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Abstract. Increased coastal flooding caused by extreme sea
levels (ESLs) is one of the major hazards related to sea level
rise. Estimates of return levels obtained under the frame-
work provided by extreme-event theory might be biased un-
der climatic non-stationarity. Additional uncertainty is re-
lated to the choice of the model. In this work, we fit sev-
eral extreme-value models to two long-term sea level records
from Venice (96 years) and Marseille (65 years): a general-
ized extreme-value (GEV) distribution, a generalized Pareto
distribution (GPD), a point process (PP), the joint probabil-
ity method (JPM), and the revised joint probability method
(RJPM) under different detrending strategies. We model non-
stationarity with a linear dependence of the model’s param-
eters on the mean sea level. Our results show that non-
stationary GEV and PP models fit the data better than sta-
tionary models. The non-stationary PP model is also able to
reproduce the rate of extremes occurrence fairly well. Esti-
mates of the return levels for non-stationary and detrended
models are consistently more conservative than estimates
from stationary, non-detrended models. Different models
were selected as being more conservative or having lower un-
certainties for the two datasets. Even though the best model
is case-specific, we show that non-stationary extremes anal-
yses can provide more robust estimates of return levels to be
used in coastal protection planning.

1 Introduction

Coastal zones are extremely vulnerable to extreme sea levels
(ESLs; Kron, 2013). Exposure to coastal flooding damage is
projected to increase in the future (Jongman et al., 2012) due
to the higher frequency, magnitude, and duration of extreme

sea levels (Tebaldi et al., 2021; Devlin et al., 2021). The mean
sea level rise is among the causes of this increase (Menéndez
and Woodworth, 2010; Marcos et al., 2009). The design of
structures to protect coasts from flooding (minimizing, for
example, damage to infrastructures and coastal erosion) re-
lies on the knowledge of ESLs that are likely to occur with a
given probability (Boettle et al., 2016). Extreme-event theory
provides a theoretical background to fit historical extremes
with specific probability distribution functions (Coles et al.,
2001) and is widely used for estimating the probability of
occurrence of ESLs. However, non-stationarity poses some
challenges to the development of solid estimates of such re-
turn levels.

The results of extreme-value theory are valid under the
assumptions of independence and stationarity of extremes
(Khaliq et al., 2006). Here, stationarity means that all the re-
alizations of the extremes in the data record are generated
from the same distribution (Coles et al., 2001). While in-
dependence is satisfied with a proper selection of extremes
from the dataset, stationarity is often assumed but not veri-
fied (Khaliq et al., 2006). However, several sources of non-
stationarity can affect sea level data: changes in coastal
morphology, low-frequency climatic variability, and climate
change (Salas and Obeysekera, 2014). The estimation of re-
turn levels from stationary models might not be appropriate
(e.g., less conservative) because of the implicit assumptions
that the characteristics of the extremes remain the same in
the future (Caruso and Marani, 2022; Razmi et al., 2017;
Dixon and Tawn, 1999; Salas and Obeysekera, 2014; Haigh
et al., 2010; Ragno et al., 2019). Two approaches are com-
monly used to cope with non-stationarity. Detrending the sea
level data with annual or long-term mean sea levels is a com-
mon practice to remove long-term signals in the mean of the
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dataset (Bernier et al., 2007; Tebaldi et al., 2012; Mentaschi
et al., 2016). Alternatively, the parameters of the probability
distribution function that generates the extremes can be ex-
plicitly modeled as dependent on some covariates (Méndez
et al., 2007; Grinsted et al., 2013; Cid et al., 2016; Sweet and
Park, 2014; Razmi et al., 2017). However, clear indications
of which approach better suits non-stationary conditions are
still missing.

The choice of the proper method to conduct the extreme-
sea-level analysis is also a challenge. Several methods ex-
ist, both direct, based on fitting theoretical probability dis-
tribution functions (PDFs) to the data, and non-direct, re-
lying on mixtures of empirical and parametric PDFs. Ex-
treme values in the data can be defined as either maxima
over uniform blocks of data or values that exceed a de-
fined threshold (Coles et al., 2001). Several theoretical PDFs
were derived accordingly: the generalized extreme-value dis-
tributions (Mudersbach and Jensen, 2010), the generalized
Pareto distributions (Wahl et al., 2017), and the point pro-
cess (Boettle et al., 2016). Indirect methods such as the joint
probability method or the revised joint probability method
(Pugh and Vassie, 1978) also exist. These methods decom-
pose the sea level in the tide and surge components. Differ-
ent methods might be more or less suited (in terms of ex-
plained and residual variance; see Sect. 2.3.6) to accommo-
dating non-stationary data and might lead to different esti-
mates of extreme-sea-level probabilities (Wahl et al., 2017;
Razmi et al., 2017). However, a comparison of the suitability
of different direct and indirect methods for modeling non-
stationarity is currently missing.

Using two long-term sea level time series from Venice
(96 years, NE Italy), and Marseille (65 years, southern
France) with different extents of non-stationarity, this paper
aims at (i) compiling information on the existing direct and
indirect methods for extreme-sea-level estimation, (ii) as-
sessing which parametric method and detrending approach
best accommodate non-stationary conditions, and (iii) com-
paring return level and return period estimates from different
parametric and non-parametric methods. We perform all the
analyses using three different detrending approaches.

