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Abstract. Global warming has led to increased compound
hazards, and an accurate risk assessment of such hazards is
of great importance to urban emergency management. Due to
the interrelations between multiple hazards, the risk assess-
ment of a compound hazard faces several challenges: (1) the
evaluation of hazard level needs to consider the correlations
between compound hazard drivers, (2) usually only a small
number of data samples are available for estimating the joint
probability distribution of the compound hazard drivers and
the loss caused by the hazards, and (3) the risk assessment
process often ignores the temporal dynamics of compound
hazard occurrences. This paper aims to address the men-
tioned challenges and develop an integrated risk assessment
model VFS–IEM–IDM to quantify the dynamic risk of com-
pound hazards based on variable fuzzy set theory (VFS), in-
formation entropy method (IEM), and information diffusion
method (IDM). For the first challenge, VFS–IEM–IDM mea-
sures the effect of the compound hazard drivers via the use of
relative membership degree and analyses the correlation be-
tween drivers with the entropy weight method, which is com-
bined to evaluate compound hazard level. To address the sec-
ond challenge, VFS–IEM–IDM applies the normal diffusion
function to estimate the probability distribution of the com-
pound hazard and the corresponding loss vulnerability curve.
To deal with the third challenge, VFS–IEM–IDM assesses
the risk of a compound hazard in different months based on
the definition of probabilistic risk. In the end, this paper takes
the typhoon–rainstorm disaster in Shenzhen, China, as an
example to evaluate the effectiveness of the proposed VFS–

IEM–IDM model. The results show that VFS–IEM–IDM ef-
fectively estimates the typhoon–rainstorm compound hazard
level and assesses the dynamic risk of the compound hazards.

1 Introduction

With global climate change, many cities have suffered ex-
treme natural hazards more frequently (Ming et al., 2022).
People and their properties have been exposed to various haz-
ards simultaneously or successively worldwide. In the litera-
ture, there has been an increasing interest in the research of
assessing multi-hazard risks (Choi et al., 2021). A compound
hazard is a typical multi-hazard problem that involves the
concurrence of multiple hazard drivers, such as heavy rain-
fall, extreme wind intensity, and storm surge. For example,
typhoons and rainstorms are two different types of natural
hazards that can cause significant damages. When these two
types of hazards simultaneously occur, compound hazards
are produced, leading to more severe catastrophes than indi-
vidual hazards. Therefore, the risk assessment of such com-
pound hazards needs to take into account the interrelations
between the individual hazards.

The risk of a hazard is defined as the potential conse-
quences brought by the disaster and can be quantified by the
probability of losses (He and Wang, 2020). Risk assessment
is a technique that uses the relevant hazard data to estimate
the likelihood that natural hazards may occur and further as-
sess their economic losses (Huang and Huang, 2018). Tradi-
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tional methods of risk assessment mainly utilize geographic
information systems to get risk maps (Gigovic and Pamucar,
2017) or rely on information diffusion methods to deal with
the problem of data sparsity (Gong et al., 2020). These risk
assessment methods (Julià and Ferreira, 2021; Zhou et al.,
2020) are mainly applied to individual hazards, while the risk
assessment of compound hazards is not simply the aggrega-
tion of the assessment results of the individual hazards but
needs to consider the interrelations between them (Kappes et
al., 2012).

There are many research works discussing the risk as-
sessment of multi-hazards. They classify the relationship
between the individual hazards in the scenarios of multi-
hazards into three categories: mutually amplified hazards,
mutually exclusive hazards, and non-influential stakes (Wang
et al., 2020). The existing methods and technologies rele-
vant to the risk assessment of multi-hazards have been re-
viewed in Khan et al. (2020). For example, a Cloquet integral
multiple linear regression model has been proposed to over-
come the problem of nonlinear additivity of mutually am-
plified hazards for hazard level evaluation (He and Wang,
2020). An information diffusion method has been used to
assess the risk of multiple hazards quantitatively and eval-
uate the risk of loss of human lives from meteorological haz-
ards in China (Xu et al., 2016). A quantitative approach of
multi-hazard risk assessment based on vulnerability distribu-
tion and joint return period of hazards is proposed to assess
the risk of crop losses in the Yangtze River Delta region of
China (Ming et al., 2015). However, all of these works do
not consider the correlations between the occurrences of the
individual hazards, such as the co-appearance of typhoon–
rainstorm hazards. Furthermore, there is little research focus-
ing on typhoon-induced risk assessment in the literature, and
temporal dynamics are rarely considered in risk assessments.

Compound hazards, a sub-group of “multi-hazards”, are
considered as the combination of multiple hazard drivers that
contribute to societal or environmental risks. The character-
istics of compound hazards include (1) two or more extreme
events occurring simultaneously or successively, (2) combi-
nations of extreme events with underlying conditions that
amplify the impact, and (3) combinations of events that are
not themselves extreme but lead to an extreme event or im-
pact when combined (Jennifer and Andrew, 2021). Here,
we explicitly consider compound hazards for the case when
two or more individual extreme events occur at the same
place and at the same time, such as extreme precipitation,
winds, and ocean waves. In this paper, we define the risk
of a compound hazard as a scene in the future associated
with some adverse incidents caused by cascading hazard sys-
tems, where there are strong connections between different
hazard drivers. Compared with the risk assessment of multi-
hazards in the literature (Xu et al., 2016; Huang and Huang,
2018), assessing the risk of compound hazards requires an
integrated hazard level without losing any correlated infor-
mation between the individual hazards.

While there have been many attempts to assess the risk of
multi-hazards, most of the existing methods have limitations
in dealing with compound hazards (Ming et al., 2022; Huang
and Huang, 2018). Firstly, the correlation between the hazard
drivers is often ignored. Considering that the disaster control
engineering system is a synthesis of multi-dimensional fac-
tors, the potential inter-dependencies of the drivers will affect
the joint probability and the economic losses of compound
hazards. Secondly, the relationship between the hazards, i.e.,
vulnerability and exposure analysis, cannot be modeled ef-
fectively when the data are sparse. Thirdly, most of the ex-
isting risk analysis frameworks for compound hazards are
based on either qualitative or semi-quantitative methods.
Moreover, the temporal dynamics of the occurrences of com-
pound hazards are often not considered.

