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Abstract. Rainfall intensity–duration (ID) thresholds are
commonly used to assess flash flood potential downstream
of burned watersheds. High-intensity and/or long-duration
rainfall is required to generate flash floods as landscapes re-
cover from fire, but there is little guidance on how thresholds
change as a function of time since fire. Here, we force a hy-
drological model with radar-derived precipitation to estimate
ID thresholds for post-fire flash floods in a 41.5 km2 water-
shed in southern California, USA. Prior work in this study
area constrains temporal changes in hydrological model pa-
rameters, allowing us to estimate temporal changes in ID
thresholds. The results indicate that ID thresholds increase
by more than a factor of 2 from post-fire year 1 to post-fire
year 5. Thresholds based on averaging rainfall intensity over
durations of 15–60 min perform better than those that aver-
age rainfall intensity over shorter time intervals. Moreover,
thresholds based on the 75th percentile of radar-derived rain-
fall intensity over the watershed perform better than thresh-
olds based on the 25th or 50th percentile of rainfall intensity.
Results demonstrate how hydrological models can be used to
estimate changes in ID thresholds following disturbance and
provide guidance on the rainfall metrics that are best suited
for predicting post-fire flash floods.

1 Introduction

Heightened hydrological responses are common within and
downstream of recently burned areas, resulting in an in-
creased likelihood of flash floods. Rainfall intensity–duration

(ID) thresholds are commonly used to assess the potential
for flash floods (Moody and Martin, 2001; Cannon et al.,
2008). Many past studies aimed at defining thresholds for
flash floods focus on the first 1–2 years following fires (Can-
non et al., 2008; Wilson et al., 2018). Since the hydrologic
impacts of fire are transient, rainfall ID thresholds associated
with flash floods are likely to change as a watershed recovers
(Ebel and Martin, 2017; Ebel and Moody, 2017; Moreno et
al., 2020; Ebel, 2020). It may take more than a decade for
hydrological responses to return to pre-fire levels, yet there
is limited guidance on how the magnitude and utility of rain-
fall ID thresholds change with time since fire. Given the in-
creased frequency and size of fires in many geographic and
ecological zones (e.g. Gillett et al., 2004; Westerling et al.,
2006; Kitzberger et al., 2017), it is of growing importance to
quantify the best metrics for assessing flash-flood potential in
the immediate aftermath of fire as well as how these metrics
change throughout the recovery process (e.g. Ebel, 2020).

Rainfall ID thresholds for flash floods are typically de-
fined using historic data that relate rainfall over different in-
tensities and durations to an observed hydrological response,
namely the presence or absence of flooding (e.g. Cannon et
al., 2008). Due to the stochastic nature of rainfall over burned
areas and limited observations throughout the recovery pro-
cess, there is a paucity of data that can be used to derive em-
pirical thresholds for flash flooding beyond 1 year of recov-
ery. Hazards associated with flash flooding, however, may
exist downstream of burned areas well beyond 1 year of re-
covery. Wildfires alter rainfall-runoff partitioning and flood
routing by incinerating vegetation and reducing interception
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capacity (Stoof et al., 2012; Saksa et al., 2020), decreasing
hydraulic roughness, and reducing soil infiltration capacity
(Larsen et al., 2009; Ebel and Moody, 2013). Reductions in
infiltration capacity are often attributed to fire-induced soil-
water repellency (Ebel and Moody, 2013), which is gener-
ally strongest immediately following a fire and then decays
over timescales ranging from 1 year to more than 5 years
(Dyrness, 1976; Huffman et al., 2001; Larsen et al., 2009),
though surface soil sealing (Larsen et al., 2009) and hyper-
dry conditions (Moody and Ebel, 2012) are also known to
play important roles. Vegetation recovery, which may influ-
ence temporal changes in hydraulic roughness and canopy
interception, can take 5 years or longer. Cannon et al. (2008)
collected sufficient data over a 2-year time period following
fires in southern California, USA, to define separate rainfall
ID thresholds for post-fire debris flows and flash floods in
the first and second years following fires. They found that
the ID thresholds for flash floods and debris flows may in-
crease by as much as 25 mm h−1 after 1 year of recovery,
a change that they attributed to a combination of vegetation
growth and sediment removal as a result of rainstorms during
the first post-fire year.

Rainfall ID thresholds are often defined over a range of
durations, though averaging rainfall intensity over a partic-
ular duration may provide a more reliable threshold. The
post-fire hydrological response in the first few years is of-
ten best related to rainfall intensity over short durations (less
than 60 min) (Staley et al., 2017; Moody and Martin, 2001).
In their efforts to define rainfall ID thresholds for post-fire
debris flows, Staley et al. (2013) showed that averaging rain-
fall intensities over durations between 15 and 60 min resulted
in thresholds that performed better relative to those asso-
ciated with longer durations. One potential explanation for
this observation is that post-fire debris flows are often trig-
gered by runoff in steep, low-order drainages, which both
Kean et al. (2011) and Raymond et al. (2020) have found to
be highly correlated with rainfall intensities averaged over
similarly short time intervals (10–15 min). Moody and Mar-
tin (2001) have also documented a substantial increase in
peak discharge following wildfires once the 30 min rainfall
intensity (I30) crossed a threshold value, suggesting that I30
may be a consistent predictor of flash flood activity in re-
cently burned watersheds. Moody and Martin (2001) suggest
that peak I30 can be used to set the threshold for early warn-
ing flood systems. The optimal duration for defining post-fire
flash floods thresholds, as well as how it may change with
time, remains relatively unexplored.

