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Abstract. Potential avalanche release area (PRA) modeling
is critical for generating automated avalanche terrain maps
which provide low-cost, large-scale spatial representations
of snow avalanche hazard for both infrastructure planning
and recreational applications. Current methods are not appli-
cable in mountainous terrain where high-resolution (≤ 5 m)
elevation models are unavailable and do not include an ef-
ficient method to account for avalanche release in forested
terrain. This research focuses on expanding an existing PRA
model to better incorporate forested terrain using satellite
imagery and presents a novel approach for validating the
model using local expertise, thereby broadening its appli-
cation to numerous mountain ranges worldwide. The study
area of this research is a remote portion of the Columbia
Mountains in southeastern British Columbia, Canada, which
has no pre-existing high-resolution spatial datasets. Our re-
search documents an open-source workflow to generate high-
resolution digital elevation models (DEMs) and forest land
cover datasets using optical satellite data processing. We
validate the PRA model by collecting a polygon dataset of
observed potential release areas from local guides, using a
method which accounts for the uncertainty in human rec-
ollection and variability in avalanche release. The valida-
tion dataset allows us to perform a quantitative analysis of
the PRA model accuracy and optimize the PRA model in-
put parameters to the snowpack and terrain characteristics
of our study area. Compared to the original PRA model
our implementation of forested terrain and local optimiza-
tion improved the percentage of validation polygons accu-
rately modeled by 11.7 percentage points and reduced the

number of validation polygons that were underestimated by
14.8 percentage points. Our methods demonstrate substan-
tial improvement in the performance of the PRA model in
forested terrain and provide means to generate the requisite
input datasets and validation data to apply and evaluate the
PRA model in vastly more mountainous regions worldwide
than was previously possible.

1 Introduction

Snow avalanches are a significant natural hazard for traf-
fic and settlement infrastructure as well as for individuals
who travel in snow-covered mountainous regions. Roads,
railroads, utilities, and permanent structures located in areas
with potential avalanche hazard can be destroyed by large
avalanche impacts or blocked for extended periods during
winter storm events, causing financial losses and potential for
injury or death from individuals being buried in the debris. In
economically developed countries, the majority of avalanche
fatalities occur during recreational activities (i.e., backcoun-
try skiing, snowmobile riding, mountaineering) where indi-
viduals voluntarily expose themselves to avalanche hazard
(Boyd et al., 2009), and accidental avalanches are mostly
triggered by the party that is caught (Schweizer and Lütschg,
2001; Techel et al., 2016). In North America and Europe, an
average of approximately 140 people are killed in avalanches
each year (Jamieson et al., 2010; Techel et al., 2016; Colo-
rado Avalanche Information Center, 2020).
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To mitigate avalanche hazard, locations with potential for
avalanche release need to be identified so elements at risk
can attempt to minimize their exposure. This can be achieved
by avoiding avalanche-prone areas, minimizing exposure
time, or implementing avalanche control methods (McClung
and Schaerer, 2006). Avalanche hazard mapping is a time-
honored practice for determining the spatial distribution of
snow avalanche hazards (Margreth and Funk, 1999; Rudolf-
Miklau et al., 2015). Traditional manual hazard mapping
combines multiple methods such as terrain inspection, nu-
merical simulations, avalanche event databases, and expert
experience to evaluate avalanche hazard exposure and spa-
tial extent, making it both labor- and cost-intensive. This
highly detailed approach is the gold standard for determin-
ing avalanche zoning for permanent infrastructure, but the
costs make it unsuitable for mapping large areas of mountain-
ous terrain (Rudolf-Miklau et al., 2015; Bühler et al., 2018,
2022).

To overcome this challenge, automated GIS and remote
sensing methods have been developed to expedite the map-
ping process and produce avalanche terrain indication maps
based on digital elevation model (DEM) and land cover data
(Maggioni and Gruber, 2003; Gruber and Haefner, 1995).
The foundation of automated avalanche terrain mapping is
potential avalanche release area (PRA) modeling, which es-
timates the location of potential hazards based on the local
terrain characteristics (Bühler et al., 2013, 2018; Veitinger
et al., 2016). PRA models can be applied to define the spa-
tial extent of release areas in dynamic avalanche simulations,
which estimate the runout distance, velocity, and flow height
of avalanche debris (Christen et al., 2010), or as a standalone
spatial layer to assist with hazard identification. Their abil-
ity to operate at the mountain range scale with limited hu-
man input dramatically reduces cost and time to develop
spatial datasets, which can assist infrastructure planners and
recreationists in making more informed decisions about their
avalanche hazard exposure (Bühler et al., 2018). The devel-
opment of large-scale avalanche hazard indication maps in
Switzerland has led to them being applied as a tool to help
backcountry recreationists visualize terrain hazards and in-
corporate them into their trip planning process (Harvey et
al., 2018).

