of environmental research problems
including fire and emissions (Biau and Scornet, 2016; Hu et
al., 2017; Shah et al., 2022). We chose random forests due
to several advantages that include high accuracy, fast com-
putation times, easy implementation, robustness and greater
interpretability (compared to “black-box” methods) via sim-
ple methods to extract variable importance and partial de-
pendence (Rodriguez-Galiano et al., 2015; Biau and Scornet,
2016; Wright and Ziegler, 2017).

We split each of our datasets into training (75 %) and test
(25 %) sets for analysis, stratified by fire type so that an
even proportion of HRBs and WFs appeared within each of
the sets. We trained the models using the training set data
and used out-of-bag (OOB) predictions vs. observations for
model accuracy checks, and we predicted on the test set
to calculate test set accuracy statistics. Our accuracy statis-
tics were the correlation coefficient (r), normalised mean
error (NME) and normalised mean bias (NMB), as recom-
mended by Emery et al. (2017) for assessing model perfor-
mance. We ran three different models, one for each analy-
sis period: (1) afternoon mean PM2.5, (2) night mean PM2.5
and (3) morning mean PM2.5. Predictor variables were the

weather variables in Table 1 sampled at both the AQS cen-
troid and the fire centroid, distance, daily active fire area,
month, and AQS coordinates. As highly correlated vari-
ables can introduce bias into random forest variable impor-
tance calculations (Strobl et al., 2008), we removed variables
from analysis where the Pearson correlation was above 0.8:
mean sea level pressure (MSLP) at AQSs and wind speed at
850 hPa at AQSs were excluded, each of which was corre-
lated with the version sampled at the fire.

We assessed the variable “permutation” importance us-
ing the ranger package. Permutation importance is derived
from a process where reduction in model accuracy for OOB
predictions is calculated after randomly shuffling values for
each variable, calculated for all trees and variables (Wright
et al., 2016). We assessed predictor variable effects using
partial dependence plots calculated in the “pdp” package in
R (Greenwell, 2017) and by creating prediction plots where
PM2.5 was predicted with all variables held at mean values
except two variables of interest, which were each assigned
three different levels to illustrate their effects. We also con-
ducted a short descriptive analysis, using satellite images and
hourly PM2.5 of large outliers in the models to understand
potential reasons for inaccurate predictions. This is included
in Appendix A.

2.5 Limitations

There are several limitations to our methods that should be
considered when interpreting the results. Our process to iden-
tify active fires from VIIRS hotspots excluded hotspots that
were outside the 150 km AQS buffer, even if they were part
of a fire that straddled the buffer edge. There may be occa-
sions where smoke from hotspots, as well as entire fires, from
> 150 km reached an AQS and influenced PM2.5, e.g. large
WFs during the 2019–2020 “Black Summer”. The effect of
such fires was not captured in our methods.

We set a minimum fire activity threshold of five hotspots
(day or night). This may mean that days recorded as having
only one fire may have had other smaller fires in the area that
may have produced smoke that affected PM2.5. Relying on
VIIRS had the advantage of being able to better detect when
a fire was active, but our process may not have captured all
fires on any given day due to cloud cover impeding VIIRS
hotspot detection. This may be a form of bias in our analysis
as the cloudiest days were selected against. Additionally, VI-
IRS SNPP hotspots are acquired in the early afternoon and
early morning, meaning that only the active area at the time
of VIIRS acquisitions is measured and not the total burnt area
over a day. Fire area or the number of fires may have been un-
derestimated if clouds were impeding hotspot detection. Our
decision to analyse only days with one fire, to better under-
stand distance and direction variables, means that there is a
selection bias against the most active fire days (i.e. days with
multiple fires). This may include the worst WF days, where
multiple fires were more likely to ignite, particularly during
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Table 1. Predictor variables used for random forest modelling. Letters mean that for the random forest modelling weather variables were
sampled at the fire (F), at the AQS (A) or both (FA). MSLP and wind speed (850 hPa) at the AQS were excluded due to being highly correlated
with the same variable at the fire.

Type Name Units Details

ERA5
weather

PBLH – planetary boundary
layer height (FA)

metres Mean height of planetary boundary layer from surface, from
ERA5 grids.

MSLP – mean sea level
pressure (F)

hectopascal Mean sea level pressure of atmosphere on surface per unit
area from ERA5 grids.

WS – wind speed (FA) km h−1 Mean wind speed 10 m above surface calculated from U

and V ERA5 wind component variables.

RH – relative humidity (FA) % Mean relative humidity calculated from temperature and
dew-point ERA5 variables.

Temperature (FA) degrees
Celsius

Mean temperature 2 m above surface sampled from ERA5
grids.

WS 850 hPa – wind speed at
850 hPa (F)

km h−1 Mean wind speed at 850 hPa calculated from U and V

ERA5 pressure-level wind component variables.

