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Abstract. PRIMAVERA (process-based climate simulation:
advances in high-resolution modelling and European cli-
mate risk assessments) was a European Union Horizon 2020
project whose primary aim was to generate advanced and
well-evaluated high-resolution global climate model datasets
for the benefit of governments, business and society in gen-
eral. Following consultation with members of the insurance
industry, we have used a PRIMAVERA multi-model en-
semble to generate a European winter windstorm event set
for use in insurance risk analysis, containing approximately
1300 years of windstorm data. The data are available at
https://doi.org/10.5281/zenodo.6492182.

To create the storm footprints for the event set, the storms
in the PRIMAVERA models are identified through tracking.
A method is developed to separate the winds from storms oc-
curring in the domain at the same time. The wind footprints
are bias corrected and converted to 3 s gusts onto a uniform
grid using quantile mapping. The distribution of the number
of model storms per season as a function of estimated loss is
consistent with re-analysis, as are the total losses per season,
and the additional event set data greatly reduce uncertainty
on return period magnitudes. The event set also reproduces
the temporally clustered nature of European windstorms.

Since the event set is generated from global climate mod-
els, it can help to quantify the non-linear relationship be-
tween large-scale climate indices such as the North Atlantic
Oscillation (NAO) and windstorm damage. Although we find
only a moderate positive correlation between extended win-
ter NAO and storm damage in northern European countries
(consistent with re-analysis), there is a large change in risk of
extreme seasons between negative and positive NAO states.

The intensities of the most severe storms in the event set are,
however, sensitive to the gust conversion and bias correction
method used, so care should be taken when interpreting the
expected damages for very long return periods.
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1 Introduction

Winter European windstorms are the costliest natural haz-
ard over Europe in terms of insured losses, capable of in-
flicting billions of dollars of loss per event. According to
Swiss Re (2018), of all hazards affecting Europe since
1970, the top five highest loss events (after adjusting for
inflation to 2017 USD) were all winter windstorms: Daria
(1990, USD 8.7 billion), Lothar (1999, USD 8.5 billion),
Kyrill (2007, USD 7.2 billion), 87J (1987, USD 6.7 billion)
and Vivian (1990, USD 6.5 billion).

Insurance and re-insurance companies must estimate the
financial risk posed by these events to ensure they are able
to pay out the resulting claims and to satisfy industry regu-
lations. For example, European law requires that EU-based
insurers hold enough capital to withstand the 1 in 200 year
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loss (Solvency II, 2009), and the European Insurance and Oc-
cupational Pensions Authority (EIOPA) states that insurers
must discuss the impact of climate change on their business
(EIOPA, 2022), which involves assessing trends in hazards
in present and future climate. A common technique used to
analyse risk is catastrophe modelling, in which the insured
losses due to a particular hazard are estimated by combin-
ing the hazard footprint with the clients’ exposure and pol-
icy data. For European windstorms, the footprint is defined
as the maximum wind gust associated with the storm over
a 72 h period (Haylock, 2011), where the gust is defined as
the maximum 3 s average wind speed at 10 m height, accord-
ing to World Meteorological Organization observing prac-
tices (WMO, 2018). The catastrophe models can be run us-
ing either a single event footprint (e.g. a notable past event
or plausible extreme future event), which can be useful for
verifying the catastrophe model or understanding the vulner-
ability of the insurer, or an event set – a set of thousands of
event footprints – to estimate large return period losses. Since
observational and re-analysis datasets typically span decades
rather than centuries, event set footprints must be constructed
using either statistical models, dynamical (climate) models
or a combination of the two.

In purely statistical methods, footprints can be generated
in a variety of ways: the geospatial dependencies of observed
extreme gusts can be captured in statistical models, allowing
footprints to be generated from a random seed value (e.g.
Youngman and Stephenson, 2016), or historical footprints
can be “perturbed” to generate a number of new events that
differ slightly from past ones, so are deemed to be physi-
cally plausible (e.g. Welker at al., 2021). Alternatively, a set
of storm tracks can be generated based on the properties of
historical tracks, and new footprints can be generated from
the statistical relationship between tracks and footprints (e.g.
Sharkey et al., 2019, 2020).

Dynamical methods using climate models are commonly
used in estimations of windstorm risk, in particular with re-
gards to estimating the effect of climate change (e.g. Lecke-
busch et al., 2007; Della-Marta and Pinto, 2009), but the
coarse resolution of the models means that to generate an
event set for use in an industry catastrophe model, statis-
tical downscaling and bias correction of the footprints are
often required. Examples include Haylock (2011), who ex-
tracted their windstorm event set from an ensemble of re-
gional climate models at 25 km resolution, driven by coarse-
resolution global climate models. The resulting footprints
were downscaled further to 7 km by accounting for changes
in roughness and orography between the 25 and 7 km grids.
Finally, the climate model footprints were bias corrected
by applying quantile mapping to historical footprints on the
same 7 km grid. The Windstorm Information Service (WISC)
project (Steptoe, 2017), generated an event set from the UP-
SCALE atmosphere-only global climate models at approx-
imately 25 km resolution (Mizielinski et al., 2014), which
were then downscaled and bias corrected to 4.4 km, again

using quantile mapping to historical storms on the target grid
(but without correcting for roughness and orography). Dy-
namical event sets can also be produced from medium to
long-range ensemble prediction systems (e.g. Osinski et al.,
2016; Walz and Leckebusch, 2019), in which the chaotic na-
ture of the atmosphere means that after a few days to weeks
individual storms in each ensemble member will be largely
independent.

Advantages of the statistical methods include low compu-
tational costs, but they are ultimately modelled based on a
short observational time period (typically less than 50 years
for re-analysis and observational datasets), and although they
can be used to generate thousands of footprints, the fre-
quency of each of those footprints is difficult to estimate.
The dynamical–statistical methods are computationally ex-
pensive, but the frequency of the windstorms can easily be
taken directly from the model, and they are likely to be phys-
ically plausible. However, it is known that low-resolution
global climate models suffer from biases in the North At-
lantic storm track, where it is too zonal or displaced south-
wards (Zappa et al., 2013), meaning that event sets with low-
resolution driving models could lead to errors in the spatial
distribution of estimated storm loss.

In this paper, we describe an event set produced from
the PRIMAVERA (process-based climate simulation: ad-
vances in high-resolution modelling and European climate
risk assessments; https://www.primavera-h2020.eu/, last ac-
cess: October 2022) high-resolution global climate model
ensemble. PRIMAVERA was a European Union Horizon
2020 project whose aim was to generate advanced and well-
evaluated high-resolution global climate model datasets and
to interpret or process these data to meet the needs of sec-
tors such as energy, water management, agriculture, trans-
port, health and finance/insurance.

