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Abstract. The Iberian Peninsula is prone to drought due to
the high variability in the Mediterranean climate with se-
vere consequences for drinking water supply, agriculture, hy-
dropower and ecosystem functioning. Because of the com-
plexity and relevance of droughts in this region, it is nec-
essary to increase our understanding of the temporal inter-
actions of precipitation, evapotranspiration and soil mois-
ture that originate from drought within the Ebro basin, in
northeastern Spain, as the study region. Remote sensing
and land-surface models provide high-spatial-resolution and
high-temporal-resolution data to characterize evapotranspi-
ration and soil moisture anomalies in detail. The increasing
availability of these datasets has the potential to overcome
the lack of in situ observations of evapotranspiration and
soil moisture. In this study, remote sensing data of evapo-
transpiration from MOD16A2 and soil moisture data from
SMOS1km as well as SURFEX-ISBA land-surface model
data are used to calculate the evapotranspiration deficit index
(ETDI) and the soil moisture deficit index (SMDI) for the
period 2010–2017. The study compares the remote sensing
time series of the ETDI and SMDI with the ones estimated
using the land-surface model SURFEX-ISBA, including the
standardized precipitation index (SPI) computed at a weekly
scale. The study focuses on the analysis of the time lags be-
tween the indices to identify the synchronicity and memory
of the anomalies between precipitation, evapotranspiration

and soil moisture. Lag analysis results demonstrate the ca-
pabilities of the SPI, ETDI and SMDI drought indices com-
puted at a weekly scale to give information about the mech-
anisms of drought propagation at distinct levels of the land–
atmosphere system. Relevant feedback for both antecedent
and subsequent conditions is identified, with a preeminent
role of evapotranspiration in the link between rainfall and soil
moisture. Both remote sensing and the land-surface model
show capability to characterize drought events, with specific
advantages and drawbacks of the remote sensing and land-
surface model datasets. Results underline the value of ana-
lyzing drought with dedicated indices, preferably at a weekly
scale, to better identify the quick self-intensifying and miti-
gating mechanisms governing drought, which are relevant for
drought monitoring in semi-arid areas.

1 Introduction

Drought is a major natural hazard for societies in semi-arid
climates (Van Loon, 2015) and demands increasing levels of
adaptation and resilience measures to guarantee water sup-
ply (Watts et al., 2012), particularly in water-stressed envi-
ronments. Rainfed agriculture (Tigkas and Tsakiris, 2015)
and even the enduring natural vegetation are very exposed
to drought, especially under climate change, which has long-
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lasting implications for the local environment (Gudmunds-
son et al., 2014). Knowing that complex interactions take
place in the land–atmosphere system under drought, the tra-
ditional meteorological or hydrologic approach may over-
look drought-relevant interactions between evapotranspira-
tion and soil moisture (Teuling et al., 2013).

To track drought status and to analyze the interactions
of the land–atmosphere system, modern drought monitoring
combines evapotranspiration, soil moisture and even vegeta-
tion anomalies in composite drought indices, such as the Ob-
jective Blends of Drought Indicators (OBDI) integrated in the
U.S. Drought Monitor (USDM; Svoboda et al., 2002) or the
Combined Drought Indicator (CDI) of the European Drought
Observatory (Sepulcre-Canto et al., 2012). The use of this
combined approach to monitoring drought is on an upward
trend because even parsimonious composite drought indices
like the probabilistic precipitation vegetation index (PPVI)
(Monteleone et al., 2020) outperform the capabilities of com-
mon indices to characterize drought. One of the major advan-
tages of composite indices is that they facilitate the charac-
terization of drought from multiple perspectives (e.g., me-
teorological, hydrological or agricultural). Conversely, com-
posite indices can be impractical to explore the mechanisms
of drought, whose understanding may require focusing on
key variables of the system. Unfortunately, evapotranspira-
tion and soil moisture are still challenging to monitor com-
pared to the meteorological, hydrological or vegetation vari-
ables currently regularly recorded. Despite the relevance of
these two variables in the recurrence of drought and heat
waves (Zampieri et al., 2009; Dasari et al., 2014), even at
short timescales (Teuling, 2018), relatively few studies have
evaluated their anomalies due to the limited availability of
data of sufficient spatial and temporal resolution.

Well-known drought indices such as the standardized pre-
cipitation index (SPI) (McKee et al., 1993) and the Palmer
drought severity index (PDSI) (Palmer, 1965), primarily de-
fined on the monthly scale, can lack detail to identify short-
term anomalies of temperature, wind or radiation-originating
“flash droughts” (Otkin et al., 2013). Rainfed agriculture
and natural vegetation are particularly sensitive to quickly
evolving droughts in specific moments of the growing sea-
son (Saini and Westgate, 1999), which subsequently gener-
ate evapotranspiration and soil moisture anomalies of short-
and long-term impact (Jiménez et al., 2011). Recently, there
has been more interest in using drought indices with high
temporal resolution for short-term drought monitoring, such
as the SPI and other indices at the weekly scale (Otkin et
al., 2015). Indices with this short-term timescale include the
weekly-scale evapotranspiration deficit index (ETDI) and the
soil moisture deficit index (SMDI) (Narasimhan and Srini-
vasan, 2005). The ETDI and SMDI are variable-specific, en-
abling full characterization of anomalies at specific levels of
the land–atmosphere system. This is especially useful in the
Mediterranean climates where drought originates from not
only rainfall anomalies (Vicente-Serrano et al., 2004).

This study focuses on the Ebro basin, which is an impor-
tant Mediterranean river basin of the Iberian Peninsula (IP).
In view of the increase in the frequency of drought events
(Sousa et al., 2011) and the number of consecutive dry spells
(Turco and Llasat, 2011) identified in the area, we can ex-
pect consequences in the long-term environmental state and
the balance between water availability and demands. Fur-
thermore, being placed in a semi-arid climate where most
of the rainfall evaporates (68 %, Table 15 of Libro blanco
del agua; MMA, 2000), the Ebro basin represents an ex-
ample of how important natural water demands are, partic-
ularly in the headwaters where reforestation decreases runoff
(López-Moreno et al., 2014). Rainfed agriculture dominates
the rest of the un-forested areas and represents the other
big consumer of water in the basin. However, despite the
relevance of rainfed agriculture, its analysis is often over-
shadowed by irrigation, the biggest anthropogenic demand
in the basin (Hoerling et al., 2012). Due to the importance of
these water demands and others such as hydropower and en-
ergy, the Ebro Hydrographic Confederation operates a dense
hydrologic monitoring network, but the lack of dedicated
soil moisture and evapotranspiration monitoring jeopardizes
drought characterization (Seneviratne et al., 2010). Fortu-
nately, the increasing availability of remote sensing (RS)
products enables distributed, precise and frequent monitoring
of these coarsely observed variables (Martínez-Fernández et
al., 2016).

Space agencies have released multiple RS products in the
last decade facilitating the distributed analysis of drought
(AghaKouchak et al., 2015). Optical spectrometry of the at-
mospheric (rainfall, temperature, water vapor) and surface
(vegetation reflectance) variables has often been the basis
for distributed characterization of drought indicators. Sur-
face vegetation indices such as the widespread normalized
difference vegetation index (NDVI; Liu and Kogan, 1996)
pioneered the application of RS data to assess the impacts of
drought, but thereafter the increasing availability of RS data
for multiple meteorological variables has increased their us-
age in drought indices (West et al., 2019). Currently, com-
mon indices like the SPI can rely on RS data (Sahoo et
al., 2015) because integrating the increasing resolution of
RS data into drought indicators enables short-term drought
monitoring at least at the weekly scale (USDM – Svoboda et
al., 2002; CDI – Sepulcre-Canto et al., 2012; Monteleone et
al., 2020). However, unlike precipitation, temperature, and
other directly observable and densely monitored meteoro-
logical variables, the measurement of evapotranspiration and
soil moisture on the ground is still challenging and often
costly or impractical at sufficient spatial resolution. Over-
coming this gap is possible now thanks to the increasing
availability of RS-based evapotranspiration databases such as
the global dataset included in GLEAM (Miralles et al., 2011;
Martens et al., 2017) or the soil moisture global database
CCI (Dorigo et al., 2017). Despite the coarse spatial reso-
lution of these global datasets, the recent developments in
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RS processing and downscaling improve their applicability
at regional spatial scales and short timescales (Wagner et
al., 2007). Aiming to gain insight into drought mechanisms,
the availability of high-resolution datasets focused on such
relevant variables of the land–atmosphere facilitates the use
of single-variable drought indices such as the SPI, ETDI and
SMDI, which is advantageous to analyze the interactions be-
tween variables during droughts.