2 Methods

2.1 Tide gauge locations

The city of Venice and its lagoon are exposed to the risk of
flooding due to extreme sea levels (Ferrarin et al., 2022).
The tide regime is semi-diurnal, with a mean tidal range
from 50 cm during neap tides to 100 cm during spring tides
(Umgiesser et al., 2021): such values are among the high-
est ranges measured in the Mediterranean Sea. Compared
to other sites in the northern Adriatic Sea, the Venice La-
goon has experienced higher sea level rise due to the com-
bined effects of subsidence and eustatism (+2.5 mmyr−1

in the last 150 years; De Biasio et al., 2020; Zanchettin
et al., 2021). The current long-term mean sea level is about
30 cm above the local 1897 reference (named Zero Mare-
ografico di Punta della Salute, ZMPS: average sea level for
the period 1885–1909 measured at the Punta della Salute
gauging station). As a result, an increase in the frequency
and magnitude of ESLs causing flooding of the city of Venice
has been recorded (Umgiesser et al., 2021). The events with
the highest recorded sea levels occurred on 4 November 1966
(+194 cm) and 12 November 2019 (+189 cm; Lionello et al.,
2021).

On the contrary, the area where the Marseille tide gauge
is located has a lower tidal range (around 10 cm, Fig. S1 in
the Supplement) and is located against a stable geological
background, with a relative sea level rise of+1.1 mmyr−1 in
the last 150 years (Wöppelmann et al., 2014; Letetrel et al.,
2010). Marseille data are referred to the nautical chart datum
(NCD, zéro hydrographique), which is the sea level corre-
sponding to the lowest tide and is 32.9 cm below the national
datum (IGN 1969, average sea level for the period 1885–
1897 measured at Marseille gauging station; Wöppelmann
et al., 2014). The long-term mean sea level was 35 cm above
the NCD in 1903 and 50 cm above the NCD in 2017.

2.2 Tide gauge data

We used sea level data recorded by the tide gauge station lo-
cated in Venice (gauge name: Punta della Salute) covering
the period 1924–2019. Data from 2020 onwards are affected
by the activation of a storm surge barrier system that prevents
ESLs from propagating inside the Venice Lagoon (MOSE)
and therefore were not included in the analysis. The float-
operated tide gauge is located inside a still well; measure-
ments were recorded mechanically until 1988 and electroni-
cally from 1989 onwards. Until 1989, semi-diurnal maxima
and minima are available (four measurements per day); then
data were recorded hourly in the period 1989–1994, every
half hour in 1995–2006, and every 10 min in 2007–2019. We
resampled all data recorded after 1989 to an hourly resolu-
tion with Pugh filters. We used a filter with 27 coefficients
for 10 min data, a filter with 18 coefficients for 15 min data,
and a filter with 12 coefficients for 30 min data (Pugh, 1987).
The data have no gaps; a total record length of 96 years was
used to fit the models. To calculate the long-term mean sea
level before 1924, we used yearly mean sea level data from
other tide gauge stations active in the city of Venice (and
thus affected by the same subsidence rate as Punta della
Salute) whose records cover the period 1885–1922 (namely
Campo Santo Stefano, Arsenale, and Punta della Salute –
Canal Grande; for details see Zanchettin et al., 2021).

Hourly sea level data recorded at Marseille are available
for the time period 1849–2017. Measurements were per-
formed with a float-operated tide gauge until 1988, with
an acoustic sensor for 1989–2008, and with a radar sensor
from 2009 onwards. The measurements were recorded me-
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chanically until 1988 and electronically from 1989 onwards
(Wöppelmann et al., 2014). A total record length of 65 years
(spanning 1903–2017) was used to fit the models (incomplete
years were discarded).

2.2.1 Data detrending approach

We used two different approaches for detrending the sea level
data before fitting the models: (a) we removed from each sea
level observation the yearly average mean sea level (here-
after MSL detrending); (b) we removed from each sea level
observation the sea level average calculated over the previ-
ous 19 years (hereafter MSL_L detrending) to remove long-
term fluctuations due to interferences between lunar preces-
sion and solar activity (Valle-Levinson et al., 2021); (c) we
used non-detrended data to fit the models (hereafter NDT).

2.3 Extreme-value distributions

Extreme events are defined as events with a low probability
of occurrence (Coles et al., 2001). Given a set of independent
and identically distributed random variablesX1, . . .,Xn, with
parent distribution F , a probability distribution function de-
scribing the occurrence probability of extreme values can be
derived with two approaches. The block maxima (BM) ap-
proach considers the distribution of the maxima of the set
X1, . . .,Xn over blocks of length n, Mn =max{X1, . . .,Xn},
and assesses Pr(Mn < z), i.e., the probability that the ran-
dom variable Mn is greater than z. The use of sufficiently
large blocks ensures that the maxima are independent (Mén-
dez et al., 2007). The peaks-over-threshold (POT) approach
assesses Pr(X > u+ y|X > u), i.e., the probability that the
random variable X exceeds a sufficiently high threshold u
by the value y. When fitting POT, an appropriate threshold
needs to be selected to properly model excesses as extremes
(Zhang et al., 2000).

In this work, we used a block length of 1 year to ex-
tract BM to fit the generalized extreme-value (GEV) mod-
els. We selected the threshold for POT models (generalized
Pareto distribution, GPD, and point process, PP) with a two-
step approach. First, data above the 99th percentile were se-
lected, and events separated by more than a fixed time win-
dow were considered independent and retained. We used a
time window of 78 h for both Venice and Marseille, consis-
tent with the value used in other studies in the Mediterranean
(Marcos et al., 2009). This value also corresponds to the aver-
age decay time of seiches, the lowest-frequency sub-seasonal
oscillation in the northern Adriatic Sea (Raicich et al., 1999).
Second, we fitted multiple POT models based on different
thresholds, and we selected the lowest value that ensures the
stability of the GPD and PP parameters (see Sect. 2.3.2). This
procedure ensures that the threshold excesses can be prop-
erly modeled as extremes, and Eq. (2) holds (Coles et al.,
2001). For the Venice data, thresholds of 100 and 80 cm are
appropriate to select POT for non-detrended and detrended

data, respectively, yielding 319 POT for NDT, 284 for MSL,
and 359 for MSL_L. For the Marseille data, thresholds of 85
and 40 cm are appropriate to select POT for non-detrended
and detrended data, respectively, yielding 203 POT for NDT,
207 for MSL, and 223 for MSL_L.