Rain gage records are typically used to derive rainfall ID
thresholds for flash flood and post-fires debris flows (Staley
et al., 2013, 2017). Post-fire debris flows, however, tend to
initiate in small (< 1 km2), steep watersheds. In these small
watersheds, the rainfall intensity responsible for initiating a
debris flow can be characterized by a single rain gage in-
stalled near the initiation zone. Flash floods differ in that
they tend to occur at larger spatial scales where rainfall is

spatially variable and may not be adequately characterized
by data from a single rain gage. Radar-derived precipitation
estimates, which can provide high spatiotemporal rainfall
intensity resolution, present opportunities to develop basin-
specific thresholds for post-fire flash floods. However, high
spatiotemporal variability in rainfall intensity also brings
new challenges when employing radar-derived precipitation
in flood warning practice. In particular, what is the best way
to summarize spatially and temporally variable rainfall in-
tensity information with a single metric that can be used
as a threshold? How does hydrological recovery following
fires influence the generation of flash floods and the met-
rics that are best suited for their prediction? Data-driven ap-
proaches to answering these and related questions may be
hampered by limited monitoring of post-fire hydrological re-
sponse throughout the recovery period and the stochastic oc-
currence of rainfall over burned areas, which limits opportu-
nities for observations. Given a well-constrained hydrologi-
cal model that accounts for changes associated with post-fire
recovery, it is possible to use numerical experiments to un-
derstand relationships between time since fire, the spatiotem-
poral patterns of rainfall over a watershed, and the occurrence
of flash floods.

Here, we use observed patterns of spatially and temporally
varying radar-derived rainfall estimates over a 41.5 km2 wa-
tershed in the San Gabriel Mountains of southern California,
USA, to (1) determine the optimal method to define a rainfall
ID threshold for flash floods, and (2) identify changes in rain-
fall ID thresholds for flash floods as a function of time since
fire. The watershed, which we refer to as the upper Arroyo
Seco, burned during the 2009 Station Fire (USDA Forest Ser-
vice, 2009). Liu et al. (2021) used rain and stream gage data
collected at different times following the fire to calibrate the
KINEROS2 hydrological model for this watershed, enabling
them to quantify temporal changes in model parameters as a
function of time since fire. Combining this calibrated model
with spatially explicit, radar-derived estimates of rainfall in-
tensity during 34 rainstorms, we explore the utility of dif-
ferent rainfall ID metrics as flash flood thresholds and quan-
tify temporal changes in those thresholds through the first 5
years of recovery. Results provide insight into the magnitude
of temporal changes in flash flood thresholds in the densely
populated, fire-prone region of southern California. Findings
also provide guidance for the magnitude of change expected
in rainfall ID thresholds for flash floods during the post-fire
recovery period in chaparral-dominated environments sim-
ilar to southern California. More generally, results support
the development of early warning systems for flash floods by
identifying specific metrics that can be computed using spa-
tially variable rainfall intensity estimates to assess the poten-
tial for flash flooding. The optimal rainfall ID metrics iden-
tified in this study could be helpful when issuing flash flood
warnings based on radar-derived precipitation estimates or
data from several real-time rain gages within a watershed.
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Figure 1. Modified from Fig. 1 in Liu et al. (2021) (a) The location
of the upper Arroyo Seco watershed within California. The red tri-
angle indicates the location of the USGS stream gage (11098000);
(b) Shaded relief showing the study watershed with the USGS
stream gage (red triangle; 34◦13′20′′, −118◦10′36′′); (c) Soil burn
severity for the 2009 Station fire. Burn severity percentages are for
planform area within each category.

2 Study area

The upper Arroyo Seco watershed drains the 41.5 km2 area
above USGS stream gage station (11098000) near Pasadena
in the San Gabriel Mountains (Fig. 1). The upper Arroyo
Seco was burned in the August–October 2009 Station Fire,
which burned more than 80 % of the watershed at moderate-
to-high soil burn severity (USDA Forest Service, 2009).
Dominant shrubs and chaparral, such as chamise (Adenos-
toma fasciculatum) and manzanita (Arctostaphylos spp.),
were completely consumed with severe soil heating in iso-
lated patches throughout many areas burned at moderate-to-

high severity (USDA Forest Service, 2009). Soils in this area
are typically sand and silty–sand textured and thin (< 1 m)
with partial exposure of bedrock (Staley et al., 2014). The
majority of rainfall in the study area typically occurs in the
cool season, between December and March, while warm, dry
conditions dominate from April to early November. The San
Gabriel Mountains also experience some of the most frequent
short-duration, high-intensity rainfall event in the state (Oak-
ley et al., 2018a).

Due to wildfire-induced changes in surface conditions, in-
cluding canopy cover and soil-hydraulic properties, runoff
generation in the first year following the fire was likely
dominated by infiltration excess overland flow (Schmidt et
al., 2011; Liu et al., 2021). Enhanced soil-water repellency
(SWR), which helps promote low infiltration capacity, and
extensive dry ravel, which loads channels with fine-grained
hillslope sediment, are both commonly observed after fires
in the San Gabriel Mountains (e.g., Watson and Letey, 1970;
Hubbert and Oriol, 2005; Lamb et al., 2011; Hubbert et al.,
2012). Rengers et al. (2019) calibrated a hydrologic model
using data from small watersheds (0.01–2 km2) burned by
the Station Fire and found relatively low values for satu-
rated hydraulic conductivity (Ks), generally between 2 and
10 mm h−1. These results are consistent with values for satu-
rated hydraulic conductivity inferred by Liu et al. (2021) via
model calibration in the upper Arroyo Seco watershed. The
impact of dry ravel, which reduces grain roughness in the
channel network, and reduced vegetation density led to es-
timates of Manning’s n in the channels of the upper Arroyo
Seco of approximately 0.09 s m−1/3 in the first year follow-
ing fires (Liu et al., 2021). These hydrologic changes led to
widespread flooding and debris flows during multiple rain-
storms in the first winter after the fire (Kean et al., 2011;
Oakley et al., 2017). As hydrological recovery began over
the next several years, the watershed-scale Ks and Manning’s
n generally increased and likely started to mitigate the flash
flood risk (Liu et al., 2021).

3 Data and methods

3.1 Radar-derived precipitation

Weather radar coverage is adequate for estimating rainfall
over the study area (NOAA, 2021a, b), and radars have been
operational since the mid-1990s. This allows us to utilize
observed data to capture temporal and spatial characteris-
tics of storms impacting the study area, a region of complex
terrain. We sought to identify storms in the study area that
produced moderate-to-high intensity rainfall to use as inputs
to a hydrological model to simulate flood responses. Storm
events were selected within the period for which observations
are archived for the two operational NWS Next-Generation
Weather Radar installations (NEXRAD; NOAA, 1991) that
cover the study area, KSOX (Santa Ana) and KVTX (Ven-
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Table 1. Summary of model parameters for post-fire years 1, 2, 3,
and 5. The saturated hydraulic conductivity on hillslopes (Ksh) and
hydraulic roughness in channels (nc) are the average of values cali-
brated in post-fire years 1, 2, 3, and 5 (Liu et al., 2021).