The current state-of-the-art methods for PRA modeling
have been developed and validated in regions with widely
available high-resolution DEM and forest cover data as well
as long-term records of avalanche observations (Bühler et
al., 2018; Veitinger et al., 2016). However, the majority of
mountainous regions in the world do not have freely avail-
able high-resolution DEM or forest cover data yet, and long-
term, spatially accurate records of avalanche release are very
rare. This seriously limits the application and local validation
of PRA models.

An additional limitation of existing high-resolution PRA
models is that they do not account for the interaction be-
tween forest characteristics and avalanche release. For exam-

ple, both the Bühler et al. (2018) and Veitinger et al. (2016)
PRA models allow for forested areas to be excluded from
PRA calculations based on a forest mask layer, but they do
not explicitly capture forest avalanche interaction. This re-
duces the applicability of these PRA models in mountain
ranges where a significant portion of the avalanche terrain
is forest-covered, such as in western North America.

To address these challenges and make PRA models appli-
cable more broadly, the objective of this research is to de-
velop a cost-effective workflow for generating the required
input datasets for the Bühler et al. (2018) PRA model us-
ing satellite data and open-source remote sensing methods.
In addition, we present a relatively simple method for adapt-
ing the current PRA model to work in forested terrain. In the
absence of long-term avalanche observations, we develop a
novel approach for utilizing the expertise and terrain knowl-
edge of local mountain guides to validate the PRA model
output and optimize the input parameter for the unique ter-
rain and snowpack characteristics of our study area. These
three developments – the use of satellite data, the adaptation
of the model to work in forested terrain, and the validation
with local terrain expertise – together open new opportuni-
ties for applying state-of-the-art avalanche terrain modeling
in regions with limited existing datasets and resources.

2 Background

2.1 Potential avalanche release area modeling

Early versions of GIS-based avalanche terrain models (e.g.,
Gruber and Haefner, 1995; Maggioni and Gruber, 2003)
struggled to outperform simple slope-based avalanche re-
lease area estimates (Voellmy, 1955) due to the inability of
low-resolution DEMs (20–30 m) to detect small-scale ter-
rain features. Current PRA modeling methods evolved over
the course of a decade and benefit from developments in
high-resolution DEM production and remote sensing (e.g.,
Bühler et al., 2013, 2018, 2022; Veitinger et al., 2016; Ku-
mar et al., 2019). To define avalanche release areas the
algorithms use different combinations of DEM derivatives
(i.e., slope angle, terrain ruggedness, curvature, and aspect),
which are calculated using focal functions of raster pixels.
Bühler et al. (2013) found that 5 m resolution is the opti-
mal tradeoff between processing efficiency and small-scale
feature identification for PRA modeling. With DEM resolu-
tion of 5 m, a common nine-cell focal neighborhood (3×3) is
225 m2, which is well below the median slab size for human-
triggered avalanches of 4000 m2 (Schweizer and Lütschg,
2001). Hence, high-resolution input data are essential to cap-
ture sub-release-area-scale terrain characteristics, which are
critical for accurate potential release area modeling.

The development of these algorithms depends on a robust
validation dataset of observed avalanche events to determine
the optimal input parameter settings for the target study area.
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By comparing the extent of the PRA model output to the
location of avalanche observations the overall accuracy of
the PRA model can be evaluated, and comparisons can be
made between different combinations of input parameters.
Such datasets can be created through recording of manual ob-
servations or generated by applying satellite mapping (Lato
et al., 2012; Bühler et al., 2019; Hafner et al., 2021). The
most comprehensive known avalanche release area validation
dataset currently available is curated by the WSL Institute
for Snow and Avalanche Research SLF in Davos, Switzer-
land, with experienced staff manually mapping avalanche
outlines throughout the winter in the surrounding mountain
areas. This avalanche observation catalog began in 1970, and
as of 2016 it included 5785 mapped avalanches (Bühler et
al., 2018). This dataset is now expanded to include data from
satellite avalanche mapping (Bühler et al., 2019) as well as
airplane (Bühler et al., 2009; Korzeniowska et al., 2017) and
drone surveys (Bühler et al., 2017).

