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Abstract. Satellite and hydrological model-based technolo-
gies provide estimates of rainfall and soil moisture over
larger spatial scales and now cover multiple decades, suf-
ficient to explore their value for the development of land-
slide early warning systems in data-scarce regions. In this
study, we used statistical metrics to compare gauge-based
and satellite-based precipitation products and assess their
performance in landslide hazard assessment and warning in
Rwanda. Similarly, the value of high-resolution satellite and
hydrological model-derived soil moisture was compared to
in situ soil moisture observations at Rwandan weather sta-
tion sites. Based on statistical indicators, rainfall data from
Integrated Multi-Satellite Retrievals for Global Precipitation
Measurement (GPM_IMERG) showed the highest skill in
reproducing the main spatiotemporal precipitation patterns
at the study sites in Rwanda. Similarly, the satellite- and
model-derived soil moisture time series broadly reproduce
the most important trends of in situ soil moisture obser-
vations. We evaluated two categories of landslide meteoro-
logical triggering conditions from IMERG satellite precip-
itation: first, the maximum rainfall amount during a multi-
day rainfall event, and second, the cumulative rainfall over
the past few day(s). For each category, the antecedent soil
moisture recorded at three levels of soil depth, the top 5 cm
by satellite-based technologies as well as the top 50 cm and
2 m by modelling approaches, was included in the statisti-
cal models to assess its potential for landslide hazard as-

sessment and warning capabilities. The results reveal the cu-
mulative 3 d rainfall RD3 to be the most effective predictor
for landslide triggering. This was indicated not only by its
highest discriminatory power to distinguish landslide from
no-landslide conditions (AUC∼ 0.72), but also the result-
ing true positive alarms (TPRs) of ∼ 80 %. The modelled
antecedent soil moisture in the 50 cm root zone Seroot(t−3)
was the most informative hydrological variable for land-
slide hazard assessment (AUC∼ 0.74 and TPR 84 %). The
hydro-meteorological threshold models that incorporate the
Seroot(t−3) and RD3 following the cause–trigger concept in a
bilinear framework reveal promising results with improved
landslide warning capabilities in terms of reduced rate of
false alarms by ∼ 20 % at the expense of a minor reduction
in true alarms by ∼ 8 %.

1 Introduction

Landslides are one of the most prevalent hazards in moun-
tainous regions of the world, associated with high rates of
fatalities, injuries and economic loss globally (Froude and
Petley, 2018; Haque et al., 2016; Kirschbaum et al., 2015;
Petley, 2012). According to a recent estimate (Froude and
Petley, 2018), precipitation-induced landslides were respon-
sible for a global total of ∼ 55000 deaths over the 13-
year period from 2004 to 2016. In landslide-prone regions,

Published by Copernicus Publications on behalf of the European Geosciences Union.



3642 J. Uwihirwe et al.: Potential of satellite-derived hydro-meteorological information

much effort is therefore put into the implementation of pre-
vention and protection measures to control the most sensi-
tive factors. Landslide early warning systems (LEWSs) are
used as non-structural and cost-effective mitigation measures
adopted to minimise landslide harm and loss of life and prop-
erty (Calvello et al., 2020; Glade and Nadim, 2014). How-
ever, the global landslide research indicated a bias in the ge-
ographical distribution of LEWS and landslide research, with
a major gap in Africa (Gariano and Guzzetti, 2016; Guzzetti
et al., 2020; Kirschbaum et al., 2010, 2015). According to
Guzzetti et al. (2020), there are no LEWSs in African coun-
tries, despite the high number of fatal landslides recorded
and the high landslide susceptibility (Broeckx et al., 2018;
Kirschbaum et al., 2015). Previous landslide susceptibility
analysis revealed countries along the East African Rift region
to be highly susceptible to landslides (Broeckx et al., 2018)
despite only the most severe landslides often being reported,
and thus a large number is missing. The East African Rift
(EAR) was thus identified as a major hotspot of hazardous
landslides in Africa, with a high rate of population expo-
sure (Depicker et al., 2020, 2021a; Monsieurs et al., 2019a).
In the long term, this is due to the active continental rifting
caused by the persistent divergence of the Victoria and Nu-
bia microplates (Glerum et al., 2020), while in the short term
it is controlled by the interactions of prolonged and intense
rainstorms in the region with hydrogeological and landscape
processes. Rwanda is among the tropical countries located
in the western branch of the East African Rift, threatened
by landslide hazards (Bizimana and Sönmez, 2015; Nsen-
giyumva et al., 2018; Nsengiyumva and Valentino, 2020).
About 43 % of its surface area is classified as having mod-
erate to very high susceptibility to landslides, with 49 % of
the local population exposed to landslide risks (Nsengiyumva
et al., 2018). The long-term landslide-predisposing factors
in Rwanda include its pronounced topographic profile, the
inherent geological and lithological units, weathering pro-
cesses, earthquakes, demographic pressure and the related
anthropogenic activities such as deforestation, agriculture ex-
pansion and slope incision through road construction activ-
ities (Bizimana and Sönmez, 2015; Depicker et al., 2015,
2021b; Moeyersons, 1989; Monsieurs et al., 2018b; Nsen-
giyumva et al., 2018; Valentino et al., 2021). The develop-
ment of mining sites and the connected feeder roads also
changes the nature of the natural hillslope through excava-
tion, thus exacerbating landslide susceptibility and risks of
slope failures. In addition, urban expansion pushes settle-
ments, industry and infrastructure into hazardous areas that
are naturally unstable, thereby further increasing the num-
ber of elements at landslide risk. The short-term landslide-
triggering factors include prolonged and intense rains in ad-
dition to the hydrological process that predisposes slopes to
near failure. In the past 15-year period from January 2006 to
May 2021, the landslide inventory in Rwanda indicated about
425 landslide deaths (∼ 0.6 % of global landslide deaths) and
about 2000 injuries induced by the above-normal hydrolog-

ical and meteorological factors (Uwihirwe et al., 2022). The
lack of LEWSs is one of the important factors in the increas-
ing number of landslide victims in Rwanda. The develop-
ment of a robust LEWS hinges on the availability of hydro-
meteorological data with sufficient spatiotemporal resolution
and an accurate landslide inventory, both of which are scarce.
Recently, numerous river catchments in Rwanda have been
equipped with groundwater monitoring wells, river water-
level gauges, soil moisture sensors as well as the automated
weather stations. However, the available data records are
frequently of insufficient length to build historical time se-
ries that overlap with the time periods of landslide inven-
tories and that could be incorporated into landslide hazard
assessment thresholds. As a first step towards LEWS devel-
opment in Africa, Monsieurs et al. (2019a, b) used the Land-
slide Inventory for the central section of the Western branch
of the East African Rift (LIWEAR) to define the landslide
susceptibility–rainfall and antecedent soil moisture thresh-
olds in the East African Rift region. In Rwanda, Uwihirwe et
al. (2020) used a statistical approach to define gauge-based
precipitation thresholds along with estimates of antecedent
precipitation indices. Furthermore, Uwihirwe et al. (2022)
incorporated regional groundwater-level measurements ex-
tended with a transfer function noise model to define the
landslide hydro-meteorological thresholds for regional land-
slide hazard assessment. So far, these studies have relied ex-
clusively on in situ observed precipitation and hydrological
data constrained by the sparsely distributed recording equip-
ment with point-scale resolution and gaps in the data record.
There is a concern about the omission and/or overgenerali-
sation of information on the pre-wetting hydrological condi-
tions at the locations of the landslides due to the sparsely dis-
tributed hydrological recording equipment (Uwihirwe et al.,
2022). These pre-wetting conditions regulate the disposition
of a slope to near failure (Bogaard and Greco, 2018; Sidle et
al., 2019). Including this information in a LEWS may thus
be a promising opportunity to decrease the rate of both false
and missed alarms (Bogaard and Greco, 2018; Peres et al.,
2018). Similarly to other hydrological variables, soil mois-
ture exhibits high spatial variability, particularly in tropical
areas (Dewitte et al., 2021; Kirschbaum et al., 2012; Sekara-
nom et al., 2020). This spatial variability is hardly covered
by on-site monitoring equipment due to the sparse observa-
tion networks, themselves providing point-scale observations
only. Alternative ways of incorporating such hydrological
state information into landslide hydro-meteorological thresh-
olds have been attempted and include the use of soil mois-
ture estimates from satellite products (Marino et al., 2020;
Thomas et al., 2020; Zhuo et al., 2019) as well as from dis-
tributed hydrological models (Mostbauer et al., 2018; Pren-
ner et al., 2018, 2019; Wang et al., 2019; Zhao et al., 2020).
In this study, we aimed to explore the usefulness of com-
bining soil moisture from satellite products and from a dis-
tributed hydrological model with satellite-based precipita-
tion for the estimation of landslide hazard assessment thresh-
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olds in Rwanda. We specifically (i) investigated the suitabil-
ity of various satellite precipitation products as a substitute
for rainfall data from a sparsely distributed gauge network
in Rwanda, (ii) evaluated the added value of satellite- and
model-derived soil moisture information recorded at various
soil depths and (iii) assessed the potential of incorporating
such information into empirical landslide hazard assessment
threshold models and the warning capabilities in Rwanda.