Post-fire year Calibration events Ksh (mm h−1) nc (s [m−1/3])

1 12 Dec 2009
17 Jan 2010 7.2 0.087
5 Feb 2010

2 17 Dec 2010
13.8 0.275

20 Mar 2011

3 17 Mar 2012
18.5 0.320

13 Apr 2012

5 28 Feb 2014 23.8 0.280

tura). Archives for the radars begin in 1997 and 1995, re-
spectively.

We compiled storm events starting with those known to
have produced high intensity rainfall and a debris flow re-
sponse in the San Gabriel Mountains (e.g., Table 1 in Oak-
ley et al., 2017) as well as other storms that produced high-
intensity rainfall in the region (e.g., Oakley et al., 2018b;
Cannon et al., 2018). We then used hourly rainfall obser-
vations from the Clear Creek (2002–present), San Rafael
Hills (2005–present), and Henninger Flats (2010–present)
Remote Automated Weather Stations (RAWS, acquired from
https://raws.dri.edu/, last access: 2 February 2022) as indica-
tor gages for the study area. This further limited us to post-
2002 events outside of the literature. All gages are < 10 km
from the watershed of interest; there were no long-record
gages within the watershed. We used 15 mm h−1 as a thresh-
old for moderate-to-high intensity rainfall and extracted all
events from the gage record meeting or exceeding this value
to develop a list of events of interest. This threshold gener-
ally corresponds with a 1-year average recurrence interval
storm event in the study area (NOAA, Atlas 14). This value
falls between the California–Nevada River Forecast Center’s
flash flood guidance for unburned areas in the region (∼ 22–
25 mm h−1; CNRFC, 2022) and regional thresholds for post-
wildfire debris flows in this region at a point (12.7 mm h−1,
Cannon et al., 2008; Staley et al., 2013). This threshold al-
lows us to focus on storms that have a high potential to gen-
erate floods, while keeping the number of storms to a man-
ageable level for data processing. We reviewed the radar data
for these events, at which point some of the selected events
could not be utilized due to radar outages or poor data qual-
ity. This exercise presented us with 34 storm events (Table S1
in the Supplement).

Various atmospheric processes may contribute to genera-
tion of moderate-to-high rainfall intensities (e.g., Oakley et
al., 2017), resulting in differing spatial and temporal precipi-
tation patterns over a burn area. To ensure the events selected
captured the variability in spatial and temporal precipitation

characteristics, we evaluated the spatial characteristics of the
events. We found rainfall patterns could generally be cate-
gorized into four main spatial patterns at the scale of several
tens of kilometers: (1) a broad pattern, with a contiguous area
of moderate-to-high intensity precipitation (> 45 dBZ) span-
ning tens of kilometers; (2) a scattered pattern with numerous
cells of moderate-to-high precipitation that are not spatially
continuous; (3) an isolated pattern, with one to a few isolated
cells of moderate-to-high intensity rainfall separated by non-
precipitating areas several to tens of kilometers in extent; (4)
a narrow cold frontal rainband (NCFR) – a north–south ori-
ented narrow band (∼ 3–5 km wide, tens to 100 km in length)
of very high intensity rainfall (e.g., Oakley et al., 2018b; Can-
non et al., 2020; Figure S1). At the < 10 km horizontal scale
(the scale of the watershed), it was harder to identify mean-
ingful patterns and distinctions, though the larger-scale sig-
nals imply varying spatial and temporal patterns of precipita-
tion as each pass over the watershed. A table of storm events
and their characteristics is available in Table S1.

An approximate start and end time were determined for
each event using the Clear Creek RAWS gauge as an indi-
cator. Start time was determined by identifying the time of
maximum 1 h rainfall in the event and going back in time to
the first of three consecutive hours of > 1.5 mm h−1 precip-
itation. The end of an event was determined as the last hour
where precipitation dropped below 3 mm h−1 for at least two
consecutive hours.

Level-II base reflectivity (https://www.ncdc.noaa.gov/
wct/, last access: 2 February 2022) between the start and end
time of each event was downloaded from both the KSOX and
KVTX radars. The data were used to generate spatially dis-
tributed precipitation over the study area. Radar imagery con-
current with the gauge-based record of high intensity rainfall
events was converted to a composite maximum reflectivity
product at 250 m spatial and 5 min temporal resolution. Con-
version of radar reflectivity to rain rate required the appli-
cation of an empirically derived reflectivity (Z) to rain rate
(R) relationship (e.g. Marshall and Palmer, 1948). The Z-
R relationship is conventionally represented by the equation
Z = aRb, which includes parameters a and b to account for
variations in precipitation for a given reflectivity arising from
differences in the drop size distribution. Due to the lack of
previous studies investigating Z-R relationships in precipi-
tating conditions over the region of interest, there are no stan-
dard a and b parameters to apply to the reflectivity data ana-
lyzed here. Thus, five well-known and previously published
Z-R relationships were applied to the gridded reflectivity
values. Supplement S3 lists the different Z-R relationships
applied here and the general conditions for which they are
suitable. Although the Z-R relationships used here are not
based on observations from the present study’s region of in-
terest, the variation of a and b parameters yields an estimate
of precipitation uncertainty. It is worth noting that a number
of additional sources of radar measurement uncertainty exist
that are not evaluated in depth here, including beam broaden-
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Figure 2. Delineation of rainfall intensity–duration threshold for
post-fire flash flood.

ing, topographic blocking, and scan elevation. However, this
was not of primary concern since the goal of this study was
to generate realistic spatial and temporal patterns of rainfall
over the watershed with varying intensity that could be used
to force the KINEROS2 hydrological model. The goal was
not to reproduce the observed hydrological response result-
ing from a particular set of rainstorms.

