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Abstract. Wildfires pose a significant risk to people and
property, which is expected to grow with urban expansion
into fire-prone landscapes and climate change causing in-
creases in fire extent, severity and frequency. Identifying spa-
tial patterns associated with wildfire activity is important for
assessing the potential impacts of wildfires on human life,
property and other values. Here, we model the probability
of fire ignitions in vegetation across Victoria, Australia, to
determine the key drivers of human- and lightning-caused
wildfire ignitions. In particular, we extend previous research
to consider the role that fuel moisture has in predicting igni-
tion probability while accounting for environmental and local
conditions previously identified as important. We used Ran-
dom Forests to test the effect of variables measuring infras-
tructure, topography, climate, fuel and soil moisture, fire his-
tory, and local weather conditions to investigate what factors
drove ignition probability for human- and lightning-caused
ignitions. Human-caused ignitions were predominantly in-
fluenced by measures of infrastructure and local weather.
Lightning-sourced ignitions were driven by fuel moisture,
average annual rainfall and local weather. Both human-
and lightning-caused ignitions were influenced by dead fuel
moisture with ignitions more likely to occur when dead fuel
moisture dropped below 20 %. In future, these models of ig-
nition probability may be used to produce spatial likelihood
maps, which will improve our models of future wildfire risk
and enable land managers to better allocate resources to areas
of increased fire risk during the fire season.

1 Introduction

Wildfires present a significant risk to both people and prop-
erty, with this risk increasing as urban areas continue to
expand into fire-prone landscapes (Syphard et al., 2013).
Wildfire-associated risks are likely to increase further with
future climate change scenarios predicting increases to fire
extent, severity and frequency in fire-prone ecosystems
(Bowman et al., 2009; Flannigan et al., 2009). Wildfires re-
quire four key factors to start: sufficient biomass, fuel mois-
ture low enough to allow combustion, weather conditions
conducive to fire spread and an ignition source (Archibald et
al., 2009; Bradstock, 2010). These factors vary in space and
time to influence the risk of a wildfire occurring on any day
in a particular location. Although weather variables are con-
sidered to be determinants of fire annual extent (Bradstock et
al., 2014; Penman et al., 2013), the spatial pattern of fire is
better predicted by ignitions and fuels (Parisien et al., 2010;
Pausas and Paula, 2012). Understanding spatial patterns in
fire activity is important for assessing the risks and associ-
ated impacts of wildfires with regard to human life, property
and other values.

Spatial variation in ignition likelihood has been docu-
mented in a number of studies, with different patterns ob-
served depending on the ignition source under examination
(Bar Massada et al., 2013; Clarke et al., 2019; Liu et al.,
2012). Sources of wildfire ignition can either be caused by
humans or natural. Ignitions caused by humans may be ei-
ther intentional or accidental and are often related to in-
dicators of human settlement, such as the distance to the
nearest road or housing density (Bar Massada et al., 2013;
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Clarke et al., 2019). Natural ignition sources include light-
ning strikes, which can account for up to 90 % of recorded
wildfire ignitions (Clarke et al., 2019; Keeley and Syphard,
2018). The spatial pattern of lightning ignitions differs from
human-caused ignitions (Bar Massada et al., 2013) with vari-
ables such as local weather or topography driving the prob-
ability of lightning ignition (Clarke et al., 2019; Liu et al.,
2012). Further, lightning storms may be responsible for mul-
tiple ignitions at a time, potentially resulting in more con-
current fires or larger fires when these ignitions converge
(Read et al., 2018). The proximity of human-caused ignitions
to population-dense areas means that early detection of fires
is common. However, the potential for lightning-caused ig-
nitions to occur in remote or hard-to-access locations means
that detection of these fires can be difficult. Improved models
of lightning ignition probability may therefore aid the early
detection of and response to wildfires.

Fuels are composed of both live and dead vegetation. Fuel
moisture is a critical factor affecting how fire interacts and
moves through fuels (Chandler et al., 1983). Fuel moisture in
both live and dead fuel contributes to fire ignition, spread and
severity in several ecosystems (Chuvieco et al., 2004, 2009;
Dennison et al., 2009; Nolan et al., 2016a). For example, fuel
moisture content thresholds have been associated with wild-
fire occurrence in Australian forests and woodlands (Nolan et
al., 2016a). Forest fuel moisture content can shift across these
thresholds in very short periods of time (e.g. from hours to a
week; Dennison et al., 2009; Nolan et al., 2016a), causing
a forest to shift from low to high flammability rapidly. It is
therefore important to consider the influence of fuel moisture
on fire ignitions at fine temporal scales.