2 Study area

Rwanda is an evergreen landlocked country geographically
located between 1–3◦ S and 28–31◦ E in the great lakes re-
gion of central eastern Africa with a total area of 26 338 km2.
It is topographically characterised by high elevation in the
north-western regions reaching up to about 4500 m (Fig. 1)
and steep slopes reaching up to 55 %. The geomorphology of
Rwanda is characterised by angular hills, rounded hills and
headlands, mountains and volcanoes (Fig. 2). The subtrop-
ical highland climate, with a long-term mean annual rain-
fall> 1200 mm yr−1 in the north-western highland regions
and < 1000 mm yr−1 in the eastern savannah region (Fig. 1)
and a mean annual temperature of about 19 ◦C, prevails in
the country. The north-western region of the country is lo-
cated in a tectonic region with a seismically active volcanic
chain and earthquakes being among the possible landslide
triggers. The hydrology is characterised by dense networks
of lakes and rivers, while the hydrogeology consists mainly
of fractured aquifers of granite gneisses, schists, mica schists
and complex aquifers in volcanic rocks of the northern and
south-western parts of the country (Fig. 3). The main hydro-
geological units in the landslide area include low- and semi-
permeable fractured schist and mica schist and permeable
fractured granites. The weathering products of granites are
generally coarse-grained and tend to develop and preserve
open-joint systems that increase their permeability and are
thus prone to landslide hazards. The weathering products of
schists include clay minerals that tend to fill up the frac-
tures, thus slowing the permeability. However, mica schists
are renowned as unstable due to rapid weathering, easy split-
ting along the joints and bedding planes and loss of strength
induced by the high content of mica.

3 Methods and data

3.1 Landslide inventory

The inventory for this study contains landslides recorded
from 2007 to 2019. It was accessed from a previous study
in Rwanda (Uwihirwe et al., 2022) and was further extended
and updated through compilation of additional rainfall-
induced landslides as reported from local newspapers, blogs
and government technical reports. This landslide inventory
was compiled with respect to the methodology adopted by

Kirschbaum et al. (2010, 2015) and Monsieurs et al. (2018b).
Between 2007 and 2019, the inventory includes 55 accu-
rately dated landslides, 32 of which are located in the catch-
ments modelled for this study (Kivu, upper Nyabarongo and
Mukungwa) (Fig. 3). However, it is important to note that
this inventory is likely to miss the non-hazardous landslides,
which are less reported upon than hazardous landslides that
led to fatalities/injuries and considerable damages. The in-
ventory provides the location of each recorded landslide but
with a varying spatial accuracy of 5 to 25 km depending on
the smallest administrative unit recorded by the landslide
event reporters. Therefore, a buffer zone of 5 km, equivalent
to the frequently recorded accuracy, was used around each
landslide (Fig. 1) to support the choice of the landslide rep-
resentative rain gauge. The same areal buffer was used as
a footprint to avail the areal satellite precipitation and soil
moisture as detailed in Sect. 3.2 and 3.3.

3.2 Precipitation products and performance evaluation

3.2.1 Gauge-based precipitation and selection of
landslide representative data

We accessed daily precipitation data from 19 rain gauges
operated by the Rwanda Meteorology Agency. These rain
gauges were selected based on their location within the de-
fined buffer of 5 km around each landslide location (Fig. 1).
Once two or more rain gauges fall within the same buffer
zone, the gauges are weighted (Melillo et al., 2018) to select
the most representative rain gauge following Eq. (1):

W =
E2

d2D
. (1)

The weight (W ) is estimated based on the cumulated event
rainfall E (mm) until the landslide day, the distance between
rain gauge and landslide d (mm), and duration D (days).
A similar procedure was used to select the representative
rain gauge for landslides located far (> 5 km) from any rain
gauge. The selected gauge-based precipitation was used as a
benchmark to assess the suitability of satellite precipitation
products.

3.2.2 Satellite precipitation products and suitability
analysis for LEWSs in Rwanda

With the gauge-based precipitation data as a reference, we as-
sessed the performance of seven satellite precipitation prod-
ucts summarised in Table 1. These satellite precipitation
products were preliminarily selected for analysis based on
the criteria that their dataset (i) at least partially overlap with
the landslide inventory period (2007–2019), (ii) have at least
daily temporal resolution, and (iii) be available on the Google
Earth Engine (GEE).

Among the pre-selected satellite products, we have chosen
the most suitable product for landslide hazard assessment in
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Figure 1. Location of Rwanda in Africa, elevation, spatial and temporal distribution of hazardous landslides with light to dark red dots
indicating old to new landslides recorded from 2007 to 2019, landslide representative rain gauges, rainfall distributions indicated by isohyets
(sky blue lines) and precipitation footprint of the 5 km buffer around each landslide.

Figure 2. Geomorphology of Rwanda, landslide representative AWSs (automated weather stations) with soil moisture sensors, landslides in
red dots and 5 km buffer zones indicating the research area of interest (ROI) for areal soil moisture acquisition.
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Figure 3. Wflow model catchments (Kivu, upper Nyabarongo and Mukungwa) and hydrogeology, landslides in red dots and 5 km buffers
indicating the ROIs for areal soil moisture acquisition from the Wflow model, and AWSs with soil moisture sensors for comparative perfor-
mance evaluation of the Wflow-modelled soil moisture.

Table 1. Pre-selected precipitation products and short descriptions.

Satellite and Resolution Period Data source description References

reanalysis products Spatial Temporal

TRMM 3B42 v7 0.25◦ Daily 1998–2019 Passive microwave (PMW) from a variety of low Earth orbit Huffman et al.
satellites; infrared (IR) data and precipitation gauge supplied (2010)
by the Global Precipitation Climatology Centre (GPCC)

CHIRPS 0.05◦ Daily 1981–present Geostationary thermal IR; microwave satellite Funk et al.
estimates and the in situ precipitation observations (2015)

PERSIANN CDR 0.25◦ Daily 1983–present GridSat-B1 infrared data and bias-adjusted using the Global Ashouri et al.
Precipitation Climatology Project (GPCP) monthly product (2015)
and accumulated to the daily scale

GLDAS 2.1 0.25◦ 3-hourly 2000–present Geostationary satellite IR cloud-top temperature Rodell et al.
measurements and microwave observation techniques (2004)

CFSv2 0.2◦ 6-hourly 1979–present Satellite observations in the infrared and microwave channels Saha et al.
and gauge observations (2014)

IMERG_GPM 0.1◦ 30 min 2014–present Passive microwave from various low Earth orbit satellites, Huffman et al.
infrared from geosynchronous Earth orbit satellites and (2020)
gauge precipitation (successor of TRMM)

ERA5 0.25◦ 3-hourly 1979–present This is a non-satellite but re-analysis product. Precipitation is Hersbach et al.
generated by employing a convection scheme along with the (2020)
large-scale cloud scheme that have been upgraded with an
improved representation of mixed-phase clouds and
prognostic variables for precipitating rain and snow.
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Rwanda based on the relative comparison with gauge-based
precipitation. This was achieved using a number of statisti-
cal approaches that include (i) the use of statistical metrics of
goodness of fit, (ii) rainfall frequency indicators, and (iii) in-
tensity comparisons. The statistical metrics of goodness of fit
include the root mean square error (RMSE), Pearson corre-
lation (CC), and long-term relative bias (RB) computed with
Eqs. (2) to (4):

RMSE=

√√√√√ n∑
i=1
(Yi −Xi)

2

n
, (2)

CC=

n∑
i=1
(Xi −Xmean)(Yi −Ymean)√

n∑
i=1
(Xi −Xmean)

2

√
n∑
i=1
(Yi −Ymean)

2

, (3)

RB=
Ymean−Xmean

Ymean+Xmean
, (4)

where Yi is the rain gauge observation at date i, Xi is the
satellite estimate at the same date i, n is the total number
of data pairs for each precipitation product considered, and
Ymean and Xmean are the mean rainfall from rain gauge and
satellite products respectively.