On this basis, there are soil moisture datasets of increas-
ingly high resolution available from a combination of pas-
sive microwave sensors such as those from SMOS and Soil
Moisture Active Passive (SMAP) missions (Kerr et al., 2010,
and Entekhabi et al., 2010, respectively) and active mi-
crowave sensors such as ASCAT or Sentinel-1 (Bartalis et
al., 2007, and Hornacek et al., 2012, respectively). This is the
case of the high-resolution soil moisture product SMOS1km
(Merlin et al., 2013; Molero et al., 2016; Escorihuela and
Quintana-Seguí, 2016; Escorihuela et al., 2018), which has
been tested in the area and has been shown to outperform
ASCAT and AMSR-E due to its lack of roughness and veg-
etation effects. SMAP and Sentinel-1 options are of simi-
lar resolution to SMOS1km and accurate in the study area
(Dari et al., 2021), but they are of much shorter series length
and are consequently not selected. Similarly, high-resolution
RS evapotranspiration products such as MOD16A2 (Mu et
al., 2013) used in this study are currently available. There-
fore, it is worth exploring the capabilities and limitations of
high-resolution RS evapotranspiration data for drought mon-
itoring at the regional scale. High-resolution RS data are
most suitable for analysis at the basin scale where the res-
olution of alternative reanalysis or modeled datasets such
as ERA5-Land (Muñoz-Sabater et al., 2021), LISFLOOD
(Van Der Knijff et al., 2008) or GLEAM v3 (Miralles et
al., 2011; Martens et al., 2017) lack detail. To date, rela-
tively few works have used high-resolution satellite data for
drought analysis in the IP (Vicente-Serrano, 2006; Scaini
et al., 2015; Martínez-Fernández et al., 2016; Sánchez et
al., 2016; Ribeiro et al., 2019), especially at the spatial and
temporal resolution of this study (Pablos et al., 2017).

Another source of high-temporal-resolution and high-
spatial-resolution data is land-surface models (LSMs). Used
in atmospheric models to simulate the interactions between
soil, vegetation and the atmosphere, LSMs represent a suit-
able alternative to RS to evaluate the surface water and en-
ergy balances at regional to local scales. The development of
LSMs was initiated with one-layer models such as TOPUP
(Schultz et al., 1998) or PROMET (Mauser and Schadlich,
1998). Avissar and Pielke (1989) inaugurated the mosaic
approach, applying just one-layer models to the different
fractions of land-use type. One of the mosaic models able
to distinguish between soil evaporation and transpiration is
the Météo-France-developed model SURFEX (Masson et
al., 2013), which, fed by the atmospheric analysis SAFRAN
(Durand et al., 1999), uses the ISBA scheme for natural sur-
faces (Noilhan and Mahfouf, 1996). SURFEX has been im-

proved to study the continental water cycle in applications
such as SIM and SIM2 (Habets et al., 2008; Le Moigne et
al., 2020), often in combination with the hydrologic model
MODCOU (Ledoux et al., 1989). The modeling chain called
SASER (SAFRAN–SURFEX–Eaudyssée–RAPID) used in
this study has been applied to Spain before (Barella-Ortiz
and Quintana-Seguí, 2019; Quintana-Seguí et al., 2020). This
LSM provides the precipitation required for the SPI and the
evapotranspiration and soil moisture necessary to generate
LSM-based ETDI and SMDI series comparable to the ones
generated using RS data. Despite the limitations of this LSM
when applied as an offline model, it has been validated and
shown to provide useful evaluations of water resources in the
study area (Escorihuela and Quitana-Seguí, 2016; Barella-
Ortiz and Quintana-Seguí, 2019) and nearby Portugal and
France (Nogueira et al., 2020; Le Moigne et al., 2020).

This study aims at evaluating the suitability of high-
resolution RS (SMOS1km and MOD16A2) and LSM
(SURFEX-ISBA) data for generating rainfall (SPI), soil
moisture (SMDI) and evapotranspiration (ETDI) drought
(single-variable) indices to better understand the mechanisms
behind the temporal evolution of drought in semi-arid cli-
mates. The comparison of RS and LSM data results is a main
aim of the study to detect the factors impacting drought in-
dices based on RS and LSM data. The study further evaluates
the advantage of the barely explored weekly temporal scale
to capture the short-term anomalies of evaporation and soil
moisture decisive for drought in semi-arid areas. The study
has an agricultural scope focused on drought in rainfed envi-
ronments given its importance to land–atmosphere feedbacks
(Herrera-Estrada et al., 2017) and regional socioeconomic
sustainability.

2 Study area

The study area is the Ebro basin, located in the north-
east of the Iberian Peninsula (IP). Placed in between At-
lantic and Mediterranean climatic influences, the vast area
(85 534 km2) of the basin (Fig. 1a) has a complex topography
(Fig. 1c) which defines a wide range of climatic conditions
(Fig. 1d) of distinct spatial and temporal patterns of precipita-
tion, evapotranspiration and soil moisture. The northern bor-
der has humid cool climates typical of the Atlantic-exposed
Cantabrian coastline, while the southeastern border enjoys a
warm Mediterranean climate. The southwestern and north-
eastern borders are dominated by the Iberian and Pyrenees
mountains which together with the Cantabrian and Mediter-
ranean ranges restrict the oceanic influence on the central
part of the basin. Soil types (e.g., gypsum, limestones) in-
tensify the aridity of certain areas of the basin (Fig. 1b).
The combination of semi-arid climatic conditions and unfa-
vorable soil types to vegetation development determines ex-
treme regimes of rainfall, soil moisture and evapotranspira-
tion, prone to drought. The basin is densely populated and
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supplies a wide range of water demands, especially for agri-
culture and energy. The vast network of irrigated areas, lo-
cated mostly in the arid central depression, is vulnerable to
hydrological drought risks.

3 Data

3.1 Land-surface model data

SURFEX, the land-surface modeling platform originally de-
veloped and currently maintained by Météo-France (Masson
et al., 2013; Le Moigne et al., 2020), has been chosen to per-
form the LSM simulation used in this study. Simulations for
the IP and Balearic Islands developed within the HUMID
project have 5× 5 km spatial resolution and use the forc-
ing provided by the Iberian application (Quintana-Seguí et
al., 2008, 2016, 2017) of the SAFRAN meteorological anal-
ysis system (Durand et al., 1999). This is a modeling chain
whose offline mode operates using the atmospheric forcing
of SAFRAN to feed the LSM SURFEX-ISBA and simu-
late even the hydrology with Eaudyssée–RAPID (David et
al., 2011).

ISBA (Noilhan and Mahouf, 1996) is the SURFEX mod-
ule in charge of simulating natural surfaces. There are dif-
ferent versions of ISBA. In this study, we have used the
diffusion version (ISBA-DIF; Boone, 1999; Decharme et
al., 2011), which performs better in the study area than the
simpler three-layer force restore version (Quintana-Seguí et
al., 2020). In this version of ISBA, the leaf area index (LAI)
has a prescribed annual cycle (constant every year), which
may limit the ability of the model to reproduce the long-
term effects of drought on vegetation. The model simu-
lates the soil column, but it is unable to simulate ground-
water, which despite its impact on soil moisture memory,
is not very relevant in the Ebro basin. SURFEX-ISBA re-
quires additional physiographic information that is incorpo-
rated from the ECOCLIMAP-II land cover database (Faroux
et al., 2013), which includes topographic, soil and land cover
information at high resolution.

The available SAFRAN forcing data allow us to simulate
the period 1979–2017, but the period used for this study is
restricted by the relatively short length of the RS SMOS data
coverage (2010–present) compared to the model. To ensure
the comparability of RS-based and LSM-based drought in-
dices, the study period is 2010–2017, for which both RS and
LSM data are available. To ensure that the RS soil moisture
and the LSM soil moisture are comparable, we have aver-
aged the first three soil layers of the model according to their
discretization in the first 5 cm of the soil (1, 3 and 10 cm of
depth, respectively). The simulation is performed using a reg-
ular 5×5 km resolution grid based on a custom Lambert con-
formal conic projection.

3.2 Remote sensing data

3.2.1 Evapotranspiration

To evaluate evapotranspiration, barely measured on the
ground and not directly measurable from space, we adopt
a product based on multiple evaporation-related variables
observed by MODIS (Moderate Resolution Imaging Spec-
troradiometer on NASA’s Terra satellite): the MOD16A2
dataset. This is a level-4 product providing 8 d evapotran-
spiration (ET) and potential evapotranspiration (PET) based
on daily meteorological forcing and 8 d RS data of vegeta-
tion dynamics from MODIS (Mu et al., 2013). The datasets
of MOD16A2 are published in a sinusoidal projection at a
resolution of 500 m (Running et al., 2017). In this study, we
have reprojected and interpolated all RS products to the same
5× 5 km grid that the LSM simulations use. After the re-
gridding step, the temporal step of the datasets is rearranged
from the original 8 d accumulation period to a 7 d accumula-
tion period, which is more suitable for weekly analysis. Val-
ues are linearly weighted depending on their contribution to
each week for the 52 weeks of a year. We also calculate the
monthly means of the evapotranspiration product to evalu-
ate the impact of the time resolution on drought recognition.
The formatting of MOD16A2 datasets requires the evalua-
tion of the quality control flags (ET_QC), given that areas of
the Pyrenees show missing data. Only the classes classified
as good and optimal in the ET_QC flags are accepted as data
for our study.