Direct wind (FA) % Percent of hours during a period (e.g. afternoon) where 10 m
wind was blowing directly towards AQS, i.e. within a 22.5◦

arc on either side.

Fire Fire area hectares Daily active hectares for a fire calculated from the inter-
section of VIIRS hotspots (day and night) with a 500 m by
500 m grid (N intersecting cells× 25 ha).

Fire type WF or HRB Wildfire or hazard reduction burn.

Temporal Month sine, cosine Month included to account for seasonal variation in back-
ground PM2.5; included as a cyclic variable: cosine and sine
of integer month as separate variables.

Geographic Distance km Kilometres from the fire centroid (i.e. geometric centre of a
hotspot cluster) to the AQS.

AQS coordinates latitude,
longitude

Coordinates of air quality monitoring stations to account
for spatial dependence.

2019–2020. For days that are most suitable for HRBs, au-
thorities are more likely to ignite multiple HRBs. Such days,
which could include the worst pollution events, were not in-
cluded in our analysis but have been the subject of separate
research (Storey and Price, 2022).

Note that in our VIIRS hotspots clustering process, we
used a buffer of 2.5 km to provide a broad “search” area in
which to group hotspots: any hotspots within 5 km of each
other (two buffer widths) or less would be grouped. This may
have meant that on some occasions, separate small fires were
grouped. However, we deemed it reasonable to treat these as
one fire for our purposes given that the similar location meant
smoke would be travelling along the same general bearing to-
wards an AQS, which was important for the direct wind vari-
able (Table 1). For example, two fires 5 km apart would have
a∼ 3◦ difference in bearing to an AQS 100 km away (∼ 5◦ at
50 km). Smaller or larger buffers may have produced differ-
ent results. Note that if more than one hotspot cluster inter-

sected the same NPWS fire history polygon, we also treated
these as the same fire.

3 Results

3.1 Variable summaries

Plots of the distribution of PM2.5 and predictor variables are
shown in Fig. 3. PM2.5 was skewed towards low values (af-
ternoon, night, morning mean= 8.1, 10.7, 10 µg m−3), with
occasional very smoky periods (afternoon, night, morning
maximum= 294.2, 394.8, 506.2 µg m−3). Most fires were
between 75 and 150 km from AQS, and only 20 % of fires
had their closest AQS within 50 km. The daily active fire area
derived from VIIRS hotspots was heavily skewed towards
lower values (mean= 458 ha, 95th centile= 1175 ha). The
maximum fire area was 31 800 ha; < 1 % of fires (all WF)
were over 10 000 ha and 94 % were less than 1000 ha.
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Figure 3. Distribution of PM2.5 and predictor variables used in random forest modelling, excluding latitude, longitude, fire type and month.
Distance and daily active fire area are daily variables, so they are identical for afternoon, night and morning model datasets. Distributions for
at-fire variables are from unique fire–day combinations, at-AQS variable values are from unique AQS-day combinations. af, afternoon; ni,
night; mo, morning; AQS, air quality station; RH, relative humidity; WS, wind speed; PBLH, planetary boundary layer height; MSLP, mean
sea level pressure.

Afternoon conditions were generally hotter, were less hu-
mid and had higher PBLH at both fire and AQS locations
than in night and morning conditions. Between WF and
HRB, WF afternoons were hotter, were drier and had higher
PBLH (Fig. 3). MSLP was similar between afternoon, night
and morning but skewed lower for WF compared to HRB.
The wind direction variables were clustered around zero, in-
dicating that most of the time wind at the fire and at the
AQS was not moving smoke directly from the fire to the AQS
(Fig. 3). For example, only 5 % of rows in the afternoon data
indicated that wind sampled at the AQS was coming directly
from the fire for at least 3 of the 6 h. For wind sampled at the
fire, this figure was 11 %.

3.2 Highest-PM2.5 days

Figure 4 shows the 20 highest mean PM2.5 values for each
6 h period for HRBs and WFs. The top PM2.5 values were
much greater for WFs than for HRBs in the afternoon, night
and morning (∼ 150 to 200 µg m−3 greater for each). Of the
top 20 PM2.5 values for WF for afternoon, morning and
night, = 80 % were associated with the 2019–2020 wildfires
in NSW, many with the Gospers Mountain wildfire in the
Blue Mountains (Boer et al., 2020).