The event set is generated from the historical atmosphere-
only experiments from five different models, at both a stan-
dard CMIP6-type resolution (typically 100 km) and at a sig-
nificantly higher resolution (towards 25 km), producing ap-
proximately 1300 years of model data. Climate models run
at these higher resolutions suffer less from the North Atlantic
storm track biases found in models at typical CMIP5 gen-
eration and earlier resolutions (∼ 200–300 km) (e.g. Zappa
et al., 2013; Baker et al., 2019; Priestley et al., 2020), which
should result in more realistic storm frequencies, spatial dis-
tributions and intensities. Possible reasons for this bias re-
duction include improvements in the representation of oro-
graphic drag which improves the simulation of climatologi-
cal stationary Rossby waves (Pithan et al., 2016), increased
latent heating leading to a more realistic intensification of
extra-tropical cyclones (Willison et al., 2013) and a more
tilted storm track (Tamarin-Brodsky and Kaspi, 2017), im-
provements in European blocking which help steer the storm
track northwards rather than into central Europe (Schie-
mann et al., 2020), and sharpening of sea surface tempera-
ture (SST) gradients and reductions in SST biases leading
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to changes in low-level baroclinicity and latent heat supply
(Small et al., 2019).

Since the PRIMAVERA models are global, it is also pos-
sible to associate each storm with large-scale climate in-
dices such as the North Atlantic Oscillation (NAO). Given
recent advances in NAO prediction on seasonal (Scaife et al.,
2014) to annual (Dunstone et al., 2016) and multi-annual
(Athanasiadis et al., 2020; Smith et al., 2020) timescales, this
gives insurers the possibility of using their catastrophe mod-
els in a predictive mode, assessing the change in storm risk
for a given NAO forecast.

The aim of this paper is to describe the method used to cre-
ate the event set from PRIMAVERA models and to show how
it compares to re-analysis. The method involves first identi-
fying the storms using a tracking algorithm, then extracting
the model surface winds associated with each storm to make
the footprint. The footprints from different climate models
are then re-gridded to a common 0.25◦× 0.25◦ grid, and the
model winds are bias corrected and converted to gusts using
quantile mapping. We note that the concept of this event set
is similar to the stochastic event set created for the WISC
project (Steptoe, 2017). The main differences between the
two event sets are (i) use of a multi-model ensemble for PRI-
MAVERA rather than a single model ensemble, (ii) separat-
ing the footprints of storms occurring in the same 72 h period
in order to study temporal clustering and (iii) applying differ-
ent bias correction methods.

The model and re-analysis data used are described in
Sect. 2, and Sect. 3 gives a full description of the method.
In Sect. 4 we show the comparison with re-analysis and also
the relationship between storm loss and the NAO. Section 5
discusses the sensitivity of footprint intensity to the bias cor-
rection method, and conclusions are given in Sect. 6.

2 Data

2.1 PRIMAVERA model data

The event set is made from the highresSST-present PRIMAV-
ERA experiments. These simulations are atmosphere only,
covering the period 1950–2014, and use the historical forc-
ings detailed in the HighResMIP protocol (Haarsma et al.,
2016, Table 1). The lower boundary was forced by the daily,
1/4◦ Hadley Centre Global Sea Ice and Sea Surface Tem-
perature (HadISST.2.2.0; Kennedy et al., 2017) dataset, with
area-weighted regridding used to map this to each model
grid.

The PRIMAVERA models used for the event set are sum-
marized in Table 1. Each model was run at both a standard
CMIP6-type resolution (typically 100 km) and at a signif-
icantly higher resolution (towards 25 km), and some mod-
els ran multiple ensemble members. Note that although the
CMIP6-type resolution is often referred to as “low reso-
lution”, these resolutions were considered relatively high

for global models of the CMIP5 generation. For exam-
ple, the CMIP5 model HadGEM2-ES on the N96 grid
(∼ 135 km grid spacing at mid-latitudes) was categorized by
Zappa et al. (2013) as one of the higher-resolution CMIP5
models with a small bias in the North Atlantic storm track.

A windstorm footprint is defined as the maximum 3 s gust
associated with the storm over a 72 h period, but because
only two PRIMAVERA models outputted maximum gusts
we instead extract daily maximum surface (10 m) winds
(sfcWindmax) from the PRIMAVERA models and convert
from winds to gusts as described in Sect. 3.1.3. Only data
for October–March are extracted to cover the extended win-
ter season. These winter storms tend to be associated with
extra-tropical cyclones and span a larger spatial area com-
pared to smaller, convective storms that occur in summer.
The 6-hourly 850 hPa u and v winds were extracted to calcu-
late the relative vorticity needed for the tracking algorithm to
identify storms, described in Sect. 3.1.1.

2.2 Re-analysis data

To validate the PRIMAVERA event set, footprints were
also made from the ECMWF Reanalysis 5th Generation
(ERA5; Hersbach et al., 2020; Climate Data Store, 2022)
wind gusts. This dataset covers the period 1979–2014 on a
0.25◦× 0.25◦ grid (∼ 18 km grid spacing at 50◦ N). Hourly
maximum 3 s gusts for October–March were extracted and
converted to daily maxima for fair comparison with PRI-
MAVERA models. A re-analysis was chosen to represent
observations rather than station data because of complete
spatial coverage, but we acknowledge that re-analyses can
suffer from biases. There is limited literature on the valida-
tion of ERA5 gusts, although Minola et al. (2020) showed
a high temporal correlation between ERA5 gusts and sta-
tion observations in Sweden, with evidence of a negative bias
for strong gusts over mountainous regions. We performed a
comparison of the gusts in ERA5 footprints to station obser-
vations for a selection of famous historical storms revealing
reasonable agreement between ERA5 and observations (see
https://doi.org/10.5194/nhess-2022-12-AC1, Fig. R1).

Tracking to identify the re-analysis storms (Sect. 3.1.1)
was performed on an earlier version of ECMWF re-analysis,
ERA-Interim (Dee et al., 2011), since ERA5 tracks were un-
available at the time. Since Northern Hemisphere cyclone
tracks have been shown to match well between re-analyses,
particularly for intense cyclones (Hodges et al., 2011), the
inconsistency between the tracks and gust data is expected to
be small.

3 Methods

3.1 Generating the footprints

To comply with industry standards, a windstorm footprint
is defined as the maximum 3 s gust associated with the
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Table 1. Summary of PRIMAVERA models used for the event set. *Only two of the three ensemble members run at each resolution were
used due to tracking failures.