Fuel moisture has previously only been tested in studies
of fire ignitions, based on calculations from meteorological
data (Dowdy and Mills, 2012; Liu et al., 2012; Miranda et al.,
2012; Wotton and Martell, 2005). These methods may lead to
uncertain estimates of fuel moisture in areas with highly het-
erogeneous topography and vegetation (Nieto et al., 2010).
The recent development of fuel moisture estimates at regular
temporal intervals from remotely sensed MODIS data may
provide a solution (Nolan et al., 2016a, b). These methods
integrate remotely sensed data with climate modelling inputs
to generate layers estimating both live and dead fuel mois-
ture across large spatial and temporal scales. Using these in-
puts as predictors of fire ignitions may improve our estimates
of ignition probability for both human-caused and lightning-
ignited fires.

Wildfires in south-eastern Australia have resulted in sig-
nificant loss of human life and property (Blanchi et al., 2010;
Filkov et al., 2020; Haynes et al., 2010). A better understand-
ing of both human-caused and lightning-caused ignitions and
the associated risks to human life and property is therefore
important for this area. This research was aimed at mod-
elling the probability of fire ignitions across Victoria, Aus-
tralia. Specifically, we ask whether key drivers of human- and
lightning-caused fire ignitions are consistent with previously

reported global patterns. In addition, we extend this previous
research to determine to what extent fuel moisture influences
ignition probability relative to topographic, human and cli-
matic variables.

2 Methods

2.1 Study area

Our study area was the state of Victoria in south-eastern Aus-
tralia. The population in Victoria is ∼ 6.6 million, of which
the majority lives in Melbourne (https://www.abs.gov.au/,
last access: 7 January 2021). Remnant native vegetation in
Victoria covers approximately 46 % of the state owing to
previous land clearing for agriculture and human settlements
(Fig. 1). There is a climatic gradient across the state, with av-
erage annual rainfall in the north-west averaging ∼ 300 mm,
and in the south-east ranging from 1000 to 1500 mm (http:
//www.bom.gov.au/, last access: 7 January 2021). Average
daily maximum temperatures in summer also vary across the
state, ranging from 27–30 ◦C in the north-west to 18–24 ◦C
in the south-east (http://www.bom.gov.au/, last access: 7 Jan-
uary 2021).

2.2 Data compilation

Historical fire ignition data were obtained from the Victorian
Country Fire Authority (CFA) and the Department of En-
vironment, Land, Water and Planning (DELWP) for the pe-
riod between 2000 and 2019 (n= 67927). These databases
have approximately 20 different ignition causes. For this
study, ignition causes were reclassified broadly into human-
caused (n= 59146; from arson or accidental sources includ-
ing burn-offs, campfires, electrical, fireworks, heat or cutting
equipment, power transmission lines, re-light, vehicles, and
waste disposal) and lightning-ignited fires (n= 8781) as pre-
vious work found consistent patterns in the drivers of the dif-
ferent types of human ignitions in the study area (Clarke et
al., 2019).

The analytical pathways for human and lightning ignitions
were necessarily different. For the analysis of human-caused
ignitions, a set of random points were generated across Vic-
toria from a uniform distribution (n= 75281). Each random
point was assigned a random date and time within the date
range of the ignitions data. These random points were used
as absence data in the statistical model, providing a ran-
dom sample of points where fire ignitions did not occur. For
the lightning ignitions model, data of all lightning events
in Victoria over a certain time period were obtained from
the Global Position and Tracking System Pty. Ltd. (GPATS)
Australia. These lightning events were each assigned a prob-
ability of starting a fire. Therefore, absence data were abun-
dant within the dataset and random points were not required.

Data from raster layers representing a range of natural and
built environments were extracted for each ignition and ran-
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Figure 1. Study area showing the distribution of (a) recorded human ignitions (presence data) in remnant native vegetation and areas of
cleared or modified (i.e. matrix) vegetation (from the Country Fire Authority [CFA] and Department of Land, Water and Planning [DELWP]
ignitions data), (b) randomly generated points (human ignitions absence data), (c) recorded lightning ignitions in native and matrix vege-
tation (from CFA and DELWP ignitions data), and (d) a kernel density estimate for all lightning strikes detected in Victoria for the study
period (from the Global Position and Tracking System Pty Ltd dataset). Native vegetation and matrix layers sourced from: Department of
Environment, Land, Water and Planning (2017, https://www.data.vic.gov.au/, last access: 13 November 2020).