The top seven afternoon peaks for WF were > 100 µg m−3

(max= 294 µg m−3), but only two of the afternoon HRB
peaks were > 100 µg m−3. In the night and morning, there
were fewer values > 100 µg m−3, but larger maximums were
recorded for HRB and WF for each period (compared to the
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Figure 4. Highest mean PM2.5 values for each 6 h time period for HRBs and WFs. For each date, only the single top value from all AQS
values is shown (i.e. the second highest for each date is not shown). The dashed line indicates 50 µg m−3 for reference between the three
plots. Note that our data only include situations with one fire within 150 km of an AQS for a particular date.

afternoon). For each rank position, WF values were greater
than HRB values, except in the night model where, from po-
sitions 3 to 20, the HRB values were higher. More informa-
tion on the conditions surrounding the worst PM2.5 events
for each time period for HRBs and WFs, including satellite
images, weather plots and descriptions, is included in Ap-
pendix A.

3.3 Model results

Daily active fire area, PBLH (fire and AQS), temperature and
RH at the fire were among the most important variables in the
three models (Fig. 5). Some variables were among the most
important in only one or two of the models: wind speed at
the fire was the fourth and fifth most important in the night
and afternoon models but ninth most important in the morn-
ing model. The direct wind variables, distance to fire, AQS
coordinates, MSLP, month and fire type were all of moderate
to lower permutation importance in each model.

Partial dependence plots (Fig. 6) indicated that for all mod-
els, there was a sharp increase in predicted PM2.5 when the
AQS-to-fire distance was below ∼ 20 km, with the morning

model displaying the sharpest rise in PM2.5 as the distance
decreased. This effect is despite distance being of middle
to lower permutation importance (Fig. 5). Partial plots indi-
cated PM2.5 increased as fire area increased, particularly in
the 0–2500 ha range, which is where most training observa-
tions were situated (Fig. 3). There was a very large PM2.5 in-
crease above 10 000 ha in the morning and afternoon models,
although there is uncertainty here due to a small number of
training observations > 10 000 ha (Fig. 3). The shape of the
PBLH effect differed for each model between the fire PBLH
and AQS PBLH. At the AQS, there was a strong negative
effect of PBLH (lower PBLH means a higher PM2.5), partic-
ularly in the night and morning models < 500 m. At the fire,
each model had peak PM2.5 at low and high values of PBLH.
For the night and morning models, PM2.5 peaked when fire
PBLH was . 200 m, with a smaller rise & 800 m. For the
afternoon model, the largest peak was when fire PBLH was
high (& 1500 m), with a smaller rise when . 500 m. For RH
at the fire, predicted PM2.5 below ∼ 50 % RH was much
higher than when RH was above 50 % in the morning and
night models. For wind speed, effects varied between the fire
and AQS and with the time period: lower wind speed at the
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Figure 5. Variable importance for each model. A common x scale
was assigned, which is the percentage of the total permutation im-
portance attributable to each variable (i.e. importance / sum (impor-
tance)× 100).

AQS was associated with higher PM2.5 in all models but at
the fire low and high (particularly for the night model) wind
speeds were associated with higher PM2.5.

We calculated model accuracy statistics for the training
set (OOB predictions) and the independent test sets and for
HRB and WF subsets of each. From the combined statistics,
Pearson correlations between predictions and observations
(r) for training and test sets ranged from 0.67 to 0.83 (Ta-
ble 2, Fig. 7). For the statistics by fire type, r was higher for
WF than for HRB. For WF, r was 0.7 to 0.88 on the training
and test sets. For HRBs, r was 0.59 to 0.69 on the training
and test sets. NME for all combinations of training/test set
and fire type ranged between 33 % and 39 %, with the lowest
NME for the WF subset from the afternoon model (∼ 33 %
for training and test set). The normalised mean bias (NMB)
indicated that generally there was a slight over-prediction
bias that ranged from ∼ 1 % to ∼ 2 %, with a maximum of
6.95 % for WF for the night model test set. The night model
had under-prediction bias for HRBs on the test set (Table 2,
Fig. 7).

Table 2. Accuracy statistics from random forest modelling for train-
ing and test (in brackets) sets. Training set predictions are on out-of-
bag samples during model fitting, and test set predictions were made
on the independent test set. Overall statistics, along with statistics
on HRB and WF portions of the data, are shown. r , Pearson corre-
lation; NME, normalised mean error; NMB, normalised mean bias
(Emery et al., 2017).

r NME % NMB %

Combined Afternoon 0.75 (0.78) 35.5 (36) 1.34 (1.06)
Night 0.67 (0.70) 37.3 (36.5) 1.51 (0.62)
Morning 0.76 (0.83) 37.4 (37.6) 2 (1.9)

HRB Afternoon 0.60 (0.69) 37.6 (38.6) 1.81 (1.53)
Night 0.63 (0.68) 38.1 (36) 0.81 (−2.25)
Morning 0.59 (0.65) 37.9 (38.5) 2 (2.4)

WF Afternoon 0.79 (0.81) 33.1 (32.9) 0.78 (0.51)
Night 0.7 (0.76) 36 (37.5) 2.86 (6.95)
Morning 0.82 (0.88) 36.6 (36.2) 2 (1.2)