3.2.2 Surface soil moisture

Because of the relatively few years of data currently avail-
able from the Soil Moisture Active Passive (SMAP) mission
(Entekhabi et al., 2010), the study adopts SMOS data (Kerr
et al., 2010), in particular, the high-resolution SMOS1km
dataset (Merlin et al., 2013). This dataset downscales the
original coarse-resolution SMOS data using the Disaggrega-
tion based on Physical And Theoretical scale Change (Dis-
PATCh) algorithm (Merlin et al., 2012) and the C4DIS al-
gorithm (Molero et al., 2016). The algorithm enables the
downscaling of the 40 km resolution of the SMOS soil mois-
ture data available from 2010 into 1 km resolution using two
products at 1 km resolution from MODIS, the NDVI and land
surface temperature (LST), and an elevation map at the same
resolution. Precisely because the scale of interest to study rel-
evant interactions to droughts is the weekly scale, the data are
primarily used on a weekly scale. The spatial scale of inter-
est for the study is that of a regular 5× 5 km resolution grid,
which takes advantage of the high resolution of SMOS1km.
The 2010–2017 dataset presents frequent gaps in the moun-
tainous areas of the Pyrenees. In order to fill the gaps, we ap-
ply temporal interpolation pixel by pixel considering a max-
imum period for temporal interpolation of 2 weeks. These
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Figure 1. (a) Ebro basin location in the Iberian Peninsula (OSM OpenTopoMap). (b) Land cover of the basin depicting a contrasting basin
between the forested areas of the mountains and the steppes of the central depression (© Esri satellite online maps, World Imagery, 2022).
(c) Altitudinal range of the basin (IGN ES/FR MDT25, CC-BY 4.0). (d) Climatic classes present in the basin according to the climatic
classification of Köppen–Geiger (data from Beck et al., 2018).

data are also spatially aggregated and reprojected onto the
same grid as the LSM.

4 Methods

4.1 Drought indices

Drought indices allow quantifying several aspects of drought,
like the magnitude and duration, and may also focus on par-
ticular variables depending on the scope of interest (i.e., pre-
cipitation, soil moisture, aridity, etc.). In view of the conve-
nience to combine several single-variable indicators to de-
scribe most of the drought mechanisms and our focus on
rainfed environments, we adopt the use of the standardized
precipitation index (SPI) (McKee et al., 1993), the evapotran-
spiration deficit index (ETDI) and the soil moisture deficit in-
dex (SMDI) (Narasimhan and Srinivasan, 2005). Using these
three indices, the study aims to investigate the interaction
between the two main water fluxes (rainfall and evapotran-
spiration) and the main storage (soil moisture) involved in

the water balance of the land–atmosphere system. The ag-
gregation periods of the SPI inform us about the different
responding times of rainfall, soil moisture, streamflow and
groundwater anomalies. By evaluating the evolution of these
indices along with their interactions, this study aims to char-
acterize drought mechanisms in the Ebro basin. In this study,
the indices have been computed using gridded datasets, thus
generating a time series for each grid point.

4.1.1 SPI

The standardized precipitation index (SPI) (McKee et
al., 1993) is an index of precipitation anomalies, which is cal-
culated by transforming the accumulated precipitation from
its original distribution (usually gamma or Pearson type III)
to the normal distribution with zero mean and unit standard
deviation. As a result, we obtain a time series that shows,
for each time step, the departure from the expected value in
terms of standard deviations. The calculation of the index is
usually made based on monthly time series of rainfall, ag-
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gregated over multiple accumulation periods, typically at 3,
6 and 12 months. However, the SPI can also be calculated on
a weekly basis, provided that the accumulation periods are
at least 4 weeks (1 month). In this way, this study uses the
notation SPIm-i to denote the SPI at a monthly scale with an
accumulation period of i months and SPIw-i to denote the
weekly SPI with an accumulation period of i weeks. Using
SAFRAN data, we adopt the non-parametric methodology
proposed by Farahmand and Aghakouchak (2015) to calcu-
late the SPI on a monthly and weekly basis using the multi-
month accumulation of 1, 3, 6 and 12 months suitable for
rainfall, soil moisture, streamflow and groundwater evalua-
tion.

4.1.2 ETDI

The second index incorporated into the analysis is the evap-
otranspiration deficit index (ETDI) defined by Narasimhan
and Srinivasan (2005). The first step for calculating this index
implies defining the water stress (WS) ratio for each week,
which is the difference between potential evapotranspiration
(PET) and actual evapotranspiration (AET) divided by PET.
Then the water stress anomaly (WSA) is computed as fol-
lows:

WSAi,j =
MWSj −WSi,j

MWSj −minWSj
× 100 if WSi,j ≤MWSj ,

WSAi,j =
MWSj −WSi,j

maxWSj −MWSj
× 100 if WSi,j > MWSj , (1)

where j denotes the week of the year (1⇐ j ⇐ 52) and i

denotes the year. WSi,j is the water stress of the week j of
the year i. MWSj is the median WS for the week j of the
year; minWSj corresponds to the minimum and maxWSj to
the maximum. This process removes the seasonality of the
time series. WSA ranges from−100 (maximum water stress)
to 100 (minimum water stress). The WSA accumulates over
time to define the ETDI as in the following equation:

ETDIj = 0.5ETDIj−1+
WSAj

50
. (2)

To define a range between −4 and 4 for the index, the ETDI
of value −4 must correspond to a WSA of value −100 and
the ETDI of value 4 to a WSA of value 100. This range ad-
justment determines the coefficients 0.5 and the divisor 50 of
Eq. (2). In this way, the ETDI becomes a non-seasonal index
suitable for comparing time series of diverse climatic charac-
teristics. Monthly values of the ETDI are calculated by com-
puting the average of the weekly values of the corresponding
month. In this study, we calculate the ETDI using potential
and actual evapotranspiration provided by MOD16A2. We
have also calculated it using the SURFEX-ISBA-simulated
AET and PET. By default, SURFEX-ISBA does not calcu-
late potential evapotranspiration. In order to do so, we have
modified the source code to set soil moisture permanently

at field capacity and have run a simulation with this modi-
fication. The resulting evapotranspiration corresponds to the
potential one.

4.1.3 SMDI

The third index incorporated into the analysis is the soil
moisture deficit index (SMDI) also defined by Narasimhan
and Srinivasan (2005). The sequence to calculate this index
follows the same procedure as the ETDI. We first calculate a
weekly soil moisture deficit (SD) as follows:

SDi,j =
SWi,j −MSWj

MSWj −minSWj
× 100 if SWi,j ≤MSWj ,

SDi,j =
SWi,j −MSWj

maxSWj −MSWj
× 100 if SWi,j > MSWj . (3)

Then, the time series of the SMDI is generated accumulating
the SD:

SMDIj = 0.5SMDIj−1+
SDj

50
. (4)

The SMDI also ranges between −4 and 4, corresponding to
extremely dry and very wet soil moisture conditions, respec-
tively. The SMDI, similarly to the ETDI, becomes a non-
seasonal index able to compare time series of diverse climatic
characteristics at different soil depths. In this study, we have
calculated the SMDI using SMOS1km surface soil mois-
ture data and SURFEX-ISBA-simulated surface soil mois-
ture data. In the case of SURFEX-ISBA, we have calculated
the weighted averages of the first two layers of the soil, which
correspond to the first 5 cm of the soil.

4.1.4 Temporal consistency of drought indices
calculated based on relatively short RS and LSM
data series

Given the relatively short availability of data for the calcu-
lation of ETDI and SMDI series, which depend on the max-
imum, minimum and median values of the available series,
we conducted a sensitivity analysis of the indices in refer-
ence to the length of the series and the subset of spatial data.
Results shown in Table S1 illustrate the relatively low impact
of the length of the series thanks to the high spatial resolu-
tion of the dataset. The shortening of the series by half or a
quarter barely alters the ETDI series compared to the case
of using the full temporal length. The subset of the dataset
to a fraction of its spatial resolution increasingly impacts the
robustness of ETDI and SMDI series. Therefore, the high-
resolution spatial and temporal datasets such as the RS and
LSM used for this study support the consistency of drought
indices even when data availability remains under a decade
long.
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4.2 Analysis of interaction between the indices

4.2.1 Correlation between the indices

To evaluate the similarity between the series of the drought
indices (SPI, ETDI and SMDI), we use a variant of the proce-
dure applied by Barella-Ortiz and Quintana-Seguí (2019) and
Quintana-Seguí et al. (2020), based on Barker et al. (2016).
The method consists of computing the r Pearson correlation
between each pair of series of these three drought indices
(e.g., SPIw-i and ETDIw and SMDIw), where i is the ac-
cumulation period, which varies from 4 weeks (1 month) to
52 weeks (1 year). For this evaluation and the following lag
analysis, we adopt the r Pearson coefficient because the time
it consumes to process our RS and LSM datasets is an or-
der of magnitude lower (e.g., weeks) than the time required
using r Spearman (e.g., months). To further support the use
of r Pearson despite the concerns about the non-normality of
SMDI and ETDI distributions, we conducted a similarity test
of the series of lags between indices obtained with r Pear-
son and r Spearman. Similarity tests indicate r Pearson and
r Spearman correlate generally over r = 0.9 for RS data and
at a moderately lower level for LSM data, while they do not
differ significantly in the timing characteristics of the series
(Fig. S1 in the Supplement). Therefore, we can consider r

Pearson suitable and sufficiently accurate for the approach
and focus of the study.