2.3.1 Generalized extreme-value distribution

The BM distribution depends on F , the parent distribution of
the random variables in each block viaG(z)= Pr(Mn < z)=

F n(z), converging to the generalized extreme-value (GEV)
distribution when n is large enough (Coles et al., 2001):

G(z)= exp

[
−

{
1+ ξ

(
z−µ

σ

)}−1/ξ

+

]
, (1)

where a+ =max(a,0); µ is the location parameter (propor-
tional to the first-order moment of the distribution); σ is the
scale parameter (always positive, proportional to the second-
order moment of the distribution); and ξ is the shape pa-
rameter that determines the type of distribution function:
the heavy-tailed Fréchet (ξ > 0), the upper-bounded Weibull
(ξ < 0), and the limit-case Gumbel (ξ→ 0).

2.3.2 Generalized Pareto distribution

The POT distribution depends on F , the parent distribution
of the random variables via H(y)= Pr(X > u+y|X > u)=
(1−F(u+y)/(1−F(u)), with y = z−u, converging to the
generalized Pareto distribution (GPD) when the threshold is
large enough (Coles et al., 2001):

H(z)= 1−
[

1+ ξ
(
z− u

σu

)]−1/ξ

+

, (2)

where u is the threshold; σu is the GPD scale parameter de-
pendent on the threshold; and ξ the shape parameter that de-
termines the type of the distribution function: heavy-tailed
Pareto (ξ > 0), upper-bounded beta (ξ < 0), and the exponen-
tial as the limit case (ξ→ 0). When BM are GEV-distributed,
POT is theoretically expected to follow a GPD with the same
shape parameter and scale depending on the GEV parameters
σu = σ +ξ(u−µ) (Gilleland and Katz, 2016). This property
can drive the selection of an appropriate threshold u. First,
multiple GPDs are fitted to different sets of data obtained
varying the threshold. Then, the parameters are plotted as a
function of the threshold. For sufficiently high thresholds, the
theoretical approximation yields and the parameters are inde-
pendent of the threshold value. The minimum threshold that
meets this requirement is then selected (Coles et al., 2001).

2.3.3 Point process approach

The occurrence of POT can also be modeled as a point pro-
cess. Under stationary conditions, the process follows a Pois-
son distribution (Coles et al., 2001; Menéndez and Wood-
worth, 2010):
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O(k)= Pr(X = k)=
λke−k

k!
, (3)

where λ is the rate of the process (number of events over a
reference time period). The process rate depends on the GEV
parameters (Gilleland and Katz, 2016; Boettle et al., 2016;
Cid et al., 2016):

λ=

[
1+ ξ

(
z−µ

σ

)]−1/ξ

+

. (4)

When the location and scale are not constant (e.g., a de-
pendence on a covariate is introduced), the process rate is not
constant over time and the point process is non-homogeneous
(Cebrián et al., 2015). The probability of occurrence of ex-
tremes in a non-homogeneous point process is not constant
over time; hence this model is appropriate for modeling ex-
tremes whose occurrence frequency is not constant in time
(Coles et al., 2001).

2.3.4 Joint probability and revised joint probability
methods

Unlike the methods mentioned above, the joint probability
method (JPM) is non-parametric. The JPM is based on the
decomposition of the sea level z in the tide (x) and surge (y)
components (Pugh and Vassie, 1978). The probability distri-
bution of the sea level P(z) results from the convolution of
the distributions of the tide and the surge:

P(z)=

+∞∫
−∞

PT(z− y)PS(y)dy, (5)

where z= x+ y, PT(x) is the distribution of the tide, and
PS(y) is the distribution of the surge (both obtained from
hourly records). The tide and the surge interaction are signif-
icant only in shallow waters (Prandle and Wolf, 1978) and
can be considered independent in most practical applications
(Pugh and Vassie, 1978).

Two limitations of the JPM are that consecutive sea lev-
els are assumed to be independent and that the upper tail of
the empirical surge distribution is biased by the lack of ob-
servations of extremes. As a result, the JPM cannot produce
ESL estimates for sea levels higher than the combination of
the highest tide and surge (Tawn et al., 1989; Batstone et al.,
2013). The revised joint probability method (RJPM) aims at
improving both issues. First, an extremal index that accounts
for dependencies in the sea level data is introduced (θ−1,
units: hours). The extremal index is used as a correction
factor in the return period calculation based on P(z) (see
Sect. 2.3.7) and is defined as the average number of measure-
ments an extreme-sea-level cluster is usually composed of
(Tawn et al., 1989). Second, the RJPM fits the surge distribu-
tion with an extreme-value distribution to smooth the empiri-
cal distribution, for projections beyond the highest measured

surge (Tawn et al., 1989). Both GEV and GPD approaches
have been used to this end (Batstone et al., 2013; Enríquez
et al., 2022; Baranes et al., 2020).