The models had large under-predictions for the largest
PM2.5 values and a few large over-predictions (Fig. 7). NMB
calculated on data that included only where observed PM2.5
was = 20 µg m−3 was −30.9 % (training) and −32.8 % (test)
in the afternoon model, −34.5 % and −35.8 % in the night
model, and −29.6 % and −32.3 % in the morning model, in-
dicating under-prediction bias for the larger PM2.5 values.
For predictions on the test set, in the afternoon model nine
observations were under-predicted by at least 30 µg m−3,
four from WF and five from HRB. The maximum over-
prediction was by 36 µg m−3. For the night model, there were
15 occasions where the model under-predicted in the test
set by at least 30 µg m−3 (12 were HRB). The maximum
over-prediction was by 57 µg m−3. The morning model had
14 under-predictions on the test set by at least 30 µg m−3,
with the largest under-prediction by 175 µg m−3 for a 2019–
2020 WF, although the model correctly predicted this morn-
ing as having the highest PM2.5 in the test set (observed:
390 µg m−3, predicted: 215 µg m−3). There were three over-
predictions by at least 30 µg m−3.

We explored the influence of distance and some selected
variables with a series of prediction plots (Fig. 8). PM2.5 was
predicted to increase substantially with decreasing distance
within the first 20 km of the fire in all combinations of area,
PBLH, RH and temperature. Beyond ∼ 30 km there was a
minimal effect to no effect of distance, except in the morning
model with a large fire area (Fig. 8a). The effect of temper-
ature at the fire differed between models, such that as tem-
perature increased from 10 to 25 ◦C, PM2.5 was predicted to
decrease in the morning model but increase in the afternoon
model. The plots also suggest there is generally a small dif-
ference between predicted mean PM2.5 for WF and HRB for
each model once the other predictors including fire area are
controlled for.
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Figure 6. Partial dependence plots for the afternoon (red), night (blue) and morning (black) models. Dotted parts of lines are minimum to the
5th centile and 95th centile to maximum values for each predictor variable, calculated from the training data. Where dotted parts are long,
this indicates a large range of values with a small number of observed points for model training.

4 Discussion

Using empirical fire and air quality monitoring station data,
we identified important drivers of particulate pollution asso-
ciated with individual forest fires. The results are important
in the context of our first research aim, which was to im-
prove understanding of the fire and weather conditions that
influence smoke dispersal and PM2.5 levels. In our models,
daily active fire area, PBLH, temperature, relative humidity
and wind speed were all important drivers of PM2.5 from in-
dividual fires. The importance of these variables at the fire
or at the AQS varied between models. Distance to fire gen-
erally had low permutation importance, possibly due to the
low number of AQSs in the 0 to 50 km range (Figs. 3, 6).
However, partial plots and prediction plots indicated a large
influence on model predictions. For example, partial and pre-
diction plots suggested that within 20 km of a fire, PM2.5
levels rose steeply with decreasing distance. The effect of

distance > 50 km was negligible in most cases, suggesting
other factors are more important drivers at such distances, al-
though under certain conditions there could be raised PM2.5
at long distances, such as with larger fire area in the morn-
ing model (Fig. 8). Based on Reisen et al. (2018), a 1000 ha
prescribed burn will emit 160 t of PM2.5, enough to fill to
exceedance level a cylinder capped by a planetary boundary
layer of 500 m to a radius of 64 km. This means there are
sufficient particulates available for a distance effect to oc-
cur should the weather conditions suit. Other authors have
found similar variables to be important in modelling PM2.5,
including fire size and distance when PM2.5 was measured
within∼ 10 km of HRBs (Pearce et al., 2012; Price and Fore-
head, 2021). PBLH was also a consistent predictor of PM2.5
levels at multiple stations in Sydney during HRB days (Di
Virgilio et al., 2018). However, studies such as these have
modelled PM2.5 over smaller scales than we did here or did
not attempt to link individual fires to PM2.5 records. Our
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Figure 7. Predictions of each model on the test set, with points coloured by fire type. The Pearson correlation of predictions to observations
by fire type is shown in text (r).

data included PM2.5 measurements up to 150 km from a fire,
and we built PM2.5 models using a much larger dataset of
fires and PM2.5 records, which here were from pre-installed
permanent AQSs. Therefore, the results from our study are
more applicable to the individual fire-and-PM2.5 relationship
across large geographical areas than other studies.

Our models suggest the area potentially affected by PM2.5
from fires is larger than in Price and Forehead (2021), where
raised PM2.5 levels were mostly modelled to be within 5 km
of HRBs. Here, our models suggested that raised PM2.5 lev-
els mostly occurred within 20 km of a fire. Our dataset in-
cludes a larger set of fires and includes WFs, which are
likely to produce smoke that travels further. In some indi-
vidual cases in our raw data, fires caused high PM2.5 levels
> 100 km away (e.g. Appendix A, Fig. A3). Although rela-
tively sparse, analysis using the more remote AQS network is
more suited to detecting these longer-range effects than when
monitors are placed only close to a fire.