As a range of precipitation intensities for each storm result
from the application of the five different Z-R relationships
(e.g., Fig. S2), we utilize these as plausible storms of varying
precipitation intensity to increase our storm sample size, such
that we apply 34 storms · 5 Z-R relations= 170 precipitation
scenarios as inputs to KINEROS2. These 170 scenarios were
then processed for ingestion into KINEROS2 (Fig. 2).

3.2 Summary metrics for spatially and temporally
varying rainfall

In search of a spatiotemporal summary metric that may serve
as a reliable flash flood threshold, we begin by describing a
methodology to summarize spatially and temporally varying
rainfall over a watershed. For a given rainstorm, the rainfall
intensity time series at a single point, such as a single radar
pixel, can be summarized by computing a moving average of
intensity over a specified duration, D. Letting t denote time
and R denote the cumulative rainfall (mm), we define the
rainfall intensity over a duration D at any given pixel within
the watershed as

ID(t)=
R(t)−R(t −D)

D
. (1)

Here, we compute ID(t) for each pixel for durations of 5,
10, 15, 30, and 60 min. Since the intensity in each radar pixel
could have a unique value, we also need a way to summa-
rize ID(t) in space. One option would be to take the median

of ID(t) to determine a typical value of ID within the wa-
tershed at each time, t . However, the median may not be a
good predictor of flash flooding since one could envision a
scenario where it is only raining over 1/3 of the watershed,
yet it is raining with sufficient intensity to generate a flash
flood. We therefore compute the j th percentile of ID(t) at
each time, t , for j between 1 and 99. We denote the j th per-
centile of ID(t) as I

j
D(t). For each rainstorm, we focus our

analysis on the peak value of I
j
D(t) which we denote as I

j
D .

As an example, I 50
30 would be computed by defining I30 for

all radar time steps within a rainstorm, determining the me-
dian value of I30 over the watershed at each of those time
steps, and then taking the maximum of that time series of me-
dian I30 intensities. This analysis yields 495 different metrics
(I j

D for j = 1,2, . . .,99 and D = 5,10,15,30,60) that sum-
marize spatially and temporally varying rainfall intensities
over the watershed. In the following sections, we describe
how we test the utility of each of these 495 different metrics
as a flash flood threshold. A threshold defined by I

j
D would

denote a threshold where (100–j )% of the watershed experi-
ences rainfall of duration D with an intensity of I or greater.

3.3 Hydrological modeling

We used the KINEROS2 (K2) hydrological model to simu-
late the rainfall partitioning, overland flow generation, and
flood routing in the upper Arroyo Seco watershed. K2 is
an event-scale, distributed-parameter, process-based water-
shed model, which has been used extensively for rainfall-
runoff processes in semi-arid and arid watersheds (Smith et
al., 1995; Goodrich et al., 2012). Liu et al. (2021) used rain
gage data in combination with the USGS stream gage in-
stalled at the outlet of the upper Arroyo Seco watershed to
calibrate K2 during different stages of the post-fire recovery
process. We use the same model setup for simulations in this
study. In particular, the 41.5 km2 watershed was discretized
into 1289 hillslope planes and these planes were connected
by a stream network of 519 channel segments based on a 1 m
lidar-derived digital elevation model (DEM). After account-
ing for a fixed interception depth of 2.97 mm based on the
land cover look-up table in the Automated Geospatial Water-
shed Assessment toolkit (AGWA; Miller et al., 2007), infil-
tration of rainfall into soil is represented using the Parlange
et al. (1982) approximation. Overland flow and channel flow
are modeled by kinematic wave equations. Both saturated hy-
draulic conductivity on hillslopes (Ksh) and hydraulic rough-
ness in channels (nc) primarily determine runoff generation
and the shape of hydrograph, including total runoff volume,
peak discharge rate, and time to peak (Canfield et al., 2005;
Yatheendradas et al., 2008; Meles et al., 2019). Other param-
eters, such as hydraulic roughness (nh) and capillary drive
(Gh) on hillslopes, had a relatively minor impact on mod-
eled runoff after the Station Fire in the upper Arroyo Seco
watershed (Liu et al., 2021).
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Liu et al. (2021) found that both Ksh and nc were low-
est immediately after the fire. Ksh increased, on average, by
approximately 4 mm h−1 yr−1 during the first 5 years of re-
covery, whereas nc increased by more than a factor of 2 after
1 year of recovery and then remained relatively constant. We
focus here on simulating the response to rainfall in the first
5 years following the fire, when the watershed is likely most
vulnerable to extreme responses. To represent the temporal
changes in Ksh and n documented by Liu et al. (2021) fol-
lowing the fire, we used different values of Ksh and nc for
each post-fire year (i.e. post-fire years 1, 2, 3, and 5) based
on the values calibrated by Liu et al. (2021) in post-fire years
1, 2, 3, and 5 (Table. 1). Liu et al. (2021) were unable to
calibrate the necessary K2 parameters in post-fire year 4 so
we do not perform any simulations to constrain flash flood
thresholds in that year. Initial soil moisture is set to a volu-
metric soil-water content of 0.1, following Liu et al. (2021).
Other parameters were also given the same values as the cal-
ibrated K2 model, including saturated hydraulic conductiv-
ity of channels (1 mm h−1), net capillary drive of channels
(5 mm), hydraulic roughness of hillslopes (0.1 s m−1/3), net
capillary drive of hillslopes (50 mm), and soil porosity (0.4).
With this model setup, we simulate the response to each of
the 170 rainstorms for post-fire years 1, 2, 3, and 5.

3.4 Rainfall intensity–duration thresholds

Each K2 simulation results in a modeled hydrograph at the
watershed outlet. As a first step towards defining a flash flood
threshold, it is necessary to determine, based on the modeled
time series of discharge, whether or not a flash flood would
have occurred. We defined the flash flood level as the dis-
charge required to exceed bankfull flow (Sweeney, 1992),
which we assumed was equal to the 2-year flood (Leopold
et al., 1964). To determine the discharge associated with the
2-year flood, we performed a flood frequency analysis using
HEC-SSP v2.2 (Bartles et al., 2019) based on annual maxi-
mum records at the USGS stream gage station (11098000).
The discharge associated with the 2-year flood at the stream
gage station is 15.3 m3 s−1, with a 95 % confidence interval
of 12.3–19.2 m3 s−1 (Fig. S3). A flash flood threshold by this
definition can be viewed as conservative since it may only
indicate the onset of minor flooding as water begins to spill
out of the channel. Based on this definition, we then used
two approaches to identify the rainfall ID threshold for flash
floods (Fig. 2).