To address the first limitation, researchers have applied
variable fuzzy set (VFS) methods to deal with the multi-
factor problem. Some researchers have shown that the rel-
ative membership function can be used to evaluate the rela-
tions between multiple indicators in risk assessment (Chen
and Yu, 2006). A fuzzy method (Li et al., 2012) is proposed
to solve the flood risk assessment problems with interval
boundaries, and this integrated model improves the reliability
of a single hazard risk assessment. VFS has also been used
to evaluate the synthetic hazard level of Nagapattinam dis-
trict with the north-east monsoon rainfall’s data sets (Beaula
and Partheeban, 2013). In this paper, we propose to combine
VFS with the information entropy method (IEM) to assess
the hazard level of compound hazards such that the correla-
tions between the hazard drivers can be captured.

To deal with the second limitation, the information diffu-
sion method (IDM) is commonly used to model the physical
relationship between different attributes. In many cases, it is
challenging to collect compound hazard data, and the histor-
ical data are often sparse. To this end, many fuzzy proba-
bilistic models have been proposed to enhance the accuracy
of the risk assessment results (Mehran et al., 2017). Fuzzy
probabilistic models are used to model uncertainties related
to hazards and the randomness due to environmental, natural,
or period changes. The main feature of the fuzzy probabilistic
models is to transform the raw data points into fuzzy sets to
partly fill the gap caused by data sparsity and improve the es-
timation accuracy between the inputs and the outputs. One of
the most powerful techniques is IDM (Huang, 1997, 2002),
which helps extract useful underlying information from the
hazard data sets. Researchers have done a simulation study
on IDM and demonstrated the benefit of information distri-
bution for probability estimation (Huang, 2000). The capa-
bility of IDM in dealing with the problem of data sparsity has
been well studied in the literature (Li, 2013). In this paper, we
construct a normal information diffusion estimator (IDM) to
analyze the probability function and vulnerability curve of
compound hazards.
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As for the third limitation, preliminary attempts have been
made to develop quantitative multi-hazard risk assessment
frameworks (Huang and Huang, 2018). The probabilistic risk
model combined with the concept of dynamic risk assess-
ment has been proposed to estimate the flooding risk (Huang,
2015). In this paper, we present the definition of dynamic
compound hazard risk and then propose a method to assess
the compound hazard risk quantitatively, which also consid-
ers the temporal dynamics of the occurrences of the hazards.

The main contributions of this paper are summarized as
follows.

1. We propose a model named variable fuzzy set and
information diffusion (VFS–IEM–IDM) to assess the
dynamic risk of compound hazards, which takes into
account the interrelations between the hazard drivers,
deals with the problem of data sparsity, and considers
the temporal dynamics of the occurrences of the com-
pound hazards.

2. We simplify the procedures of calculating relative mem-
bership degree to improve the efficiency of compound
hazard level evaluation, and we also use a predictive cu-
mulative logistic model to verify the evaluation results.

3. To examine the efficacy of the proposed model VFS–
IEM–IDM, a case study of the typhoon–rainstorm haz-
ards in Shenzhen, China, is presented.

The rest of this paper is organized as follows. Section 2
introduces the basic concepts and definitions in this paper.
In Sect. 3, we present the dynamic compound hazard risk
assessment model, namely VFS–IEM–IDM. Section 4 pro-
vides an evaluation of the VFS–IEM–IDM with a case study
of typhoon–rainstorm hazards in Shenzhen, China. In Sect. 5,
we discuss the results of the case study obtained at different
stages of VFS–IEM–IDM. Finally, conclusions are drawn in
Sect. 6.

2 Preliminaries

2.1 Basic concepts

Variable fuzzy set is used to express the fuzzy effect of
the hazard drivers by relative membership degree (RMD)
functions, and then the compound effects between differ-
ent drivers can be modeled. This method provides an en-
hanced implementation of the compound hazard level eval-
uation process and can reflect the coupled characteristics of
compound hazards. Information entropy is based on the en-
tropy coefficient calculation process, which is used to mea-
sure the importance of the individual hazard drivers and de-
termine the weight of different drivers. Information diffusion
is a function learning method with high estimation accuracy
from a small data set, which makes full use of the diffusion

information given by the data samples to estimate the proba-
bility density of the data samples or the relationship between
the data samples without the knowledge of the distribution
from which the data samples were drawn. This method is
applied to estimate the probability distribution p (hazard po-
tential) of the occurrence of hazards and the causal relation-
ship f (hazard vulnerability).

2.2 Dynamic compound hazard risk

From the previous studies, risks could be classified into four
categories: pseudo-risk, probability risk, fuzzy risk, and un-
certainty risk (Huang and Huang, 2018). Existing hazard risk
assessment models are often qualitative or semi-quantitative,
which cannot directly estimate economic losses from the
joint impact of several hazards. Probability risk is estimated
by integrating the probability distribution p of the occur-
rence of hazards, as well as the causal relationship f between
the economic loss and the hazard attributes. As a result, the
probability risk could be quantified as the expected value of
economic losses, i.e., the integration of hazard potential with
hazard vulnerability.

Though these four types of risks have been investigated
by many researchers, there are few studies on dynamic com-
pound hazard risk. In this paper, compound risk is defined as
a scene in the future associated with some adverse incident
caused by cascading hazard systems, where there are strong
connections between different hazards and the hazard level
is influenced by many drivers. Furthermore, as proposed by
Huang (2015), the concept of compound risk could be ex-
tended to dynamic compound risk if the impact of occurrence
time on risk assessment is taken into consideration. To assess
the risk of a compound hazard, the probability distribution p
of the occurrences of the compound hazard will be estimated
with probability models, and the causal relationship f be-
tween the hazard attributes and the losses is captured by a
fuzzy model. The compound hazard risk is defined as fol-
lows:

Risk= p(8;X) · f (8′;X), (1)

where X = {xij |i = 1, 2, · · ·,N ; j = 1, 2, · · ·, J } represents
the data samples with the sample size N and the number of
compound hazard attributes J , and 8 and 8′ denote a set
of hazard attributes which reflects the characteristics of the
compound hazard. For example, the risk of the compound
hazard typhoon–rainstorm can be assessed by three hazard
attributes including hazard occurrence time φ1, compound
hazard level φ2, and economic losses φ3. The dynamic com-
pound risk is derived by integrating the conditional probabil-
ity distribution p(X;8), where 8= (φ1,φ2), with the haz-
ards vulnerability f (X;8′), where 8′ = (φ1,φ2,φ3).
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Framework