The rainfall frequency indicators specify the frequency of
rainy days based on the predefined threshold indices (Joshi et
al., 2014; Tank et al., 2009). We used five rainfall threshold
indices that reflect the number of rainy days with>Xmm of
rain (RDx ). The predefined indices are RD0 , RD10 , RD20 , RD30

and RD50 , indicating the number of rainy days with > 0 mm
as rainy days, > 10 mm as heavy rainy days, > 20 mm as
very heavy rainy days, > 30 mm as even heavier rainy days
and > 50 mm as extremely heavy rainy days respectively.
With intensity comparison, we compared the cumulative 30 d
rainfall from the satellite precipitation products to the cumu-
lative 30 d precipitation from rain gauges using scatter plots.

3.3 Soil moisture products and data acquisition

3.3.1 In situ soil moisture data from automatic weather
stations

In situ soil moisture data, collected from the automatic
weather stations (AWSs) equipped with soil moisture sen-
sors, were accessed from the Rwanda Meteorological
Agency for six AWSs as shown in Fig. 2. The AWSs recorded
the soil moisture at 20 cm depth with a temporal resolution
of 5–10 min from July 2018 to December 2019. Because the
analysis focuses on a daily timescale, we computed and used
the daily average soil moisture time series recorded from
July 2018 to December 2019. The in situ AWS soil mois-
ture data were used as a benchmark to comparatively get an
insight into the quality of other sources of soil moisture prod-

ucts that include satellite- and model-derived soil moisture
estimates described in Sect. 3.3.2 and 3.3.3.

3.3.2 Satellite soil moisture and variable of interest

We used a satellite-derived near-surface soil moisture
product provided by Planet, formerly VanderSat (VdS)
(https://vandersat.com/data/soil-moisture/, last access:
29 March 2022). The product relies on the Land Parameter
Retrieval Model (LPRM) (de Jeu et al., 2014; Owe et al.,
2001, 2008) to estimate the near-surface soil moisture
by combining raw data from the Advanced Microwave
Scanning Radiometer 2 (AMSR-2) and Soil Moisture
Active Passive (SMAP) (Bouaziz et al., 2020). The satellite
product estimates volumetric soil water content or soil mois-
ture (m3 m−3) of the upper 5 cm of soil downscaled from a
spatial resolution of 25 km× 25 km to 100 m× 100 m. From
VdS, we accessed daily soil water content estimates from
the top 5 cm of soil (θtop) for the 2007–2019 period for each
of the defined regions of interest (ROIs) equivalent to the
5 km buffers shown in Fig. 3.

3.3.3 Hydrological model-derived soil moisture and
variables of interest

We also used the soil moisture derived from Wflow, open-
source software developed by the Deltares OpenStreams
project (Schellekens, 2021; Schellekens et al., 2019). The
Wflow-distributed hydrological model platform currently
contains 13 models (Schellekens, 2021) that include the
wflow_sbm model. The models consist of a set of python pro-
grams that are run on the PCRaster python framework to per-
form hydrological simulations (Karssenberg, 2014; Karssen-
berg et al., 2010). The Wflow_sbm uses the conceptual
bucket model approach to derive the hydrological variables
of interest (Imhoff et al., 2020; Schellekens et al., 2019).
With Wflow_sbm, the soil is considered a bucket with a
depth (Z) divided into two zones: the unsaturated store U
and the saturated store S. The interface between U and S is
a pseudo water table located at depth Zw. The values of un-
saturated storage U and saturated storage S are computed as
in Eqs. (5) and (6):

U = (θs− θr)Zw−Ud, (5)
S = (θs− θr)(Z−Zw) , (6)

where θs (–) and θr (–) are saturated and residual water con-
tent respectively and Ud (–) is the soil water deficit.

The unsaturated store U was the variable of interest and
was subdivided into two variables: the water content in the
root zone θroot representing the unsaturated soil water stor-
age of the top 50 cm and the part of the soil water capacity
occupied θuz representing the unsaturated soil water storage
of the upper 2 m. For this study, the model area consisted of
three catchments (Kivu, upper Nyabarongo and Mukungwa)
as highlighted in Fig. 3. As with all other hydrological mod-
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els, the Wflow_sbm model calibration is needed for optimal
performance. The model is calibrated based on the model pa-
rameters that are estimated a priori using pedotransfer func-
tions and global or local datasets. The model was run from
January 2001 till December 2020, with the first years corre-
sponding to the model spin-up time. We obtained time series
of θroot and θuz for 2007–2019, overlapping with the land-
slide inventory period, from a wflow_sbm simulation based
on ERA5 re-analysis meteorological data. To increase the
comparability with the satellite-based soil moisture, the same
ROIs represented by the buffers of 5 km around each land-
slide location were used to interpolate the unsaturated water
storage time series for each ROI located in the model catch-
ment. Similarly, only the AWSs located in the model catch-
ment (Fig. 3) were used for the comparative performance
evaluation of the model-derived soil moisture products.

3.4 Landslide hazard assessment and threshold
definition

3.4.1 Landslide meteorological and hydrological
conditions and test variables

The daily rainfall data from the satellite product were used
to define the landslide meteorological triggering conditions.
We used two categories of landslide-triggering conditions.
The first category defined a landslide trigger as the maximum
probable rainfall event (MPRE), during which or after its end
one or more landslides occurred. The MPREs were defined
as individual periods of rainy days interrupted by dry peri-
ods of at least 2 d. Given the constraint of overestimation of
the number of rainy days with 0–10 mm by satellites, a rainy
day was objectively referred to as a day with ≥ 10 mm d−1,
while a dry day was referred to as a day with < 10 mm d−1.
This threshold was objectively selected using the rainfall fre-
quency indicator metric explained in Sect. 3.2.2. The land-
slide predictor variables in this category were therefore the
cumulated event rainfall E (mm), event duration D (days)
and rainfall mean intensity E/D (mm d−1). The cumulated
event rainfall E (mm) was computed as the cumulative rain-
fall during each MPRE of durationD (days). The event dura-
tion D equivalent to MPRE is the individual periods of days
with recorded rain separated by an inter-event time (IET) of
at least 2 dry days. The rainfall mean intensity E/D is the ra-
tio of event rainfall volume E and event durationD. The sec-
ond category defined a landslide trigger as the recent cumula-
tive rainfall RDx , at the end of which one or more landslides
occurred. This category considers the total cumulative rain-
fall over the last 3 d (RD3 ), 2 d (RD2 ) and 1 d (RD1 ), at the end
of which one or more landslides occurred. While MPRE time
series are interrupted by the IETs, the RD3 , RD2 and RD1 for
each day during the 2007–2019 study period were computed
regardless of a rainy or dry day, thus resulting in longer time
series and more data points compared to the MPRE time se-
ries. The time series of the defined meteorological triggering

conditions from each category and for all precipitation foot-
prints were compiled in a single dataset for further statistical
analysis. To provide a normalised comparison of the soil wet-
ness, we transformed the satellite- and model-derived water
content θ to effective soil moisture Se to define the landslide-
predisposing hydrological conditions using Eq. (7):

Se=
θ − θmin

θmax− θmin
, (7)

where Se stands for the effective soil moisture (–), θ is the
actual soil moisture and θmax and θmin are the maximum and
minimum values of the recorded or modelled soil water con-
tent.

The normalisation of soil water content θ was made
for easy comparison of the observed, model-derived and
satellite-based soil moisture products. However, for all com-
pared soil moisture products, the θmax and θmin were 1 and 0
respectively, which led to almost similar values of Se and θ .