dom point. Details of the different environmental variables
used, and descriptions of the layers and their data sources are
listed in Table 1. Variables were selected based on those iden-
tified as being important from previous studies. For example,
human-caused ignitions have a strong relationship with in-
frastructure variables such as distance to the nearest road and
housing density or distance to the nearest settlement (Catry
et al., 2009; Clarke et al., 2019; Miranda et al., 2012). Lo-
cal weather variables, topography and average annual rainfall
have also been shown to have an effect on human-caused ig-
nitions (Catry et al., 2009; Clarke et al., 2019; Collins et al.,
2015; Liu et al., 2012). Similarly, studies of lightning-caused
fires have shown ignitions to be influenced by variables such
as: aspect, slope and topographic position (Collins et al.,
2015; Miranda et al., 2012); average annual rainfall (Clarke
et al., 2019); fuel moisture indices (Dowdy and Mills, 2012;
Liu et al., 2012; Miranda et al., 2012; Wotton and Martell,
2005); local weather (Clarke et al., 2019; Miranda et al.,
2012); and soil moisture (Liu et al., 2012) are predicted to be
influenced by changes to fire fuel loads with the time since
last fire (Clarke et al., 2019).

2.3 GPATS lightning data

Lightning is an electrical discharge generated when posi-
tive and negative charges in clouds separate (Latham and

Williams, 2001). A flash of lightning from a cloud to the
ground can contain a single or several return strokes. Each
stroke can be described by its duration, strength (amplitude
or current) and polarity (positive or negative). All strokes
within a lightning flash can either follow the same channel
to the ground or have several different terminals if the flash
branches near to the ground (Larjavaara et al., 2005).

Data on lightning strokes were obtained from Global Po-
sition and Tracking System Pty. Ltd. (GPATS) Australia.
GPATS uses triangulation of data from a network of radio re-
ceivers to determine the time and location of individual light-
ning strokes. This technique distinguishes between cloud-to-
cloud strokes and cloud-to-ground strokes and detects the
multiple strokes that can occur within a single lightning flash.
The data contain information about the strength of each light-
ning stroke (amplitude), its polarity, its time and its location.
There is some variation within the detection efficiency of
the GPATS data owing to spatial and temporal variation in
the systems used (Dowdy et al., 2017). The GPATS data ob-
tained covered the state of Victoria from the period 2004 to
2019 (number of strokes= 3 977 126). The data were simpli-
fied for the analysis following the process outlined in Fig. 2.

The time and location of each stroke was used to extract
information from raster layers representing natural and hu-
man built variables (Table 1). An ignition probability was
calculated for each stroke following the method outlined in
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Table 1. Environmental and human-mediated variables used as predictors in model development. The table provides a description of the
variable and the source of the data.

Variable Description Time range Source

Topography

Elevation (m) Calculated from 30 m Digital Elevation Model

n/a

(DEM)

Aspect (degrees) Calculated from 30 m DEM

Slope (degrees) Calculated from 30 m DEM https://www.data.vic.gov.au/

Topographic position index Calculated from 30 m DEM, combining slope
(TPI) position and landform category; positive TPI values (last access: 13 October 2020)

indicate ridges, negative values indicate valleys and
values near zero represent plains and areas of
constant slope

Fire

Time since fire (years) Derived from fire history maps; TSF was set to 100 Annual https://www.data.vic.gov.au/
for ignitions in areas with no mapped fire history 2000–2020 (last access: 12 October 2020)

Infrastructure

Housing density Calculated from vector files of address locations

n/a(houses per km2) following Clarke et al. (2019) https://www.data.vic.gov.au/

Distance to the nearest road Calculated from vector files of roads following (last access: 25 August 2020)
(km) Clarke et al. (2019)

Climate

Rainfall (mm) Mean annual rainfall from Worldclim v2.1 Average from https://www.worldclim.org/
1970 to 2000 (last access: 12 October 2020)

Weather

Forest fire danger FFDI calculated from gridded hourly temperature,
index (FFDI) drought factor and relative humidity data within the

VicClim database Hourly Country Fire Authority

Wind speed (km h−1) Wind speed from gridded hourly data within the 2000–2017 (CFA)
VicClim database

Dryness

Soil moisture (sm_pct) Extracted from the root zone soil moisture layer Annual http://www.bom.gov.au/
provided by the Australian Landscape Water Balance 2005–2020 (last access: 1 October 2020)