4.2.2 Temporal lag analysis of the indices

Following the correlation analysis between the series, we
perform a lag analysis of the correlation of the pairs of
drought indices at a weekly scale, introducing lags from
−104 weeks to +104 weeks. We compare ETDIw and
SMDIw with SPIw-i (being the period of accumulation for
SPIw-i, where i is 4, 13, 26 and 52 weeks, equivalent to
SPIm-1, SPIm-3, SPIm-6 and SPIm-12), as well as ETDIw
with SMDIw. The purpose of this analysis is to diagnose the
reciprocity and memory in the interaction between rainfall
and evapotranspiration and between rainfall and surface soil
moisture. The relative abundance of positive over negative
lags (and vice versa) provides information about the asym-
metry of the interaction between the indices (precedence and
delay). Negative lags refer to leading times of ETDIw and
SMDIw with respect to SPIw-i (e.g., lag −104, left side of
the time bar), while positive ones (e.g., lag +104) repre-
sent lag times when SPIw-i precedes ETDIw and SMDIw
(e.g., lag +104, right side of the time bar). The number
of consecutive weeks of positive or negative lags of SPIw-
i can inform us about the memory of the interactions. For
each time lag, the percentage of the basin affected by non-
significant/significant correlations is indicated (grey/colored
scales of bars in Figs. 3–7). Positive/negative correlations in-
dicate a direct/indirect relationship (red/blue bars in Figs. 3–
7).

5 Results

5.1 Correlation between indices: monthly scale in
comparison to the weekly scale

The first two aims of the study are to evaluate the suitability
of the SPI, ETDI and SMDI to characterize the main anoma-
lies in water exchanges of the land–atmosphere system and
to evaluate the suitability of adopting the weekly scale for
the analysis of drought indices compared to the use of the
monthly scale. Regarding the first, results shown in Fig. 2
indicate a general agreement of the SPI, ETDI and SMDI
(computed at either a monthly or a weekly scale) on the ma-
jor events of dry and wet anomalies of the period 2010–2017.
The dry period of 2011–2012 and the wet period from the
end of 2012 to 2015 were properly depicted. However, we
identified differences, especially in the case of the SMDI.
This index tends to show a generally lower variability than
other indices when calculated with the LSM. RS results of
the SMDI differ from the other indices during the start of
2010 due to the uncertainties during the test period of the
SMOS mission. The left column of Fig. 2 shows the monthly
SPIm-i and the monthly averaged ETDIm and SMDIm. Cor-
relations between the SPI and the ETDI and SMDI are cal-
culated on the monthly scale (Table 1, top row) and on the
weekly scale (bottom row) for both RS and LSM data (where
i = 4, 13, 26 and 52 weeks of aggregation, equivalent to 1, 3,
6 and 12 months). We test the significance of the correlations
(p value < 0.05) between indices for two subsets: the entire
period (2010–2017) and a subset of dry periods (i.e., when
SPI < 0, ETDI < 0, SMDI < 0). Then, we compare the ob-
served (RS) and simulated (LSM) estimates of the indices to
explore differences between data sources. RS and LSM ET-
DIm and SMDIm indices are moderately correlated (barely
over 0.5, significant). Table 1 reports a value of r = 0.58 (sig-
nificant) between ETDIm RS and SMDIm RS, which is sig-
nificantly higher than the r = 0.32 between the ETDIm LSM
and SMDIm LSM. In general, despite the resemblance of RS
and LSM series of the ETDI and SMDI shown in Fig. 2, these
two series differ. There is a higher agreement between the RS
and the LSM estimates of ETDIm (r = 0.77, significant) than
between the RS and LSM ones of SMDIm (r = 0.27).

Table 1 also reveals differences in the moderate correlation
of SPIm-i with the ETDI and the SMDI of different tempo-
ral aggregations (i = 1, 3, 6, 12 months of SPIm-i accumu-
lation) as well as between their RS and LSM versions. Cor-
relation between SPIm and ETDIm RS increases with the
aggregation period of SPIm (r = 0.39, 0.62, 0.72 and 0.81
for SPIm-1, SPIm-3, SPIm-6 and SPIm-12, respectively)
while correlations of SPIm with the ETDI LSM peak at
SPIm-3 (r = 0.8) and remain high for SPIm-6 (r = 0.78) and
SPIm-12 (r = 0.71). The correlations between SPIm-i and
SMDI RS show moderate correlation ranging from SPIm-
1 (r = 0.42) to the maximum value of SPIm-12 (r = 0.63).
The SMDIm LSM exhibits a decreasing correlation pattern
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Figure 2. Time series of the SPI, ETDI and SMDI at the monthly scale (left column of subplots identified with sub-index 1) and weekly scale
(right column of subplots identified with sub-index 2). Panels (a) to (d) correspond to SPIm-1, SPIm-3, SPIm-6 and SPIm-12; panels (e)
and (f) display the temporal evolution of the ETDI and SMDI. These ones show two rows corresponding to the series based on RS and LSM
data. Red/blue color represents dry/wet periods. Periods of drought occur when SPI < 0, ETDI > 0 and SMDI < 0.

with the increasing aggregation of SPIm from SPIm-3 to
SPIm-12 (r = 0.45, 0.31, 0.3 and 0.24 for SPIm-1, SPIm-
3, SPIm-6 and SPIm-12, respectively). Remarkably, corre-
lations of the LSM SPIm–SMDIm are lower than their RS
pairs, which suggests data uncertainties in RS and the LSM,
as reported by Barella-Ortiz and Quintana-Seguí (2019) and
by Quintana-Seguí et al. (2020).

The monthly correlation analysis is additionally conducted
for the subsets of dry periods (those with negative signs of
SPIm, ETDIm and SMDIm). Using the dry subset instead of
the entire period primarily decreases all correlations. Com-
pared to the correlations of the entire period, the RS ETDIm–
SMDIm values decrease a little while the LSM ones increase
a little. Also the SPIm-i–ETDIm and the SPIm-i–SMDIm
correlations decline noticeably. Despite the loss of corre-
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Table 1. Matrices of significant (in bold) correlation coefficients considering a p values of = 0.05 for pairs of indices at the monthly and
weekly scale for the period 2010–2017 of the SPI, ETDI and SMDI series and the corresponding dry-period subsets. Higher correlation
values show a more intense red color. Since the correlations of interest refer to comparing the same type of data source for different indices,
dark grey cells identify unsuitable combinations for the analysis such as comparing RS results from one index with LSM results from another
index.

lation and significance with the dry subset, the increase in
the period of aggregation causes an increase in correlations,
equal to the case of the entire period series.

Figure 2 provides an overview of the effect of adopting
the weekly scale (right column) instead of the monthly scale
(left column). The weekly scale substantially improves the
temporal resolution of the plots. Subplots of SPI-i (a–d), the
ETDI (e) and the SMDI (f) show how the weekly scale ac-
curately reproduces the magnitude, tendency and duration of
the monthly-scale anomalies, while the increase in temporal
resolution additionally captures quick changes. Graphically,
we noticed that the aggregation period applied to the SPI
counteracts the gain in the resolution of the weekly scale,
which often prevents users from adopting the weekly scale
instead of the monthly scale. Conversely, Fig. 2e2 and f2 il-
lustrate the strong increase in the resolution of the ETDI and
SMDI resolution on the weekly scale.

The right columns of Table 1 indicate the correlations be-
tween indices on a weekly scale compared to those on a
monthly scale (the “w” sub-index of ETDIw, SMDIw and
SPIw denotes the weekly scale). There is an overall decrease
in correlations at the weekly scale compared to the monthly
scale, accentuated by the increasing period of aggregation
(from SPIw-3 to SPIw-12). Correlations increase compared
to the monthly scale at the lowest period of aggregation

of SPIw-i, especially for SPIw-1–ETDIw (from r = 0.39
to r = 0.57) compared to SPIw-1–SMDIw (from r = 0.51
to r = 0.68). For both RS and LSM data, the weekly scale
lowers the correlation values of SPIw-i with SMDIw more
than those with ETDIw. Within the dry-period subset, all the
correlations decrease too. The weekly scale lowers correla-
tions due to the increase in variability in the weekly time se-
ries compared to the monthly ones but enables capturing the
increasing complexity of interactions at shorter timescales.
Therefore, since quick shifts (Fig. 2e1 and f1) are of great in-
terest for drought analysis, we consider the weekly scale the
most convenient for the lag analysis of the next section. This
decision benefits comparing drought indices at their highest
temporal definition, which for the ETDI and SMDI is na-
tively the weekly scale and for the SPI can be easily adopted.

5.2 Temporal lag analysis

The analysis of correlations between pairs of temporally
lagged time series of drought indices provides valuable in-
sights into the interactions between indices (e.g., in terms
of reciprocity) as indicators of synchronicity of one variable
with respect to the other. The analysis addresses the char-
acterization of the interactions between rainfall, evapotran-
spiration and soil moisture while also aiming to examine
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whether the land–atmosphere exchange of semi-arid areas
under drought events is a quickly evolving or rather inertial
system. Plots of the fraction of the area affected by each cor-
relation level (from −1 to 1 in steps of r = 0.2) for each lag
period are shown in Figs. 3–7. It is anticipated that the three
evaluated indices agree the most in a narrow range around
lag= 0 (no lag) and that their correlation fades away pro-
gressively for the increasing lag periods beyond the scale of
the propagation of drought. Figures 3 to 6 in which SPIw-
i interacts with the ETDI and SMDI illustrate the range of
aggregation periods of SPIw (i.e., from 4 weeks of aggrega-
tion SPIw-4 to 52 weeks SPIw-52) along which the interpre-
tation of the interactions between drought indices becomes
most altered. The range of aggregation periods aims to open
discussion about the optimal timescale to analyze the inter-
acting drought processes. In general, the upper two subplots
of Figs. 3 to 6 identify the admissible aggregation periods
to interpret the clusters of interaction (SPIw-4 and SPIw-13,
equivalent to SPI-1 and SPI-3 on a monthly scale), while the
bottom two subplots (SPIw-26 and SPIw-52, equivalent to
SPI-6 and SPI-12 at the monthly scale) depict the increas-
ingly merged clusters of interaction due to excessively long
aggregation periods of the SPI.