Figure 1. Workflow of the VFS–IEM–IDM dynamic compound hazard risk assessment model for typhoon–rainstorm hazards. Based on
the historical records of typhoon–rainstorm hazards, our proposal provides two-part procedures: firstly, an enhanced implementation of the
compound hazard level evaluation is proposed to assess the typhoon–rainstorm hazard level; and then the probability distribution and the
corresponding loss vulnerability curve of typhoon–rainstorm are estimated to calculate the dynamic hazard risk. We use the black rectangle
to denote different calculation modules and use the blue one to represent the results obtained by the VFS–IEM–IDM model.

3 Dynamic risk assessment of compound hazards:
VFS–IEM–IDM

Risk assessment of compound hazards should consider the
correlation between the compound hazard drivers, the prob-
lem of data sparsity, and the dynamic property of hazard
occurrences. This section proposes VFS–IEM–IDM, a risk
assessment model for compound hazards, which combines
the variable fuzzy set theory with the information diffusion
method to assess the dynamic risk of compound hazards
when only a small set of data samples is available. Our pro-
posal mainly consists of two components: with individual
hazard level and historical records of hazard drivers as in-
puts, the first component VFS–IEM combines variable fuzzy
set methods with information entropy methods to provide
a comprehensive evaluation of the compound hazard level
(Sect. 3.1). Based on the compound hazard levels and his-
torical records of risk assessment attributes, the second com-
ponent IDM adapts normal information diffusion methods to

quantify the dynamic risk of the compound hazards in terms
of the direct economic losses (Sect. 3.2). Figure 1 shows the
workflow of VFS–IEM–IDM, where the black rectangle de-
notes different calculation modules and the blue one repre-
sents the results obtained by the VFS–IEM–IDM model.

3.1 Compound hazard level evaluation: VFS–IEM

For the compound hazard risk assessment, the correlation be-
tween the compound hazard drivers should be considered.
Fortunately, the variable fuzzy set (VFS) theory which con-
siders the contributions of multiple related drivers and de-
creases the fuzziness by using membership functions (Chen
and Yu, 2006) provides an appropriate tool for evaluating the
compound hazard level.

Based on VFS, the fuzzy set intervals given by the in-
dividual hazard level classification can be used to assess
the compound hazard level. For example, suppose we have
two fuzzy set intervals Iab = (a,b) and Icd = (c,d), where
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Figure 2. Lowest case: the position between u with parameter m11
and fuzzy intervals (a11, b11) and (c11, d11). Symbols with different
colors indicate different fuzzy intervals.

a,b,c,d ∈R, in which Icd is an extended fuzzy set inter-
val based on Iab, as shown in Fig. 2. Specifically, the rela-
tive membership degree (RMD) function µ(u), which deter-
mines the probability of a hazard driver u belonging to differ-
ent hazard level intervals, is applied to evaluate the contribu-
tions of compound-hazard-related drivers. Since the calcula-
tion of RMD is complicated and time-consuming, we use dif-
ferent locations of the balance boundaries matrix M (Wang
et al., 2014) and the value of driver u to simplify the calcu-
lation process. Firstly, we use the interval (arl , brl) to define
the balance boundaries matrix M= [mrl], which is shown in
Eq. (2).

mrl =
L− l

L− 1
arl +

l− 1
L− 1

brl, (2)

where r = 1, 2, . . . ,R and R indicate the number of hazard
drivers, l = 1, 2, . . . ,L, and L denotes the number of com-
pound hazard levels. Then, we compare the relative locations
of uwithmrl in the interval (arl , brl) and (crl , drl). RMD can
then be constructed by the ratio u−arl

mrl−arl
as follows: µ(u)rl = 0.5

(
1+

(
u−arl
mrl−arl

)q)
u ∈ (arl,mrl)

µ(u)rl = 0.5
(

1−
(
u−arl
crl−arl

)q)
u ∈ (crl,arl)

. (3)

It can be seen that RMD is influenced by the hyper-
parameter q and the position between the hazard driver
value u and the level interval Iab, Icd , and the value of mrl .
In this paper, guided by the procedure of calculating RMD in
the literature (Fang et al., 2019), we simplify the procedure
of calculating relative membership degree to improve the ef-
ficiency of compound hazard level evaluation. Firstly, the in-
tervals Iab, Icd of the individual hazard levels and the balance
boundaries matrix M are obtained following the VFS theory
(Chen and Yu, 2006). Secondly, we determine whether the
location of u is in the lowest, middle, or highest grade of
the interval Iab, as shown respectively in Figs. 2–4. Finally,
according to the location of u, we use one of the three sets
of formulas to calculate RMD, as shown in Eqs. (4)–(6), ac-
cordingly.
µ(u)r = [µ(u)r1µ(u)r20· · ·0]
µ(u)r1+µ(u)r2 = 1
0.5≤ µ(u)r1 ≤ 1
0≤ µ(u)r2 ≤ 0.5

(4)

Figure 3. Highest case: the position between u with parameterm1L
and fuzzy intervals (a1L, b1L) and (c1L, d1L). Symbols with differ-
ent colors indicate different fuzzy intervals.

Figure 4. Middle case: the position between u with parameter m1l
and fuzzy intervals (a1l , b1l) and (c1l , d1l). Symbols with different
colors indicate different fuzzy intervals.


µ(u)r =

[
0· · ·0µ(u)r(L−1)µ(u)rL

]
µ(u)r(L−1)+µ(u)rL = 1
0.5≤ µ(u)rL ≤ 1
0≤ µ(u)r(L−1) ≤ 0.5

(5)


µ(u)r =

[
0· · ·0µ(u)r(l−1)µ(u)rlµ(u)r(l+1)0· · ·0

]
µ(u)r(l−1)+µ(u)r(l+1) = 0.5
0≤ µ(u)r(l−1) ≤ 0.5
0≤ µ(u)r(l+1) ≤ 0.5

(6)

Following the previous works by Kwakernaak (1978) and
Chen and Yu (2006), we use the variable fuzzy recogni-
tion model to obtain the comprehensive RMD of each driver.
Then, the proposed compound hazard level evaluation model
can be constructed by Eq. (7).