Using a subset of this validation data, Bühler et al. (2018)
compared their PRA algorithm performance against another
PRA model (Veitinger et al., 2016) and a simple slope-based
release area estimation method from Voellmy (1955). The
validation study showed that the Bühler et al. (2018) and
Veitinger et al. (2016) PRA models had lower probability of
detection compared to the slope-based model, by 3.5 % and
2 %, respectively, but also had lower probability of false de-
tection, by 13.3 % and 8.4 %, respectively. This means that
the slope-only model detected a greater percentage of ob-
served release areas compared to the PRA models but also
overpredicted release areas at a higher rate than the PRA
models. Due to the relatively smaller decrease in probabil-
ity of detection (3.5 % and 2 %) compared to the decrease in
probability of false detection (13.3 % and 8.4 %) the more so-
phisticated PRA models are considered more skillful than the
slope-based model. The relatively small improvements over
the slope-based release area estimate illustrate the fact that
PRA modeling is a field of marginal gains, but when applied
over large areas marginal improvements can have a large im-
pact on the output extent of PRA models. The results also
show slightly better performance for the Bühler et al. (2018)
PRA model over the Veitinger et al. (2016) PRA model, with
lower probability of false detection and higher measures of
Pierce skill score and Heidke skill score.

An additional advantage of the Bühler et al. (2018) PRA
model is the ability to convert the raster-based PRA model
output to polygon features using object-based image anal-
ysis. Converting the PRA model output to polygon fea-
tures enables the PRA model to be paired with dynamic
avalanche simulation software (Christen et al., 2010; Büh-
ler et al., 2018) to estimate runout distance, impact pres-
sures, flow depth, and velocity of the avalanche flow. This
powerful combination of release area and runout modeling
represents the state-of-the-art of current avalanche terrain in-
dication modeling practices and is a valuable resource for
large-scale avalanche hazard indication mapping. Therefore,

this research seeks to improve and expand upon the existing
Bühler et al. (2018) PRA model.

The Bühler et al. (2018) PRA model has been applied
in multiple regions worldwide, including Chile, Alaska,
Afghanistan, and India. However, the input parameters have
not been independently tested and optimized using local val-
idation data. Therefore, it is unknown whether the input pa-
rameters optimized for Davos, Switzerland, are appropriate
for mountain regions with different topographic and snow-
pack characteristics. Our research aims to address this knowl-
edge gap by applying an updated version of the Bühler et
al. (2018) PRA model to the Columbia Mountains of south-
eastern British Columbia, Canada, and seeks to optimize the
input parameters for the study area based on locally available
validation data.

2.2 Avalanches in forested terrain

In addition to DEM-derived terrain variables some PRA al-
gorithms use forest coverage to define PRA based on the as-
sumption that avalanche release is less common in areas with
tall and dense vegetation. The snowpack in forested areas is
generally more stable due to the anchoring effect of trees, for-
est canopy snow interception, the disruption of the continuity
of weak layers due to snow drop from the canopy, and altered
snow surface radiation and temperature conditions. However,
it is still possible for avalanches to release in forested areas,
especially in areas with steep slope angles or low tree den-
sity or in openings within forested areas (Bebi et al., 2009).
Small and medium avalanches generally do not have enough
impact force to damage trees or tree stands, and forests tend
to reduce their runout potential by detraining snow from the
flowing avalanche (Feistl et al., 2014). Larger avalanches can
break or uproot trees and cause massive destruction to the
forest ecosystem (Feistl et al., 2015; Bebi et al., 2009). The
location of avalanche release areas in relation to the forest
plays a large role in whether trees will impede avalanche flow
or be destroyed and possibly entrained (Teich et al., 2012).

The ability to account for forest characteristics in
avalanche terrain modeling is largely based on locally avail-
able datasets. Laser scanning or lidar data provide high-
resolution digital surface model (DSM) and digital terrain
model (DTM) datasets to define the forest character, includ-
ing canopy height, location and size of forest gaps, and basal
area (Brožová et al., 2020; Dash et al., 2016). Vegetation
height models derived from DSM and DTM data can be used
to identify forests with a protective function and input as
forest masks in PRA models (Bebi et al., 2021; Bühler et
al., 2018, 2022; Waser et al., 2015). Similar to their applica-
tion for DEM production, the high accuracy of these datasets
comes at a high cost.