5.2.1 Lag analysis SPI–ETDI

RS

The lag analysis of SPIw–ETDIw and SPIw–SMDIw shown
in Figs. 3–6 aims at diagnosing the reciprocity, synchronicity
and memory in the interaction between rainfall and evapo-
transpiration and between rainfall and surface soil moisture.
Each subplot of Figs. 3–6 shows the correlation between the
ETDIw and SMDIw indices with SPIw-i calculated for dif-
ferent aggregation periods (i) at the weekly scale: SPIw-4,
SPIw-13, SPIw-26 and SPIw-52. Negative lags refer to lead-
ing times of ETDIw and SMDIw with respect to SPIw-i
(e.g., lag −104, left side of the time bar) while positive ones
(e.g., lag +104) represent lag times when SPIw-i precedes
ETDIw and SMDIw (e.g., lag +104, right side of the time
bar).

In the case of the ETDIw–SPIw-i analysis based on the RS
data, there is a remarkable cluster of positive correlations in
the short term (indicated with the tag ST1 (short-term) over
the subplots of Fig. 3). This ST1 cluster shows relevant frac-
tions of the basin affected by significant moderate (0.4–0.6)
values of correlation, particularly in the first weeks of the
positive range of lags (from lag 0 to+4) (Fig. 3). The cluster
lasts more with the increasing period of aggregation (Fig. 3a
to d), eventually becoming merged with the mid-term clus-
ters. In view of subplots Fig. 3a to d, the ST1 cluster extends
from lag −13 to 4 in the case of SPIw-4; from lag −13 to
+13 in the case of SPIw-13; and once merged with MT1
(mid-term), from −26 to +26 in the case of SPIw-26 and
from −26 to +39 for SPIw-52. The mid-term cluster MT1,

originally indicating a period of correlation of ETDIw pre-
ceding SPIw-i from 4 to 13 weeks of aggregation, displays
moderate to low but significant values of correlation (from
0.2 to 0.4) from lag −36 to −13. The merging of the cluster
ST1 and MT1 decreases the asymmetry defining the leading
role of ETDIw over SPIw-i. The initially asymmetric inter-
action of ETDIw–SPIw-i that is mostly located in the neg-
ative range of lags (ST1 and MT1 shown between lag −30
and +10 for the SPIw-4 and SPI-13 cases) propagates and
dampens towards the positive range of lags with increasing
aggregation. The dampening eventually shifts the interaction
of ETDIw to SPIw-i from preceding to delayed (at 26 and
52 weeks of aggregation, the clusters of significant positive
correlations are mostly within the positive range of lags, es-
pecially in Fig. 3d). The loss of asymmetry due to the in-
creasing aggregation translates into an increase in the du-
ration of the cluster as well as of the fraction of the basin
significantly affected by correlations. Both effects may in-
dicate the inconvenience of adopting long aggregation peri-
ods that alter the interaction magnitude and timing. There
is an additional cluster of positive correlations, LT1 (long-
term), past 1.5 years (lags +78 to +104), particularly no-
ticeable at SPIw-13 and SPIw-26. Blue bars in Fig. 3 indi-
cate negative correlations for the relationship ETDIw–SPIw-
i dominating the long-term between evapotranspiration and
rainfall anomalies. There is a couple of clusters around lag
+42 (tagged LT2) and around lag +104 (LT4), slightly sig-
nificant, that similarly to the positive correlations, increased
in duration and magnitude with the increase in the aggrega-
tion period of the SPI, particularly for SPIw-26 and SPIw-52
(Fig. 3c–d).

LSM

Results from the LSM SURFEX-ISBA (Fig. 4) show a less
lasting and more concentrated cluster of significant positive
correlations around lag 0 (ST1 tagged in Fig. 4) than those
observed in the RS results (Fig. 3). This result implies there
is more synchronicity between the SPI and ETDI in the LSM
data than in the RS data. Furthermore, the LSM provides
higher magnitudes of the significant positive correlations of
ETDIw–SPIw-i of ST1 than RS results. Similarly to RS data,
the duration of the highly correlated period ST1 extends with
the increasing aggregation of SPIw-i (Fig. 4a to d), eventu-
ally causing the merging of clusters ST1 and MT1. The initial
asymmetry of the positive correlations towards the negative
range of lags is due to the cluster MT1 placed around lag−26
and cluster LT1 (Fig. 4a and b). In the SPIw-26 and SPIw-52
cases (Fig. 4c and d) LT1 disappears and ST1 merges with
MT1, artificially shifting the initial asymmetry dominating
the negative range of lags towards the positive range. Thus,
the precedence of ETDIw with SPIw-i prevalent in the period
of aggregation of 4 and 13 weeks may look like the prece-
dence of SPIw-i with ETDIw when long aggregation periods
such as the ones in SPIw-26 and SPIw-52 are applied. The
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Figure 3. Lag plots of SPI-1, SPI-3, SPI-6 and SPI-12 (expressed as SPIw-4, SPIw-13, SPIw-26 and SPIw-52, respectively) with remote
sensing (RS) ETDIw at the weekly scale for the period 2010–2017. Lags are calculated for the −104 leading and +104 lagged time steps of
ETDIw in reference to SPIw-i. The height of the bars of the plot indicates the area of the basin affected by non-significant (grey scale) or
significant (colored scale) correlations. The saturation of the colored scale indicates the magnitude of the significant positive (red) or negative
(blue) Pearson correlation coefficient of SPIw-i and ETDIw.

initial asymmetry of the cluster ST1–MT1 is lower in LSM
results (Fig. 4) than in RS results (Fig. 3) due to the lower
magnitude of MT1. The additional cluster of positive cor-
relations, LT3, past the 1.5-year range of positive lags (lags
+78 to +104) in LSM results (Fig. 4a to c) concurs with

that of RS results (Fig. 3a to c). LSM results (Fig. 4) show a
few more clusters of negative correlations for ETDIw–SPIw-
i, but these are of lower magnitude than those of RS ones
(Fig. 3). These significant clusters merge with the increasing
aggregation period LT4–LT5, which agrees with LT2 shown
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in RS at the 26- and 52-week period of aggregation of SPIw-
i. LSM results further include a cluster of significant negative
correlation values in the lead time range (cluster LT2) that is
absent in RS results (Fig. 4 vs. Fig. 3). The agreement be-
tween LSM and RS results confirms the asymmetrical inter-
action between ETDIw and SPIw-i. The asymmetry suggests
a prevalence of the precedence of positive correlations of ET-
DIw with SPIw-i in the short term (from the monthly to the
seasonal scale) while pointing to some delayed response of
ETDIw to SPIw-i in the negative correlations in the middle
to long term (from a seasonal to interannual scale). The LSM
results tend to amplify the magnitude and the area affected
by positive correlations compared to the RS dataset.

5.2.2 Lag analysis SPI–SMDI

RS

The interaction of SPIw-i with SMDIw for the RS dataset is
not as strong as it was with ETDIw (Figs. 5 and 6 vs. Figs. 3
and 4). Both the correlation values and the significant frac-
tion of the basin affected by them are lower than in the case
of ETDIw. Similarly to ETDIw, the significant positive cor-
relations around lag 0 (ST1) are asymmetrical. Because of
this, SMDIw tends to experience the effect of the preceding
conditions of SPIw-i less than influencing those of SPIw-
i. The increasing period of aggregation of SPIw-13, SPIw-
26 and SPIw-52 widens and lags the short-term influence of
SPIw-i on SMDIw (ST1) into a short-term to mid-term influ-
ence (ST1–MT1). This widened cluster of positive correla-
tions stays almost entirely in the positive range of lags, which
differs from that of ETDIw where the ST1–MT1 cluster ex-
tends in both positive and negative ranges of the lags (Fig. 5
compared to Figs. 3 to 4). The leading range of lags (from lag
−104 to lag 0) does not show relevant clusters of significant
correlation at all, neither in the middle nor in the long term.
Negative correlations of the SMDIw–SPIw-i interaction only
occasionally stand up at a small cluster (LT1, Fig. 5b–d) in
the positive range of lags (when SPIw-i precedes SMDIw).
The smoothing effect of the aggregation period of SPIw-i in-
creasingly alters the initial bias of interactions towards the
leading influence of the SMDI on SPIw, as well as delays
most clusters similarly to the case with ETDIw.