The first approach is based on a linear regression analysis
that relates peak discharge with different rainfall ID metrics,
namely I

j
D for different values of j and D. Using simula-

tions of 170 rainfall-runoff events in each post-fire year, it is
possible to determine a relationship for peak discharge (Q)
as a function of I

j
D . Then, the rainfall ID threshold can be

found by determining the rainfall intensity at which the peak
discharge exceeds the bankfull capacity. The simplest quan-

titative relation is a linear regression:

Q=mI
j
D + k, (2)

where Q is the peak discharge (m3 s−1) of a simulated hy-
drograph at the outlet, I j

D denotes rainfall intensity (mm h−1)
for the rainstorm that produced the hydrograph, and m and k

denote the slope and y intercept of the linear regression, re-
spectively.

Considering the channel dimensions and resolution of the
DEM used in the K2 model, we selected intensity–discharge
(I j

D−Q) pairs associated with a Q greater than 2 m3 s−1. The
flow depth associated with a Q less than 2 m3 s−1 would be
very small and any impact from such flow would be negligi-
ble. The parameters in the linear Eq. (1) with the maximum
determination coefficient (R2

max) were estimated using least-
squares linear regression in the SciPy Python library for the
selected I

j
D−Q pairs. A total of 495 linear regressions were

produced for each year because I
j
D can take on 495 different

values (five durations, 99 percentiles) for each rainstorm. For
each post-fire year, we then identified the maximum R2 value
for each duration as a function of percentile from 1st to 99th
(Fig. 3). The rainfall ID threshold for flash flooding in each
year was found, for each duration, from the linear relation
associated with the largest R2 (Fig. 4).

We also estimated the 95 % confidence interval (CI) of
both R2 and the rainfall ID threshold by performing boot-
strapping resampling on 170 rainfall-runoff events for each
year. The number of replications is 50. The 95 % CI was con-
structed with the 2.5 percentile and the 97.5 percentile of the
ranked R2 or rainfall ID threshold.

The second approach for determining rainfall ID thresh-
olds is based on a receiver operating characteristic (ROC)
analysis following Staley et al. (2013). We assess the utility
of a potential threshold (e.g. I 50

30 = 20mmh−1), by comput-
ing the threat score (TS) associated with using that threshold
to define the transition between rainstorms that produce flash
floods and those that do not. The TS, as one of the ROC util-
ity functions, measures the fraction of forecast events that
were correctly predicted:

TS=
TP

TP+FP+FN
, (3)

where TP, FP, and FN denote a true positive, false posi-
tive, and false negative, respectively. Flash flood occurrence
(true or false) is determined by comparing the peak dis-
charge of each simulated hydrograph with the flash flood
level (15.3 m3 s−1). A TP represents an event where rain-
fall rates exceed the threshold (e.g. I 50

30 = 20mmh−1), and
a flash flood occurred. An FP represents an event where rain-
fall rates exceed the threshold, but no flash flood occurred.
FN events occur when rainfall rates were below the thresh-
old, yet a flash flood occurred. The optimal TS is 1, meaning
use of the threshold resulted in no false positives or false neg-
atives.
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Figure 3. The determination coefficient (R2) and 95 % confidence interval associated with the linear regression between I
j
D

and peak
discharge in post-fire years 1, 2, 3, and 5. Data used to fit the linear relation are from events with peak discharge greater than 2 m3 s−1.

Figure 4. The rainfall intensity–duration threshold for flash floods derived from the best linear relation for different durations and percentiles
of the most intense rainfall field in post-fire years 1, 2, 3, and 5.

For a given rainfall intensity metric (e.g. the peak 75th per-
centile of I30, I 75

30 , in year 1), we calculated TS for intensi-
ties ranging from 0–100 mm hr−1 at 0.01 mm h−1 intervals
(Fig. 5). We then identified the threshold associated with the
maximum TS (TSmax). The intensity associated with TSmax
is the optimal threshold for that rainfall metric (Fig. 6). We
determined the optimal threshold associated with each of the
495 rainfall metrics for each post-fire year (1, 2, 3, and 5)
(Fig. 7). We also estimated the 95 % CI of TS and rainfall ID
threshold for each year by performing bootstrapping resam-
pling with 50 replications.

4 Results

4.1 Optimal summary metrics for defining rainfall ID
thresholds

Linear regression analyses suggest that there is a stronger
relationship between I

j
D and peak discharge (Q) as j in-

creases, with the exception of a rapid drop off in R2 for
j > 95 (Fig. 3). In post-fire year 1, the maximum R2 in-
creases with duration (D) from a value of 0.72 associated
with I 95

05 , to 0.75 associated with I 85
10 , to 0.80 associated with

I 72
15−I 87

15 , to 0.87 associated with I 81
30 , to 0.89 associated with
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Figure 5. Threat score (TS) of the peak 75th percentile of I30 in
post-fire year 1. (a) Relationship between rainfall intensity and TS;
(b) Scatter plots of positive (flood, red circle) and negative (no
flood, hollow circle) with the rainfall intensity associated with the
maximum TS.

I 89
60 . In post-fire years 2–5, the R2 values associated with

durations of 5, 10, and 15 min were maximized (0.79–0.86)
within a window from the 60th–95th percentiles. The opti-
mal rainfall threshold for flash floods (based on regressions
of Q as a function of I

j
D) increased from 10.1 mm h−1 of I 89

60
(the 89th percentile of 60 min peak rainfall field) in year 1 to
44.6 mm h−1 of I 90

15 (the 90th percentile of 15 min peak rain-
fall field) in year 5 (Fig. 4; Table 2). More generally, averag-
ing rainfall intensity over a duration of 15 min and choosing
a percentile, j , of approximately 75–90 produced an R2 of
approximately 0.80 or greater for all post-fire years (Fig. 3).
None of the other rainfall summary metrics performed this
well across all post-fire years.