ν(u)l =

1+


R∑
r=1

(ωr (1−µ(u)rl))α

R∑
r=1

(ωrµ(u)rl)
α


β
α


−1

ν̂(u)l =
ν(u)l
L∑
l=1
ν(u)l

H = (12. . .L) · ν̂(u)

, (7)

where α and β are two hyper-parameters, wr indicates the
weight of each hazard driver, ν(u)l is the weighted RMD of
different hazard drivers, andH is the compound hazard level.
The weights of the individual hazard drivers wr are obtained
via the use of information entropy (Liu et al., 2010) as shown
in Eq. (8):
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Algorithm 1 VFS–IEM compound hazard level evaluation.

Require:
1: The compound hazard driver fuzzy set U = {uir , r = 1, 2, · · ·, 3|i = 1, 2, · · · , N};
2: Individual hazard level assessment matrix, V = [vrl]r = 1, 2, 3; l = 1, 2, 3, 4.

Ensure:
Comprehensive value of compound hazard level.

3: Identification of interval Iab = [(a,b)rl] and the extended interval Icd = [(c,d)rl] based on assessment matrix V;
4: Define the balance boundaries matrix M= [mrl] by Eq. (2);
5: Calculate the weight of each driver �= [ω1,ω2,ω3] by Eq. (8);
6: for i = 1 to N do
7: for each uir ∈ U do
8: if uir locates in the lowest grade of the interval Iab, i.e., ar1 < uir < br1 then
9: Calculate RMD µ(u)r with Eq. (4);

10: else if uir locates in the highest grade, i.e., arL < uir < brL then
11: Calculate RMD µ(u)r with Eq. (5);
12: else
13: Calculate RMD µ(u)r with Eq. (6);
14: end if
15: end for
16: The relative membership matrix of each sample is denoted as µ(u)= [µ(u)1, µ(u)2, µ(u)3];
17: Combine µ(u) with weights � and integrate the ranking level, and calculate the comprehensive compound hazard level for each

sample with Eq. (7).
18: end for



ĝrl = vrl/
L∑
l=1
vrl

gr =−1/ ln(N) ·
L∑
l=1

(
ĝrl ln ĝrl

)
ωr = (1− gr)

/(
R−

R∑
r=1

gr

) , (8)

where vrl is defined as the measured value from the lth level
for the rth driver andN denotes the sample size. The detailed
procedure of VFS–IEM is shown in Algorithm 1.

3.2 Dynamic risk assessment model: IDM

To assess the dynamic risk of compound hazards, espe-
cially when the data sets are sparse, the information diffusion
method (IDM) which belongs to the fuzzy theory can be used
to extract useful underlying information from the limited data
samples to estimate the probability function p and vulnera-
bility curve f . According to Huang (1997), the J -dimension
normal information diffusion function 0(xi;Sk) (shown in
Eq. 9) is more powerful to improve the precision of the esti-
mators. Therefore, this paper adapts the normal information
diffusion estimator to approximate the dynamic compound
hazard risk:

0
(
xij ;s

kj
j

)
=exp

−
(
xij − s

kj
j

)2

2σ 2
xj

 , kj = 1,2, · · ·, Kj ;

i = 1,2, · · ·, N,

0
(
xi;S

K
)
=

J∏
j=1

0
(
xij ;s

kj
j

)
, SK =

{
s
kj
j |j = 1,2, · · ·, J

}
(9)

σxj =


0.6841(b− a), for N = 5;
0.5404(b− a), for N = 6;
0.4482(b− a), for N = 7;
0.3839(b− a), for N = 8;
2.6581(b− a)/(N − 1), for N ≥ 9;

where b = max
1≤i≤N

{
xij
}
, a = min

1≤i≤N
{
xij
}
. (10)

Here N is the sample size of X = {xij |i = 1, 2, · · ·,N ; j = 1,
2, · · ·, J }, Kj is the number of diffusion points of a given
monitor set sj , and σxj is the diffusion coefficient with re-
spect to different attributes j . Based on the normal estima-
tor, the research by Huang (2002) has shown how to de-
termine the coefficients (shown in Eq. 10). This approxi-
mate reasoning of information diffusion is used to estimate
probabilities and fuzzy relationships from a small data set
for risk assessment (Huang and Huang, 2018). As an ex-
ample, we use a two-dimension normal estimator to calcu-
late the discrete probability density function. For the given
compound hazard attribute monitor set SK = {(sk1

1 , s
k2
2 )|1<

k1 <K1,1< k2 <K2}, we estimate the discrete probability
matrix P= pk1,k2 and the conditional probability distribution
P̂ = ps2|s1(s

k2
2 |s1):
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pk1,k2 =

N∑
i=1
0
(
xi;S

K
)

∑
K

N∑
i=1
0
(
xi;SK

) , (11)

ps2|s1

(
s
k2
2 |s1

)
=

pk1,k2

K2∑
k2=1

pk1,k2

, k2 = 1,2, · · ·K2. (12)

Similarly, we can calculate the three-dimensional dif-
fusion function for the compound hazard attributes set
SK = {(s

k1
1 , sk2

2 , s
k3
3 )|1< k1 <K1, 1< k2 <K2, 1< k3 <

K3}. Suppose s3 corresponds to the attribute of economic
loss, the vulnerability curve between the set of causes s1, s2
and the consequence s3 can be estimated by the following
fuzzy membership function:

$
(
s
k3
3

)
=

max
(k1,k2)

{
min

{
0
(
xi;
(
sk1

1 , s
k2
2

))
, Rk3

}}
,

k3 = 1,2, · · ·, K3 R
k3 is the k3th slice of R,

where the fuzzy relationship model R = [rk1,k2,k3 ] (shown in
Eq. 13) is defined by the three-dimension information diffu-
sion function 0(xi;SK).

rk1,k2,k3 =

n∑
i=1
0
(
xi;
(
s
k1
1 , s

k2
2 , s

k3
3

))
max

1≤k3≤K3

n∑
i=1
0
(
xi;
(
s
k1
1 , s

k2
2 , s

k3
3

)) (13)

Then the vulnerability curve f = f
s
k1
1 ,s

k2
2

, is defined as fol-

lows.

f
s
k1
1 ,s

k2
2
=

K3∑
k3=1

$
(
s
k3
3

)
· s
k3
3

K3∑
k3=1

$
(
s
k3
3

) , k1 = 1,2, · · ·, K1;

k2 = 1,2, · · ·, K2 (14)

Based on the VFS–IEM–IDM risk assessment model, the
dynamic compound hazard risk (direct economic losses) can
be obtained via Eq. (15), where the risk is quantified as the
expected value of the conditional probability distribution p
and the vulnerability distribution f . The detailed procedure
of IDM is shown in Algorithm 2.