The tidal component of the mean sea level used in the JPM
was calculated with the “oce” package (Kelley, 2018) in the
R computing environment v4.1.2 (R Core Team, 2021), using
the yearly detrended sea level data (MSL), 7 harmonic con-
stants (M2, S2, N2, K2, K1, O1, P1) for Venice, and 24 har-
monic constants for Marseille (MSM, MM, MSF, MF, Q1,
O1, NO1, PI1, P1, S1, K1, J1, 2N2, MU2, N2, NU2, M2, L2,
T2, S2, K2, MN4, M4, MS4; Wöppelmann et al., 2014). The
surge was calculated as the difference between the sea level
observation and the corresponding tide. We used 1990–2019
hourly data for Venice and 1968–2016 for Marseille (record
length of 30 years for both stations). The same time series
were used to calculate the tidal coefficients for tide estima-
tion.

For the JPM, we used all the tide and surge data from the
sea level decomposition to generate the empirical frequency
distribution over classes with a 10 cm width. The maximum
theoretical sea level (sum of maximum tide and maximum
surge) falls within the highest class. Then, we calculated the
discrete convolution between the two histograms (see Ta-
ble 1 in Pugh and Vassie, 1978). For the RJPM, we fitted
a Gumbel distribution function to the annual maxima of the
surge (following Tawn et al., 1989). Then we defined surge
classes of 10 cm width and calculated the probability of the
surge extremes falling into each class as the integral of the fit-
ted Gumbel distribution calculated over each class. After the
convolved distribution was calculated, we used the probabil-
ity of the sea level falling into each sea level class to calcu-
late the return periods (Pugh and Vassie, 1978; Marcos et al.,
2009). We then corrected the estimated return levels with the
extremal indices. We found extremal indices of 5.5 and 13 h
to be appropriate for Venice and Marseille, respectively.

2.3.5 Model fitting

We used the package “extRemes” (Gilleland and Katz, 2016)
to fit the parametric models (GEV, GPD, PP) based on the
maximum likelihood criterion (Castillo et al., 2005; Coles
et al., 2001).

2.3.6 Stationarity and parameter dependence

Both BM and POT approaches require the modeled random
variables to follow the same parent distribution F . Non-
stationary conditions can be modeled by including covari-
ates in the GEV, GPD, and PP parameters (Méndez et al.,
2007). For instance, a linear dependence of location (µ) and
scale (σ ) parameters can be assumed from the covariate c and
can be expressed as follows (Coles et al., 2001):

µ(c)= µ0+µ1c, (6)
log(σ (c))= σ0+ σ1c, (7)
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Figure 1. Example of the effects of curves parameters on the return period estimation for a sea level > 1.5 m. GEV curves with different
location (µ) and scale (σ ) parameters corresponding to three time periods are represented. The shape (ξ ) parameter is kept constant The return
period is calculated based on the highlighted area (see Sect. 2.3.8). Different locations and scales yield different return period estimates. Under
non-stationary conditions, the curve’s parameters change with time.

where the logarithm on the scale parameter in Eq. (7) is used
to constrain the scale parameter to positive values.

2.3.7 Comparing different model configurations

The likelihood ratio test is employed to assess whether the
inclusion of a covariate in the model formulation improved
significantly the fit. Two nested competing modelsM0 ⊂M1
can be compared using the deviance statistic (Coles et al.,
2001). For example, M1 can be a model whose parameters
depend on covariates, while M0 can be a model whose pa-
rameters do not depend on covariates. The deviance is ex-
pressed as

D = 2{l1(M1)− l0(M0)}. (8)

where l1(M1) and l0(M0) are the maximized log likelihoods
of models M1 and M0, respectively. The model M0 has by
definition a lower complexity than M1, which is the case
when covariates on the model’s parameters are added to M1.
High deviance values support the hypothesis of M1 explain-
ing a larger variation in the data than M0 (likelihood ratio
test). The hypothesis is rejected when D > cα , where cα is
the (1−α) quantile of a χ2

k distribution, in which k is the
difference in dimensionality between M1 and M0 (i.e., the
difference in the number of parameters).

2.3.8 Return level estimation

The return period is defined as Tr(z)= [1−G(z)]−1, where
G is the probability distribution function for the GEV, GPD,
or PP models (Caruso and Marani, 2022) or the empirical
sea level probability from the JPM and RJPM (Tawn et al.,
1989). In practice, the extreme levels of the random variable
are calculated as a function of the return period via the PDF

quantiles (Coles et al., 2001). In a non-stationary analysis,
the model’s PDF is not constant in time (Fig. 1), and the
quantiles are not uniquely determined. To allow for the com-
parison of estimated return levels from non-stationary mod-
els, in this work we first fixed the covariates values and then
calculated the quantiles of the resulting probability distribu-
tion function. For the JPM and the RJPM we included the
extremal index as a correction factor in the estimation of the
return period Tr(z)= θ−1

[1−G(z)]−1.

2.4 Data analysis

Before fitting the models, we employed a Mann–Kendall test
to check if BM and POT resulting from different detrending
strategies follow a temporal trend. Additionally, we used lin-
ear models and quantile regressions (75th quantile) to relate
BM and POT with the mean sea level and used the signifi-
cance of the regressions as indication for stationarity.

To check if the inclusion of non-stationary covariates can
improve the models (objective ii), we fitted different con-
figurations of GEV, GPD, and PP models to the full dataset
(96 years). We fitted (a) models without covariates, (b) mod-
els with the location linearly depending on the yearly mean
sea level, and (c) models with the location and logarithm of
the scale linearly depending on the yearly mean sea level. We
used the likelihood ratio test (Eq. 8) to assess whether the
inclusion of mean-sea-level-dependent parameters improved
the fit significantly.

To check visually the dependence of parameters on the
mean sea level, we fitted stationary GEV, GPD, and PP mod-
els (i.e., without covariates on the scale and location param-
eters) to BM and POT subsets using a 30-year moving time
window. We can assume that data sampled in a 30-year win-
dow can be considered stationary. We tested for the presence
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Table 1. Trend in the data used to fit the models. lm: linear model; qr: quantile regression (75th data quantile). VE denotes Venice; MS
denotes Marseille.