Our second aim was to develop predictive models of PM2.5
output from individual forest fires, as a complement to phys-
ical models, to improve warnings. There was some success
here: r on the test sets indicated moderate to good agreement
between predictions and observations: 0.78, 0.70 and 0.83 for

the afternoon, night and morning models respectively. The
models fit better on the WF portion of the test data (r 0.76 to
0.88) than for HRBs (r 0.65 to 0.69). The better results for
WF suggest the models may be more applicable to WFs, e.g.
for the issuance of pollution warnings due to WF smoke. An
important consideration for using the models for prediction
is their accuracy on the highest PM2.5 observations. Events
with very high PM2.5 have the largest health impacts and
are therefore the most important to predict, for example, to
correctly issue warnings or defer HRBs due to high pollu-
tion risk. Our results suggest that, while some predictions for
the highest PM2.5 observations were relatively accurate, the
models did not consistently predict larger PM2.5 events, so
they may not be suitable as an operational prediction tool
without further development.

There are several possible reasons for the biggest outliers
and limited accuracy. The AQS network is relatively sparse,
being concentrated in Greater Sydney, making the distance
between any fire and AQS usually large. The mean distance
to the closest AQS for each fire–day was 88 km (10th cen-
tile= 31 km). This may partly explain why we did not detect
wind direction effects. Price et al. (2012) also did not find
significant effects of wind direction when modelling PM2.5 in

https://doi.org/10.5194/nhess-22-4039-2022 Nat. Hazards Earth Syst. Sci., 22, 4039–4062, 2022



4050 M. A. Storey and O. F. Price: Statistical modelling of air quality impacts from individual forest fires

Figure 8. Predicted effects of selected variables on mean PM2.5. Colours are time periods; line types are fire types; grid squares are com-
binations of the daily active fire area and planetary boundary layer height at the air quality monitoring station (a) and relative humidity and
temperature at the fire (b).

relation to MODIS hotspots at similarly broad scales around
Sydney and Perth. In contrast, two empirical studies that
did detect clear wind direction effects from HRBs, Pearce
et al. (2012) and Price and Forehead (2021), placed PM2.5
monitors close to HRBs, mostly within ∼ 10 km. The large

distances in our data mean smoke was subject to broader
weather circulation patterns before reaching an AQS, such
as shown in Appendix A. This could create a varying lagged
pollution effect that we did not completely account for in
our modelling because smoke may take different amounts of
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time to reach an AQS depending on circulation patterns. Al-
though we did not focus exclusively on coastal areas, many
AQSs were in coastal areas, so they may have been affected
by complex wind patterns. The Sydney basin, for example,
can be affected by westerly terrain-related drainage flows,
sea breezes and their interaction (Jiang et al., 2017). Differ-
ences between land and sea temperatures can influence lo-
cal wind patterns in coastal areas, creating situations where
pollutants emitted overnight or in the morning and blown
out to sea are recirculated back over (or near) the source
area with a developing sea breeze (Yimin and Lyons, 2003;
Levy et al., 2008). Such effects were not accounted for in our
study but have been the focus of other research that has used
recirculation metrics (Di Bernardino et al., 2022; Wang et al.,
2022).

The large distances and sparse network in our data also
meant that there was a low chance of any particular AQS
being downwind from a fire. This is indicated by the wind
direction variables being clustered closer to zero (i.e. smoke
not blowing from fire to AQS; see Fig. 3) and in cases such as
Appendix A, Fig. A3, where only 2 of > 20 AQSs detected
the smoke from a WF. It may therefore be that the models
were mostly optimising for non-smoke-related PM2.5, so it is
not surprising that peak events are under-predicted. Our ap-
proach is promising; however, more data capturing individual
fires burning near monitoring stations are likely required to
produce better models. More data could be gathered from the
same AQSs for another analysis in the future or by increas-
ing the density of PM2.5 monitors, either through installing
more permanent AQSs or via a short-term project that installs
a network of temporary AQSs in a selected fire-prone area
(e.g. Blue Mountains) in times of expected high fire activity.