The tested hydrological conditions therefore include the
near-surface soil moisture Setop, representing the soil mois-
ture of the upper 5 cm of soil, provided by the satellite tech-
niques (VdS), the Seroot representing the root zone soil mois-
ture of the upper 50 cm, acquired through a modelling ap-
proach (Wflow_sbm), and Seuz representing the soil mois-
ture estimates from the upper 2 m of soil, obtained through
a modelling approach (Wflow_sbm). To assess the contribu-
tion of the pre-wetting state of the soil prior to the landslide-
triggering conditions, we have considered the antecedent
soil moisture, i.e. recorded or modelled prior to the start
of the triggering meteorological conditions. The antecedent
soil moisture referred to the time interval before the start
of each of the defined categories of the meteorological trig-
gering conditions. We have therefore used the Setop(t−x),
Seroot(t−x) and Seuz(t−x) with t (date) and x (days) express-
ing the end time and the duration of the triggering conditions
respectively. However, due to the changes in the durations
of the MPREs, x was hypothetically represented by a value
of 1 standing for one entire MPRE, while values of 1, 2 and
3 represent the duration (days) of the triggering RDx con-
ditions. A binary classification of the defined hydrological
and meteorological conditions was undertaken to classify the
landslide and no-landslide conditions. The meteorological or
hydrological conditions are referred to as landslide condi-
tions, i.e. a positive class when at least one landslide occurs
during its course or after its end, while they are referred to as
no-landslide conditions, i.e. a negative class, when no land-
slides occurred during its course or after its end.

3.4.2 Discriminatory power of the landslide test
variables and optimum thresholds for landslide
initiation

The landslide test variables which include the predispos-
ing hydrological conditions Setop(t−1), Setop(t−2), Setop(t−3),
Seroot(t−1), Seroot(t−2), Seroot(t−3), Seuz(t−1), Seuz(t−2) and
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Seuz(t−3) as well as the triggering meteorological condi-
tionsE,D,E/D,RD1 ,RD2 andRD3 were tested for their rel-
evance to landslide occurrence. We used receiver operating
characteristic (ROC) and area under the curve (AUC) metrics
to evaluate the discriminatory power of each of the landslide
test variables. The ROC curve is defined as a graphical plot
indicating the performance of the test variable at all thresh-
old levels by providing the trade-off between the true positive
rate (TPR) and false positive rate (FPR) at each level. The
AUC is a statistical metric that indicates the discriminatory
power of the test variable, i.e. the capacity of the test vari-
able to correctly distinguish positive from negative classes,
i.e. landslide from no-landslide conditions. It also compares
the test variable to a random guess (AUC= 0.5) and thereby
indicates the statistical significance where the perfect test
variable would have an AUC equal to unity. The rates of cor-
rectly (TPR) and incorrectly predicted (FPR) landslides cor-
responding to each cut-off on the ROC curves are computed
using Eqs. (8) and (9):

TPR=
TP

TP+FN
, (8)

FPR=
FP

FP+TN
. (9)

The rate of unpredicted landslides (FNRs, false negative
rates) and the rate of correct predictions of no land-
slides (TNRs, true negative rates) are computed using
Eqs. (10) and (11):

FNR=
FN

FN+TP
, (10)

TNR=
TN

TN+FP
, (11)

where TPs are true positives or true alarms, i.e. outcomes
with correctly predicted landslides, FNs are false negatives
or missed alarms, i.e. the number of landslides that occurred
in reality but were not predicted, FPs are false positives or
false alarms, i.e. predictions of landslide occurrence, while
in reality there was no landslide reported, and TNs are true
negatives, i.e. correct predictions of no-landslide occurrence.

Since the ROC curve only indicates all possible thresholds
and their relative balance between TPRs and FPRs, one is
free to choose the optimum threshold depending on whether
to maximise the TPR or minimise the FPR. However, ac-
cording to Postance and Hillier (2017), the optimum thresh-
old is the one that maximises the TPR while minimising the
FPR. Therefore, that optimum threshold levels above which
landslides are highly likely to occur have been defined us-
ing two statistical metrics, i.e. the maximum true skill statis-
tic (TSS) and the minimum radial distance (Rad). The TSS
is expressed as a balance between the TPR and FPR as indi-
cated in Eq. (12):

TSS= TPR−FPR, (12)

where the maximum value of TSS indicates the optimum
threshold that maximises the TPR while minimising the FPR.
For a perfect threshold, the TSS reaches a unity indicating
a zero FPR. The Rad shows the relative distance from the
defined threshold level on the curve to the perfect model or
point whose TPR is a unit and zero FPR and is computed
with Eq. (13):

Rad=
√
(FPR)2+ (TPR− 1)2. (13)

3.4.3 Landslide hydro-meteorological thresholds and
warning capabilities

The optimum thresholds defined based on the maximum TSS
and/or minimum Rad were plotted in a 1D threshold space,
here referred to as the single-variable threshold line, beyond
which the probability of landslides is high. We also fol-
lowed the cause–trigger concept (Bogaard and Greco, 2018)
that reflects the hydro-meteorological thresholds and hypo-
thetically plotted the optimum thresholds of the landslide-
predisposing hydrological variables, i.e. the antecedent soil
moisture on the x axis and the meteorological triggering vari-
ables on the y axis of a 2D space, here referred to as bilinear
thresholds. The bilinear threshold models made of hydrolog-
ical and meteorological variables are plotted in x, y pairs,
i.e. antecedent soil moisture versus E/D or RDX . Further-
more, the bilinear threshold from a traditional landslide pre-
diction model event–durationE−D (Peruccacci et al., 2017),
which exclusively relies on precipitation, has also been de-
fined to serve as a benchmark for comparative performance
evaluation.

4 Results and discussion

4.1 Performance of satellite precipitation products

The suitability of satellite precipitation products in the study
region was assessed using three statistical indicators as sum-
marised in Table 2 and Table 3 and illustrated in Fig. 4.
From the statistical measures of fits (RMSE, CC, RB), it is
generally observed that IMERG is consistently more suit-
able, while ERA5 was found to be the least suitable prod-
uct as compared to other satellite precipitation products. The
evaluation based on frequency indicators is summarised in
Table 3. These indicators give an overview of whether a
given satellite product would overestimate or underestimate
the observed gauge precipitation based on the predefined
threshold indices. The Integrated Multi-Satellite Retrievals
for Global Precipitation Measurement (GPM_IMERG) dis-
plays the highest skill in estimating all ranges of rainfall
from heavy to extremely heavy rainy days as recorded by
the on-site gauges. CHIRPS and TRMM 3B42 v7 provide
good estimates of precipitation, with a quite similar num-
ber of rainy days (RD0 = 1256 d) to gauge-based rainfall
(RD0 = 1259 d). However, these satellites drastically under-

Nat. Hazards Earth Syst. Sci., 22, 3641–3661, 2022 https://doi.org/10.5194/nhess-22-3641-2022



J. Uwihirwe et al.: Potential of satellite-derived hydro-meteorological information 3649

estimate the number of heavy to extremely heavy rainfall
(RD20 , RD30 and RD50 ). For example, TRMM and CHIRPS
estimated RD20 = 87 and 101 d respectively out of 132 d es-
timated by rain gauges (Table 3).

The suitability of satellite products was also assessed using
an intensity comparison indicated by the density of the scat-
ter points around the 1 : 1 line as shown in Fig. 4. The scatter
plots compare 30 d cumulative rainfall from satellite precip-
itation products versus rain gauges. The scatter plots reveal
that GLDAS, CFSv2 and ERA5 tend to overestimate rain-
fall, while underestimations are noticed from PERSIANN
CDR as compared to the in situ gauge rainfall. Based on the
closeness of the scatter points to the 1 : 1 line, CHIRPS and
IMERG exhibit a higher resemblance to gauge data (Pear-
son correlation R = 0.67 and 0.60 respectively) than other
satellite products and could thus be used as alternatives to
gauge-based precipitation. Overall, IMERG shows rainfall
patterns that are most consistent with available gauge obser-
vations in Rwanda despite the overestimation of the num-
ber of rainy days with less than 10 mm (RD0 ). According to
Kimani et al. (2017), the overestimation of rainfall in areas
with elevation> 2500 m and underestimation in areas with
elevation< 2500 m were observed before and are attributed
to satellite-inherent challenges to retrieve orographic rainfall.
To overcome this constraint, 10 mm d−1 has been considered
a threshold to define a satellite-based rainy day and thus is
relevant for landslide hazard assessment in Rwandan con-
ditions. Other researchers in the region also found CHIRPS
and TRMM to be comparable to gauge-based precipitation in
eastern Africa (Kimani et al., 2017; Monsieurs et al., 2018a).
Monsieurs et al. (2018a) found the areal-averaged TMPA
rainfall estimates, the predecessor of IMERG, to be more
suitable for assessing landslide hazard thresholds than the
sparsely distributed gauge data with limited representative-
ness in the context of high rainfall variability of the East
African Rift.