Risk=
K2∑
k2=1

pk1,k2 · fs
k1
1 ,s

k2
2

(15)

4 Case study

In this section, we evaluate VFS–IEM–IDM with a case
study of typhoon–rainstorm compound hazards that occurred

in Shenzhen, China. Shenzhen is located on the east bank
of the Zhujiang River (also known as the Pearl River) and
is surrounded by Daya Bay and Dapeng Bay, where the cli-
mate is subtropical and maritime. Typhoons and rainstorms
are the most frequently occurring hazards in Shenzhen. Ac-
cording to the collected data, as shown in Table A1, the
direct economic losses of the typhoon and rainstorm haz-
ards from 1980 to 2016 in Shenzhen, on average, exceeded
RMB 360 million per year. Also, Zhou investigated the ty-
phoon and rainstorm hazards that caused 3.4 deaths on av-
erage, and about 149 000 people were affected (Zhou et al.,
2017). Accurate assessments of the typhoon–rainstorm risk
are crucial to determine whether or not the early warning sys-
tems are working and implemented effectively.

4.1 Classifications of individual hazard level

The typhoon–rainstorm compound hazards are usually char-
acterized by three drivers, i.e., maximum daily precipita-
tion (MDP), extreme wind intensity (EWI), and landing lo-
cation. To better measure the impact of typhoon landing
on the typhoon–rainstorm compound hazard level, the land-
ing location is converted into transformed location num-
ber (TLN) via circle distance calculation, where the large
value represents that the typhoon landing in Shenzhen is
closer. Based on the data provided by the Meteorological
Bureau of Shenzhen Municipality (http://weather.sz.gov.cn/
qixiangfuwu/qihoufuwu/, last access: 15 January 2022), the
values of the three drivers are segmented into four intervals
in terms of four individual hazard levels, i.e., I, II, III, and IV.
A higher hazard level indicates a more severe consequence.

Based on the segmentation of the four individual haz-
ard levels, we also classify the typhoon–rainstorm com-
pound hazards into four levels, i.e., I, II, III, and IV, where
a higher compound hazard level indicates the correspond-
ing compound hazard is of greater severity. As described in
Sect. 3.1, the VFS–IEM compound hazard level evaluation
model (Algorithm 1) can be applied to obtain the comprehen-
sive valueH , which is then used to derive the compound haz-
ard level based on the classification criteria of the typhoon–
rainstorm compound hazards.

4.2 Calculation of relative membership degree

The relative membership degree is determined by the indi-
vidual hazard level classifications. According to the value
segmentation shown in Table 1, we have the different fuzzy
intervals for four different hazard levels. Then, for three haz-
ard drivers, the interval criterion matrix Iab can be expressed
as
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Table 1. Classification standards of individual hazard level.

Drivers
Classifications of individual hazard level

I II III IV

Maximum daily precipitation (MDP) (0, 50) (50, 100) (100, 150) (150, 250)
Extreme wind intensity (EWI) (8, 10.8) (10.8, 17.2) (17.2, 23.6) (23.6, 30)
Transformed location number (TLN) (0, 2) (2, 5) (5, 8) (8, 10)

Algorithm 2 IDM dynamic risk assessment model.

Require:
1: Compound hazard data samples X = {(xi1, xi2, xi3)|i = 1, 2, · · ·,N}, where xij is the risk attributes of compound hazards;
2: Coefficients of diffusion function 6 = (σx1 , σx2 , σx3).

Ensure:
Dynamic compound hazard risk.

3: Compound hazard level evaluation by Algorithm 1;

4: Monitor space of different attributes SK = {(s
kj
j
), 1< kj <Kj |j = 1, 2, 3};

5: for sample index i = 1 to N , each xi do
6: Construct normal information diffusion functions based on the universes of monitor space and Eq. (9);
7: end for
8: Estimate the joint and conditional probability distribution based on Eqs. (11) and (12);
9: Determine the fuzzy cause relationship based on Eq. (13), and estimate the vulnerability curve by Eq. (14);

10: Derive the dynamic risk (direct economic loss) of compound hazards by Eq. (15).

Iab =[
(0,50) (50,100) (100,150) (150,250)

(8,10.8) (10.8,17.2) (17.2,23.6) (23.6,30)
(0,2) (2,5) (5,8) (8,10)

]
= [(a,b)rl]. (16)

Further, the corresponding interval Icd for different hazard
level is defined as

Icd = (0,100) (0,150) (50,250) (100,250)
(8,17.2) (8,23.6) (10.8,30) (17.2,30)
(0,5) (0,8) (2,10) (5,10)


= [(c,d)rl] , (17)

and we define the balance boundaries matrix M:

M=

 0 66.7 133.3 250
8 12.9 21.5 30
0 3 7 10

= [mrl] . (18)

In the end, the relative membership degree matrix can
be calculated by Eqs. (4)–(6). Taking sample point
u= (MDP= 33.4, EWI= 18, TL= 9) for example, we ob-
tain the relative membership degree matrix µ(u) shown as
below, in which the matrix element represents the probability
of each driver belonging to the four individual hazard levels.

µ(u)=

 0.666 0.334 0.000 0.000
0.000 0.438 0.593 0.063
0.000 0.000 0.333 0.667

 (19)

4.3 Typhoon–rainstorm hazard level

To derive the compound hazard level, the information en-
tropy method is used to obtain the weight of each hazard
driver. We have the weight � shown as follows, where the
element in � implies that the maximum daily precipitation
and location play the main role in determining the typhoon–
rainstorm hazard level.