Some of the variables had interesting non-linear effects.
For example, wind speed at the fire during the afternoon was
associated with high PM2.5 when wind speed was both . 7
and & 15 km h−1 (Fig. 6). Such relationships are due to com-
plex factors. For example, it may be that low wind speeds
increase PM2.5 because previously emitted smoke is more
likely to linger, whereas high wind speeds mean that fires are
more intense and produce more smoke and particulates. In
other words, low wind speed increases smoke concentration
at the receiver and high wind speed increases smoke produc-
tion. The low-wind-speed effect may be more associated with
HRBs, which are conducted in calm weather, and the high-
wind-speed effect associated with WFs. Similar non-linear
relationships also exist for other variables, to varying de-
grees, including PBLH, RH, temperature and MSLP (Fig. 6).
Some variables differed in their effects substantially between
the fire and AQS. For example, afternoon PBLH at the fire
showed increases in PM2.5 at low and high levels, but at the
AQS it was only low PBLH that increased PM2.5. The PBLH
effect at the fire may be similar to the wind effect: low PBLH
traps smoke, but high PBLH is associated with more active
fire behaviour and greater smoke production. Note that there
is uncertainty about the strength and directions of the effects

at the extremes of the predictor variables, given the lower
proportion of observations for model training, as indicated in
Fig. 6.

Our models predict only small differences between PM2.5
depending on the fire type variable (HRB or WF), which also
had low permutation importance in all three models. It is
likely that the weather variables and fire area variables in-
cluded in our model captured most of the differences be-
tween HRBs and WFs (e.g. WFs on average are larger and
burn in hotter windier weather), making the fire type variable
mostly redundant in the models. In this case, the models sug-
gest that after accounting for weather and fire size, there are
no clear differences in WFs and HRBs in terms of PM2.5 out-
put. However, other studies have indicated that fundamental
differences may exist as WFs inject smoke higher into the
atmosphere and consume more fuel per hectare than HRBs
(Price et al., 2022, 2018; Volkova et al., 2014); thus WF and
HRB differences need more investigation.

Our third aim was to make inferences about potential
changes in HRB protocols that could reduce PM2.5 impacts.
The models indicate the potential combinations of envi-
ronmental and fire conditions where PM2.5 is likely to be
higher, and fire managers must carefully consider whether to
undertake HRBs due to PM2.5 pollution risk. For example, a
large HRB < 20 km from a town where PBLH < 300 m dur-
ing the night and morning (at both fire and receiver site) and
< 800 m during the afternoon would like result in high PM2.5
in the nearby town. When HRBs are > 50 km from a town, a
high PM2.5 impact is much less likely, although certainly still
possible (Appendix A). In addition, the HRB area should be a
strong consideration as PM2.5 is predicted to increase as daily
active fire area increases between 0 and 2500 ha, although
there is uncertainty at larger fire areas because few fires in
our data were > 2500 ha (most were < 1000 ha). Note that
our fire areas may be an underestimate of total HRB size, as
these areas are calculated from VIIRS hotspots and thus are
based on the active fire area at VIIRS overpass times (early
afternoon and early mornings) and not on the total area burnt
in a day.

While the models indicate that certain combinations of
weather increase PM2.5, this must be weighed with the
fact that aspects of HRB implementation cannot always be
changed. For example, HRBs are already conducted within
the narrow set of weather conditions that allow for igni-
tion and controllable fire spread and often need to be con-
ducted close to populations to have the greatest house pro-
tection effect (Clarke et al., 2019). Due to the complex ef-
fects and lower predictive accuracy for HRBs, it is difficult
to make precise predictions from the models for individual
fires. A more detailed model would be required to identify
the weather conditions that would allow an HRB to be safely
conducted and also for PM2.5 to be low. An assessment that
combines predictions from our model of lower-risk PM2.5
days with a model that predicts the occurrence of within-
prescription HRB burning days (Clarke et al., 2019) may be
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useful to assess the number of overlapping days, i.e. HRB
days with low PM2.5 risk. The effects of different burning
strategies, such as breaking up a large burn into multiple
blocks, are unknown and could potentially worsen PM2.5.
Here we did not assess different strategies and only anal-
ysed cases where one fire was burning at a time, not when
multiple fires were burning around the same AQS at once.
This is a significant limitation of the study, as the smok-
iest HRB days likely occur when multiple fires are burn-
ing at once and/or fires burn for longer periods. Price and
Forehead (2021) also suggested overnight burning may have
led to the largest PM2.5 exceedances that they recorded us-
ing low-cost monitors near HRBs. Pearce et al. (2012) found
burn duration to be an important predictor during their work
also monitoring PM2.5 close to HRBs. The effect of total
fire load in a region, i.e. total area of all fires, and regional
weather conditions has been the subject of separate research
(Storey and Price, 2022).