Gauge Extremes Detrending Regression Test p value R2

selection type statistic

VE BM NDT lm F(1,94)= 61.089 7.75× 10−12∗∗∗ 0.38
VE POT NDT lm F(1,317)= 3.265 0.07. 0.01
VE POT NDT qr F(1,317)= 2.733 0.09. –
MS BM NDT lm F(1,63)= 7.093 0.009∗∗ 0.08
MS POT NDT lm F(1,201)= 0.088 0.76n.s. −0.004
MS POT NDT qr F(1,201)= 0.217 0.64n.s. –
VE BM MSL lm F(1,94)= 7.662 0.006∗∗ 0.06
VE POT MSL lm F(1,282)= 2.417 0.12n.s. 0.005
VE POT MSL qr F(1,282)= 1.102 0.29n.s. –
MS BM MSL lm F(1,63)= 0.214 0.64n.s. −0.01
MS POT MSL lm F(1,206)= 0.001 0.98n.s. −0.005
MS POT MSL qr F(1,206)= 0.147 0.70n.s. –
VE BM MSL_L lm F(1,94)= 14.276 0.00027∗∗∗ 0.12
VE POT MSL_L lm F(1,357)= 5.432 0.020∗ 0.01
VE POT MSL_L qr F(1,357)= 5.058 0.025∗ –
MS BM MSL_L lm F(1,63)= 0.207 0.65n.s. −0.01
MS POT MSL_L lm F(1,221)= 0 0.99n.s. −0.004
MS POT MSL_L qr F(1,221)= 0.463 0.49n.s. –

n.s.: non-significant; .: p < 0.1; ∗: p < 0.05; ∗∗: p < 0.01; ∗∗∗: p < 0.001.

Figure 2. Venice data used to fit the models. See Fig. S2 for Marseille data. Plots are grouped vertically according to the detrending
method (MSL: mean sea level; MSL_L: long-term mean sea level; NDT: non-detrended) and horizontally according to the maxima typology
(BM: block maxima; POT: peaks over threshold). The text in the label in the top left corner of each plot shows the significance level of
the Mann–Kendall trend test (n.s.: non-significant; .: p< 0.1; ∗: p< 0.05; ∗∗: p< 0.01; ∗∗∗: p< 0.001). The continuous line represents the
mean sea level value; the dashed line represents the long-term mean sea level.
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of a trend in the fitted parameters with a Mann–Kendall test.
We plotted the sequence of stationary parameters together
with non-stationary ones as a mean to visually check the un-
certainty related to parameter estimation.

The PP models were further validated by comparing the
process rate (Eq. 4) and the empirical rate of POT ex-
ceedances (number of excesses per year) with Pearson’s cor-
relation test.

After fitting the models, we compared the estimates of the
return level for different return periods (objective iii). For the
non-stationary models, we first calculated the location and
scale parameters with a yearly mean sea level of +35 cm
in Venice and +52.4 cm in Marseille (equal to the 2000–
2019 long-term mean sea level for the two stations). Once the
model’s parameters were fixed, we calculated the sea levels
corresponding to return periods of 2, 20, 100, and 200 years.
Estimates of return levels from models fitted to detrended
data were added back to the long-term mean sea level. This
additive procedure is simplified and neglects the non-linear
interactions between the future mean sea level and the occur-
rence of extremes (Arns et al., 2015, 2017).

Finally, we derived the curves from non-detrended, non-
stationary models under different covariates values. For
Venice, we used +0 cm, +25 cm (annual mean sea level in
1966, the year of the largest ESL on record), +35 cm (an-
nual mean sea level for 2019, the last year used in the anal-
ysis), and +51 cm (expected annual mean sea level in 2050
under IPCC scenario SSP2-4.5; Garner et al., 2021; Masson-
Delmotte et al., 2021). For Marseille, we used +54 cm (an-
nual mean sea level for 2019) and +71 cm (expected annual
mean sea level in 2050 under IPCC scenario SSP2-4.5).

3 Results

Regarding the data used to fit the models, the Mann–Kendall
tests detected a significant trend for the non-detrended BM in
Venice, a marginally significant trend for the detrended BM,
and no trend for POT (Fig. 2). No trends were recorded for
BM or POT in Marseille (Fig. S2). We found evidence for
a dependence of the median BM on the mean sea level for
both detrended and non-detrended data in Venice, while lit-
tle support for a trend was recorded in Marseille. In Venice,
the median POT and the upper POT quantile were signifi-
cantly dependent on the mean sea level only for the MSL_L
detrending method (Table 1).

After fitting the models, the likelihood ratio test for Venice
data shows that the inclusion of the covariate (mean sea level)
improves the fit significantly for the location (µ) parameter
of both the GEV and the PP models for NDT and MSL_L
data and only for the GEV model for MSL data (Table 2).
The addition of a dependence on the scale (σ ) parameter
was marginally significant for the GPD for NDT and MSL_L
data. The inclusion of the dependence on the scale on the PP
improved the fit only for MSL_L data (Table 2). In Marseille,

the inclusion of the covariate improved the fit for the location
of the GEV and PP models for NDT and for the location of
the PP model for MSL_L data.

Models validation for Venice showed that the location pa-
rameter dependent on the covariate well reproduces the tem-
poral trends of the corresponding stationary parameters ob-
tained from the time-window analysis in the GEV and PP
models (Fig. 3). Smaller improvements are observed for Mar-
seille, where most of stationary models well reproduce the
parameters trends (Fig. S3).