LSM

The LSM results for the SMDIw–SPIw-i relationship de-
pict strongly dampened patterns of significant correlation
between SMDIw and SPIw-i compared to those of RS
SMDIw–SPIw-i or ETDIw–SPIw-i. Only the ST1 cluster is
noticeable around lag 0. The increase in the aggregation pe-
riod does not favor its permanence as a relevant cluster be-
yond SPIw-4. The cause can be the generalized low values
of both non-significant and significant correlations obtained
for these estimates of the LSM SURFEX-ISBA, which may

indicate the difficulties the LSM has to describe the response
of the surface soil moisture (the SMDI) to the atmospheric
forcing (the SPI) that we saw in the RS dataset. The periods
identified of short-term, mid-term and long-term influence
of one SPIw-i in SMDIw such as ST1, MT1 or LT1 cannot
be recognized in Fig. 6 compared to Fig. 5. Therefore, the
LSM results of the SPIw-i–SMDIw relationship strongly dif-
fer from the ones obtained from RS data and are a matter of
debate in the Discussion section.

5.2.3 Lag analysis ETDI–SMDI

RS

The remaining interaction in this analysis is the ETDI–
SMDI. The results show a less asymmetric relationship be-
tween the ETDI and the SMDI compared to the ones of SPIw
with the ETDI and SMDI. The significant moderate positive
correlation values (red bars in Fig. 7a) between lag 0 and
+13 and from lag −10 to 0 indicate that the influence of the
ETDI on the SMDI lasts longer than the one of the SMDI on
the ETDI. The magnitude, though, expresses that the SMDI
moderately impacts the short-term conditions of the ETDI
for about a month in comparison to the sole week the ETDI
affects moderately those of the SMDI. However, the high-
est correlations occur for the lag −1 when the SMDI pre-
cedes the ETDI by 1 week. Negative clusters (MT1, MT2) at
+39 and −39 weeks suggest that the interaction between the
indices goes beyond the seasonal scale commented on above.
However, the significance of all these mid-term to long-term
clusters remains low.

LSM

The results of ETDI–SMDI interaction based on LSM data
show less evident periods of interaction between the indices
compared to the RS results. The expected strong correlation
around lag 0 is largely diminished. The strongest cluster ap-
pears from lag −21 to −39, MT1 (Fig. 7b), when the SMDI
precedes the ETDI. No notable negative clusters can be iden-
tified. Apart from the lack of agreement on the symmetry of
the interaction between LSM and RS results (Fig. 7b vs. a),
the notable cluster ST1 in RS results is less relevant in LSM
results. Given the disparity between LSM and RS results, we
raise concerns about the accuracy of offline LSM simulations
compared to the RS results, addressing them in the next sec-
tion.

6 Discussion

Results require careful discussion regarding three main as-
pects: firstly, the effect of adopting the weekly scale for
drought indices and analyses, secondly the meaning be-
hind the complex interactions between drought indices, and
thirdly the comparison of RS and LSMs as tools for high-
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Figure 4. Lag plots of SPI-1, SPI-3, SPI-6 and SPI-12 (expressed as SPIw-4, SPIw-13, SPIw-26 and SPIw-52, respectively) with the land-
surface model (LSM) ETDIw index at the weekly scale for the period 2010–2017. Lags are calculated for the−104 leading and+104 lagged
time steps of ETDIw in reference to SPIw-i. The height of the bars of the plot indicates the area of the basin affected by non-significant
(greyscale) or significant (colored scale) correlations. The saturation of the colored scale indicates the magnitude of the significant positive
(red) or negative (blue) Pearson correlation coefficient of SPIw-i and ETDIw.

resolution monitoring of drought. All comments refer to the
results on a weekly scale.

6.1 Scales for drought monitoring in semi-arid
environments

Analyzing the differences in correlations between indices at
monthly and weekly scales (Fig. 2), we support the neces-
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Figure 5. Lag plots of SPI-1, SPI-3, SPI-6 and SPI-12 (expressed as SPIw-4, SPIw-13, SPIw-26 and SPIw-52, respectively) with the remote
sensing (RS) SMDIw index at the weekly scale for the period 2010–2017. Lags are calculated for the −104 leading and +104 lagged
time steps of SMDIw in reference to SPIw-i. The height of the bars of the plot indicates the area of the basin affected by non-significant
(greyscale) or significant (colored scale) correlations. The saturation of the colored scale indicates the magnitude of the significant positive
(red) or negative (blue) Pearson correlation coefficient of SPIw-i and SMDIw.

sity of adopting the weekly scale to study lags. The monthly
scale preferred for drought assessment from a hydrological
perspective may overlook the quick response of the land–
atmosphere interactions. The clusters of moderate to high
correlation between indices mostly occur within the first

month preceding or following an anomaly (Figs. 3–7), partic-
ularly in the short to very short term. High correlations tend
to peak and plunge in an interval of a few weeks. This short-
term response recommends the use of the weekly scale and
aggregation periods below the seasonal scale, such as SPIw-
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Figure 6. Lag plots of SPI-1, SPI-3, SPI-6 and SPI-12 (expressed as SPIw-4, SPIw-13, SPIw-26 and SPIw-52, respectively) with the land-
surface model (LSM) SMDIw index at the weekly scale for the period 2010–2017. Lags are calculated for the−104 leading and+104 lagged
time steps of SMDIw in reference to SPIw-i. The height of the bars of the plot indicates the area of the basin affected by non-significant
(greyscale) or significant (colored scale) correlations. The saturation of the colored scale indicates the magnitude of the significant positive
(red) or negative (blue) Pearson correlation coefficient of SPIw-i and SMDIw.

13 (equivalent to SPI3), to evaluate the delay or precedence
between indices.

Our results showing soil moisture response to rainfall
(−5 to 5 weeks) and evapotranspiration (−10 to 5 weeks)
anomalies in a matter of weeks are consistent with pre-

vious works showing soil moisture echoes rainfall anoma-
lies in a range from days to weeks (Scaini et al., 2015;
Martínez-Fernández et al., 2016) and also when driven by
evapotranspiration (Otkin et al., 2013). Therefore, in a basin
exposed to the high-energy characteristics of semi-arid cli-
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Figure 7. Lag plots of ETDIw–SMDIw at the weekly timescale in the period 2010–2017 for (a) RS data and (b) LSM data. Lags are
calculated for the −104 leading and for the +104 lagged time steps of SMDIw in reference to ETDIw. The five levels of red and blue
indicate the positive (red) or negative (blue) Pearson correlation coefficient between ETDIw and SMDIw for each time step (lead or lag time
step). The height of the bars of the plot indicates the area of the basin affected by that level of r Pearson values.

mates, the weekly scale allows us to diagnose disregarded
short-term interactions, such as the ones of the ETDI and
SMDI on the SPI, without losing resolution in the identi-
fication of mid-term to long-term interactions. The need to
apply a weekly scale to the SPI, which is barely used below
the monthly scale, is recommended not only for the analysis
of rainfall–evapotranspiration interactions but also for soil
moisture ones, which are often assessed over the monthly
scale. Using the weekly scale for drought assessment de-
mands an increase in spatial resolution. This is the reason
why LSMs using coarse inputs, such as the semi-aggregated
physical characteristics of the basin, may generate results
with scale effects. In fact, scale effects due to the coarse
resolution of the spatial characteristics can increase the tem-
poral scale at which the processes are effectively correlated
(Rodriguez-Iturbe et al., 2001). Therefore, lag analysis needs
to compile datasets of appropriate spatial and temporal scales
for their aims, like the high-resolution RS datasets evaluated
in this study or LSM ones based on completely distributed
data.

6.2 Interpretation of the interactions between drought
indices

Adopting specific drought indices for rainfall, evapotranspi-
ration and soil moisture allows exploring the interactions be-
tween variables of different levels of the land–atmosphere
system. The pertinence of using the SPI, ETDI and SMDI

to evaluate the interactions between the variables’ anomalies
can be the subject of discussion depending on the specific ad-
vantages, drawbacks and applicability of each index. There
can be alternative drought indices even for soil moisture and
evapotranspiration of better stability and statistical charac-
teristics worth exploring. Furthermore, assessing the interac-
tions of anomalies may be possible without using drought in-
dices. However, since the commonplace in the analysis of the
anomalies behind drought has been widely based on drought
indices for comparable interpretation, we consider the SPI,
ETDI and SMDI to represent a set of comprehensive indices
to flexibly evaluate interactions at different timescales.

Figure 8a and graphically Fig. 8b summarize the annual
mode of interactions between the SPI, ETDI and SMDI. In
the short to middle term, both the ETDI and the SMDI inter-
actions with the SPI concur on having moderate significance,
with only a few negative and positive low interactions in the
middle to long term. Positive correlations around lag 0 of the
ETDI and SMDI with the SPI indicate direct precedent de-
pendence of the indices, which means changes on the ETDI
and SMDI correlate positively (negatively) to positive (neg-
ative) changes on the SPI. The short-term correlations after
rainfall for both the ETDI and the SMDI (lagged response
of these indices to the SPI) are straightforward and have
been reported before in similar Iberian regions (Martínez-
Fernandez et al., 2016). Sustained dry or wet anomalies in
both variables favored by a positive correlation between in-
dices are primarily restricted to a length of three seasons.
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Correlations beyond the year may represent the multi-annual
persistence of anomalies common in Mediterranean climates.