Fuel moisture

Live fuel moisture Fuel moisture within vegetation; calculated
content following Nolan et al. (2016b) (N.B. live fuel Annual
Dead fuel moisture moisture was limited to areas of native vegetation) 2000–2019
content

Response variables

Historical fire ignitions Dataset containing latitude, longitude, timestamps and 2000–2019 Country Fire Authority
data ignition cause for recorded fire ignitions across (CFA);

Victoria, Australia Department of
Environment, Land, Water
and Planning (DELWP)

GPATS lightning data Dataset containing latitude, longitude and timestamps 2004–2019 Global position and
for individual lightning strokes across Victoria, tracking system Pty. Ltd.
Australia (GPATS) Australia

n/a stands for not applicable.
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Figure 2. Lightning data manipulation process. Here, a lightning flash is composed of several strokes that can differ in their duration,
strength (amplitude) and polarity. Strokes can follow the same channel to the ground or can branch and have several terminals near the
ground. ∗ Equations for the calculation of stroke ignition probability are described in text following the method outlines in Larjavaara et
al. (2005).

Larjavaara et al. (2005) based on the temporal and spatial
proximity of a stroke to an ignition caused by lightning. First,
the proximity index (A) was calculated for each stroke within
10 km of the ignition and within 5 days preceding the igni-
tion. Approximately 75 % of fire ignitions from lightning are
detected within 3 d of the lightning occurring (Wotton and
Martell, 2005). We allowed for 5 d to cover this period and
ensure we captured the majority of ignitions. The proximity
index was calculated following Eq. (1):

A= (1− T/120)(1− S/10) , (1)

where T is the delay in hours between the time of the stroke
to the time of the ignition and S is the spatial distance in
kilometres between the stroke and the fire.

The proximity index was then used to calculate ignition
probability for each stroke (PS) by dividing the proximity of
each stroke (AS) by the sum of all strokes (Ai) within 10 km
and 5 d of the ignition following Eq. (2):

PS = AS/

n∑
i=1

Ai . (2)

Lightning strokes were grouped into lightning flashes if they
occurred within 0.5 s and 0.05◦ in both latitude and longi-
tude. This reduced the size of the dataset (n= 1994918)
and allowed inclusion of flash multiplicity (a potential in-
dicator of ignition likelihood) (Flannigan and Wotton, 1991;
Larjavaara et al., 2005) as a predictor in the statistical mod-
els. The ignition probability of a flash (PF) was then calcu-
lated following the inclusion-exclusion principle described in
Eq. (3):

PF = 1−
n∏

S=1
(1−PS) . (3)

The inclusion-exclusion principle was used rather than the
sum of probabilities, as the latter could be greater than one
when a lightning stroke was linked to more than one fire.
More information on the inclusion-exclusion principle is in-
cluded in Appendix A. By completing these calculations, all
lightning strokes that were linked to a CFA or DELWP fire
ignition using the proximity index were assigned an ignition
probability greater than zero. Any lightning strokes that were
not linked to a CFA or DELWP ignition by the proximity in-
dex were assigned an ignition probability of zero and were
treated as absence data in the analysis. Finally, for each flash
the environmental data (listed in Table 1) were calculated by
averaging the data extracted for each stroke.

2.4 Random forest modelling

Random forests were used to determine the probability of an
ignition occurring, with separate models built for lightning-
and human-caused ignitions. Random forests are a non-
parametric modelling technique with a higher classification
accuracy and reduced risk of overfitting the data compared
with other parametric modelling techniques (Breiman, 2001;
Cutler et al., 2007). Both classification and regression trees
are used in random forests, which are built using a random
subset of the data (usually 70 %; termed out of bag (OOB)
samples). Trees are then ensembled to calculate either the
majority vote (classification) or average value (regression) of
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predictions in the model (Breiman, 2001). Model accuracy is
calculated by comparing the model built on the OOB sam-
ples with the data withheld during model development and
averaging this across all observations (Cutler et al., 2007).
For classification trees this results in an estimate of classifi-
cation error, whereas for regression this gives a measure of
variance explained and mean square error.

Variable importance is calculated following two different
methods for the two types of random forest. For classifica-
tion trees, variable importance is calculated by summing the
decrease in Gini impurity that occurs every time a variable
is chosen to split a node in the classification tree, giving the
measure the Mean Gini Index (Cutler et al., 2007). For re-
gression trees, variable importance is calculated by measur-
ing the total decrease in the residual sum of squares that oc-
curs every time a variable is chosen to split a node in a re-
gression tree, giving a measure of Included Node Purity.