Additionally, the PP models estimated the occurrence rate
of threshold exceedances in Venice in good agreement with
those calculated from the POT data (Table 3).

The return levels estimated by non-stationary models for
Venice were in the range 133–146 cm for a return pe-
riod of 2 years, 169–184 cm for 20 years, 192–203 cm for
100 years, and 198–218 cm for 200 years (Fig. 4, Table S1
in the Supplement). Estimates of 100-year return levels for
non-detrended models with covariates were in the range 169–
181 cm, while for detrended models without covariates they
were higher (186–187 cm). Models that include covariates
on the location showed an increased extreme estimate for
smaller return periods (< 10 years for GEV and < 3 years
for PP, Figs. 4 and S4), with higher discrepancies for non-
detrended data. The return levels estimated by non-stationary
models for Marseille were in the range 102–114 cm for a re-
turn period of 2 years, 128–141 cm for 20 years, 139–153 cm
for 100 years, and 144–158 cm for 200 years (Table S2). Es-
timates of 100-year return levels for non-detrended models
with covariates were in the range 143–147 cm, while for de-
trended models without covariates they were higher (156–
153 cm).

Finally, we compared how the return levels for return peri-
ods of 2, 20, 100, and 200 years differ among models (Fig. 5,
Table S1). Among stationary models, the GPD yields con-
servative estimates for 2 years and the GEV model is more
conservative for 20 and 100 years for all detrending config-
urations. Among models with covariates on the location, the
GEV model yields higher return level estimates. Among non-
stationary models fitted to non-detrended data, GPD mod-
els with covariates on the scale yield conservative estimates
for all return periods. Estimates from GEV models with co-
variates on the location and scale fitted to detrended data
are more conservative for 20, 100, and 200 years. The JPM
and RJPM yield projections that are in agreement with para-
metric models. Return levels from models without covariates
fitted to non-detrended data were consistently less conser-
vative for all return periods and both Venice and Marseille.
The highest differences between detrended, non-detrended,
and stationary models were for short return periods. Among
all the analyzed methods, in Venice the GEV model with
covariates on the location, the JPM, and the RJPM yield
the most conservative estimates of return levels for longer
return times (> 50 years), while for return times of 2 and
20 years the RJPM is less conservative than other methods.
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Table 2. Likelihood ratio test results. The column test type describes which model configurations were compared; nc-l: no covariates com-
pared with covariates on location; l-sl: covariates on location compared with covariates on both location and scale; nc-s: no covariates
compared with covariates on scale. VE denotes Venice; MS denotes Marseille.

Detrending Distribution Test Test p value Test p value
type statistic VE statistic MS

VE (χ1) MS (χ1)

NDT GEV nc-l 53.582 2.48× 10−13∗∗∗ 6.395 0.011∗

NDT GEV l-sl 1.141 0.28n.s. 0.109 0.74n.s.
NDT GPD nc-s 3.958 0.046∗ 0.175 0.67n.s.
NDT PP nc-l 122.945 1.43× 10−28∗∗∗ 43.768 3.69× 10−11∗∗∗

NDT PP l-sl 3.799 0.051. 0.346 0.55n.s.
MSL GEV nc-l 6.903 0.008∗∗ 0.379 0.53n.s.
MSL GEV l-sl 1.141 0.28n.s. 0.11 0.73n.s.
MSL GPD nc-s 3.358 0.06. 0.003 0.95n.s.
MSL PP nc-l 3.078 0.079. 0.123 0.72n.s.
MSL PP l-sl 3.086 0.078. 0.001 0.97n.s.
MSL_L GEV nc-l 13.887 1.94× 10−4∗∗∗ 0.099 0.75n.s.
MSL_L GEV l-sl 1.063 0.30n.s. 0.084s. 0.77n.s.
MSL_L GPD nc-s 6.213 0.012∗ 0.005 0.94n.s.
MSL_L PP nc-l 13.42 2.48× 10−4∗∗∗ 7.087 0.007∗∗

MSL_L PP l-sl 4.878 0.027∗ 0.601. 0.43n.s.

n.s.: non-significant; .: p < 0.1; ∗: p < 0.05; ∗∗: p < 0.01; ∗∗∗: p < 0.001.

Table 3. Comparisons between the rates fitted by the point process
(PP) for Venice and the empirical process rate of models with co-
variates on the location (model type l) and models with covariates
on the location and scale (model type s).

Detrending Model Test p value R2

type statistic
(t (94))

NDT l 12.092 7.37× 10−21∗∗∗ 0.78
NDT ls 12.344 2.22× 10−21∗∗∗ 0.78
MSL l 1.8 0.07. 0.18
MSL ls 1.754 0.08. 0.17
MSL_L l 3.608 4.97× 10−4∗∗∗ 0.34
MSL_L ls 3.451 8.39× 10−4∗∗∗ 0.33

n.s.: non-significant; .: p < 0.1; ∗: p < 0.05; ∗∗: p < 0.01; ∗∗∗: p < 0.001.

A similar behavior is observed in Marseille for the RJPM.
Differently, in Marseille the JPM provides a less conserva-
tive return level for all return times. A consistent behavior
was observed when stationary models fitted to data covering
30 years were compared with the JPM and RJPM (Fig. S5).

The direct methods show varying uncertainty in the pre-
diction of return levels (Fig. 5). In both Venice and Marseille,
the GEV model with covariates on the location has the high-
est uncertainty (12 cm in Venice and 15 cm in Marseille) for
the 2-year return period, and the PP without covariates has
the lowest uncertainty (7 cm both in Venice and Marseille).