Thresholds derived using the ROC method yielded broadly
similar trends. The maximum threat score, TSmax, generally
increased with j up to a point (approximately j = 90) and
then began to decrease regardless of the choice of duration
(D) (Fig. 6). The highest threat scores (TS), regardless of
post-fire year or duration, were generally associated with
the 70th–95th percentiles. For events in years 1–2, TSmax
(0.90) occurs between I 76

60 and I 86
60 (the 76th–86th percentile

of the peak I60 rainfall field); for events in years 3–5, the
TSmax (0.94–0.96) occurs around I 75

30 (the 75th percentile
of the peak I30 rainfall field). The optimal rainfall thresh-
old for a flash flood increased from I 86

60 = 12.9mmh−1 (the
86th percentile of 60 min peak rainfall field) in year 1 to
I 76

30 = 34.9mmh−1 (the 76th percentile of 30 min peak rain-
fall field) in year 5 (Table 3; Fig. 6). Averaging rainfall in-
tensity over a duration of 30 min and choosing a percentile,
j , of approximately 75–90 leads to threat scores of approxi-
mately 0.8 or greater for all post-fire years. Other metrics did
not perform this well, on average, across all post-fire years.

4.2 Increases in rainfall intensity thresholds with time
since fire

The rainfall intensity thresholds at each percentile increased
substantially from post-fire year 1 to 5 (Figs. 4 and 7). How-
ever, the increase from year 1 to 2 is considerably larger than
that from year 2 to 3 or from year 3 to 5. Taking the I 75

30 (the
75th percentile of the peak I30 rainfall field) as an example
due to its strong performance as a threshold for all post-fire
years, the thresholds based on linear regression analyses in
years 1, 2, 3, and 5 are 16.8, 23.2, 26.9, and 27.6 mm h−1, re-
spectively; the ROC-based I 75

30 thresholds in years 1, 2, 3, and
5 are 16.0, 26.9, 32.6, and 34.5 mm h−1, respectively (Fig. 7).

We are also able to use the model to assess the individual
impacts of temporal changes in Ksh and nc on temporal vari-
ations in the flash flood threshold. If Ksh is allowed to vary
from year to year (Table 1) and nc is held fixed at its cali-
brated value for year 1, then ROC analysis indicates that the
optimal threshold of I 75

30 still increases with time since fire
(Fig. 8). However, it increases slower than the case where
both Ksh and nc are allowed to vary with time (Fig. 8). If nc
is allowed to vary from year to year (Table 1) and Ksh is held
fixed at its calibrated value for year 1, then ROC analysis
indicates that the optimal threshold associated with I 75

30 in-
creases from year 1 to year 2 but then stays roughly constant
as time increases (Fig. 8). Therefore, changes in Ksh and nc
both play important roles in determining the degree to which
the flash flood threshold increases from year 1 to year 2, but
further increases in the threshold in years 3 through 5 are
driven mainly by increases in Ksh as a function of time since
fire.

5 Discussion

5.1 Optimal metrics of rainfall intensity and duration
for flood warning

Rain gage records, which provide rainfall intensity data at a
single point, are often used to define rainfall ID thresholds
in debris-flow and flash-flood studies (e.g. Moody and Mar-
tin, 2001; Cannon et al., 2008, 2011; Guzzetti et al., 2008;
Kean et al., 2011; Staley et al., 2013; Raymond et al., 2020;
McGuire and Youberg, 2020). Using point source data to de-
fine thresholds for debris flows and flash floods is ideal when
rainfall intensity does not vary substantially over the water-
shed, an assumption that is most appropriate for watershed
areas less than several square kilometers. Radar-derived rain-
fall data has the advantage of providing spatially explicit in-
formation over an entire watershed at a high-temporal reso-
lution (e.g. 5 min). However, one challenge in using radar-
derived precipitation to define thresholds is the need to con-
dense spatially and temporally variable rainfall intensity in-
formation down to a single rainfall intensity metric. Regard-
less of whether the approach to determining an ID thresh-
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Figure 6. The threat scores (TSmax) associated with flood occurrence and I
j
D

in post-fire years 1, 2, 3, and 5. Data used to analyze are from
events with peak discharge greater than 2 m3 s−1.

Figure 7. The rainfall intensity threshold for flash flood derived from the maximum of TS for different durations and percentiles of the most
intensive rainfall field in post-fire years 1, 2, 3, and 5.

old involves fitting empirical relationships (e.g., Moody and
Martin, 2001; Cannon et al., 2008) or using ROC analysis
(e.g., Staley et al., 2013), a single metric is required to repre-
sent the rainfall intensity for each duration.

We summarized spatially variable rainfall intensity data
over the watershed by computing the peak value of I

j
D(t),

the j th percentile of ID(t) for each rainstorm. We used two
different techniques, one based on a linear regression analy-
sis and one based on ROC analysis (Fig. 2), to define thresh-
olds for flash floods in post-fire years 1, 2, 3, and 5. Although
the optimal metrics produced by the two approaches are not
identical, they are generally similar in each post-fire year. In

particular, high R2 and TSmax values are associated with met-
rics of the peak 75th–85th percentile of rainfall intensity av-
eraged over 15–60 min (I j

D for 75≤ j ≤ 85,D= 15,30,60).
In other words, a good indicator of the potential for a flash
flood is the presence of intense pulses of rainfall over dura-
tions of 15–60 min that cover at least 15 %–25 % of the wa-
tershed (Fig. 9). This finding highlights the ability of rain-
storms to produce flash floods even if they do not cover the
majority of the watershed with intense rainfall. If rainfall
over the majority of the watershed was required to produce
flash floods, then we would expect that I j

D with j < 50 would
be a better predictor of flash floods.
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Table 2. The linear regression-based optimal rainfall ID metrics and corresponding rainfall thresholds for flash floods in post-fire years 1–5.