Institution MOHC, UREAD,
NERC

EC-Earth KNMI,
SHMI, BSC, CNR

CERFACS MPI-M CMCC

Model name HadGEM3-GC3.1 EC-Earth3P CNRM-CM6.1 MPI-ESM1.2 CMCC-CM2-
(V)HR4

Resolution names LM, MM, HM LR, HR LR, HR HR, XR HR4, VHR4

Model atmosphere
component

MetUM IFS cyc36r4 ARPEGE6.3 ECHAM6.3 CAM4

Atmospheric dynamical
scheme (grid)

Grid point (SISL;
lat–long)

Spectral (linear;
reduced Gaussian)

Spectral (linear;
reduced Gaussian)

Spectral (triangular;
Gaussian)

Grid point (finite
volume; lat–long)

Atmospheric grid name N96; N216; N512 Tl255; Tl511 Tl127;Tl359 T127; T255 1◦× 1◦;
0.25◦× 0.25◦

Atmospheric mesh
spacing at 50◦ N (km)

135; 60; 25 71; 36 142; 50 67; 34 64; 18

Atmospheric nominal
resolution (CMIP6)

250; 100; 50 100; 50 250; 100 100; 50 100; 25

Ensemble members at
each resolution

5; 3; 3 2*; 2* 1; 1 1; 1 1; 1

Atmospheric model
levels (top)

85 (85 km) 91 (0.01 hPa) 91 (78.4 km) 95 (0.01 hPa) 26 (2 hPa)

Reference(s) Williams et al. (2018);
Roberts et al. (2019)

Haarsma et al. (2020) Voldoire et al. (2019) Gutjahr et al. (2019) Cherchi et al. (2019)

Figure 1. Footprint domain and countries used for calculation of
loss index.

storm over a 72 h period. The footprint domain is defined as
25◦W to 40.5◦ E in longitude and 34.4 to 71.5◦ N in latitude
(Fig. 1).

Storms are first identified with the tracking algorithm
(Sect. 3.1.1). One 72 h (3 d) footprint is produced per track,
despite typical track lengths being longer than 72 h. Since
daily data are used, each 72 h period runs from 00:00 Z on
day 1 to 00:00 Z on day 4. Following Roberts et al. (2014),
for each track, the central day (day 2) of the 72 h period over
which to take the maximum gusts is identified by finding the
day of the maximum 10 m wind speed over land within 3◦ of
the track centre (output by the tracking algorithm).

Often two or more tracks will have the same or overlap-
ping 72 h periods identified for their footprints. Taking the
maximum winds or gusts over the whole domain for the

specified 72 h period for each event would result in several
cyclones being present in a single footprint, and many cy-
clones would be counted twice in the resulting event set. The
footprints are therefore separated as described in Sect. 3.1.2.
Finally, the footprints must be re-gridded to a common, high-
resolution grid, converted from maximum winds to max-
imum 3 s gusts, and bias corrected; this is described in
Sect. 3.1.3.

Footprints were made for every extra-tropical cyclone
track identified by the TRACK algorithm. Many of these cy-
clones do not have strong enough winds to cause damage,
but since users will be interested in different domains and
use different estimations of storm severity or vulnerability
functions, all footprints are retained so that users can perform
filtering tailored to their own needs.

3.1.1 Storm tracking

The identification and tracking of the extra-tropical cyclones
in the model data are performed following the approach
used in Hoskins and Hodges (2002) based on the Hodges
(1995, 1999) tracking algorithm (TRACK). The cyclones are
tracked on the 6-hourly, T42 spectrally filtered 850 hPa rela-
tive vorticity field. Planetary waves with a wave number less
than 5 are filtered out to remove the large-scale background
and improve reliability of the algorithm. Only cyclones with
a maximum intensity greater than 1.0× 10−5 s−1 lasting at
least 2 d and travelling more than 1000 km are retained for
the footprints.
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The tracking was performed on individual seasons
(December–February, DJF, March–May, MAM, June–
August, JJA, September–November, SON), but footprints
were generated for all cyclones identified in the extended
winter (October–March). Some cyclone tracks may have
been cut short by crossing the season boundaries or split into
two separate tracks, but assuming a constant cyclone forma-
tion rate throughout the season and that the severe winds of a
cyclone last 72 h (as is assumed by in the insurance industry),
this will only affect 3 % of tracks.

The storm tracking in the ERA-Interim re-analysis was
performed in a similar way (see Roberts et al., 2014, for a
full description). The main difference is that the re-analysis
tracking used 3-hourly data, but only 6-hourly track positions
were retained to be consistent with the PRIMAVERA model
tracks.

Due to technical issues, occasionally the tracking algo-
rithm was unable to complete a full winter season. It was
not possible to diagnose the issue and re-run the tracks in the
time frame available, so these seasons were removed from
the event set. A total of 12 model winters were affected, listed
in Appendix A.

3.1.2 Footprint separation

It was not possible to apply the method of footprint separa-
tion used in previous studies such as Roberts et al. (2014),
since this was developed for 6-hourly maximum wind data
rather than daily maxima. Instead, to separate footprints of
storms with overlapping 72 h periods, for each day in a model
run, each grid point in the daily maximum wind field is as-
signed to a storm track by identifying the closest cyclone
track point during that day. Grid points more than 1500 km
from any track point are not assigned to a cyclone track.
To generate the footprint for each cyclone track, the daily
maximum winds for the 72 h period (specified as above) are
extracted, with the grid points assigned to other cyclones
masked out, and the 72 h maximum is taken. Figure 2 demon-
strates the method in ERA5 data for the observed famous
storms Lothar and Martin, which struck France within 24 h
of each other on 26 and 27 December 1999. Without separat-
ing the wind fields in this way, Fig. 2 shows that the footprints
of Lothar and Martin would be almost identical over land.

On some occasions storm tracks can come within 1500 km
of each other in the same 24 h period, making it impossible
to separate the storms using daily data. In these cases the
winds can be assigned to the wrong storm, and the footprints
appear to have truncated wind fields (this can be seen over
the Atlantic in the final footprint for storm Martin; Fig. 2h).
However, inspection of footprints in the event set shows that
most strong winds (> 20 ms−1) over land are captured in
each footprint, and the truncation should not have an effect
on seasonal aggregate losses.