4.2 Prospective of satellite- and model-derived
information in landslide hazard assessment

4.2.1 Mean soil moisture response to rainfall and
landslide events

Figure 5 shows the GPM-based IMERG precipitation spa-
tially averaged over all landslide precipitation footprints and
over the modelled catchments. It also shows the temporal dy-
namic of the satellite-derived soil moisture Setop spatially av-
eraged over all landslide ROIs and the modelled soil moisture
at the root zone top 50 cm Seroot and top 2 m Seuz. The in situ
soil moisture from AWSs is also rescaled (on the secondary
axis) to be compared with modelled and satellite-derived soil
moisture. Regardless of the difference in measuring depth
(5 cm, 50 cm and 2 m), the time response to precipitation and
overestimation of soil moisture, the satellite Setop and model-
derived soil moisture time series Seroot and Seuz broadly re-

produce the most important temporal variation as recorded
by in situ soil moisture sensors (Figs. 5 and A1). This in-
dicates their usefulness for landslide hazard assessment as
an alternative to the sparse in situ AWSs. The spatial av-
eraging of soil moisture across all ROIs was undertaken to
have an insight into the critical ranges of soil moisture that
induce landslides in Rwandan climate conditions. The spa-
tially averaged Setop, Seroot and Seuz soil moisture dynamics
and the linked landslide occurrence are presented in Fig. 5.
The average Setop, Seroot and Seuz of all ROIs indicate gen-
eral similarities in terms of landslide predisposition but also
reveal systematic differences between response times influ-
enced by the soil moisture recording depth. For example, it
is obvious that the Setop (5 cm) responds faster than Seroot
(50 cm) and Seuz (2 m). It is clear that the majority of land-
slides occur when the soil moisture levels positively deviate
(by about 0.1) from the long-term mean up to a critical level
for landslide initiation. It is also evident that the critical level
for landslide occurrence is more or less fixed when other ge-
ological and geomorphological condition are kept constant,
and it is reached more or less easily depending on the prior
rainfall expressed in terms of antecedent soil moisture and
the time lag between the landslide-triggering rainfall and the
soil hydrological response.

4.2.2 Single-variable landslide meteorological and
hydrological thresholds and prediction
capabilities

Figure 6 and Table 4 show the derived landslide meteorolog-
ical and hydrological thresholds and their predictive capa-
bilities in terms of TPR and FPR. The discriminatory power
of each of the tested variables was evaluated with a ROC
curve and the AUC statistical metrics as shown in Fig. 6.
Among the tested landslide-triggering meteorological vari-
ables E, D, E/D, RD1 , RD2 and RD3 , the cumulative 3 d
rainfall RD3 and event rainfall volume E showed the highest
discriminatory power, with AUC∼ 0.71, and hence the high-
est impact on landslide initiation. However, the event rainfall
mean intensity E/D indicated a low ability (AUC∼ 0.53)
to distinguish landslides from no landslides. This stresses
the importance of using the recent cumulative rainfall with a
fixed duration, thus highlighting the highest impact ofRD3 on
the landslide initiation process and its relevance for landslide
hazard assessment and prediction compared to E that needs
to be normalised. In contrast to the gauge-based cumulative
rainfall thresholds (Uwihirwe et al., 2020), the satellite-based
cumulative rainfall on the day of landslide RD1 was not im-
pactful on landslide initiation (AUC= 0.35–0.38). This may
be due to the inaccuracies between the landslide occurrence
and the reporting time and additionally also due to the satel-
lite revisiting time and/or period, which may introduce inac-
curacies in timing.

Figure 6c and d indicate that the wetness state of soil
prior to the cumulative rainfall RDx have the most signif-
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Figure 4. Intensity comparison between satellite-based and gauge-based precipitation based on the cumulative 30 d rainfall.

Table 2. Performance of satellite precipitation products based on statistical metrics.

Metrics TRMM CHIRPS PERSIANN GLDAS CFSv2 IMERG ERA
3B42 v7 CDR 2.1 5

RMSE (mm) 8.17 8.53 7.42 8.55 10.58 8.18 12.60
CC (–) 0.31 0.27 0.25 0.24 0.17 0.35 0.22
RB (–) −0.08 −0.01 −0.15 0.03 0.11 0.02 0.29

Table 3. Performance of satellite precipitation products based on rainfall frequency indicators.

Indices Description Gauge TRMM CHIRPS PERSIANN GLDAS CFSv2 IMERG ERA
3B42 v7 CDR 2.1 5

RD0 Rainy days> 0 mm 1259 1691 1256 2732 3086 2835 2842 3520
RD10 Heavy rainy days> 10 mm 397 307 424 138 377 617 383 879
RD20 Very heavy rainy days> 20 mm 132 87 101 9 79 199 126 250
RD30 Even heavier rainfall days> 30 mm 49 29 25 0 22 84 42 78
RD50 Extremely heavy rainfall> 50 mm 9 4 3 0 2 22 6 21

icant impact on landslide occurrence as indicated by their
AUC= 0.72–0.76. Contrarily, Fig. 6a and b show that the
wetness state of the soil prior to the landslide-triggering
event E has no significant impact on landslide occurrence
(AUC= 0.66–0.67). This is to say that the antecedent soil
moisture conditions prior to the longer triggering rainfall
event E are not relevant for landslide initiation in the study
area conditions. Among other factors, the duration of the trig-
gering condition plays a major role in determining the rel-
evance of the antecedent soil moisture for landslide occur-
rence. The shorter the duration of the triggering conditions,
the higher the relevance of the antecedent soil moisture for
landslide initiation. Highly permeable soils are less sensitive

to antecedent soil moisture conditions because of the high
gravity-driven drainage and/or deep percolation. With a trop-
ical climate, evaporation process may also rapidly take away
the antecedent soil moisture content of the topsoil due to
the longer timescale of the minimum IET and the landslide-
triggering event E.

The threshold definition metrics, TSS and Rad, resulted in
quite comparable landslide thresholds as summarised in Ta-
ble 4. It was noticed that the defined satellite precipitation
thresholds are similar to the ones defined using gauge-based
precipitation. For example, the optimum landslide thresh-
old event rainfall volume E defined from satellite precip-
itation varied between 44.7 and 60.7 mm (Table 4), while
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Figure 5. Satellite- and model-derived information and landslide activities: (a) GPM-based IMERG precipitation (mm) spatially averaged
over all landslide precipitation footprints; (b) satellite-derived soil moisture Setop (–) spatially averaged over all landslide ROIs and in situ soil
moisture AWSs (–) on the secondary y axis; (c) GPM-based IMERG precipitation (mm) spatially averaged over the landslide precipitation
footprints located in the modelled catchments; (d) modelled soil moisture at the root zone top 50 cm Seroot (–), modelled soil moisture top
2 m Seuz (–) and in situ soil moisture AWS (–) on the secondary y axis. The dashed horizontal lines represent the long-term mean soil
moisture and the red triangles stand for the landslide events.
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Table 4. Event-based variable thresholds and prediction capabilities.