Random forests were used to model lightning- and human-
caused ignitions separately. Each ignitions dataset was split
again into those occurring within remnant native vegetation
(hereafter “native forest”) and those on cleared or modi-
fied land (hereafter “matrix”) (based on the native vege-
tation layer from https://www.data.vic.gov.au/, last access:
13 November 2020). Models were therefore prepared for four
different ignition datasets – human ignitions in native vege-
tation, human ignitions in matrix, lightning ignitions in na-
tive vegetation and lightning ignitions in matrix. Splitting the
data into native forest and matrix vegetation was undertaken
to allow the inclusion of live fuel moisture as a predictor in
models of native forest and also resulted in much reduced
computation times for the models. Live fuel moisture has
only been modelled for native forest in the south-east of Aus-
tralia, meaning that no data were available in matrix areas. As
previous work has indicated that live fuel moisture thresh-
olds can determine fire activity (e.g. Dennison et al., 2009)
we wanted to determine its importance relative to other pre-
dictors in this area.

2.4.1 Human-caused ignitions model development

A classification random forest for human ignitions was built
on the ignition data (presence) and a set of random points
(absence). As the number of points in the presence and ab-
sence data was uneven, we used a down-sampling method to
balance the two classes (Valavi et al., 2021). Down sampling
is a method that takes subsamples of the data (with replace-
ment) at each tree so that the classes are equal in sample
size. The subsamples are replaced and resampled for every
tree that is built. Models were built using all variables listed
in Table 1. Soil moisture was removed from the models as
it did not improve the overall accuracy of these models and
it limited the dataset to ignitions from 2005 onwards. Sim-
ilarly, of the weather variables, only the FFDI was retained
in the model as including the other variables did not improve
model accuracy. To ensure optimal model fit, model tuning

was conducted to determine the number of trees to grow and
the number of variables to sample at each split.

Model validation was done using the OOB error described
above and a 10-fold cross-validation procedure. The cross-
validation procedure retained a 10 % subset of the data as a
test set and built the model on the remaining data. By per-
forming this cross-validation we were able to retain a com-
plete section of the dataset to validate the model and account
for any large variation present in the dataset. The model fit
was assessed by comparing the training and testing errors
produced by the two model validation procedures. Partial de-
pendence plots (PDPs) were used to examine the relationship
of each predictor variable with the probability of an ignition
when the other predictors variables are held constant at their
average (Friedman, 2001).

2.4.2 Lightning-caused ignitions model development

The lightning dataset was highly skewed towards lightning
flashes with no probability of ignition (89 % of the dataset).
Therefore, this analysis was conducted in two stages. The
first stage reclassified the ignition probabilities to determine
if a flash had no chance of starting a fire (ignition probabil-
ity= 0) or if the flash had any chance of starting a fire (igni-
tion probability > 0). The reclassified data were zero inflated;
thus, a classification random forest was run using a down-
sampling method for class imbalanced data (Valavi et al.,
2021), as described above. The second stage of the analysis
used a regression random forest on all the lightning flashes
with any chance of starting a fire to predict what the probabil-
ity of ignition would be. For consistency, we used the same
variables in both stage one and stage two.

Models were built using all the variables listed in Table 1.
Testing of variables was undertaken to determine which
weather variables were important to include in the model.
The best models were produced when both weather variables
listed in Table 1 were used. Use of only the FFDI resulted
in a drop in the accuracy of models. Additionally, the num-
ber of strokes within a flash and the average amplitude of
these strokes were used as predictor variables. As with the
human ignitions model, model tuning was conducted to de-
termine the optimal number of trees and variables to use at
each split. Model validation using OOB and cross-validation
was conducted for both stages of the lightning model, and
partial dependence plots were built to show the effect of the
predictors on the probability of lightning causing an ignition.

All analyses were conducted in R v3.6.3 using the “ran-
domForest” package to build random forest models (Liaw
and Wiener, 2002). Partial dependence plots were produced
using the “pdp” package (Greenwell, 2017) and all graphs
were produced in the “ggplot2” package (Wickham, 2009).
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Figure 3. Variable importance of predictors for human-caused ignitions in (a) matrix and (b) native forest, and lightning ignitions in (c) matrix
and (d) native forest. Average and standard deviations of the mean decrease in the Gini Index for the models produced during the 10-fold
cross-validation are shown.