Alternative lower-cost methods for estimating forest char-
acteristics include traditional field-based sample plots and
radar or optical remote sensing instruments (Hyyppä et
al., 2000; Waser et al., 2015). The most accessible of these
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alternative methods is satellite-based optical imagery, which
can be used to create a forest land cover classification and to
determine the extent of the forested area (Bühler et al., 2013)
and can be combined with field plot observations of specific
forest characteristics to create a predictive model based on
the spectral and textural characteristics of the imagery (Dash
et al., 2016).

Prior research has attempted to incorporate forest charac-
teristics with PRA modeling (Sharp et al., 2018), but low-
resolution DEM and forest data combined with a limited val-
idation dataset make it challenging to evaluate the overall
performance of the model. However, the principle of adjust-
ing the potential for avalanche release based on forest char-
acter aligns with analytical and theoretical understanding of
avalanche release in forested terrain (Bebi et al., 2009; Mc-
Clung, 2001). This research aims to expand existing meth-
ods for capturing forest avalanche interaction in PRA mod-
els using satellite remote sensing methods that are cost-
effective and efficient for processing large-scale avalanche
terrain models.

3 Methods

Applying the potential avalanche release area (PRA) model
to the study area required three main analysis steps (Fig. 1):
first, developing a pipeline for producing high-resolution
DEM and forest classification data from satellite imagery;
second, adapting the existing PRA model to better capture
forested terrain and processing many versions of the PRA
model using a predefined range of input parameters; third,
developing new methods to validate the PRA model using
polygons collected from local experts in order to optimize the
input parameters for our study area. Steps two and three re-
quired many iterations (Fig. 1, step 3c) to test different base-
line input parameters and evaluate performance using our
grid search validation procedure. The datasets and code re-
quired for replication of our DEM processing, forest classifi-
cation, and PRA validation are available in our Open Science
Framework (OSF) repository (Sykes et al., 2021).

3.1 Study area

The study area for this research is the tenure area of CMH
Galena, a mechanized skiing operation that operates in the
Selkirk Mountains of British Columbia, Canada, approxi-
mately 100 km southeast of Revelstoke (Fig. 2). The tenure
covers 1162 km2, ranges from 450 to 3050 m in elevation,
and is composed of roughly 60 % forested terrain. The
Selkirk Mountains have a transitional snow climate with
a maritime influence where persistent avalanche problem
types are common. The most common persistent weak lay-
ers associated with these avalanche problems are surface
hoar and faceted crystals associated with a crust (Hägeli
and McClung, 2003; Haegeli and McClung, 2007; Shandro

and Haegeli, 2018). The best existing DEM and land cover
datasets for the study area are the Canadian Digital Eleva-
tion Model (CDEM), with a resolution of 18 m, and the 2015
National Land Cover Dataset (NLCD), with a resolution of
30 m. The resolution of both these datasets is too coarse for
high-resolution PRA modeling.

3.2 Data preparation

3.2.1 DEM generation

Based on our desire to develop a cost-effective and repro-
ducible approach for applying PRA models across large ar-
eas, we chose to purchase raw satellite imagery and use open-
source photogrammetry software to produce our own DEM.
At the time we purchased the imagery our estimate was that
producing our own DEM would be roughly 2–10 times less
expensive than alternative methods to acquire a 5 m DEM
based on price quotes from multiple commercial suppliers.
However, the cost savings of producing a DEM using raw
imagery come at a tradeoff of requiring significant technical
knowhow to process the stereo imagery. One downside of
this approach is that vegetation cover inhibits the ability to
create a bare-ground DEM (known as a digital terrain model;
DTM), and we end up with a digital surface model (DSM)
that represents the reflective surface at the top of the vegeta-
tion. While a DSM is not the ideal representation of terrain
in forested areas (Brožová et al., 2020), the high cost of lidar,
the only remote sensing method that can produce a DTM in
vegetation-covered terrain, currently prevents its widespread
use.