Variables Maximum true skill statistic (TSS) Minimum radial distance (Rad)

Threshold TPR FPR TSS Rad Threshold TPR FPR TSS Rad

Event E (mm)a 53.1 0.54 0.21 0.33 0.51 44.9 0.60 0.27 0.33 0.49
Duration D (d)b 2.5 0.56 0.27 0.29 0.52 1.5 0.72 0.43 0.29 0.51
Event/duration E/D (mm d−1)c 16.1 0.64 0.54 0.10 0.65 17.3 0.56 0.47 0.09 0.65
Setop(t−1) 0.56 0.72 0.44 0.28 0.52 0.57 0.68 0.41 0.27 0.52
Event E (mm)d 60.7 0.53 0.17 0.36 0.50 60.7 0.53 0.17 0.36 0.50
Duration D (d)e 2.5 0.59 0.28 0.32 0.49 2.5 0.59 0.28 0.32 0.49
Event/duration E/D (mm d−1)f 16.1 0.69 0.54 0.15 0.62 17.5 0.59 0.46 0.14 0.61
Seroot(t−1) 0.56 0.72 0.44 0.28 0.52 0.56 0.72 0.44 0.28 0.52
Seuz(t−1) 0.91 0.53 0.22 0.31 0.52 0.87 0.63 0.34 0.28 0.51

a, b, c Cumulated event rainfall, event duration and mean rainfall intensity defined from all landslide representative precipitation footprints. d, e, f Cumulated event
rainfall, event duration and the mean event intensity defined using precipitation footprints located in the modelled catchments (Kivu, upper Nyabarongo and Mukungwa).

gauge-based threshold E varied from 46 to 67 mm (Uwi-
hirwe et al., 2022). Similarly but with a quite minor dif-
ferences, the defined satellite-based E−D thresholds 16–
17.5 mm d−1 seemed quite similar to gauge-based thresh-
olds of ∼ 7–13 mm d−1 found in Uwihirwe et al. (2020,
2022). Nevertheless, the single-variable threshold E/D, be-
ing the most informative, showed quite low prediction capa-
bility in terms of TPR∼ 56 %–60 %, with an elevated rate
of false positive FPR∼ 43 %–54 %, i.e. incorrect predic-
tions of landslide, thus being less effective for a robust early
warning system development. In contrast, the single-variable
thresholds defined from the cumulative 3 d rainfall RD3 out-
perform other tested triggering conditions with highest pre-
diction capability in terms of true positive rate TPR= 79 %–
81 %. The same holds for the soil moisture in the root zone
(50 cm deep) Seroot that consistently showed the highest per-
formance. Nevertheless, despite the high true positive rate
from these single-variable thresholds, the resulting elevated
rate of false positives FPR= 36 %–42 % still constrains their
use for the development of a robust landslide early warning
system. It has to be noted that the threshold defined from
the antecedent soil moisture specifies the critical levels below
which the impact of pre-wetting state of the soil is considered
unimportant for landslide occurrence. By contrast, once these
thresholds are exceeded, the pre-wetting state of the soil has a
significant impact on landslide occurrence and has to be con-
sidered while defining the landslide hydro-meteorological
threshold models.

4.2.3 Landslide hydro-meteorological thresholds and
implications for warning

With respect to the high rate of false positives resulting from
the single-variable thresholds, we have tested whether the
incorporation of antecedent soil moisture information into
the rainfall-triggering conditions improves the landslide pre-
diction capability. The optimum single-variable hydrological
and meteorological thresholds have therefore been combined

into hydro-meteorological thresholds following the cause–
trigger concept in a bilinear framework as shown in Figs. 7
and 8. Figure 7 illustrates the first category of landslide
hydro-meteorological thresholds defined based on the maxi-
mum possible rainfall event E combined with different vari-
ables of antecedent soil moisture. The derived thresholds re-
sulted in a quite elevated rate of FPRs once used as single-
variable thresholds (single lines).

In contrast to the classical precipitation thresholds, the
combination of hydro-meteorological thresholds in a bilin-
ear framework provides an improvement in terms of reduced
rate of false alarms by about 30 % (Setop(t−1)−E/D), 13 %
(Seroot(t−1)−E/D), and 35 % (Seuz(t−1)−E/D) respectively
as compared to the ones obtained from the exclusive use of
single-variable precipitation-based E/D thresholds. The in-
tention of adopting the bilinear hydro-meteorological thresh-
old in spite of precipitation thresholds is to minimise the
rate of incorrect prediction of landslides FPR while improv-
ing or at least keeping unchanged the TPR. This was only
achieved by using the bilinear hydro-meteorological thresh-
olds defined using antecedent soil moisture at the root zone
(Seroot(t−1)−E/D) that performs better (TPR= 66 %) than
the traditional precipitation threshold E–D (TPR= 50 %).
However, this category still suffers from the low landslide
warning capability (maximum TPR= 66 %) and is thus not
satisfactory for a robust early warning system development.
The lower performance was attributed to the timescale of the
triggering events. Apparently, the effect of the antecedent soil
moisture lasts for a limited period of time and subsequently
decays towards zero and below.

The IET and the timescale of the rainfall events E are
not constant and vary in duration. They can be too long,
thus implying the decay of the antecedent soil moisture and
thus a negligible contribution to landslide initiation. Con-
sequently, the incorporation of the wetness state of the soil
prior to the landslide-triggering events E did not lead to a
significant improvement in the landslide prediction in Rwan-
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Figure 6. Receiver operating characteristic (ROC) curves, area under the curves (AUC) and optimum landslide thresholds defined by the true
skill statistic TSS (square-shaped marker) and radial distance Rad (cycle-shaped marker) using (a) event rainfall and Setop from all ROIs,
(b) event rainfall, Seroot and Seuz from ROIs located in the Wflow model catchment, (c) cumulative 1, 2 and 3 d rainfall (RDx ) and Setop
from all ROIs and (d) cumulative 1, 2 and 3 d rainfall (RDx ), Seroot and Seuz from ROIs located in the Wflow model catchment.

dan conditions. We therefore explored other landslide hydro-
meteorological thresholds that use the triggering meteorolog-
ical conditions with short and constant timescales as shown
in Fig. 8. These consider the cumulative 1, 2 and 3 d rainfall
RD1 , RD2 , and RD3 while extending the timescale of the pre-
disposing conditions up to 1, 2 or 3 d prior to the landslide-
triggering conditions. Figure 8 portrays the optimum bilin-
ear hydro-meteorological threshold models defined from this
second category. The 3 d cumulative rainfall RD3 was the
most impactful trigger of landslides, with an optimum thresh-
old of∼ 15.05 mm every 3 d as defined by both TSS and Rad,
and resulted in 79 %–81 % of TPR (Table 5), much higher
than predicted by the first category. Similarly, the antecedent
soil moisture threshold Seroot(t−3) was able to predict∼ 84 %
of landslides. However, this true prediction, i.e true alarms,

is also associated with a high rate of false alarms of ∼ 40 %–
42 %. The combination into hydro-meteorological thresh-
olds (Seroot(t−3)−RD3 ) decreased the rate of false alarms to
∼ 22 %, with about 72 % of true alarms (Fig. 8b), thus being
more satisfactory than other hydro-meteorological threshold
models and much better than the traditional E–D model
(TPR∼ 50 %) that exclusively relies on precipitation.

4.2.4 Prospective of the satellite-based
hydro-meteorological thresholds, advances and
limitations

This study reveals the high capability of the NASA GPM-
based IMERG product to reproduce rainfall patterns which
are consistent with the gauge-based precipitation and thus
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Figure 7. Landslide hydro-meteorological thresholds and prediction capabilities: (a) event intensity antecedent 5 cm topsoil moisture thresh-
olds (Setop,t−1 > 0.56 and E/D > 16.1 mm d−1), (b) E−D thresholds (D > 2.5 d and E > 44.9 mm) defined using precipitation footprints
from all landslide locations; (c) event intensity antecedent 50 cm topsoil moisture threshold (Seroot(t−1) > 0.56 and E/D > 16.1 mm);
(d) event intensity antecedent 2 m topsoil moisture threshold (Seroot(t−1) > 0.84 and E/D > 16.1 mm d−1); (e) E−D thresholds (E >
60.7 mm and D > 2.5 d) defined using precipitation footprints and landslides located in Wflow-modelled catchments; (f) bilinear threshold
values and prediction capabilities.

Table 5. Cumulative rainfall-based variable thresholds and prediction capabilities.