3 Results

Models of ignition probability from human-caused sources
used data from 59 984 ignitions in native forest and
94 034 ignitions in cleared or modified land (i.e. matrix ar-
eas). The classification model generated for each of these ar-
eas was very accurate, with both models predicting between
86.4 % and 90.3 % of ignitions and non-ignitions (i.e. ran-
dom points) correctly (Table 2). Models of ignition proba-
bility from lightning sources used data from 888 604 flash
events in native forest and 986 777 flash events in the ma-
trix. Of these flashes, 11 % occurred within 10 km and 5 d of
a recorded lightning fire event and so had an ignition proba-
bility calculated (average= 3 %). The first stage of the light-
ning modelling process (classification procedure) recorded
all flashes with any probability of ignition as an ignition pres-
ence. These models performed well with low error classify-
ing lightning flashes as either likely to start a fire, or with
no chance of starting a fire (Table 2). The second stage of the
lightning modelling process (regression procedure) used only
flashes with a probability of starting a fire. This resulted in a
reduced dataset containing only 77 193 lightning flash events
in native forest and 82 762 flashes in matrix. The ability of
these regression models to accurately predict the probability

that a fire was started from one of the lightning flashes was
quite low (∼ 15 %; Table 2).

3.1 Human-caused ignitions

The human ignitions models for both native forest and matrix
were predominantly driven by variables measuring human
infrastructure: distance to road and housing density (Fig. 3a
and b). The probability of ignition in both models decreased
rapidly as the distance from road increased to ∼ 500 m and
then levelled off (Fig. 4). This effect was not as large within
the native forest model as it was in the matrix. Conversely,
the probability of ignition increased rapidly in both models as
housing density increased to∼ 100 and remained high above
this threshold. The FFDI was the next most important vari-
able, having a greater influence on the probability of ignition
in native forests than in matrix (Fig. 3a and b). In both mod-
els, the probability of an ignition increased rapidly up to an
FFDI of ∼ 30 and remained high above this point (Fig. 4).
Dead fuel moisture and rainfall had a weaker influence in
both models (Fig. 3a and b). However, both showed thresh-
olds of influence with a lower probability of ignition in parts
of the state with low average annual rainfall (< 1000 mm)
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Table 2. Random forest results for human ignitions and GPATS lightning data. Model parameters indicate where the random forest was
a classification or a regression, how many trees were built (ntree) and the number of variables tested at each split (mtry). Average and
standard deviation from the 10-fold cross-validation of classification error for points classed as ignitions compared with points with no
ignition are given for classification models. Average and standard deviations from the 10-fold cross-validation are provided for the variance
explained (R2) of regression models.

Model Model parameters Classification error R2

Type ntree mtry Ignition No ignition

Human matrix Classification 500 2 0.100± 0.004 0.101± 0.004
Human native Classification 500 2 0.136± 0.007 0.097± 0.006
Lightning matrix Classification 500 6 0.173± 0.005 0.127± 0.001
Lightning native Classification 500 6 0.226± 0.006 0.131± 0.002
Lightning matrix Regression 600 4 15.041± 1.269
Lightning native Regression 600 4 15.358± 0.929

Figure 4. Partial dependence plot for the six top variables in the random forest model for human-caused fire ignitions in (a) matrix and
(b) native forest. Variables are plotted in order of importance. Black lines are the average probability of ignition from the 10 models produced
during the 10-fold cross-validation. Grey error bars represent the upper and lower estimates from the 10-fold cross-validation.

and higher probability of ignition in areas with dead fuel
moisture content below 20 (Fig. 4).

3.2 Lightning-caused ignitions

In classification models predicting whether a lightning flash
had any chance of starting a fire, fuel moisture, average an-
nual rainfall, weather and soil moisture were the most im-
portant variables (Fig. 3). Dead fuel moisture was very im-
portant to both models in native forest and in the matrix,
with a higher probability of ignition when dead fuel moisture
was below 20 (Fig. 5). In matrix vegetation, rainfall was the

most important variable (Fig. 3c), with the probability of ig-
nition in parts of the state with average annual rainfall above
1000 mm (Fig. 5a). Rainfall was less important in native for-
est (Fig. 3d) but followed a similar trend with the probability
of an ignition increasing as average annual rainfall increased
(Fig. 5b). FFDI was the most important variable in the native
forest model (Fig. 3d), with the probability of an ignition in-
creasing to an FFDI of ∼ 30 and remaining stable at values
above this threshold (Fig. 5b). For FFDI in matrix, the prob-
ability of ignitions followed the same trend (Fig. 5a). Soil
moisture was of similar importance to both matrix and na-
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Figure 5. Partial dependence plot for the six top predictor variables in the random forest models predicting whether a lightning flash has any
probability of starting a fire in (a) matrix and (b) native forest. Variables are plotted in order of importance. Black lines represent the average
probability of ignition from the 10 models used in the cross-validation. Grey error bars represent the upper and lower estimates from the
10-fold cross-validation.