�= [ 0.43 0.19 0.39 ] (20)

Based on the VFS–IEM compound hazard level evalu-
ation model (Algorithm 1), we obtain the comprehensive
value H of typhoon–rainstorm hazards. Then, guided by
the domain experts, we have the classification criteria of
the typhoon–rainstorm compound hazard level in Shenzhen:
H ∈ [1,2) for level I,H ∈ [2,2.7) for level II,H ∈ [2.7,3.5)
for level III, and H ∈ [3.5,4] for level IV. For the case
(MDP= 33.4, EWI= 18, TL= 9), the value of the typhoon–
rainstorm hazard level H is obtained. When the hyper-
parameters α = β = 1, H = 2.75. When α = β = 2, H =
2.18. Furthermore, we take the average of H = 2.75 and
H = 2.18 to obtain the final compound hazard level value,
i.e., H = 2.4, which corresponds to the compound hazard
level II. The results of other typhoon–rainstorm cases can be
found in Appendix Table B1.
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Table 2. Transformed typhoon–rainstorm hazard data sets in Shen-
zhen.

Year Date Transformed Compound Direct
time hazards economic
(day) level (H ) loss (L)

2009 27 Jun 176 2.72 0.3819
19 Jul 198 3 1.352
15 Sep 254 3.74 1.3750

2010 24 Jul 203 2.32 0.2571
12 Sep 251 2.49 0.4450
22 Sep 261 2.74 0.9831

2011 24 Jun 173 1.93 0.0765
30 Sep 269 2.72 0.4013

2012 30 Jun 179 2.31 0.2895
24 Jul 203 3.95 2.48
17 Aug 226 2.56 0.7648

2013 15 Jun 164 1.94 0.1527
2 Jul 181 1.99 0.1894
2 Aug 211 1.53 0.0452
14 Aug 223 2.13 0.1423
22 Sep 261 3.06 1.2351

2014 18 Jul 197 1.83 0.0841
16 Sep 255 2.48 0.7682
23 Aug 232 2.92 0.7410
4 Oct 273 2.96 0.8352

2016 2 Aug 211 3.68 2.1521
18 Aug 227 1.88 0.0251
18 Oct 287 2.28 0.2362
21 Oct 290 3.11 0.9341

2017 12 Jun 161 3.67 2.058
23 Jul 202 2.11 0.2461
23 Aug 232 2.46 1.31
27 Aug 236 3.2 1.613
3 Sep 242 3.03 1.8872
16 Oct 285 2.48 0.5902

2018 6 Jun 155 2.47 0.6952
18 Jul 197 1.58 0.0267
11 Aug 220 2.45 0.5241
16 Sep 255 3.93 2.226

2019 3 Jul 182 1.49 0.0528
11 Aug 210 3.02 0.8182
24 Aug 233 2.9 0.8391
2 Sep 241 1.8 0.0725

4.4 Dynamic typhoon–rainstorm hazard risk

Based on the data in Table 2, we obtain three typhoon–
rainstorm hazard attributes, including direct economic loss L
(Billions), hazard level H , and hazard occurrence day. Then
the dynamic risk of compound hazards can be calculated by

38 data points:

xij = {(xi1,xi2,xi3) , i = 1,2, · · ·, 38}

= {(172,2.72,0.3819), . . ., (241,1.8,0.0725)}, (21)

where xi1 and xi2 represent the time attribute of the typhoon–
rainstorm hazards and the compound hazard level, respec-
tively, and xi3 represents the direct economic losses caused
by the typhoon–rainstorm hazards. Then the diffusion coeffi-
cients can be calculated by Eq. (10), shown as follows. σx1 = 2.6581 · (290− 155)/(38− 1)= 10
σx2 = 2.6581 · (3.95− 1.37)/(38− 1)= 0.19
σx3 = 2.6581 · (2.48− 0.0251)/(38− 1)= 0.1764

Following Algorithm 2, we use the information diffu-
sion method to estimate the conditional probability and
vulnerability distribution of the typhoon–rainstorm hazards.
In this paper, we define the following monitor space:
T = (164,194,224,254,284) corresponds to months (June,
July, August, September, October), H = (1.8,2.4,3.0,3.6)
corresponds to the compound hazard levels (I, II, III,
IV), and L= (0.1,0.4,0.7,1.0,1.3,1.6,1.9,2.2) cor-
responds to the direct economic losses. Then we
can calculate the joint probability density function P

and the conditional probability function P̂ as follows:

From the results above, it can be seen that the typhoon and
rainstorm with hazard level III occur more frequently, and
they are most likely to occur in August and September. Fur-
thermore, the vulnerability distribution f between the hazard
level H and the direct economic losses L over the time at-
tribute T can be calculated by the three-dimension diffusion
estimator (shown in Eq. 13). The fuzzy causal relationship
which takes the time attribute T and hazard level H as the
inputs and the loss L as the output is denoted as matrix R.
Then the discrete vulnerability curve f in terms of the direct
economic loss is evaluated by Eq. (14).
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It can be seen that most of the economic losses caused
by the typhoon–rainstorm hazards are concentrated in Au-
gust and September. Dynamic compound hazard risks can be
quantified as the expected value of the damages caused by
the compound hazards, and the result is

Risk= (0.08582,0.10504,1.1372,1.66715,0.0109), (25)

where the elements of the vector denote the estimated eco-
nomic losses caused by the typhoon–rainstorm hazards from
June to October.

5 Discussion

5.1 Compound hazard level prediction

The proposed VFS–IEM–IDM model provides a comprehen-
sive evaluation of the compound hazard level, but the re-
lationship between the hazard level and the hazard drivers
is unclear. To find more information from the results of the
compound hazard level evaluation model, we build a predic-
tive model (shown in Eq. 26) to shed light on the relationship
between the compound hazard levels.