Producing a 5 m DEM requires satellite imagery with a
spatial resolution of at least 1.5 m. After comparing the prod-
ucts from various providers (Pleiades 1, WorldView 1–4,
GeoEye 1, SPOT 6/7, and KOMPSAT 2–3) we purchased
SPOT 6/7 imagery based on our requirements of DEM res-
olution, study area size, and cost. The listed price for task-
ing new imagery collection for 1.5 m resolution SPOT 6/7
tri-stereo imagery at the time of acquisition was USD 12.65
per square kilometer for a minimum study area of 500 km2,
which does not account for any academic or other discounts
available through imagery suppliers. The SPOT 6 tri-stereo
satellite images were captured on 19 August 2019 with 1.5 %
cloud cover and no visible atmospheric distortions (wild-
fire smoke, haze) in the images. Tri-stereo imagery captures
forward-, nadir-, and backward-looking images in a single
pass and provides three stereo image perspectives, which in-
creases DEM accuracy in steep terrain and minimizes sen-
sor shading. For a more detailed description of our DEM
processing interested readers should reference the Supple-
ment “DSM production in mountainous, forested terrain us-
ing SPOT 6 tri-stereo imagery with Ames Stereo Pipeline”.

To improve and assess the accuracy of our DEM we col-
lected a set of 66 ground control points (GCPs) distributed
across our study area using a Trimble Geo7x handheld differ-
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Figure 1. Workflow diagram illustrating the necessary input datasets and processing steps to apply and validate the PRA model in our remote,
data-sparse, and forested study area. The dashed lines in step 3c indicate the option to either refine the baseline input parameters of the PRA
model and re-start from step 2a or select the final PRA model and move to step 3d.
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Figure 2. Study area map showing the CMH Galena tenure, lodge location, ski run polygons, and the subset of runs used to validate the PRA
model. Forest data created using Planet Labs imagery (Planet Team, 2017), inset map made with Natural Earth.

ential global navigation satellite system (DGNSS) unit con-
nected to an H-star base station network, from 24–27 August
2019. We collected GCPs in locations with high contrast such
as edges of snowfields, waterbody inlets, bridges, and land
cover transitions (e.g., boundary of talus slope and vegeta-
tion) to make the locations accurately identifiable in the satel-
lite imagery. The timing of our image collection (19 August
2019) and GCP data collection (24–27 August 2019) meant
that there were minimal changes in the natural features we
used as reference points (i.e., snowfields, waterbodies).

To process the imagery, we used a combination of open-
source software tools from the Geospatial Data Abstrac-
tion Software Library (GDAL), QGIS, and the Ames Stereo
Pipeline (ASP) version 2.6.2 (Beyer et al., 2018; Rouault et
al., 2022; QGIS Development Team, 2021). Several steps of
preprocessing were necessary to optimize our images prior
to stereophotogrammetry, including bundle adjustment and
orthorectification (Shean et al., 2016). The ASP stereo tool
was developed for imagery containing bare rock and glacial
landscapes. Differences in image texture in forested terrain
are challenging for the default settings of ASP to produce ac-

curate pixel matches. To address this issue, we extensively
tested different stereo correlation algorithms and stereo pro-
cessing settings to optimize performance for forested moun-
tainous terrain. Our best results were achieved using the
smooth semi-global matching (MGM) stereo correlation al-
gorithm (Facciolo et al., 2015), which resulted in fewer DEM
holes in forested terrain and terrain with suboptimal lighting
conditions. Optimizing the settings of the ASP stereo tool
produced accurate pixel matches in forested terrain and was
only limited by artifacts in the original imagery (cloud, cloud
shadow, poor lighting conditions).

Our stereo processing workflow generated six separate
DSMs from the SPOT 6 tri-stereo imagery by taking all pos-
sible combinations of left and right stereo images. The goal
of this method was to reduce DSM holes in steep or poorly lit
terrain by taking advantage of the multiple view angles pro-
vided by the tri-stereo imagery. Before combining the indi-
vidual DSMs to produce the final DSM mosaic, we removed
pixels with a triangulation error greater than the resolution of
the input images (1.5 m) to ensure robust elevation estimates
(Fig. 3a). Overall, we see low normalized median absolute
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deviation (NMAD) values across the DSM mosaic (Fig. 3b),
with a median NMAD of 0.32 m.