Figure 6. Variable importance of predictors for the probability of a lightning flash causing an ignition in (a) matrix and (b) native forest.
Average and standard deviations of the included node purity calculated by averaging the residual sum of squares over all trees in a random
forest model for each model used in the 10-fold cross-validation.

tive vegetation models (Fig. 3). However, there was no strong
trend in either vegetation type, with slightly higher ignition
probability in areas with soil moisture below 0.25 (Fig. 5).

Fuel moisture, lightning stroke amplitude, weather and av-
erage annual rainfall were the most important predictors of
ignition probability in the regression models for lightning ig-
nition. Dead fuel moisture and average stroke amplitude had
the strongest effect in both native and matrix vegetation, fol-
lowed by FFDI and rainfall (Fig. 6). However, the overall

strength of these predictor variables to predict fire ignition
probability from a lightning stroke was low (Table 2).

4 Discussion

Understanding spatial patterns of ignition probability is im-
portant for the assessment of risks from wildfires to human
life, property and environmental values. We evaluated wild-
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fire ignition probability across a broad range of environments
in south-eastern Australia to determine key variables driv-
ing human-caused and lightning-caused ignitions. We found
that human-caused ignitions were primarily influenced by
human infrastructure and local weather conditions, whereas
lightning-sourced ignitions were driven by fuel moisture, av-
erage annual rainfall and local weather conditions. In par-
ticular, dead fuel moisture influenced ignitions from both
sources, with ignitions more likely to occur when dead fuel
moisture dropped below 20 %.

Human-caused ignitions were strongly related to measures
of infrastructure and local weather, with clear thresholds in-
dicating the influence of these variables. These results are
consistent with a number of other studies demonstrating the
importance of infrastructure and weather for predicting spa-
tial patterns in ignitions from human causes (Clarke et al.,
2019; Collins et al., 2015; Faivre et al., 2014; Liu et al., 2012;
Syphard et al., 2008). These studies also reported similar
trends, with a higher probability of ignitions closer to roads
and housing (Clarke et al., 2019; Faivre et al., 2011; Liu et
al., 2012) and a steady increase in ignition probability as the
FFDI reached 50 (Clarke et al., 2019). The accuracy of the
models produced here (86.4 % and 90.3 %) are also compara-
ble with that of models in other studies, although differences
in the modelling approach may affect interpretation here. For
example, Clarke et al. (2019) reported AUCs between 84.6
and 96.7, Collins et al. (2015) reported deviance explained
of 83.8 % to 88.3 % and Liu et al. (2012) reported R2 of
95 %. The similarity in predictive accuracies among these
models suggests that the inclusion of fuel moisture might not
improve overall model performance for human-caused igni-
tions, despite clear thresholds existing for ignition probabil-
ity.

Lightning ignition probability was most strongly driven
by rainfall, dead fuel moisture and local weather condi-
tions (FFDI). Average annual rainfall is known to influence
fuel load and accumulation (Thomas et al., 2014); thus, areas
with higher average annual rainfall have greater fuel avail-
ability and consequently are likely to have an increased prob-
ability of ignition. The importance of average annual rain-
fall and FFDI for lightning ignitions has previously been
demonstrated in this region, with similar trends in ignitions
for these variables reported (Clarke et al., 2019). Although
studies have previously demonstrated the influence of fuel
moisture on lightning ignitions (Dowdy and Mills, 2012; Mi-
randa et al., 2012; Wotton and Martell, 2005), few have done
so in conjunction with both local environmental and weather
conditions (but see Liu et al., 2012). Incorporation of vari-
ables measuring fuel moisture, environmental factors and lo-
cal weather may have contributed to a higher prediction ac-
curacy for ignition following lightning flash events using a
classification procedure in this study compared with others.
Here, model classification accuracy was between 77.4 % and
87.3 % for models of lightning ignition. Previous studies us-
ing different methods and variables to measure classification

accuracy have found 67.2 % deviance explained (Collins et
al., 2015), 73 % variability explained (Wotton and Martell,
2005) and an AUC of 79.3 (Clarke et al., 2019). Our esti-
mates may be further improved by incorporating measures
of weather in the days following a lightning event, as delays
between lightning strike events and fire ignitions are known
to occur (Wotton and Martell, 2005).