Variables Maximum TSS Minimum Rad

Threshold TPR FPR FNR TNR TSS Rad Threshold TPR FPR TSS Rad

RD1 (mm d−1)a 10.90 0.35 0.16 0.65 0.84 0.19 0.67 10.90 0.35 0.16 0.19 0.67
RD2 (mm d−2)b 14.70 0.50 0.20 0.50 0.80 0.30 0.54 10.90 0.54 0.27 0.27 0.53
RD3 (mm)c 15.05 0.79 0.40 0.21 0.60 0.39 0.45 15.05 0.79 0.40 0.39 0.45
Setop(t−1) 0.53 0.85 0.43 0.15 0.57 0.41 0.46 0.56 0.77 0.37 0.40 0.44
Setop(t−2) 0.57 0.75 0.35 0.25 0.65 0.40 0.43 0.57 0.75 0.35 0.40 0.43
Setop(t−3) 0.56 0.75 0.38 0.25 0.62 0.37 0.50 0.56 0.75 0.38 0.37 0.50
RD1 (mm d−1)d 10.90 0.38 0.16 0.62 0.84 0.21 0.64 10.90 0.38 0.16 0.21 0.64
RD2 (mm d−2)e 14.70 0.59 0.21 0.41 0.79 0.38 0.45 10.90 0.67 0.28 0.38 0.44
RD3 (mm)f 15.05 0.81 0.42 0.19 0.58 0.40 0.46 35.70 0.63 0.25 0.38 0.45
Seroot(t−1) 0.75 0.81 0.38 0.19 0.62 0.43 0.43 0.75 0.81 0.38 0.43 0.43
Seroot(t−2) 0.76 0.84 0.36 0.16 0.64 0.49 0.39 0.76 0.84 0.36 0.49 0.39
Seroot(t−3) 0.72 0.84 0.41 0.16 0.59 0.43 0.44 0.79 0.72 0.30 0.42 0.41
SeUZ(t−1) 0.90 0.66 0.23 0.34 0.77 0.43 0.41 0.90 0.66 0.23 0.43 0.41
SeUZ(t−2) 0.89 0.63 0.25 0.37 0.75 0.38 0.45 0.89 0.63 0.25 0.38 0.45
SeUZ(t−3) 0.92 0.56 0.18 0.44 0.82 0.38 0.47 0.89 0.63 0.24 0.38 0.45

a, b, c Cumulative 1, 2 and 3 d rainfall defined from all landslide-representative precipitation footprints. d, e, f Cumulative 1, 2 and 3 d rainfall volume defined using
precipitation footprints located in the model catchments (Kivu, upper Nyabarongo and Mukungwa).
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Figure 8. Landslide hydro-meteorological thresholds and prediction capabilities: (a) cumulative 3 d rainfall RD3 and antecedent 5 cm topsoil
moisture thresholds Setop(t−1) (Setop(t−3) > 0.73 and RD3 > 15 mm d−3) defined using precipitation footprints from all landslide locations;
(b) cumulative 3 d rainfall RD3 and antecedent soil moisture of the root zone Seroot(t−3) (Seroot(t−3) > 0.73 and RD3 > 15 mm d−3); (c) cu-
mulative 3 d rainfall RD3 and antecedent soil moisture of the top 2 m Seuz(t−3) (Seuz(t−3) > 0.89 and RD3 > 15 mm d−3) defined from the
Wflow model catchment; (d) bilinear hydro-meteorological threshold values and prediction capabilities.

more suitable for landslide hazard assessment thresholds
than sparsely distributed rain gauges in Rwanda. However,
this research also points out that the IMERG satellite-based
product overestimates the number of rainy days whose daily
rainfall is between 0 and 10 mm, and thus the mean annual to-
tals. This may lead not only to differences between satellite-
and gauge-based landslide thresholds defined under the same
locations, but also to the statistical bias, especially when
probabilistic methods are used for landslide threshold defi-
nition. To address this constraint and to be able to exploit the
usefulness of IMERG precipitation in landslide hazard as-
sessment thresholds, we objectively used 10 mm as a thresh-
old to define a rainy day for IMERG precipitation data. This
threshold was defined based on the frequency indicator met-
ric adopted as one of the techniques of bias evaluation be-
tween ground and satellite-based rainfall. For gauge-based
rainfall, 2 mm is generally considered a threshold to define a
rainy day and has been defined based on the mean daily po-
tential evaporation (Marino et al., 2020; Peres et al., 2018).

Although the threshold definition of a rainy day (10 mm)
may have led to the omission of some rainfall information,
thus shortening the event durationD, this approach improved
the similarities between the satellite-based and gauge-based
landslide hazard assessment thresholds and is thus used as
a bias correction between the two sources of rainfall data.
Similarly, other bias correction methods have been adopted
by other researchers to ensure for the high accuracy between

ground- and satellite-based rainfall data (Bhatti et al., 2016;
Vernimmen et al., 2012). However, the defined satellite-
based event/duration E/D thresholds 16–17.5 mm d−1 were
quite higher than previously defined gauge-based thresholds
∼ 7–13 mm d−1. Contrarily the defined thresholds from the
recent cumulative 2 and 3 d rainfall were much smaller than
defined from gauge-based data (Uwihirwe et al., 2020, 2022).
These differences are probably due to the predefined thresh-
old (10 mm) that could omit some rainy days. This also led
to a shortened event duration D and hence a slightly higher
E/D. Nevertheless, the landslide-triggering conditions de-
fined based on theE/D reveals poor discriminatory power to
distinguish landslides from no landslides (AUC∼ 0.53) and
thus is not impactful on landslide initiation. The linked land-
slide thresholds also underperform in terms of landslide pre-
diction capabilities measured by the resulting low rate of true
positives TPR∼ 56 %–69 %. Similarly, the landslide hydro-
meteorological thresholds that included the rainfall event
E/D as a trigger resulted in a poor landslide warning per-
formance, TPR max∼ 66 %.

It is agreed that the consequences of offering FPRs are
less harmful in the short term than missed alarms (FNRs),
which implies that the best threshold should maximise the
TPRs while minimising the FNRs. However, the thresholds
in Fig. 7b and e are classical thresholds E–D relying exclu-
sively on rainfall (trigger), leading to the high rate of missed
alarms, and are thus less important for a robust LEWS devel-
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opment. Similar to this study, previous studies (Bogaard and
Greco, 2018; Marino et al., 2020; Mirus et al., 2018; Peres
et al., 2018; Thomas et al., 2019; Uwihirwe et al., 2022) in-
dicated that the consideration of the prior subsurface hydro-
logical conditions reduce the number of FNRs as well as the
number of FPRs relative to the exclusive use of rainfall-only
thresholds. In Fig. 8a–c, we integrated the hydrological in-
formation (i.e. antecedent soil moisture) in landslide thresh-
olds to improve the rate of TPR and reduce the rate of FNRs
and FPRs. The main goal of hydro-meteorological thresholds
(cause–trigger) is to maximise the TPRs, i.e. minimise the
FNRs, but at the same time reduce the FPRs. The used statis-
tical metrics (TSS and Rad) are also in line with this concept
aiming at maximising the TPR while minimising the FPR.
Once TPR is maximised, the FNR is also minimised, though
it is difficult and/or impossible to have a perfect threshold
model with zero FNR and FPR.

The poor performance of the rainfall event-based thresh-
olds concept is due to uncertainties from multiple sources.
We hypothetically used the rainfall events as landslide-
triggering conditions, defined as individual periods of contin-
uous rain interrupted by at least two dry day periods referred
to as the minimum IET. Nevertheless, this definition needs
further exploration to be standardised to avoid uncertainties.
According to Adams et al. (1987) and Hong et al. (2017),
the IET is defined as the minimum period of time that sep-
arates two consecutive rainfall events and is considered the
period for which the effects of the antecedent soil moisture
or precipitation index may last. This is to say that the an-
tecedent soil moisture and/or antecedent precipitation index
have no significant effect on landslide initiations once the
rainfall events and IETs are well defined. However, the IET,
the period during which the effect of antecedent soil moisture
becomes null, depends on a number of site-specific factors
(soil properties, land use/land cover, potential evaporation,
etc.) and is thus difficult to be standardised. Another draw-
back associated with the use of rainfall event concept may be
linked to the transient timescales of the triggering events that
bring about difficulties to fix the appropriate time to give an
alert or an early landslide warning to the threatened commu-
nity.