3.1.3 Downscaling, bias correction and conversion
from winds to gusts

Insurance industry windstorm footprints are typically maps
of maximum 3 s gust at 10 m rather than wind speed on a
very high-resolution grid (maximum grid spacing ∼ 25 km,
although < 10 km is preferred; Bojovic et al., 2017). To be
consistent with these industry standards, the footprints must
be converted from wind to gust speeds and downscaled to a
common grid. Here the target grid is that of the ERA5 gusts
(0.25◦× 0.25◦, approximately 18 km grid spacing at 50◦ N),
and ERA5 gusts are taken to represent observations.

We use quantile mapping to achieve both the conversion
from winds to gusts and bias correction. The method is as
follows. The model daily maximum wind speeds are down-
scaled to the ERA5 grid using linear interpolation. At each
individual grid point, the empirical cumulative distribution
function (CDF) is calculated at probability intervals of 0.5 %
up to the 98th percentile. Above the 98th percentile, the
CDF is fitted using a generalized Pareto distribution (GPD),
which is commonly used for fitting extreme wind speeds
(e.g. Sharkey et al., 2020). Following Fawcett and Walshaw
(2012), declustering to remove temporal dependence is not
applied to improve precision of parameter estimates. The
mean extremal index, estimated using the interval estimator
of Ferro and Segers (2003), has a mean value of 0.61, so
the effect of clustering on the return levels is expected to be
small relative to other errors (Fawcett and Walshaw, 2012).
The GPD fitting is performed separately for each model.

The quality of the GPD fits was assessed by calculating
the difference between the fitted and empirical value of the
99.8th percentile. If this was found to be greater than 1 ms−1

at a grid point i, then the parameters of the GPD fit were
taken from the mean of the surrounding grid points. The
CDF estimations as described above were then repeated on
the ERA5 gust distribution. The model CDFs are estimated
on wind speeds in the time period which overlaps with the
ERA5 dataset, 1979/80–2013/14 (October–March only), to
take into account any non-stationarity in the wind and gust
speed distributions due to climate change and/or low fre-
quency climate variability.

The daily maximum gust speeds, gi(t), at each grid point i
and time t are then estimated using a transfer function:

gi(t)= f
−1
ERA5,i [fmod,i (wi(t))], (1)

where wi(t) is the daily maximum model wind speed at grid
point i, and fERA5,i (x) and fmod,i (x) are the estimated CDFs
of the ERA5 gusts and model wind speeds at grid point i,
respectively.

Quantile mapping has been used for this purpose in pre-
vious event set methodologies (e.g. Steptoe, 2017; Osinski
et al., 2016), but note that here quantile mapping is performed
for each grid point individually rather than pooling data over
the whole domain. The reason for this is demonstrated in
Fig. 3, which shows quantile–quantile (q-q) plots of the
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Figure 2. Storm separation method: panels (a–d) show the daily maximum gust fields from ERA5 for 25–28 December 1999, with the
6-hourly track points of each storm identified in the domain on that day (the cyan number gives the track identification number). The thick
black lines mark the shape of the mask used for each track on each day; for example, the footprint of Lothar (track 507) is made by taking
the maximum of the gusts in the marked areas around track 507 (the rest of the gusts are set to missing data) for 25–27 December. The
resulting footprint is shown in panel (g), compared to taking the maximum gusts over the whole domain on the same days shown in panel (e).
Panels (f) and (h) are the same for storm Martin (track 514).

October–March daily maximum gusts from ERA5 against
the October–March daily maximum wind speeds from the
PRIMAVERA model HadGEM3-GC3.1-MM (other models
are shown in Appendix B) for a selection of major cities
around Europe. The mapping from winds to gusts varies
considerably depending on location; e.g. a 5 ms−1 wind
speed in London maps to a gust speed of ∼ 9 ms−1, whereas
the same wind speed in Geneva maps to a gust speed of

nearly 21 ms−1. One of the reasons for this discrepancy is
the use of an effective roughness parametrization in climate
models to take into account the effects of sub-grid-scale
orography and simulate realistic orographic drag on the up-
per level flow (Wood and Mason, 1993; Howard and Clark,
2007; Williams et al., 2020). This can, however, lead to unre-
alistically low surface wind speeds, especially over high land

Nat. Hazards Earth Syst. Sci., 22, 3585–3606, 2022 https://doi.org/10.5194/nhess-22-3585-2022
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Figure 3. q-q plots at selected locations (points in increments
of 0.5 %) showing the relationship between ERA5 daily maximum
3 s gusts and daily maximum model winds in HadGEM3-GC31-
MM. The PRIMAVERA wind speeds have been linearly interpo-
lated to the ERA5 grid.

(Roberts et al., 2014), and the degree of the bias is strongly
dependent on the orographic properties of the grid point.

A disadvantage with mapping on individual grid points is
that there are a limited number of data points available for
fitting the GPD, so extreme gust values in the corrected foot-
prints should be considered highly uncertain. In some cases,
the mapping from model winds to gusts becomes unstable
leading to unrealistically high estimated gusts, for example
when an input model wind speed is greater than the maxi-
mum used in the fitting period. In these cases the estimated
gusts are capped at 60 ms−1 over land and 70 ms−1 over sea
grid points. The limitations of this method to convert wind
speeds to gusts are discussed further in Sect. 5.

3.2 Loss estimation

To estimate the damage resulting from each storm in the
event set, for each storm footprint we calculate a dimension-
less loss index (LI), based on the index derived by Klawa and
Ulbrich (2003):

LI=
∑

i
areai × pop densi ×

(
vi

v98,i
− 1

)3

for vi > v98,i, (2)

where areai and pop densi are the area and population den-
sity of grid point i, vi is the maximum gust speed in the
footprint at grid point i, and v98,i is the 98th percentile gust
speed at that same location (calculated separately for each
model). Following the approach of the WISC project (Step-
toe, 2017), unless stated otherwise, the area summation is
over land grid points for the following countries: Luxem-
bourg, United Kingdom, Ireland, France, Spain, Portugal,
Belgium, Netherlands, Germany and Denmark (shaded coun-

tries in Fig. 1). Population data are from the Gridded Popu-
lation of the World, Version 4 (GPWv4; CIESIN, 2016).

This loss index has been found to correlate well with ag-
gregate insured losses over a season in Germany and the UK
(Klawa and Ulbrich, 2003; Leckebusch et al., 2007). The in-
dex is calculated per event rather than the summation of daily
data over a season, which is a commonly used modification
(e.g. Karremann et al., 2014; Priestley et al., 2018). For the
aggregate (total) losses per season, the LI is summed over all
events in a season. We note that other loss indices exist (see
Prahl et al., 2015, for example), and those with exponents
greater than three may amplify differences between models
and re-analysis compared to the results presented here.