5 Conclusion

Understanding how individual fires, both wildfires and haz-
ard reduction burns, influence ambient PM2.5 concentrations
is important to allow for proper risk analysis, burn schedul-
ing and issuance of warnings. Our models provide impor-
tant insights into the influence of weather and fire variables
on PM2.5 concentration from individual fires. We found that
daily active fire area, PBLH, temperature and RH all have
strong influences, with the effects of the variables varying de-
pending on whether they are measured at the fire site or the
receiver location (here, the AQS). The models improve our
understanding and may have a place during operational pre-
dictions. However, accuracy is similar to in existing models,
so they could be used as a complement. Further development
to improve accuracy would benefit the operational deploy-
ment of the models, particularly given the lower correlations
between observations and predictions for HRBs. However,
our approach is promising and would likely produce better
models with a larger set of data, where more cases of sin-
gle fires near AQSs could be found. Increasing the density of
PM2.5 monitors (permanent or temporary during fire seasons)
would also provide better data to improve the resulting mod-
els. Producing broader-scale models of regional-level PM2.5
from regional-level fire and weather may be a useful alterna-
tive approach for producing operational models.

Appendix A

This Appendix contains case studies of large PM2.5 ex-
ceedance events present in the data used for modelling in the
main text. The purpose is to detail specific events and high-
light factors that may have influenced PM2.5 patterns across
the different AQSs. The Appendix is organised as seven
panel figures of seven different events that each have im-

ages and a description. The events selected are the six high-
est mean 6 h values from the combinations of fire type (WF,
HRB) and period (afternoon, evening, morning) and also the
second highest value for afternoon WF, which is included to
highlight interesting coastal wind behaviour. Note that the
values used in modelling are from AQS data for which only
one fire was active within 150 km of the AQS for that day.
Higher values were recorded on days with multiple fires, but
these are not analysed in this paper. Each figure contains the
following:

– Panel (a) in each figure has a background Himawari 8
satellite image for 1 single hour (time in black text at
top) during the relevant time period, with the fire cen-
troid also indicated by an orange circle and the gen-
eral fire area in a blue polygon. The background im-
age is overlaid with wind speed (red numbers and red
arrow length) and wind direction (red arrow direction)
from the Bureau of Meteorology (BOM) weather sta-
tions and PM2.5 recorded at all AQSs within the im-
age extent at that hour (black circles and white text;
larger PM2.5 value means large circle). The AQS with
the highest mean 6 h value is indicated by a red star
(same AQSs as general location map in panel b). AQS
that had multiple fires nearby are not included. Note one
extra Himawari image is included for WF night to aid in
the description (panel e). Himawari images are provided
by the Japan Aerospace Exploration Agency (JAXA)
and were downloaded from the JAXA P-Tree System
(https://www.eorc.jaxa.jp/ptree/terms.html, last access:
1 February 2022).

– Panel (b) in each figure is a map of the general fire loca-
tion, represented by an orange circle around the fire cen-
troid, with circles representing AQS locations coloured
by their mean PM2.5 value (µg m−3) for that 6 h period.
The highest station values are indicated by the red text
and red star.