Year Rainfall Equation R2
max Intensity

metric (95 % CI) (mm h−1) (95 % CI)

1 I89
60 Q= 8.51 · I89

60 70.19 0.89 (0.80, 0.92) 15.05 (14.50, 15.53)
2 I88

15 Q= 0.94 · I88
15 14.86 0.86 (0.73, 0.92) 39.23 (36.97, 41.84)

3 I90
15 Q= 0.63 · I90

15 11.41 0.86 (0.76, 0.93) 49.87 (36.68, 55.44)
5 I90

15 Q= 0.60 · I90
15 11.51 0.86 (0.70, 0.92) 51.64 (48.18, 60.13)

Note: we denote the peak j th percentile of ID (rainfall intensity over a duration D) as I
j
D

. For example, I88
15 is

the peak value of the 88th percentile of I15 (rainfall intensity over 15 min).

Figure 8. The ROC-based thresholds for I75
30 in each year with dif-

ferent model settings. Pairs of Ksh (saturated hydraulic conductivity
on hillslopes) and nc (Manning’s n in channels) in each model are
given along with the data points.

Previous work has also identified that 30 min rainfall in-
tensity works well for predicting flash floods and debris
flows (Moody and Martin, 2001; Kean et al., 2011; Staley
et al., 2013). The finding that I

j

15, I
j

30, and I
j

60 work best as
thresholds when 75≤ j ≤ 85 could be helpful when issuing
flash flood warnings based on radar-derived precipitation es-
timates or data from several real-time rain gages within a
watershed. Current operational forecast models such as the
High-Resolution Rapid Refresh model have a horizontal res-
olution of 3 km and minimum temporal resolution of 15 min
(Benjamin et al., 2016; NOAA, 2021a), such that it is feasible
to use either I

j

15, I j

30, or I
j

60 in an operational forecast setting.
Where sufficient operational NEXRAD weather radar cov-
erage is present, radar-derived precipitation estimates such
as the Multi-Radar/Multi-Sensor System (MRMS; Zhang et
al., 2016) can provide near-real-time precipitation estimates
at 1 km and as fine as 15 min temporal resolution (NOAA,
2021b). In the case of poor radar coverage, gap-filling radars
may be temporarily deployed or installed (e.g., Jorgensen et
al., 2011; Cifelli et al., 2018) to provide information neces-

Table 3. The ROC-based optimal metrics of rainfall ID and corre-
sponding rainfall thresholds for flash floods in post-fire year 1–5.

Year Rainfall TSmax Intensity (mm h−1)
metric (95 % CI) (95 % CI)

1 I86
60 0.90 (0.84, 0.96) 12.91 (12.20, 13.20)

2 I76
60 0.90 (0.74, 0.99) 19.98 (17.80, 20.40)

3 I75
30 0.94 (0.78, 1.00) 32.60 (28.64, 33.60)

5 I76
30 0.96 (0.82, 1.00) 34.86 (32.20, 35.40)

Note: we denote the peak j th percentile of ID (rainfall intensity over a duration
D) as I

j
D

. For example, I86
60 is the peak value of the 86th percentile of I60

(rainfall intensity over 60 min).

sary for accurate precipitation estimates. While the magni-
tude of rainfall thresholds estimated here may only work for
similar, recently burned watersheds within the San Gabriel
Mountains, this work provides a general methodology for ex-
ploring reliable predictors of post-fire flash floods for other
watersheds and settings. Further testing is needed in water-
sheds with different watershed sizes, topographic character-
istics, landscapes, and burn severity patterns.

Several limitations are present in this work. First, we as-
sess a small number of storm events (34) in the area as we
are limited by the length of radar and gage records as well
as the number of events that impact the indicator rain gages,
though applying the five Z-R relationships provides us with
170 rainfall realizations to assess. We prefer the use of ob-
served rainfall data (radar and gauges) over simulated prod-
ucts, such as output from a rainfall generator (e.g., Zhao et
al., 2019; Evin et al., 2018), as the radar is able to capture
the spatial and temporal patterns of rainfall intensity in the
study area’s complex terrain. Though rainfall generators have
advanced to represent some synoptic-to-mesoscale features,
such as frontal and convective precipitation (e.g., Zhao et al.,
2019), they are fundamentally designed to represent statis-
tical characteristics of rainfall in places with limited obser-
vations (Wilks and Wilby, 1999) and cannot be relied upon
to replicate small-scale storm characteristics in complex ter-
rain (e.g., Camera et al., 2017). Future work could com-
pare results from this hydrological modeling experiment with
observed versus simulated rainfall. Second, the challenges
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Figure 9. Snapshots of the spatial patterns of I75
30 of 34 unique storms. The peak j th percentile of ID (rainfall intensity over a duration D)

is denoted as I
j
D

. I75
30 is the peak value of the 75th percentile of I30 (rainfall intensity over 30 min). Red contours delineate the pixels with

rainfall intensities larger than I75
30 of each storm.

of using Z-R relationships to convert reflectivity into pre-
cipitation also present challenges in accurately representing
precipitation values. This can be addressed in future work
through studies to constrain Z-R relationships for storms
producing intense rainfall in this region and through the de-
ployment or installation of high-resolution gap-filling radars
(e.g., Johnson et al., 2020).

5.2 The role of hydrological models in rainfall intensity
threshold estimation

In this study we employed the K2 model calibrated by
Liu et al. (2021) to parameterize hydrologic changes affect-
ing Hortonian overland flow within a 5-year period follow-
ing fires. Hillslope saturated hydraulic conductivity (Ksh =

7.2 mm h−1) and hydraulic roughness in channels (nc =

0.087 s m−1/3) were lowest immediately after fire (Table 1),
resulting in high runoff coefficients and low rainfall thresh-
olds in post-fire year 1. In later years, with Ksh and nc gradu-
ally increasing (Table 1), more rainfall infiltrated into the soil

and there was increased attenuation of flood peaks. Simula-
tions indicate that the number of flash-flood-producing rain-
storms decreased from 59 in year 1 to 25, 18, and 16 in years
2, 3, and 5, respectively. Runoff coefficients and peak dis-
charge of simulated hydrographs also decreased with time
since fire (Fig. 10). Given the same precipitation ensemble,
the likelihood of flash floods significantly decreased with
time. The peak discharge produced by the highest intensity
rainfall event with I 75

60 of 51.8 mm h−1 was 554.0 m3 s−1 in
the first year after the fire, which is 3 times greater than the
peak discharges of 157.5 m3 s−1 in year 3 and 161.2 m3 s−1

in year 5 produced by the same rainstorm. From a flood haz-
ard perspective, the downstream area may be exposed to a
1000-year flood under recently burned conditions (less than
1 year since the fire), whereas the discharge produced in
years 3 and 5 amounts to roughly a 30- to 40-year flood
(Fig. S3).