3.3 NAO calculation

In Sect. 4.4 the NAO index is defined as the anomaly in
the difference between mean sea level pressure between a
region centred on the Azores (latitude 36–40◦ N, longitude
20–28◦W) and one centred on Iceland (latitude 63–70◦ N,
longitude 16–25◦W; Dunstone et al., 2016). In this paper the
extended winter mean NAO is calculated for the re-analysis
and each climate model. The anomalies each winter are given
with respect to the extended winter mean of the whole pe-
riod available for each model (1950/51–2013/14) and the
re-analysis (1979/80–2013/14), although almost identical re-
sults are obtained when anomalies are given with respect to
the common period.

4 Results

4.1 Storm tracks and footprints

Footprints were generated for all extended winter tracks
identified by TRACK for all models, producing a total of
1332 years of data. In total there are 268 620 footprints,
69 482 of which have a non-zero loss index (LI), and 2738
represent severe damage storms (based on the LIs of the
named events in Roberts et al., 2014, these are defined as
events with LI> 1.0× 106; such storms occur approximately
once every two winters over Europe and make up 70 % of
total losses). Table 2 compares the mean number of storms
per extended winter in PRIMAVERA models to re-analysis
for all storms, storms with a non-zero LI and severe storms.
Numbers compare well with re-analysis, although all PRI-
MAVERA models appear to slightly underestimate the to-
tal number of storms. The number of footprints with a non-
zero LI tends to increase with model resolution, possibly be-
cause to have LI> 0 there must be regions with wind speeds
greater than the local 98th percentile, which may occur in a
higher proportion of storms if small-scale features embedded
with high wind speeds are better resolved. The mean number
of severe storms per winter remains remarkably stable at ap-
proximately two storms per winter, matching the re-analysis.
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Figure 4. Track densities from re-analysis and PRIMAVERA models for tracks with a non-zero loss index (LI) and severe storms
(LI> 1× 106). Following Economou et al. (2015), track density is defined by the number of tracks with at least one track point passing
within 6.3◦ of each grid box (on a 2.5◦× 2.5◦ grid) per winter. The re-analysis track densities for non-zero LI storms are shown in (a) and
severe storms in (g). The track densities and bias (model – re-analysis) for the low-resolution PRIMAVERA models are shown in panels (b)
and (e) for the non-zero LI storms (h and k for the severe storms), as well as for the higher-resolution PRIMAVERA models in panels (c)
and (f) (i and l for the severe storms). The medium-resolution version of HadGEM3-GC3.1 is included in the higher-resolution models. The
change in bias (| low-resolution bias | − | high-resolution bias |) from low to high resolution is shown in panel (d) for the non-zero LI storms
and in (j) for the severe storms, with red areas corresponding to improvement with increased resolution. The yellow contour marks where
the bias is statistically different from 0 with 95 % confidence according to Welch’s unequal variances t test.

The increase in storm numbers with resolution is also re-
flected in Fig. 4, which shows the track densities for foot-
prints which have non-zero LI and for severe storms only.
The maximum track density is located over the UK, which
is expected given the area used to calculate the LI (Fig. 1)
and the fact that maximum winds tend to occur south of the
tracks. The underestimation of non-zero LI tracks is most
pronounced over the UK and western parts of the Euro-
pean continent, but the bias is much reduced in the higher-
resolution models. For severe storms the bias in track density
is mostly statistically insignificant over western Europe, but
there is a slight over-estimation in storm numbers in the east-
ern Mediterranean Basin at both resolutions.

The track densities for the individual models are shown in
Appendix D. The models all show the reduction in bias in
non-zero LI storm numbers over western Europe as resolu-
tion increases. The response is more mixed for the intense

storms, although the biases are mostly not statistically sig-
nificant.

Figure 5 shows a selection of some of the most damag-
ing storms from the re-analysis and ones of similar strength
(as measured by the LI) from the PRIMAVERA models. The
figure shows that the models can simulate different “types”
of storms, for example a large area storm like Daria (Jan-
uary 1990), intense, narrow storms such as Anatol (Decem-
ber 1999), storms with a southern track hitting the Iberian
peninsula, such as Klaus (January 2009), and storms with a
strong southwest–northeast tilt which travel northwards from
Iberia to northern Europe such as 87J (the Great Storm of
1987; October 1987). Note that the model simulations are
not attempting to simulate the re-analysis storms (as can be
seen by the very different dates for the footprints); the figure
is simply to illustrate the variety of storms that can be simu-
lated. Also shown in Fig. 5 are the footprints for the storms
with approximate return periods of 200, 100 and 50 years.
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Table 2. Mean number of total footprints, footprints with a non-zero loss index and severe footprints per winter for each PRIMAVERA and
re-analysis footprints. For each PRIMAVERA model, the means from both the low- and high-resolution versions are given in each row. *The
model HadGEM3-GC3.1-MM is included in the “high-res” count.

Names of the low-, med- and high-
resolution models

Mean number of footprints per
winter

Mean number of footprints
with non-zero loss index per
winter

Mean number of severe
footprints per winter

Low res Med res High res Low res Med res High res Low res Med res High res

CMCC-CM2-HR4
CMCC-CM2-VHR4

215.3 220.6 42.1 62.8 2.3 2.2

CNRM-CM6-1
CNRM-CM6-HR

198.3 216.1 44.3 61.9 2.1 2.3

EC-Earth3P
EC-Earth3P-HR

200.6 199.3 52.6 66.8 2.2 2.3

HadGEM3-GC3.1-LM
HadGEM3-GC3.1-MM
HadGEM3-GC3.1-HM

189.9 202.6 205.96 41.6 51.5 61.7 2.0 1.8 1.8

MPI-ESM1.2-HR
MPI-ESM1.2-XR

203.6 206.2 45.1 54.4 2.2 2.4

Low-res models,
high-res models*

196.8 206.1 44.4 59.2 2.1 2.0

All models 201.7 52.2 2.1

Re-analysis 237.8 64.7 2.0

The footprint of the 200-year event is truncated indicating
it may be part of a complex cluster of storms. The 100-
and 50-year events are both large-scale events over northern
Europe, with footprints resembling that of Daria. There are
small areas of very extreme gusts around Benelux, Germany
and Poland, whose magnitude should be considered uncer-
tain due to the bias correction (see Sect. 5).