Since the compound hazard level H ∈ (I, II, III, IV) is or-
dinal data (monotone trend and proportional odds), the cu-
mulative logistic model (shown in Eq. 27) can be used to pre-
dict the compound hazard level. Let the response be the com-
pound hazard level H = I, II, III, IV with probability πh(U),
h= 1, · · ·, 4 under the covariate compound hazard drivers U .
So the cumulative probability of H is less than or equal to
level h; i.e., the probabilities of compound hazards belong-
ing to different level categories are given by

P(H ≤ h|U)= π1(U)+ ·· ·+π4(U), h= 1, . . ., 4.

According to the research by Alan (1980), the cumulative
logistic model can be replaced by

logit(P (H ≤ h|U))= log
P(H ≤ h|U)

1−P(H ≤ h|U)

= αh+β
TU , h= 1, . . ., 3, (26)

where the log odds measures how likely the response H is
to be in category h or below versus in a category higher
than h. In this paper, the typhoon–rainstorm hazard level pre-
diction problem can be solved by using the VAGM package
(Thomas, 2010), and the result is given by

logit(P (H |(MDP,EWI,TLN)))= 5.07(7.32,11.15)

− 0.12MDP− 0.66EWI− 0.91TLN, (27)

where the different intercept coefficients denote the main ef-
fects of different hazard drivers compared to the reference
compound hazard level IV. The rationality of this model is
judged by the likelihood ratio (LR) test (p value< 0.001) and
the predictive performanceR2

= 0.898, which shows that the
model is well fitted and can be used to predict the compound
hazard level.

5.2 The superiority of the normal diffusion estimator

One advantage of using the information diffusion method to
assess the risk of compound hazards is that it does not need to
know the type of distribution from which the given samples
are drawn and the function form of the causal relationship,
which are constructed by the joint probability distribution
and the vulnerability distribution. More importantly, it can
provide a more accurate evaluation when the compound haz-
ard data set is sparse. The performance of the IDM estimation
procedure has been well studied in the literature. For exam-
ple, Huang (2000) shows the efficiency of IDM is about 35 %
higher than the histogram estimator, and the estimation error
is reduced by 23.2 % when the data sets are small. There-
fore, the assessed compound hazard risk is more reliable and
accurate using a normal diffusion estimator. However, if the
size of the data samples is large, it is unnecessary to replace
the statistics with the information diffusion method (Li et al.,
2012).

5.3 Results

For the dynamic risk assessment of typhoon–rainstorm haz-
ards, this paper proposes a hybrid model VFS–IEM–IDM
and provides extensive assessment results based on a case
study. The results of the VFS–IEM evaluation model show
that the probability of type II and III hazard levels is the
highest in Shenzhen, so the emergency management depart-
ment should prepare more effective emergency plans to re-
duce secondary hazards. The dynamic risk assessment model
IDM shows that the hazard occurrence probability of differ-
ent hazard levels is different, and hazard level II and III are
most likely to occur in August and September. Furthermore,
considering the occurrence of the hazards with different haz-
ard levels for each month, the probability of hazard level I oc-
curring in June and July is the highest. Hazard level II mainly
happens in August and October, and hazard level III is most
likely to occur in September. From the perspective of haz-
ard losses, the difference between the direct economic losses
caused by the typhoons and rainstorms of the same hazard
level each month indicates that the impacts of the typhoon–
rainstorm hazards on the economy are not the same. Besides,
the influence of economic losses decreases when the com-
pound hazard level rises, which indicates that the capacity
of typhoon–rainstorm hazard resistance in Shenzhen is re-
liable, and the ability to cope with sudden compound haz-
ards is relatively strong under the existing emergency man-
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agement system. The dynamic compound hazard risk of the
typhoon–rainstorm hazards in Shenzhen shows that the com-
pound hazard risk in each month is different, and the high-
est risk appears in August and September. On average, the
typhoon–rainstorm hazards brought Shenzhen RMB 114 mil-
lion and RMB 167 million in losses in these two months, re-
spectively, which is in line with the actual situation.

6 Conclusions

Compound hazard risk assessment is a complex multi-
criteria problem and is crucial to the success of strategic
decision-making in emergency management. Traditional sta-
tistical methods are often inaccurate when only a small set
of data samples is available. Few studies discuss the correla-
tions of compound hazard drivers and consider the dynamics
of the occurrences of the compound hazards. In this paper,
we first present the definition of dynamic compound hazard
risk and then propose the variable fuzzy set (VFS) and in-
formation entropy method (IEM) model to evaluate the com-
pound hazard level by considering the correlations of differ-
ent hazard drivers. Based on the results obtained by VFS–
IEM, we apply the information diffusion method (IDM) to
estimate the compound hazard probability and vulnerability
distribution with the hazard occurrence time and the corre-
sponding losses. Then the dynamic risk is calculated by the
probabilistic model.

There are mainly three aspects of innovations in this paper.
Firstly, based on the definition of compound hazard risk, we
consider the temporal dynamics and introduce the concept of
dynamic compound hazard risk. Secondly, considering that
compound hazards have many drivers for the hazard level
evaluation, a hybrid model of variable fuzzy sets and the in-
formation entropy method has been proposed to improve the
accuracy of compound hazard level evaluation. Thirdly, ac-
cording to the concept of dynamic compound hazard risk, we
apply the information diffusion method to estimate the haz-
ard probability and the vulnerability distribution. The pro-
posed model VFS–IEM–IDM can be used to deal with the
problem of data sparsity in dynamic compound hazard risk
assessment. We quantify the dynamic typhoon–rainstorm
risk by evaluating the expected value of the conditional prob-
ability distribution and the vulnerability distribution. Further-
more, VFS–IEM–IDM can be extended to other compound
hazards in urban cities, such as flooding. As a case study,
we show that the occurrences of the typhoon–rainstorm risks
bring Shenzhen RMB 114 million and RMB 167 million in
losses in August and September, respectively.

Dynamic risk assessment is a relatively new topic, and
many issues need further improvement. In this paper, the
weights of different hazard drivers are subjective, and the re-
sults of the vulnerability curve have not considered the de-
velopment of the affected areas. There are also some subjec-
tive issues regarding the processing of the data sets. We will

explore techniques to deal with these issues and improve as-
sessment accuracy in future work.