In Venice, the PP with covariates on the location has a lower
uncertainty for return levels of 20, 100, and 200 years (15,
20, and 25 cm, respectively). Non-detrended models with-
out covariates and detrended models have similar uncertainty
(slightly lower for GEV). In Marseille, the GEV model fitted
to non-detrended data has the lowest uncertainty for return
levels of 20, 100, and 200 years (13, 23, and 27 cm, respec-
tively).

Extrapolations of non-detrended, non-stationary models
for the future showed that estimates of future ESLs are
strongly influenced by the future mean sea level (Fig. 6).
Events that currently have a return level above 200 years
will already have return levels < 30 years (for GEV and
GPD) and< 50 years (PP) in 2050 for Venice. For Marseille,
events that currently have a return level above 200 years will
already have return levels < 30 years (for GEV and GPD)
and < 100 years (PP) in 2050.

4 Discussion

4.1 Including non-stationarity in extreme-event
modeling

Our results show that most of the fitted ESL models ben-
efit from the inclusion of covariates on either the location
or the scale parameters when using non-detrended data. The
highest improvements in the fit occurred for the Venice data
that have a higher non-stationarity than Marseille. We used
only the yearly averaged mean sea level as covariates to build
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Figure 3. Comparison between the parameters estimated in the time window analysis (dashed line; the grey envelope represents the un-
certainty in the parameters from the time window analysis) and the parameters estimated by different model configurations over the full
data record length. Here only results for Venice are reported; see Fig. S3 for Marseille. Parameters from all the configurations of the GEV,
GPD, and PP models that do not include covariates are shown. Parameters from models with covariates are shown only if models improve
significantly the fit (see Table 2 for the likelihood ratio test). The shape ξ is included in the figure, but no covariate dependence was tested
for this parameter. The horizontal axis represents the final year of the time window. Plots are grouped vertically according to the detrending
method (MSL: mean sea level; MSL_L: long-term mean sea level; NDT: non-detrended) and horizontally according to the distribution func-
tion (GEV: generalized extreme value; GPD: generalized Pareto distribution; PP: point process). The text in the label in the top left corner of
each plot shows the significance level of the Mann–Kendall trend test on the parameters from the time-window analysis (n.s.: non-significant;
.: p< 0.1; ∗: p< 0.05; ∗∗: p< 0.01; ∗∗∗: p< 0.001).

simple models, but other predictors can be used, depending
on the objective of the study. For instance, the North At-
lantic Oscillation index, the Arctic Oscillation, and the East
Atlantic–Western Russia Oscillation index can be used to in-
clude a dependence on climate (Menéndez and Woodworth,
2010). Where climatic predictors are missing, seasonality ef-
fects can be included, e.g., with harmonic dependencies on
the yearly Julian day (Méndez et al., 2006). Other predictors
could include global and regional meteorological parameters,
which could influence storm surge intensities and frequen-
cies (Grinsted et al., 2013). A dependence on time can also be
included (Mudersbach and Jensen, 2010). However, particu-

lar care should be used in the choice of the predictors. Com-
plex models can be useful for explaining historical patterns
but might be of little utility for future projections. For in-
stance, bias could arise due to uncertainties in predictors’ fu-
ture trajectories or to future predictor values being out of the
ranges used to calibrate the models. In this regard, simpler
models can be helpful for future projections when clear links
between extremes occurrence and specific predictor classes
are established (Schuwirth et al., 2019).

In this work, we used the mean sea level as a covari-
ate because of the strong link with storm surge occurrences
(Lionello et al., 2021). Our results show that the mean-sea-
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Figure 4. Return level plot actualized to 2019 for Venice. See Fig. S4 for Marseille. Plots are grouped vertically according to the detrending
method (MSL: mean sea level; MSL_L: long-term mean sea level; NDT: non-detrended) and horizontally according to the distribution
function (GEV: generalized extreme value; GPD: generalized Pareto distribution; PP: point process). The dashed line is the empirical return
level for the joint probability method (JPM). Curves are color-coded based on the model configuration. Note the horizontal axis is logarithmic.
Return level curves for direct models with covariates are reported only if the addition of the covariate improves the fit significantly (p< 0.01;
see Table 2).

level-dependent location of both GEV and PP models im-
proves the ESL fit for both Venice and Marseille. The lo-
cation parameter is the first-order moment of the extremes
distributions. The inclusion of a linear dependence on the
mean sea level translates rigidly the distribution function to-
wards higher (positive slope) or lower (negative slope) values
without affecting the shape of the distribution. GEV and PP
models also marginally improved with a dependence on the
scale. The scale parameter relates to the second-order mo-
ment of the distribution (the “spreading”). A dependence of
the scale parameter on the mean sea level could suggest an
influence on the variability in the magnitude of storm surges.
In shallow areas a higher sea level corresponds to lower dis-
sipation of the tidal energy, yielding higher ESLs (Arns et al.,
2017). In the Venice Lagoon, this factor might also be influ-
enced by the morphological transformations that the Venice
Lagoon underwent during the 20th century and that might

have affected the dynamics of the tide propagation (Caruso
and Marani, 2022). Different explanations for this pattern are
possible. For instance, the North Atlantic Oscillation index
(NAO), not included in this analysis, might act as a latent
variable: negative NAO phases in the Mediterranean basin
can lead to increases in monthly mean sea levels and in the
number of storms (Cid et al., 2016).

Overall, this work shows how including non-stationarity in
extreme-event analysis can support an improved understand-
ing of extreme events. Including dependencies from the mean
sea levels also allows for flexible forecasts of ESLs under sea
level rise scenarios.