The strong aggregation impact occurring when adopting
SPIw-26 and SPIw-52 indicates the analysis of interactions
may be uncertain when indices are aggregated beyond the
seasonal scale. It is evaluated if the magnifying effect of clus-
ters with long aggregation periods (SPIw-26 and SPIw-52)
is the autocorrelation of the indices. Significant autocorre-
lated values always extend for less than the period of aggre-
gation of SPIw-i (2 weeks on SPIw-1, 3 weeks on SPIw-
4, 10 weeks on SPIw-13, 18 weeks on SPIw-26, 35 weeks
on SPIw-52, 40 weeks on SPI-78, 45 weeks on SPIw-104).
Hence, we presume autocorrelation values of the SPI series
are only partly caused by the period of aggregation. The par-
tial autocorrelation of both the ETDI and the SMDI shows
mostly two significant lags, which indicate the existence of
an autoregressive model of type AR(2) (Fig. S2). An AR(2)
model may articulate the combination of growing and decay-
ing factors behind the shifting balance of positive and nega-
tive correlations between indices. In this way, the clusters of
interactions identified in Figs. 3 to 7 can be attributed to in-
teractions between rainfall, evapotranspiration and soil mois-
ture anomalies. Conversely, clusters identified in series with
a period of aggregation over the seasonal scale may be mis-
leading for the analysis of drought interactions in Mediter-
ranean environments. Thus, drought evolution in semi-arid
environments can be considered an expression of quick ex-
changes between land–atmosphere variables which develop
within the seasonal scale. This implies the temporal reso-
lution of drought indices must adopt short timescales (i.e.,
weekly scale) to capture the onset of drought.

The existence of the precedent influence of the ETDI and
SMDI on the SPI (clusters of the negative range of lags) im-
plies some unequal reciprocity (feedback) between evapo-
transpiration and soil moisture with rainfall. This precedent
influence is weaker than the influence of the SPI on subse-
quent ETDI and SMDI anomalies (lagged response) but still
remarkable. It is reasonable that the lagged response of evap-
otranspiration and soil moisture to rainfall is stronger and
longer-lasting than the precedent influence (Fig. 8a). Further-
more, the precedent influence period between the ETDI and
SPI is stronger and of longer duration than the one of the
SMDI on the SPI. This asymmetry suggests that the ETDI,
more than the SMDI, has a weekly to seasonal precedent in-
fluence on rainfall (Fig. 8b). We expected a longer period of
positive correlations of the SMDI influencing rainfall, given
the multiple reports of soil moisture inducing memory at the
near-surface atmosphere (Manning et al., 2018).

One reason why the ETDI shows a longer influence on the
SPI than the SMDI may be that the ETDI from MOD16A2
is fed by the whole depth of soil moisture, while the SMDI
based on SMOS1km is limited to the top 5 cm of soil mois-
ture, a very exposed soil level in semi-arid climates. The
complexity of soil moisture dynamics, which barely follow
a cyclic interaction (Rodriguez-Iturbe et al., 1991), can also

explain a weaker relationship between the SMDI and SPI
compared to the ETDI. Other reasons for this may lie in the
prevalence of maritime advection as the main contributor to
evapotranspiration in the IP (Gimeno et al., 2010) compared
to the prevalence of local soil moisture recycling common
in more continental areas of Europe (Bisselink and Dolman,
2008). The advective explanation is supported by the contrast
between the few weeks of precedent influence of soil mois-
ture on rainfall we observe in the Ebro basin and the up to
250 d of precedent influence of continental areas prone to soil
moisture recycling (Rowntree and Bolton, 1983; Bisselink
and Dolman, 2008). Some studies focused on continental cli-
mates of relevant summer rainfall have described the impli-
cations of the alteration of the recycling due to soil moisture
depletion during heat waves and drought which can eventu-
ally alter the atmosphere (Rasmijn et al., 2018; Miralles et
al., 2019). In the Mediterranean climate of the Iberian Penin-
sula characterized by a lack of summer rainfall, soil mois-
ture annually reaches such low levels that we can expect
annual summer alterations in the near atmosphere. Differ-
ences between areas where soil moisture plays a role, like
central Europe, and areas where soil moisture is unable to
control the evolution of the system under high-energy condi-
tions, like the Iberian Peninsula, have been reported before in
Mediterranean-like Western Australia (Herold et al., 2016).

In consequence, our results at the Ebro basin seem com-
patible with the frequent activation of a reinforcing or self-
intensification loop (Brubaker and Entekhabi, 1996), by
which the precedent influence of negative (eventually posi-
tive) anomalies of evapotranspiration reducing (increasing)
rainfall cascades into a depletion (rise) in soil moisture that
further limits (enhances) the response of evapotranspiration
and restarts the cycle (Fig. 8c, right column). The weak
precedence of soil moisture on rainfall compared to that of
evapotranspiration expresses the limited duration of the con-
trol capacity of the soil moisture over evapotranspiration in
semi-arid climates of the Mediterranean type (left column of
Fig. 8c). Negative correlations when indices differ in sign
(r < 0 conditions, Fig. 8a) can be indicative of transitional
periods of mid-seasons. The sharp shift from the cluster of
short-term positive correlations to the cluster of mid-term to
long-term negative correlations suggests a limit in the per-
sistence of the self-intensification mechanism. A physical
interpretation of the shift may be related to the change in
the dominance of the sequence from the one under high-
energy conditions (Fig. 8c, right column) to the one under
low-energy conditions (Fig. 8c, left column). A low-energy
inhibiting mechanism of negative correlations between soil
moisture and surface temperature under low temperatures has
already been described by Brubaker and Entekhabi (1996).
Given the direct link between evapotranspiration and tem-
perature, the shift from positive to negative interactions hap-
pening at timescales over the semester but below the yearly
scale suggests that the arrival of winter low-energy condi-
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Figure 8. (a) Interpretation of the correlations between the SMDI–SPI, ETDI–SPI and SMDI–ETDI. The r > 0 box exemplifies positive
correlations between the indices (positive correlations of red arrows in panel b), while the r < 0 box defines the negative ones (negative
correlations of blue arrows in panel b). The abbreviation “vv” denotes vice versa. (b) Summary of the annual magnitude and timing of the
interactions. Red arrows represent positive correlations and blue arrows the negative ones. Arrow width represents the magnitude of the
correlation. Arrow direction determines the direction of the interaction. The timeline at the bottom indicates the scale of the interactions
ranging from short-term to long-term. (c) Sequences of prevalent reinforcing (upper) and inhibiting (lower) conditions alternating during the
annual cycle based on the scheme of interactions described in panels (a) and (b). The upper sequence is the self-intensifying loop driven
by evapotranspiration under high-energy conditions. The lower sequence displays the inhibiting role of rainfall and soil moisture under
low-energy conditions.
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tions terminates the dominance of the self-intensifying loop
of evapotranspiration.

In this way, the annual cycle can be modeled as the sea-
sonal succession of two sequences: one under the low-energy
conditions of winter when evapotranspiration no longer out-
weighs the inhibiting of soil moisture due to rainfall (left col-
umn of Fig. 8c) and the other under high-energy conditions
driven by evapotranspiration (right column of Fig. 8c). The
shift between the long period of interactions dominated by
evapotranspiration (right column of Fig. 8c) and a short pe-
riod of interactions controlled by rainfall and soil moisture
(lower sequence of Fig. 8c) is generally driven by an en-
ergy threshold. However, certain levels of rainfall and soil
moisture anomalies may temporally advance or delay the
shift. This reason explains why under high-energy conditions
drought may terminate due to heavy rainfall, while soil mois-
ture deficits under low-energy conditions may cause an antic-
ipated onset of the self-intensification loop of evapotranspi-
ration.

The conceptualization of the interactions illustrated in
Fig. 8 aims to raise awareness about the power of evapo-
transpiration anomalies to alter the land–atmosphere system,
year-round, beyond hydrometeorological extremes (Senevi-
ratne et al., 2006; Otkin et al., 2013; Teuling, 2018; Miralles
et al., 2019). Another reason for supporting the year-round
implications of the dominance of evapotranspiration over soil
moisture is that rainfall mostly transfers to evapotranspira-
tion in semi-arid climates (Rodriguez-Iturbe et al., 2001),
where the often underestimated interception (Savenije et
al., 2004) further increases evaporation at the expense of soil
moisture. Additionally, as the semi-arid Mediterranean cli-
mate likely presents thresholds of rainfall, evapotranspiration
and soil moisture anomalies different from those triggering
hydrometeorological extremes in other areas (Tramblay et
al., 2021), the evapotranspiration-dominated sequence may
initiate not only more often but also more abruptly than in
regions of lower-energy inputs. All these aspects, together
with the increasing chance of extremes in the Mediterranean
area due to climate change (Samaniego et al., 2018), recom-
mend assessing changes in the balance of land–atmosphere
interactions from the basis of this study.