We were also able to perform numerical experiments to
quantify the relative importance of temporal changes in Ksh
and nc on temporal variations in the flash flood threshold
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Figure 10. Box plots showing the runoff coefficient and peak discharge of flash floods in post-fire years 1, 2, 3, and 5. The numbers of flash
floods in each year are displayed next to the box.

(Fig. 8). Results suggest that changes in vegetation and grain
roughness, which are likely to influence nc, throughout the
recovery process are less important for determining flash
flood potential in our study area relative to changes to sat-
urated hydraulic conductivity on hillslopes. It is worth not-
ing that temporal changes in other model parameters (e.g.,
hydraulic roughness on hillslopes, capillary drive) may play
more of a role in driving changes in post-fire flash flood
thresholds in other settings. In this study, however, we focus
on changes in Ksh and nc because Liu et al. (2021) were able
to detect temporal changes in nc and Ksh through time and
were unable to detect similar temporal changes in other hy-
drologic parameters (e.g., hydraulic roughness on hillslopes,
capillary drive) due to their relatively minor influence on
runoff in the study watershed.

In this study, the optimal flash flood thresholds increased
from I 75

30 = 16.0–16.8 mm h−1 in post-fire year 1, to 23.2–
26.9 mm h−1 in year 2, and 27.6–34.5 mm h−1 in post-fire
year 5 (Figs. 4 and 7; Tables 2–3). In the San Gabriel Moun-
tains and nearby San Bernardino and San Jacinto moun-
tains, Cannon et al. (2008) estimated rainfall thresholds of
I30 =9.5 mm h−1 for flash floods and debris flows in the
first winter rainy season following fires. They found that
the thresholds for flash floods and debris flows increased to
I30 =19.8 mm h−1 in post-fire year 2. The thresholds that we
infer from hydrological modeling are greater than those re-
ported by Cannon et al. (2008), which may be partly due to
differences in (1) the data and methods used and (2) the size
of the studied watersheds. Our results are driven by a hy-
drological model, forced with a radar precipitation ensemble
that consists of 170 rainstorms that contain a variety of storm
types that impact southern California. The occurrence of a
flash flood is based on exceedance of the maximum channel
capacity and we summarize temporal changes in the rainfall

ID threshold using I 75
30 since we find this to be a reliable met-

ric for all post-fire years included in this study. In contrast,
Cannon et al. (2008) established rainfall ID relations by using
observations of rainstorms and hydrological responses in the
2 years following fires in 87 small watersheds (0.2–4.6 km2).
They base their thresholds on rainfall characteristics that pro-
duced either flash floods or debris flows, whereas we focus
solely on flash floods. In their dataset, flash floods and debris
flows were identified by investigating flood and debris flow
deposits at the outlet of those small watersheds in the field.
Despite differences in the magnitude of the thresholds, the in-
crease in the threshold from post-fire year 1 to year 2 in both
studies are quite close. This agreement provides support for
the use of simulation-based approaches to inform temporal
shifts in rainfall ID thresholds.

During the recovery process, increasing thresholds for
flash floods and debris flows have also been identified in
other areas at different scales by either observation- or
simulation-based studies, such as hillslopes in the Colorado
Front Range (Ebel, 2020) and small watersheds in Aus-
tralia (Noske et al., 2016). The consistent increase in rain-
fall ID thresholds with time since fire in different geographic
and ecological zones implies that hydraulic and hydrological
models may be useful tools for exploring how the transient
effects of fires translate into changes in water-related haz-
ards. The role of hydraulic and hydrological models becomes
particularly more important when historic data are limited
and traditional empirical methods are impractical for defin-
ing thresholds.

Nat. Hazards Earth Syst. Sci., 22, 361–376, 2022 https://doi.org/10.5194/nhess-22-361-2022



T. Liu et al.: Temporal changes in rainfall intensity–duration thresholds 373

6 Conclusions

We used 250 m, 5 min radar-derived precipitation estimates
over a 41.5 km2 watershed in combination with a calibrated
hydrological model to estimate rainfall intensity–duration
thresholds for post-fire flash floods as a function of time since
fire. The main outcomes of this study are (1) identification
of optimal radar-derived rainfall metrics for post-fire flash
flood prediction in southern California, (2) estimates of tem-
poral changes in rainfall ID thresholds for flash floods fol-
lowing disturbance in a chaparral-dominated ecosystem, and
(3) a methodology for using a hydrological model to assess
changes in post-fire flash flood thresholds.

Results indicate that thresholds based on the 75th–85th
percentile of peak rainfall intensity averaged over 15–60 min
perform best at predicting the occurrence of a flash flood
in our study area. In other words, a flash flood tends to be
produced when rainfall intensity over 15 %–25 % of the wa-
tershed area exceeds a critical value. A threshold based on
I 75

30 performs consistently well for post-fire years 1, 2, 3, and
5, although the magnitude of the threshold increases with
time since fire. For the watershed studied, the I 75

30 threshold
increases from 16.0–16.8 mm h−1 for year 1 to 23.2–26.9,
26.9–32.6, and 27.6–34.5 mm h−1, for years 2, 3, and 5 re-
spectively. Increases in the threshold value of I 75

30 can be pri-
marily attributed to increases in Ksh rather than nc during the
hydrological recovery process. The increase in the magni-
tude of the threshold from year 1 to year 2 is consistent with
previous observations from nearby areas in southern Califor-
nia. Results provide a methodology for using radar-derived
precipitation estimates and hydrological modeling to esti-
mate flash flood thresholds for improved warning and miti-
gation of post-fire hydrologic hazards. Thresholds developed
through these methods can then be built into operational tools
that use incoming radar data to evaluate the flash flood hazard
in near-real-time or precipitation forecasts to evaluate poten-
tial for flash flood hazard in burned watersheds.
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