There is a clear dead fuel moisture threshold effect for both
ignition types. Ignition probability was higher in areas where
dead fuel moisture was below 20 % and dropped to almost
zero at fuel moisture ratings above this level. Similar effects
of fuel moisture or surface moisture have been found in pre-
vious studies, with decreases in ignition probability as mois-
ture content increases for both lightning- and human-caused
ignitions (Liu et al., 2012; Miranda et al., 2012; Wotton and
Martell, 2005). The 20 % fuel moisture threshold in dead fuel
moisture content mirrors the thresholds found in a study as-
sessing the area burnt by fires in this region (Nolan et al.,
2016a), indicating that dead fuel moisture levels above 20 %
significantly reduce both the likelihood of an ignition and the
size of a fire. Although dead fuel moisture influenced ignition
probability in both lightning- and human-caused ignitions,
live fuel moisture had only a limited effect in the models and
is thus much less likely to determine ignition probability.

Despite the high accuracy achieved in the classification
models, lower accuracies were recorded in the regression
models of lightning ignition probability. This is likely due
partly to discrepancies in the recording locations of both fire
ignitions and GPATS lightning flashes. Within the fire igni-
tions dataset locations are sometimes recorded at the nearest
road or intersection to the fire, rather than at the exact lat-
itude and longitude of the ignition. There are also likely to
be ignitions missing from the dataset, because many light-
ning ignitions occurring in remote areas may not be re-
ported or may be reported days after the ignition has oc-
curred. In the GPATs lightning dataset, there is potential
recording errors of at least 1 km within key deployment ar-
eas (http://www.gpats.com.au/, last access: 25 January 2021)
and potentially higher error in remote locations. Addition-
ally, the use of different recording systems over the years has
resulted in spatial and temporal variation in recorded light-
ning flash locations (Dowdy et al., 2017). These spatial and
temporal discrepancies have likely contributed to the error in
the regression lightning model, but may have also influenced
classification accuracy in the lightning classification model.

Models of ignition probability were able to be pro-
duced with high predictive accuracy, despite the spatial er-
ror present within the predictor datasets. These models allow
for spatial likelihood maps of ignition probability to be pro-
duced at a daily temporal resolution. High accuracy ignition
probability models also have application in the estimation of
areas where ignition probability may increase under different
climate change scenarios. In turn, this would provide better
information in models of future fire behaviour and risk in
fire-prone landscapes. Further, the ignition probability mod-
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els developed here use daily weather variables as inputs. This
means that finer-scale, daily ignition probability maps could
be produced on a regular basis. These could inform the place-
ment of suppression resources for rapid attack when fires oc-
cur and also provide better information for the community,
such as providing warnings on high fire danger days.

5 Conclusion

Globally consistent patterns were found in the drivers of
both human- and lightning-caused ignitions. Human-caused
ignitions are predominantly pre-determined by the proxim-
ity to human settlement and weather conditions, whereas
lightning-caused ignitions are driven by fuel moisture, av-
erage annual rainfall and local weather. Relationships with
remotely sensed values of fuel moisture provide a means of
better understanding and predicting the likelihood of fires
across the landscape on a daily time step. These high accu-
racy spatial and temporal likelihood maps of ignition prob-
ability will improve our models of wildfire risk and enable
land managers to better allocate resources during the fire sea-
son.

Appendix A

Inclusion-exclusion formula for any two events:

P(A∪B)= P(A)+P(B)−P(A∩B), (A1)

where

P(A∩B)= P(A) ·P(B) (A2)

and

P(A)= 1−P(A) and conversely P(A)= 1−P(A) , (A3)

P(B)= 1−P(B) and conversely P(B)= 1−P(B) . (A4)

Therefore, the probability of an event not occurring,

P(A) ·P(B)= (1−P(A)) · (1−P(B)) , (A5)

becomes

P(A) ·P(B)= 1−P(A)−P(B)+P(A∩B) . (A6)

And conversely, the probability of an event occurring:

P(A∪B)= 1− (1−P(A)) · (1−P(B)) . (A7)

Therefore, the inclusion-exclusion formula for the case when
there are n number of events becomes:

1−
n∏

i=1
(1−Pi) . (A8)
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