Appendix A: Data source

For the typhoon–rainstorm dynamic compound haz-
ard risk assessment, the useful data sets were collected
from the Meteorological Bureau of Shenzhen Munici-
pality (http://weather.sz.gov.cn/qixiangfuwu/qihoufuwu/
nianduqihougongbao/, last access: 15 January 2022) and
Typhoon Online (http://typhoon.nmc.cn/web.html, last
access: 15 January 2022), and they are listed in Table A1.
In this table, MDP denotes maximum daily precipitation,
EWI denotes extreme wind intensity, DEL denotes direct
economic loss, and the transformed location number (TLN)
denotes the typhoon landing location, which is determined
by radio distance transform using expert knowledge.

Table A1. Data sets of typhoon–rainstorm hazards in Shenzhen.

Hazards Impact MDP EWI Landing TLN DEL
ID date (mm) (m s−1) location (billion)

0904 27 Jun 67.3 16.8 Huizhou 8.5 0.3819
0906 19 Jul 80 27.3 Shenzhen 10 1.152
0915 12 Sep 127.9 28 Taipei 6 1.075
1003 24 Jul 31.3 16.2 Zhanjiang 6.5 0.2571
1010 12 Sep 62.4 13.7 Quanzhou 3 0.345
1011 22 Sep 51.9 15.8 Heyuan 7 0.2983
1105 24 Jun 41.7 14 Yangjiang 4.5 0.0765
1006 30 Sep 53.0 15.2 Wenchang 2.5 0.8243
1206 30 Jun 33.6 16.8 Zhuhai 6.5 0.6873
1208 24 Jul 152.3 23.9 Taishan 7 2.241
1213 17 Aug 46.1 13.5 Zhanjiang 3 0.9153

15 Jun 36.5 8.4 Wenchang 4 0.3621
1306 2 Jul 38.6 10.9 Zhanjiang 3 0.2561
1309 2 Aug 40.7 10.7 Wenchang 3 0.0851
1311 14 Aug 47.8 14.2 Yangxi 3 0.6413
1319 22 Sep 72.4 21.6 Shanwei 8.5 1.152
201409 18 Jul 31.6 14.7 Wenchang 2.5 0.0841
201415 16 Sep 73.5 18.9 Xuwen 2.5 0.9641
201517 23 Aug 69.4 13.6 Shanwei 10 1.041
201522 4 Oct 108.5 13.5 Zhanjiang 5.5 0.9631
201604 2 Aug 166 19.2 Shenzhen 10 2.31
201608 18 Aug 45.5 9.1 Zhanjiang 5.5 0.0314
201621 18 Oct 117.6 12.3 Wanning 1.5 0.421
201622 21 Oct 83.7 18.8 Shanwei 7.5 0.8721
1702 12 Jun 161.8 16.9 Shenzhen 10 2.109
1707 23 Jul 33.4 10.6 Hong Kong 9 0.5315
1713 23 Aug 56.3 23.4 Zhuhai 8.5 1.328
1714 27 Aug 114.5 17.5 Jiangmen 8.5 1.741
1716 3 Sep 82.4 14.4 Shanwei 7.5 0.9631
1720 16 Oct 40 20.3 Zhanjiang 7.5 0.7341
1804 6 Jun 97.2 8.8 Xuwen 8.5 0.9267
1809 18 Jul 50.7 11.1 Wanning 1.5 0.0267
1816 11 Aug 45.3 10.8 Yangjiang 7 0.5241
1822 16 Sep 173.5 30 Taishan 7.5 2.361
1904 3 Jul 48.8 11 Wanning 1.5 0.0672
1907 11 Aug 99.1 14.1 Wenchang 5.5 0.9561
1911 24 Aug 49.4 12.7 Zhangzhou 6 0.5931
1914 2 Sep 52.2 11.3 Wanning 1 0.0751
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Appendix B: Comprehensive compound hazard level

Based on the VFS–IEM model, this paper takes the average
of α = β = 1 and α = β = 2 to denote the final typhoon–
rainstorm hazard level. Table B1 shows the typhoon–
rainstorm hazard level in Shenzhen.

Table B1. Comprehensive compound hazard level in Shenzhen.

Time α = β = 1 α = β = 2 Average Typhoon–
level rainstorm
(H ) hazard

level (H )

27 Jun 2009 3.07 2.36 2.72 III
19 Jun 3.34 2.65 3.00 III
15 Sep 3.93 3.55 3.74 IV

24 Jul 2010 2.67 1.96 2.32 II
12 Sep 2.68 2.29 2.49 III
22 Sep 3.02 2.45 2.74 III

24 Jun 2011 2.12 1.73 1.93 I
30 Sep 2.87 2.57 2.72 III

30 Jun 2012 2.66 1.95 2.31 II
24 Jul 3.97 3.93 3.95 IV
17 Aug 2.8 2.32 2.56 II

15 Jun 2013 2.08 1.79 1.94 I
2 Jul 2.28 1.7 1.99 I
2 Aug 1.65 1.4 1.53 I
14 Aug 2.22 2.03 2.13 II
22 Sep 3.44 2.67 3.06 III

18 Jul 2014 1.93 1.73 1.83 I
16 Sep 2.65 2.3 2.48 II
23 Aug 3.19 2.64 2.92 III
4 Oct 3 2.91 2.96 III

2 Aug 2016 3.66 3.69 3.68 IV
18 Aug 1.96 1.8 1.88 I
18 Oct 2.52 2.03 2.28 II
21 Oct 33.1 2.91 3.11 III

12 Jun 2017 3.69 3.83 3.76 IV
23 Jul 2.52 1.7 2.11 II
23 Aug 2.89 2.03 2.46 II
27 Aug 3.35 3.04 3.2 III
3 Sep 3.22 2.83 3.03 III
16 Oct 2.95 2 2.48 II

6 Jun 2018 2.75 2.18 2.17 II
18 Jul 1.57 1.45 1.51 I
11 Aug 2.72 2.17 2.45 II
16 Sep 3.87 3.98 3.93 IV

3 Jul 2019 1.52 1.48 1.5 I
11 Aug 3.25 2.79 3.02 III
24 Aug 2.96 2.83 2.9 III
2 Sep 1.93 1.67 1.8 I

Code and data availability. The data and code used in the study are
available at https://doi.org/10.5281/zenodo.7181424 (Gong, 2022).
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