4.2 Comparison of the models

The significant covariate dependencies could also be influ-
enced by the type of data. The BM data in Venice show
clear increasing trends, which were captured by the GEV
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Figure 5. Difference in return levels between each fitted model and a non-detrended GEV fit for different return periods. Return levels of
models with covariates are shown only if the model significantly improves the fit compared to models without covariates (p< 0.01; see
Table 2). Plots are grouped vertically according to the detrending method (MSL: mean sea level; MSL_L: long-term mean sea level; NDT:
non-detrended) and horizontally according to the distribution function (GEV: generalized extreme value; GP: generalized Pareto distribution;
PP: point process).

model. BM could be extracted with different methods, such
as monthly blocks, or for r-largest yearly values (where r is
an integer number, e.g., 5 or 10). A global analysis (Wahl
et al., 2017) showed that the annual maxima comprise the
more conservative method (i.e., yield higher return period es-
timates). However, this aspect should be checked as part of a
sensitivity analysis from case to case. POT data do not have
a trend in the mean or in the higher quantiles in either Venice
or Marseille and thus should yield models that are less af-
fected by non-stationarity. However, a trend in the frequency
of occurrences of POT (Ferrarin et al., 2022) was observed
in Venice, which might invalidate the homogeneity assump-
tions of GDP and PP models. The non-homogeneity of the
POT distribution can be mitigated by introducing a depen-
dence of the threshold from a covariate (Roth et al., 2012).
However, using a non-constant threshold introduces a sig-
nificant uncertainty that might result in biased estimates of
the return levels (Agilan et al., 2021). On the contrary, the
PP explicitly models the rate of threshold exceedances: the

detected significant dependence of location on the mean sea
level implies a process with a non-constant occurrence rate
(i.e., a non-homogeneous process, Eq. 6; Cid et al., 2016).
The ability of the PP models to predict the changes in the
ESL occurrence frequency with sea level rise is of particular
relevance in Venice, where a system of movable gates was re-
cently built to disconnect the lagoon from the sea and prevent
the flooding of the city during ESLs (Umgiesser, 2020).

While all the parametric methods improved with the inclu-
sion of non-stationarity, the JPM and RJPM are the methods
that should be least influenced by non-stationarity, since the
methodology requires detrending the data before the calcu-
lation of tide and surge histograms. However, as the resid-
ual trend on detrended BM for Venice shows, the removal of
the mean sea level might not be sufficient to make the series
stationary. Thus, estimates of the return level with the JPM
might also be biased. Estimations of return levels for long
return periods are not possible due to the lack of surge and
tide events that are needed to populate the extremal classes
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Figure 6. Return level plots for different values of mean sea level. Mean sea level is expressed with respect to the local reference. The current
mean sea level is +35 cm for Venice and +54 cm for Marseille. See Sect. 2.4 for a description of the selected future mean sea levels.

of the distribution. In our analysis, the JPM allows for esti-
mating return periods corresponding to levels of +233 cm in
Venice (corresponding to the sum of the maximum recorded
tide, +57 cm; the maximum recorded surge, +141 cm; and
the current mean sea level, +35 cm) and +163 cm in Mar-
seille (tide: +20 cm; surge: +89 cm; current mean sea level:
+54 cm), but for the shortest series, this limitation might be
stronger. Another limitation of the JPM and RJPM as im-
plemented in this paper is the lack of information on un-
certainty. The development of multivariate ESL distributions
could solve this issue (Ferrarin et al., 2022), but applications
that include non-stationarity are still limited.

Some parametric models were improved by the inclusion
of covariates on the location, with a stronger influence on
models fitted to non-detrended data. Particular care should
be taken when detrending data prior to the model fit as this
action implicitly assumes that the mean sea level is mainly
responsible for data non-stationarity, and higher-order inter-
actions are neglected. In shallow areas this could not be the
case (Arns et al., 2017). Thus, inclusion of covariates on the
model’s parameters could perform better than detrending in
such cases. With our data, the use of the mean sea level as a
covariate results in a rigid translation towards higher return
levels for GEV and PP plots due to the significance of the lo-
cation dependence. The effect on the GPD is also a change in
slope due to the significance of the scale parameter. However,
data from different gauging stations might show different be-
haviors. For instance, sites where the sea level variability in-
creases with mean sea level might also show a significant
dependence on the scale parameter in the GEV and PP mod-
els.

Our results show that the models that have lower uncer-
tainty and the models that yield the most conservative esti-
mates of return levels are different between Venice and Mar-
seille. Even though we highlighted that the difference be-
tween the two datasets is the extent of non-stationarity, other
factors can affect the selection of a good model: the relative
importance of tide and surge (Dixon and Tawn, 1999), the
tidal regime, the location of the tide gauge, the record length,
and the presence of outliers (Haigh et al., 2010). A similar
analysis on a dataset covering a wider range of sites would
allow us to consistently link the best-performing methods to
the characteristics of the sea level data.

5 Conclusions

In this paper, we fitted different extreme-value models to
long-term sea level data for Venice and Marseille. We show
that including non-stationarity in the analysis of extreme
events improves the fit of most of the models. Among di-
rect methods, for return periods longer than 20 years, the
point process with a dependence of the location on the mean
sea level is the most conservative in Venice. The general-
ized extreme-value distribution with a dependence of the
location on the mean sea level is the most conservative in
Marseille. Among indirect methods, the revised joint prob-
ability method yields results that are comparable with the
most conservative methods for return periods longer than
100 years for both Venice and Marseille. Among direct meth-
ods, the generalized extreme-value distribution fitted to de-
trended data has the lowest uncertainty for return level esti-
mation in Venice. The point process with a location depen-
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dence has the lowest uncertainty for return level estimation
in Marseille for return periods longer than 20 years. Overall,
we show that non-stationary extremes analyses can provide
more robust estimates of return levels to be used in coastal
protection planning.
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