Looking at the constraints associated with IET, rainy day
and rainfall event definitions, we explored the shorter-scaled
triggering rainfall conditions that include the cumulated rain-
fall with constant durations of 1, 2 and 3 d (RD1 , RD2 ,
RD3 ). The cumulative 3 d rainfall RD3 showed the highest
impact on landslide initiation AUC∼ 0.72 and true posi-
tive alarms TPR∼ 79 %–81 %. Although the meteorologi-
cal trigger-based thresholds RD3 have resulted in high rates
of true alarms, they lack concrete physical significance and
are also challenging for a robust landslide early warning
system due to the linked high level of erroneous alarms,
i.e. false positives FPR∼ 40 %–42 %. To account for the pre-
wetting state of the soil, the antecedent soil moisture condi-
tions have been considered. These antecedent soil moisture

conditions from the top 5 cm, 50 cm and 2 m, Setop, Seroot
and Seuz respectively, showed a significant impact on land-
slide predisposal AUC= 0.71–0.76. Moreover, with the ex-
ception of the Seuz, the hydrological landslide thresholds
0.56 (Setop) and 0.73 (Seroot) defined from these soil mois-
ture conditions revealed a high landslide warning capabil-
ity with TPR∼ 75 %–85 %. These hydrological thresholds
indicate the critical pre-wetting state above which any ad-
ditional amount of rainfall> 11–15 mm is highly likely to
trigger landslides. We therefore combined both landslide hy-
drological predisposing and meteorological triggering con-
ditions following the cause–trigger concept into a bilinear
hydro-meteorological threshold framework. This approach
improved the landslide prediction capabilities in terms of re-
duced rates of false alarms (FPR∼ 22 %) and increased true
alarms (TPR∼ 72 %) as compared to the approaches that
consider the maximum probable rainfall event (maximum
TPR∼ 66 % and FPR∼ 41 %). In other words, once com-
bined with the pre-wetting hydrological conditions, the cu-
mulative few days of rainfall have a significant impact on
landslide initiation and warning as compared to the longer
and not constant triggering conditions. Furthermore, the in-
corporation of the antecedent wetness state of the terrain not
only improved the landslide warning capabilities, but also
provided accurate insights into landslide alert times as com-
pared to the use of a transient timescale associated with the
rainfall event concept.

Among the tested pre-wetting conditions, the incorpora-
tion of the antecedent soil moisture modelled at the root zone
Seroot was the most impactful for landslide initiation and thus
was the most useful in landslide hazard assessment thresh-
olds in Rwanda. The finer spatial resolution of the hydrolog-
ical model-derived soil moisture together with the considera-
tion of the specific climate and hydrogeological characteris-
tics of the model catchments could be a possible explanation
for the positive impact of soil moisture assimilated at the root
zone. This could also be explained by the lower exposure
of the root zone to the solar heat and evaporation processes
as compared to the near-surface Setop. The probable lower
proneness to the gravity-driven drainage and deep percola-
tion due to the soil texture, vegetation and organic matter at
the root zone could also be an explanation. Moreover, the
soil depth involved in shallow (0.5–2 m) and deep landslides
(> 2 m) (Greco et al., 2018) is much thicker than the Setop
(5 cm) currently measured by the satellite-based soil mois-
ture technologies, and this is more captured by the hydrologi-
cal modelling approaches (Wflow). An overestimation of soil
moisture by satellites (VdS) and the distributed hydrological
model (Wflow) was also noted and attributed to the similar
overestimation of satellite-based precipitation, an important
element in soil moisture estimation. Therefore, more reliable
algorithms that address the reliance between the satellite and
in situ based information could improve the performance and
enhance the data accuracy needed for landslide hazard as-
sessment.
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The adopted bilinear threshold framework, indicating the
distribution of data points in a 2D space, reflects the rela-
tionship between the landslide causal and triggering condi-
tions despite other linked constraints and limitations (Con-
rad et al., 2021). We objectively used the bilinear thresh-
old framework because the majority of positive classes were
clustered in the upper-right corner of the 2D threshold
space. Although this format proved to be suitable for land-
slide hydro-meteorological threshold definition (Mirus et al.,
2018; Thomas et al., 2019; Uwihirwe et al., 2020, 2022),
other formats could also be useful, depending on the distri-
bution of the positive classes in the 2D space. The adopted
bilinear framework is in line with the goal of the hydro-
meteorological cause–trigger-based threshold concept that
prioritises the minimisation of false alarms while at least
keeping unchanged the rate of true alarms. Additionally, in
some cases, single-variable thresholds lead to high predic-
tion capabilities in terms of elevated rates of true alarms and
with quite low rates of false alarms and could be adopted es-
pecially for hydrologically based thresholds that consider the
long-term wetting process of the soil until the landslide day.

Regardless of the good performance of soil moisture as
a landslide hydro-meteorological threshold, the incorpora-
tion of the pre-wetting state of soil into landslide hazard as-
sessment thresholds using groundwater levels, h(t−1)−E/D

(TPR= 54 %–64 % and FPR= 6 %–11 %) (Uwihirwe et al.,
2022), with low rates of false alarms, performed higher than
using root zone soil moisture Seroot(t−1)−E/D (TPR= 66 %
and FPR= 44 %) due to the elevated rate of false alarms.

Ideally, one would have a landslide inventory of about
200 landslide events in order to have a precise estimation
of threshold parameters (Peres and Cancelliere, 2021). How-
ever, the landslide inventory used for this study accounts for
only 32 hazardous landslides. Although the reliance on this
limited sample size is likely to lead to a bias towards the
larger landslide events and those with impacts on society, this
landslide inventory is the most comprehensive one currently
available in the study area.

5 Conclusion

This research aimed to evaluate the potential of satellite-
based measurements of precipitation and soil moisture as
well as hydrological model-derived soil moisture informa-
tion for landslide initiation thresholds in Rwanda. The GPM-
based IMERG rainfall product was found to be a good spa-
tially distributed source of rainfall data for landslide haz-
ard assessment, especially in data-scarce areas like Rwanda.
The satellite- and model-derived soil moisture time series
broadly reproduce the most important trends of the in situ soil
moisture. Regardless of different depths of data records and
slight overestimation of soil moisture by satellite- and model-
derived techniques, it was concluded that they follow the in
situ observed temporal variation and are thus potentially use-
ful for landslide initiation threshold definition. The purpose
of incorporating the antecedent soil moisture into landslide
hazard assessment was to account for the physical effect of
the pre-wetness state of soil, responsible for the predisposal
of the slopes to near failure, prior to the landslide-triggering
conditions. Two categories of landslide-triggering conditions
have been considered to assess the potential value of includ-
ing the antecedent soil moisture information. The category
that considers the cumulative 3 d rainfall was the most im-
pactful and thus was more useful for landslide hazard assess-
ment in Rwanda rather than the rainfall-event-based trigger.
Although the area under the curve (AUC= 0.71–0.76) sta-
tistical metric indicated the significant impact of all tested
antecedent soil moisture variables prior to the triggering con-
ditions, the antecedent soil moisture modelled from the root
zone Seroot performed best. The classical thresholdsE–D re-
lying exclusively on rainfall (trigger) performed lower, with a
high rate of missed alarms (50 %), and thus were less impor-
tant for robust early warning system development. In con-
trast, the hydro-meteorological thresholds that incorporate
the antecedent soil moisture Seroot and the recent 3 d cumula-
tive rainfall RD3 (Seroot(t−3)−RD3 ) outperform other thresh-
old models, with high rates of true alarms (72 %) and low
rates of false alarms (20 %), and thus can be very useful for
landslide early warning system development in Rwanda.
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Appendix A

Figure A1. Selected examples of satellite- and model-derived soil moisture compared to in situ recorded soil moisture at 20 cm soil
depth (AWS): (a) θtop and in situ θ20 cm soil moisture time series at Gacurabwenge station; (b) model-derived soil moisture in the root
zone θroot and in situ soil moisture θ20 cm at Kibisabo station; (c) satellite-derived θtop and model-derived soil moisture in the root zone θroot,
with vertical red lines indicating the timing of the landslide occurrence time.
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