4.2 Loss index distribution

We now examine how well the PRIMAVERA models cap-
ture the intensity distribution of storms, as measured by the
loss index. Figure 6 plots the distribution of the number of
severe storms (those with LI> 1× 106) per extended winter
as a function of LI for PRIMAVERA and re-analysis data.
The re-analysis dataset contains only 35 winters, so the dis-
tribution contains more noise than that for the PRIMAVERA
models. For a fair comparison with the models, we therefore
take 1000 random samples (with replacement) of 35 winters
from the PRIMAVERA dataset to estimate the noise in a 35-
winter sample. The vertical red lines on the PRIMAVERA
distribution in Fig. 6 show the 95 % interval for each inten-
sity bin based on the random samples. The re-analysis distri-
bution lies well within the sample distributions of the mod-
els, showing that the models’ and re-analysis distributions are
consistent with one another.

Figure 7a shows the empirically estimated return periods
for seasonal aggregate losses (seasonal sum of LI) in the

PRIMAVERA models and the re-analysis data. The extreme
tail of the PRIMAVERA data (seasons with an aggregate loss
above the 90th percentile) is fitted with a GPD curve (Welker
et al., 2021, Walz and Leckebusch, 2019). Note that three
model storms (listed in Appendix C) had to be removed from
the seasonal aggregate losses as they were considered un-
realistically extreme. They are clear outliers when plotting
LI against empirical return period for individual storms, and
their inclusion prevented a satisfactory GPD fit. The extreme
LIs are due to single grid points with extreme gusts occur-
ring over large population centres and are a result of the bias
correction method used (discussed further in Sect. 5). The ag-
gregate losses before their removal are shown with the open
red circles in Fig. 7a.

The 95 % confidence intervals on the GPD fit have been
quantified by repeatedly (1000 times) randomly sampling
M years of data from the fitted function (where M is the
number of years of data used in the original fit, equal to 1332
for PRIMAVERA) and then re-fitting. Assuming the model
LI distribution is representative of observations, the GPD fit
estimates that the most extreme season over Europe in re-
analysis (1989/90), which had a total LI of 4.5× 107, has a
return period of 75–200 years under present-day conditions,
longer than the 35 years estimated from the re-analysis data
alone.

To check if the PRIMAVERA models’ return periods are
consistent with the re-analysis data, as in Fig. 6, 1000 35-
year samples were taken from the PRIMAVERA dataset, and
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Figure 5. Example of observed and simulated footprints: left column panels (a, d, g, j) are re-analysis footprints of the famous storms Daria,
Anatol, Klaus and 87J (the Great Storm of 1987). The footprints in the middle and right columns are from PRIMAVERA models, with each
row showing two examples of storms of a similar type to the re-analysis examples. The central date of each footprint is given in the panel
titles. The bottom row (m–o) shows the footprints for events with return periods of approximately 200, 100 and 50 years.

the 95 % intervals of the measured aggregate losses for each
return period are shown with the dashed lines in Fig. 7b. The
ERA5 losses are well within the bounds of the PRIMAVERA
data and demonstrate the huge uncertainty in losses/return
periods when only 35 years of data are used. Figure 7 also
shows the return period curve for PRIMAVERA aggregate
losses when an alternative bias correction and conversion to
gusts is used, which is discussed further in Sect. 5.

4.3 Storm clustering

Serial (or temporal) clustering of windstorms is the tendency
of these events to arrive in groups (Dacre and Pinto, 2020).
It has been shown in both observations and climate models
that storms are serially clustered in the flanks and exit region
of the North Atlantic storm track and thus on their arrival
into Europe (e.g. Mailier et al., 2006; Vitolo et al., 2009;
Pinto et al., 2013; Economou et al., 2015). Priestley et al.
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Figure 6. Distribution of the number of severe storms
(LI> 1× 106) per extended winter as a function of LI in
PRIMAVERA models (red) and re-analysis (black). Vertical red
lines show the 95 % range in frequency estimated from 1000
35-year samples (with replacement) from the model data. Note that
the last LI bin (LI> 17× 106) is larger.

(2018) demonstrated the importance of clustering in estimat-
ing losses from a high-resolution climate model, with season-
ally aggregated losses 20 % higher in the (clustered) climate
model output compared to random re-sampling of the data
assuming a Poisson distribution for the storm frequency.

We assess clustering in the PRIMAVERA simulations by
comparing the distribution of the frequency of severe storms
(LI> 1× 106) per season to re-analysis (Fig. 8). As in Fig. 6,
the consistency between PRIMAVERA and re-analysis data
is assessed by taking 1000 35-year samples of PRIMAVERA
data. The re-analysis distribution is consistent with being a
sample from the PRIMAVERA data, and the models can even
simulate seasons as extreme as winter 1989/90, with eight
severe storms over Europe. There are five (of 1332) seasons
in the model with eight or more severe storms, giving the
chance of this occurring at least once in a 35-year period of
1− (1327/1332)35

= 12 %.
The PRIMAVERA storm numbers show a clustered dis-

tribution, with the dispersion statistic (equal to σ 2/µ− 1,
where σ 2 is the variance of storm counts per season, and
µ is the mean; Mailier et al., 2006) of 0.38, which is signif-
icantly greater than zero with 95 % confidence (p = 0.018,
estimated from the distribution of dispersion statistic assum-
ing a Poisson distribution) and close to the re-analysis value
of 0.35 (significantly greater than zero with 90 % confidence,
p = 0.07).

4.4 Dependence on NAO

The North Atlantic Oscillation (NAO) is the primary mode
of variability in the North Atlantic European region (Wallace
and Gutzler, 1981) and is closely linked with the position
of the North Atlantic storm track (Rogers, 1990) and conse-
quently European windstorm damage (Walz and Leckebusch,

2019). Recent advances in the predictability of the NAO on
timescales of seasons to decades (Scaife et al., 2014; Dun-
stone et al., 2016; Athanasiadis et al., 2020; Smith et al.,
2020) have thus opened up the possibility of being able to
predict European storminess on long-range timescales (Be-
fort et al., 2019). Since the footprints in PRIMAVERA are
generated from a global climate model, it is possible for in-
surers to extract storms associated with different NAO states
to estimate the effect of the NAO on their particular portfolio
and even estimate the change in expected losses for a given
NAO forecast.

Figure 9a and b show the extended winter aggregate
UK LIs and severe storm counts over the UK against ex-
tended winter mean NAO from PRIMAVERA models and
re-analysis. The threshold for severe storms is reduced from
the European LI value of 1× 106 to 1× 105 to take into ac-
count the smaller area and population of the UK. The UK
is chosen as an example because it is well within the north-
ern region of influence of the NAO (e.g. Hurrell and Deser,
2009).