However, we bear in mind that our results may oversim-
plify the causality, since processes not analyzed in this study
may also play a role. The multiple periods showing neither
prevalently positive nor prevalently negative correlations be-
tween indices indicate a loss of linear interaction. A source
of non-linearity is vegetation due to its mediating role in
water exchanges of the land–atmosphere system. Plants can
control evapotranspiration and soil moisture in adaptation to
water stress in non-linear manners that depend more on the
type of vegetation (Katul et al., 2012), particularly within the
Mediterranean floras (Boulet et al., 2020), than on the evap-
otranspiration or soil moisture status. Vegetation can also
modulate the partitioning of energy governing evapotranspi-
ration (Lansu et al., 2020) but similar processes are reported

with soil moisture (Barbeta et al., 2015). In consequence, the
quick response to drought of rainfed crops and sclerophyl-
lous vegetation (Vicente-Serrano et al., 2019) may obscure
the interpretation of the links between rainfall, evapotran-
spiration and soil moisture. This is of concern regarding the
ETDI and SMDI results because interactions of vegetation
integrate the status of the atmospheric and the land-surface
variables (Peters et al., 1991). Nonetheless, additional fac-
tors of uncertainty may arise from teleconnections such as
the well-known North Atlantic Oscillation (NAO) or Western
Mediterranean Oscillation (WeMO; Barnston and Livezey,
1987; Conte et al., 1989) or the oceanic ones like the At-
lantic Multidecadal Oscillation (AMO; Kerr, 2000) altering
the land–atmosphere system at large scales.

6.3 The value of remote sensing and land-surface
model estimates

The RS and LSM results of the lag analysis of the ETDI–SPI
interactions show consistently comparable results in contrast
to the remarkable disagreement between RS and LSM results
for the SMDI–SPI interaction. Results of the SMDI obtained
with the LSM show substantially lower correlations than the
ones of RS while also differing in the timing of the clus-
ters of correlation. We expected the opposite, i.e., that the
LSM, being simpler than reality, has stronger SPI–ETDI–
SMDI correlations than the RS dataset. We assume the im-
plicit accumulation of uncertainties in modeling (Rodriguez-
Iturbe et al., 1991), partly inherited from inputs but also from
the LSM structure, is the cause of the decrease in correla-
tions. This is particularly true for soil moisture, a variable
integrating exchanges between climate, soil and vegetation
(Rodriguez-Iturbe et al., 2001). Secondly, this is an offline
simulation, where the atmosphere (SAFRAN) is forcing the
land surface (SURFEX-ISBA) without explicit feedback of
SURFEX-ISBA influencing SAFRAN back. SAFRAN esti-
mates real conditions by ingesting observations, so the feed-
back is implicit in results, which may be insufficient to rep-
resent reality. Thirdly, the model itself does not consider im-
portant processes like the interactive response of vegetation.
ISBA has an interactive vegetation module (ISBA-A-gs), but
Mediterranean vegetation can be particularly challenging for
it. We expect to test the capabilities of interactive modeling
vegetation in a follow-up study. Uncertainties in ISBA with
vegetation also have roots in the use of the ECOCLIMAP-
II database, which shows inaccuracies in cover type and the
LAI. ECOCLIMAP assumes the maximum/minimum LAI
occurs in June/February in contrast with the early spring and
autumn LAI maximums characteristic of the Mediterranean
environment (Queguiner et al., 2011). All in all, the differ-
ences between the LSM and RS datasets are already an im-
portant result to improve the LSM and comprise a useful in-
sight into the use of offline LSM drought simulations.

Our results positively verify that RS represents an ef-
fective tool to overcome the problem of sparsely observed
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soil moisture or evapotranspiration, whose crucial role in
drought evolution requires high-resolution data similarly
to precipitation (AghaKouchak and Nakhjiri, 2012). In-
cluding high-resolution evapotranspiration products from
MODIS (MOD16A2) and soil moisture from SMOS mis-
sions (SMOS1km) together with the distributed rainfall re-
analysis data allows dedicated interpretation of the inter-
actions between these two drought-relevant variables and
rainfall and their role in the water balance of the land–
atmosphere interface (Dai, 2011). Especially for evapotran-
spiration, the maps and series of the LSM SURFEX-ISBA
are comparable to those of RS, which supports the reliability
of LSMs despite their limited capability in arid regions (De
Kauwe et al., 2015).

The temporal and spatial patterns of the anomalies are
overly identified by both RS and the LSM. The RS data seem
able to capture a more complex scheme of interactions than
the LSM, despite the intrinsic data issues of the RS sensors
and the performance of the algorithms used to generate the
products. Conversely, the LSM seems sensitive to uncertain-
ties from input data, especially surface properties, and the
offline forcing. The parametrization of the model assumes
a semi-distributed approach by sub-basins of the catchment
on which each sub-basin is defined based on average values
of land cover and soil characteristics of the ECOCLIMAP
database, which may induce some patchiness of LSM results
compared to the RS results. The offline run means that the
meteorological data force the LSM, but the feedbacks are lost
beyond the meteorological observations included as observa-
tion in the model. Additional aspects can be, for instance, the
impact of groundwater redistributing soil moisture depend-
ing on topography, which is underrepresented in the LSM.
Limitations of LSMs have been reported in multiple works
before and are the subject of improvement efforts (Teuling et
al., 2006; Samaniego et al., 2018). Either way, uncertainties
are causes of major concern in the lag analysis where they
can alter the correlations between indices and obscure the in-
terpretation of the interactions.

These aspects together can be critical to improving
evapotranspiration and soil moisture estimates (Ukkola et
al., 2016). Solving these inaccuracies would increase the
value of RS and LSM estimates. This study exemplifies the
potential of high-resolution RS and LSM products for a wide
range of applications, such as drought analysis.

7 Conclusions and perspectives

The analysis of droughts in the Ebro basin using dedicated
evapotranspiration and soil moisture drought indices based
on high-resolution data from MOD16A2, SMOS1km and the
LSM SURFEX-ISBA provides the following insights.

The monthly scale commonly adopted for drought eval-
uation (e.g., SPI-3) may overlook the quick evolution of
drought from an agricultural and environmental perspective,

especially in the high-energy climates of the Mediterranean
basin where the anomalies of rainfall, evapotranspiration and
soil moisture can vary in a matter of days. The ETDI shows
the strongest response at a weekly scale while it also re-
mains influential in the mid-term. The SMDI can also quickly
evolve with anomalies of evapotranspiration and particularly
with lasting anomalies of rainfall. The weekly scale is advan-
tageous to describe trends and shifts in the evolution of the
indices and to identify disregarded interactions such as the
preceding influence of the ETDI on the SPI.

The ETDI and SMDI, together with the SPI adapted to the
weekly scale, allow tracking of the evolution of the anoma-
lies of evapotranspiration, soil moisture and rainfall, as well
as their interactions driving water anomalies in the region.
There is great consistency between the time series of the
ETDI, SMDI and SPI. Lag analysis between these indices
clarifies the interactions between anomalies on different lev-
els of the surface–atmosphere system, information that is ne-
glected when using multivariable indices or indices aggre-
gated beyond the seasonal scale. The lag analysis also identi-
fies sequences of interactions defining reinforcing or inhibit-
ing feedbacks. Evapotranspiration dominates the water bal-
ance of the Iberian semi-arid climate, especially during high-
energy periods. This dominance frequently exceeds the con-
trolling action of rainfall and soil moisture, inducing the re-
inforcing dry loop. Because of the relevance of evapotranspi-
ration, heat waves further fueling dry events deserve further
attention. The weak influence of soil moisture on subsequent
evapotranspiration and rainfall limits its capability to control
the propagation of anomalies.

RS datasets of MOD16A2 and SMOS-1km accurately es-
timate the temporal and spatial anomalies in the basin. Evap-
otranspiration from the LSM SURFEX-ISBA closely re-
sembles the RS one of MOD16A2. Results differ substan-
tially between SMOS1km and SURFEX-ISBA estimates of
soil moisture. RS uncertainties arise mainly from data gaps.
Land-surface model’s estimates can extend the evaluation of
soil moisture beyond the surface towards the root zone but
face notable challenges from offline simulation neglecting
feedback, as well as from the quality of input data that define
surface characteristics. RS outcompetes the LSM in its abil-
ity to integrate information about challenging processes, such
as vegetation dynamics. Assimilation seems the way forward
to integrate the best aspects of both kinds of data. For as long
as ground-based observations remain sparse, RS and LSMs
represent effective tools to assess the water anomalies of the
land–atmosphere system and their interaction mechanisms.

Code availability. Codes (as Python scripts) used to analyze the
data are available upon request.
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Data availability. Several datasets were used for this article.

– The satellite-derived evapotranspiration data of MOD16A2 are
available at the Land Processes Distributed Active Archive
Center (LP-DAAC) of NASA USGS at https://lpdaac.usgs.
gov/products/mod16a2v006/ (USGS 2022).

– The satellite-derived soil moisture data of SMOS1km will be
available soon in repositories but are currently available upon
request. The authors refer interested readers to the following
publications for a detailed description of the data: Escorihuela
and Quintana-Seguí (2016) and Merlin et al. (2013).

– The SAFRAN dataset forcing the SURFEX LSM sim-
ulations for Spain is being updated for ongoing studies
related to this article but can be made available upon
request. The last version of the SAFRAN dataset in repos-
itories is available at the MISTRALS HyMeX database:
https://doi.org/10.14768/MISTRALS-HYMEX.1388
(Quintana-Segui, 2015). The SURFEX LSM simula-
tions were produced for this study but can be repro-
duced using the corresponding release of the models:
https://www.umr-cnrm.fr/surfex/spip.php?rubrique (CNRM,
2022).

The study followed standard statistical routines that can be easily
reproduced by the methodological explanations in the text.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/nhess-22-3461-2022-supplement.
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