– Panels (c) and (d) in each figure are 10 m and 700 hPa
gridded wind speed and direction for the same hour as
the Himawari image, sampled from ERA5 gridded re-
analysis data. Black arrows indicate wind speed and
direction, with longer/larger arrows indicating higher
wind speed. The orange fire circle is also in these im-
ages for reference. The solid black line is the Australian
coastline.
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Figure A1. Wildfire afternoon. The largest afternoon mean WF PM2.5 was 294.2 µg m−3 at Katoomba AQS, which was the third closest
to fire. The fire (Gospers Mountain) eventually burnt ∼ 500 000 ha. A total of 15 other AQSs around the fire had mean PM2.5 > 50. The
smoke was flowing mainly to the south over Katoomba (red star) under the surface northerly winds. However, a portion of the smoke was
also flowing more easterly with upper-level winds. There is a distinct easterly edge to the smoke plume (a), which appears to align with
where the northerly and north-easterly surface winds meet (c). There were widespread PM2.5 exceedances, but only Katoomba recorded
values > 150 µg m−3 (b). Smoke from other wildfires to the north of Sydney may have affected the region, indicated by the AQS north of
the Gospers fire also recording high PM2.5 values (a). These AQSs are not shown in (b) because they were within 150 km of more than one
active fire. In the morning before this image, smoke was flowing directly into Sydney and most AQSs recorded at least one hourly value
> 200 µg m−3.
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Figure A2. Wildfire afternoon 2. The second highest mean afternoon WF PM2.5 was 138.1 µg m−3 at Richmond AQS (red star), which was
the closest to the fire at ∼ 50 km. This was also the Gospers Mountain fire. Six other AQSs in the Sydney basin had mean PM2.5 > 50 (b).
The smoke flow appears multidirectional (a): to the south with surface winds (c) and to the east with upper-level winds (d). The southerly
flow appears to be due to the meeting of surface westerly winds and a NE sea breeze (c). The smoke flowing to the east appears to be above
the surface and above the sea breeze as the AQS directly to the east of the fire was under the plume but only recording PM2.5 of 7 µg m−3 (a).
The preceding morning had northerly winds blowing smoke directly into Sydney, with several AQSs recording hourly values in the hundreds,
so lingering smoke was likely a contributor. This fire burnt through the following night, but PM2.5 levels dropped substantially across Sydney
(all < 25 µg m−3) until 02:00 AEST, when PM2.5 increased again (Fig. A4).
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Figure A3. Wildfire night. The highest mean night WF PM2.5 was 394.8 µg m−3 at Orange (red star), also from the Gospers Mountain fire.
All except one other AQS (Bathurst 25–50 µg m−3) had mean PM2.5 < 25 µg m−3 for this period (b). At midnight (e) the smoke appears to
be flowing directly from the fire to Orange (PM2.5= 462 µg m−3), given no AQSs in Sydney (SE of fire) had high PM2.5 and there were
easterly 10 m winds (f). This example shows that smoke circulation can be complex. At 19:00 AEST, 1 h before our “night” period here,
there were easterlies at the fire but Orange AQS had southerlies (a). The easterlies had only reached Bathurst (PM2.5= 210 µg m−3) and not
Orange (PM2.5= 8 µg m−3). Later (e) the easterlies reached Orange along with the surface smoke, resulting in high PM2.5. On the day after
this, winds switched to northerlies and PM2.5 rose substantially across Sydney and in Katoomba.
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Figure A4. Wildfire morning. The highest mean morning WF PM2.5 was 506.2 µg m−3 at Rouse Hill (red star), which was the second
closest AQS at 30–40 km from the fire. This was also the Gospers Mountain fire. Richmond AQS was closer but recorded a mean PM2.5 of
112 µg m−3. There were seven other AQSs with a mean > 100 µg m−3 for this period and another three > 50 µg m−3 (b). It is not apparent
from the BOM wind (red arrows in a) or the ERA5 data (c, d) that wind flowed directly from the fire to Rouse Hill. The high values may be
the result of smoke lingering from the previous day (Fig. A2). However, smoke appeared to clear out during the night period preceding this
morning, as the night had comparatively low PM2.5 values (all Sydney AQSs < 25 µg m−3). There may have been drainage flows from the
mountains into the Sydney basin that were not captured in the weather data. After this morning, winds turned westerly and then southerly,
which pushed smoke away from Sydney and reduced PM2.5 < 25 µg m−3 across Sydney.
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Figure A5. HRB afternoon. The highest mean afternoon HRB PM2.5 was 145.9 µg m−3 at the closest AQS in Richmond (red star). Four
other AQSs also recorded PM2.5 > 50 µg m−3 during the same period (b). Wind patterns at 10 m (c) suggest that the northerly winds and
the meeting of NW and NE winds to the west of the fire funnelled surface smoke to Sydney, similarly to in Fig. A2. Wind speeds were also
low (a, c), meaning smoke would have remained in the area for longer. On the morning preceding this period, there was likely some smoke
lingering around Sydney because several AQSs recorded hourly values in the twenties and thirties (µg m−3). The synoptic wind direction (d)
in the afternoon was northerly, meaning high-level smoke would also have flowed towards Sydney. PM2.5 continued to increase as the day
went on and into the night. The highest night mean PM2.5 was also caused by this HRB (Fig. A6).
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Figure A6. HRB night. The highest mean night HRB PM2.5 was 161.7 µg m−3 at the second closest AQS in St Marys (red star), while the
closest station was also high (Richmond= 129.4 µg m−3). This highest nighttime PM2.5 for HRBs followed the highest afternoon PM2.5,
i.e. the same day and fire (Fig. A5). The high afternoon PM2.5 may have influenced the results this night as 10 m winds were still low (c),
suggesting smoke may have lingered from the afternoon. Low wind speeds also meant that any new smoke produced during the night was
probably not dispersed. The 10 m winds (c) suggest smoke was not flowing directly from the fire to St Marys, as winds were westerly at the
fire. However, the BOM winds (red arrows in a) are zero at Richmond and St Marys at 22:00 AEST, suggesting very calm conditions.
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Figure A7. HRB morning. The highest mean morning HRB PM2.5 was 284.5 µg m−3 at Bargo AQS (red star) 10 km from the HRB. This
example differs from the other panels in that the PM2.5 impact was local only: no other AQSs had > 25 µg m−3 for this morning (b). None of
the examples (Figs. A1–A6) had an AQS at such a close distance. The 10 m winds (c) suggest light winds from the fire towards the AQS. The
BOM winds near the fire (a) varied in direction but were light. The wind speeds were likely too low to carry smoke far enough north to impact
AQSs in Sydney or AQSs in other directions. This HRB was ignited the previous day under W/SW winds but did not noticeably increase
PM2.5 at any AQS. On the day after this morning period, strong northerly winds occurred and PM2.5 at Bargo dropped below 10 µg m−3.
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