Figure 9a shows there is a non-linear relationship be-
tween aggregate storm loss and NAO, with a clear increase
in risk of a high-loss season as NAO increases. Although
the rank correlation coefficients (ρ) between aggregate losses
and NAO for PRIMAVERA and re-analysis are modest (0.29
and 0.41, respectively, both statistically significantly differ-
ent from zero with > 95 % confidence), PRIMAVERA data
estimate that the probability of an extreme season over the
UK (defined as having an aggregate seasonal loss above the
90th percentile, 4× 106) increases to 0.2 for NAO> 5 hPa
and decreases to just 0.06 for NAO<−5 hPa.

There is a similar positive correlation for the number of
severe storms striking the UK each winter (ρ= 0.32 for PRI-
MAVERA and 0.40 for re-analysis; see Fig. 9b). Figure 9c
shows the correlations between extended winter NAO and
aggregate losses for the other countries in the domain and
shows the expected relationship with positive (negative) cor-
relations for the northern (southern) countries. The 95 % sig-
nificance levels for the PRIMAVERA data (from a two-tailed
t test) are shown by the dashed red lines, indicating that all
the PRIMAVERA correlations (shown by the red dots) are
statistically significant. As before, consistency with ERA5 is
tested by randomly sampling 35-year time series from the
PRIMAVERA dataset, and the 95 % range of correlations for
35-year samples are shown by the vertical solid red lines in
Fig. 9c. All the ERA5 correlations are within the bounds of
the PRIMAVERA data.

5 Uncertainty in storm severity due to the bias
correction and conversion to gusts method

Figure 7 showed that there were three model storms with
unrealistically high loss indices, which had to be removed
from the seasonal aggregate losses to obtain a satisfactory
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Figure 7. Return period curve for seasonal aggregate losses. The GPD fit to PRIMAVERA data is shown by the red line, with individual
seasons shown by the red dots. The open red circles show the aggregate losses for the three seasons which contained the unrealistically
extreme storms before these storms were removed from the aggregate (plotted at the same return period). The cyan points show the losses
from the PRIMAVERA data using an alternative bias correction and gust conversion method described in Sect. 5. The shading shows
the 95 % confidence intervals to the GPD fits, estimated by re-sampling. ERA5 data are shown in black. Panel (b) is a close-up version of
panel (a). The dashed lines in (b) show the 95 % confidence intervals in LI for a given return period when sampling 35 years of PRIMAVERA
data.

Figure 8. Distribution of number of severe storms per winter in
PRIMAVERA models (red) and re-analysis (black). The red lines
on each bar show the 95 % range of season counts for 1000 35-year
re-samples of PRIMAVERA data.

GPD fit for the calculation of return periods. This is due to
the quantile mapping method to bias correct and convert to
gusts, which relied on GPD fits of the daily PRIMAVERA
model and ERA5 winds/gusts (Sect. 3.1.3). As the GPD fit-
ting is performed separately for each model over the common
time period with ERA5 and at individual grid points, only
35 years of data are available for each fit (apart from where
multiple ensemble members are available). Inspection of the
most extreme footprint shows an intense storm centred over
Barcelona, where the input raw model winds in this region
were substantially greater than the maximum model winds
used in the GPD fitting period. Due to the high sensitivity of

the transfer functions and the fact that the loss index is pop-
ulation weighted and dependent on the cube of the gust, the
high gusts in this area have a huge impact on the resulting
loss index.

In fact, all of the 10 most intense model storms (as mea-
sured by the LI) were for storms outside the fitting period
used for the bias correction, indicating large uncertainty in
the maximum gusts possible at each grid point. In addition,
9 of the 10 most intense model storms are centred on south-
ern Europe, off the main storm track, where excessive gusts
will have a larger impact on the LI due to the lower 98th lo-
cal gust percentile. A total of 9 of the 10 most intense storms
are also produced from the lower-resolution version of each
model, which may indicate issues in the transfer functions
when there is a large change in resolution from native to tar-
get grid.

Therefore, to estimate the sensitivity of LI to the esti-
mated cumulative distribution function of ERA5 gusts and
model winds, we tested using an empirical quantile mapping
method (e.g. Steptoe, 2017; Osinski et al., 2016) to convert
from winds to gusts. Here, instead of fitting the CDF of the
gusts and winds with a GPD curve, we linearly interpolate
between the empirically estimated quantiles. When an input
model wind is greater than the maximum wind used in the
fitting period, it is converted to the maximum ERA5 gust in
the fitting period at that grid point.

Figure 10 shows a scatter plot of the loss index of each
storm with this alternative bias correction method against
the original loss index. There is strong agreement between
the two methods, although the original method tends to give
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Figure 9. The relationship between extended winter NAO and storm damage. (a) Scatter plot of extended winter aggregate loss over the UK
against extended winter NAO for PRIMAVERA and re-analysis data. Contour levels (for aggregate losses < 1× 107) are shown to illustrate
the density of PRIMAVERA data. The contour levels are 2, 5, 10, 20, 30, 50 and 100 seasons, in bins of 2.5 hPa width in NAO and 1.1× 106

in aggregate losses. The rank correlation coefficients between aggregate losses and NAO are given in the legend. For PRIMAVERA data, the
95 % range of correlation coefficients when taking 1000 35-year random samples random samples is also shown in brackets. (b) As in (a)
but showing the number of severe UK storms (UK LI> 1× 105) per season. (c) Rank correlation coefficients between seasonal aggregate
LI and NAO over the countries in the European domain for PRIMAVERA (red dots) and re-analysis (black dots). The vertical solid red
lines indicate the 95 % distribution of correlations from 1000 35-year samples from PRIMAVERA data (not the confidence intervals on
the correlation coefficient of all 1332 years of data), to show consistency with re-analysis. The dashed red lines show the 95 % confidence
intervals of correlation coefficients for 1332 years of uncorrelated data: PRIMAVERA correlations are all outside these intervals indicating
a significant difference from zero correlation with at least 95 % confidence.

Figure 10. Scatter plot of European LI for individual footprints
from the alternative bias correction method (Sect. 5) against LI us-
ing the original method. The red line shows equality.

higher intensities. A few (∼ 20) storms show a large discrep-
ancy, with substantially higher LIs using the original bias
correction method. The estimations of LI for these storms
(when calculated over the countries shown in Fig. 1) should
be considered unreliable.

Figure 7 shows the return period curve for the aggregate
losses with the alternative bias correction method (plotted
in cyan). Figure 7b shows that this curve starts to diverge
from the original dataset around the 5-year return period. It is
likely that the alternative bias correction method gives an un-

derestimation of the “true” losses, since maximum gusts can-
not be greater than those in ERA5. Nevertheless, it demon-
strates the sensitivity of loss estimations for long return peri-
ods to the bias correction method used. It also shows that the
uncertainty in the GPD fit to the model data does not cover
the uncertainty arising from the LI values themselves.

Other bias correction methods include correcting for the
effective roughness parametrization, which leads to the un-
derestimation of model winds, as described in Howard and
Clark (2007) (or a simplified version in Haylock, 2011), or
pooling data for the GPD fits and allowing for dependencies
on covariates such as altitude, roughness and latitude (see, for
example, Economou et al., 2014, who pooled mean sea level
pressure data from North Atlantic storm tracks to fit GPD
functions but included dependence on latitude and NAO in
the fit parameters). Alternatively, the relationship between
winds on the native grid and high-resolution gusts can be
modelled (for example using linear regression) if there are
like-for-like footprints on both grids. This was not possible
here since PRIMAVERA models are free-running and not
attempting to simulate individual storms in ERA5, but this
could be achieved by dynamically downscaling a selection
of model footprints, as in Haas and Pinto (2012).
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6 Conclusions

We have produced a freely available winter windstorm event
set from PRIMAVERA global climate models for use in
insurance risk analysis, which consists of 268 620 wind-
storm footprints, covering 1332 years of data. The data are
freely available at https://doi.org/10.5281/zenodo.6492182.
The method developed to create the event set separates the
footprints of storms in the domain during overlapping time
periods, allowing characteristics such as storm clustering to
be studied more easily. To be consistent with the insurance
industry definition of a footprint, the raw model winds were
statistically converted to gusts on a 0.25◦× 0.25◦ grid. The
intensities of the most severe storms in the event set are,
however, sensitive to the gust conversion and bias correction
method used.

The damage over Europe from each storm is estimated
with a loss index. The frequency distribution of estimated Eu-
ropean windstorm losses from the resulting event set, as well
as the total losses per season, is consistent with re-analysis,
and the additional event set data greatly reduce uncertainty
on return period magnitudes. The event set also reproduces
the distribution of the number of severe European storms per
season seen in re-analysis, which is statistically distinct from
a Poisson distribution and confirms the temporally clustered
nature of severe European windstorms. The PRIMAVERA
data suggest that the total loss of the most extreme season
in the re-analysis data, winter 1989/90, has a return period
of 75–200 years (in present-day conditions), longer than the
empirical estimation from re-analysis (35 years).

The model also simulates a relationship between extended
winter aggregate storm loss and the extended winter mean
NAO, consistent with the re-analysis data. Although only
moderate (but statistically significant) positive correlations
between seasonal NAO and aggregate losses are found for
northern European countries, the probability of extreme
losses in a season (> 90th percentile) for the UK increase by
a factor of 4 in positive NAO (NAO> 5 hPa) seasons com-
pared to negative ones (NAO<−5 hPa). Since monthly NAO
values are provided with the dataset, this allows users to in-
vestigate the effect of NAO on their individual portfolios, and
to quantify the impact of a given NAO forecast, opening the
possibility of predictive catastrophe modelling. The data pre-
sented in this paper are for the multi-model ensemble, but
similar conclusions are reached when looking at individual
models.

Future work includes refining the conversion to gusts and
bias correction method and extending the event set to include
the coupled PRIMAVERA simulations, as well as the PRI-
MAVERA climate projections which run to 2050.

Appendix A

The following model winters were removed from the event
set due to incomplete tracking:

– CMCC-CM2-VHR4_highresSST-present_r1i1p1f1:
1993/1994

– EC-Earth3P-HR_highresSST-present_r3i1p1f1: 1982/3
1983/4 1966/67 1967/68

– EC-Earth3P_highresSST-present_r1i1p1f1: 1950/51
1951/52

– EC-Earth3P_highresSST-present_r3i1p1f1: 1962/63
1963/64 1970/71 1971/72

– HadGEM3-GC31-HM_highresSST-present_r1i3p1f1:
2006/7
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Appendix B

Figure B1. As in Fig. 3 but for the remaining PRIMAVERA models.
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Appendix C

List of the 10 most extreme footprints in the event set ac-
cording to European loss index. The first three storms were
excluded from the seasonal aggregate losses when fitting the
return period curve in Fig. 7.

– CMCC-CM2-HR4_highresSST-
present_r1i1p1f1_winter1957-
1958_MAM_storm123_1958-03-
24_regrid_corrected.nc, LI= 163.7× 106

– EC-Earth3P_highresSST-
present_r3i1p1f1_winter1954-
1955_DJF_storm294_1955-01-29_regrid_corrected.nc,
LI= 160.3× 106

– CNRM-CM6-1-HR_highresSST-
present_r1i1p1f2_winter1974-
1975_SON_storm267_1974-11-
05_regrid_corrected.nc, LI= 86.9× 106

– HadGEM3-GC31-LM_highresSST-
present_r1i2p1f1_winter1963-
1964_SON_storm265_1963-10-
25_regrid_corrected.nc, LI= 60.9× 106

– CMCC-CM2-HR4_highresSST-
present_r1i1p1f1_winter1978-
1979_DJF_storm29_1978-12-06_regrid_corrected.nc,
LI= 58.2× 106

– CMCC-CM2-HR4_highresSST-
present_r1i1p1f1_winter1968-
1969_MAM_storm2_1969-03-13_regrid_corrected.nc,
LI= 53.5× 106

– MPI-ESM1-2-HR_highresSST-
present_r1i1p1f1_winter1976-
1977_DJF_storm145_1976-12-29_regrid_corrected.nc,
LI= 48.6× 106

– HadGEM3-GC31-LM_highresSST-
present_r1i14p1f1_winter1963-
1964_DJF_storm240_1964-01-10_regrid_corrected.nc,
LI= 46.9× 106

– CMCC-CM2-HR4_highresSST-
present_r1i1p1f1_winter1960-
1961_MAM_storm12_1961-03-
05_regrid_corrected.nc, LI= 41.8× 106

– HadGEM3-GC31-LM_highresSST-
present_r1i1p1f1_winter1958-
1959_DJF_storm303_1959-01-25_regrid_corrected.nc,
LI= 40.3× 106
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Appendix D

Figure D1. Track density bias (model – ERA) for storms with a non-zero loss index over Europe for individual models for the period
October–March 1979/80–2013/14. The yellow contour marks where the bias is statistically different from 0 with 95 % confidence according
to Welch’s unequal variances t test.
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Figure D2. As for Fig. D1 but for severe storms only (LI> 1× 106).
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