To improve the alignment of the final DSM mosaic to our
GCP, we used the ASP point cloud alignment tool to co-
register the output DSM to the GCP (Shean et al., 2016).
To evaluate the accuracy of our DSM we used 15 internal
checkpoints which were not used as part of our GCP dataset
(Höhle and Höhle, 2009).

Localized cloud cover and poor lighting on steep north-
facing terrain caused several holes in our SPOT 6 DSM mo-
saic, which account for approximately 1 % of the total DEM
area (11.7 km2). We filled these holes by down-sampling the
existing Canadian DEM to 5 m, aligning the CDEM to our
SPOT 6 DSM mosaic using the point cloud alignment tool in
ASP, and then blending the two DEM datasets together. To
avoid smoothing the entire SPOT 6 DSM we progressively
blended the datasets across a 60 m buffer from holes in the
SPOT 6 DSM.

The methods described here were only tested on a sin-
gle set of SPOT 6 tri-stereo images, but the performance
in forested terrain was vastly improved compared to the de-
fault ASP settings. For more detailed information on the ASP
workflow or the computer resources used to calculate the
DSM please see the Supplement, or contact the authors.

3.2.2 Forest classification

The existing PRA model of Bühler et al. (2018) uses a binary
forest mask based on photogrammetric vegetation height
model classification to mask release areas in forested ter-
rain. We tested several approaches to generate a binary forest
mask for our study area. Since our SPOT 6 imagery was lim-
ited by poor lighting conditions on steep north-facing terrain
due to early-morning sun angle, we substituted Planet Labs’
RapidEye imagery, collected on 17 July 2018 (Planet Team,
2017). An advantage of the RapidEye imagery is that it in-
cludes a red edge band which provides additional spectral
resolution to differentiate between forests and other types of
vegetation (Dash et al., 2016).

The overall accuracy of the classifier is critical for pro-
viding a distinction between forested land cover and other
types of vegetation, such as shrubs and herbaceous plants.
For avalanche release area modeling this distinction is im-
portant because shrubs and herbaceous plants are buried or
pressed down beneath the winter snowpack and therefore
have minimal effect on the potential for avalanche release.
Trees with rigid trunks that resist being laid over by the win-
ter snowpack and canopy heights greater than the snowpack
depth (approximately 2–3 m) have an anchoring effect on the
snowpack which is essential to capture accurately in order
to account for their effect on avalanche release. By itera-
tively fine-tuning the training dataset we were able to con-
trol how the classifier identified forested terrain and opted to
select a model that primarily captured densely forested areas

and omitted areas with isolated smaller trees surrounded by
shrubs and herbaceous plants.

To perform the classification, we used a random forest al-
gorithm on the blue, green, red, red edge, and near-infrared
image bands utilizing the Python libraries NumPy, GDAL,
Rasterio, and scikit-learn (Rouault et al., 2022; Gillies et
al., 2013; Harris et al., 2020; Pedregosa et al., 2011). To im-
prove the classification accuracy, we included the normal-
ized difference red edge index (NDRI), normalized differ-
ence vegetation index (NDVI), and normalized difference
water index (NDWI) as additional bands for the random for-
est classifier. Training data were created by manually draw-
ing polygons around individual land cover types (forest, wa-
ter, bare ground, snow and ice, shrub, moss, and lichen)
based on RapidEye, SPOT 6, and Google Earth imagery from
our study area. Our training dataset is composed of 253 in-
dividual polygons (12.0 km2), with 73 polygons of forested
terrain (3.6 km2). For further details on the analysis meth-
ods used for the forest classification interested readers are
referred to our OSF directory, where the data and code are
available for review (Sykes et al., 2021).

3.3 Integration of forest information into PRA model

Our development of additional PRA model functions to im-
prove performance in forested terrain was guided by two
principles:

1. Minimize additional complexity when running the PRA
model compared to the original version.

2. Utilize remote sensing datasets that are available in
data-sparse locations and do not require extensive field
validation.

To integrate forest information into the PRA model, we
created two additional input parameters: an ordinal forest
density (open – 0, sparse – 1, moderate – 2, dense – 3, very
dense – 4) (Fig. 4) and a numeric forest slope scalar (0.0–2.0)
(Fig. 5). The forest density parameter controls what classes
of forest are included in the PRA model, while the forest
slope scalar adjusts the slope angle minimum threshold based
on the forest density class for each pixel. Including these pa-
rameters takes advantage of the existing forest mask func-
tions of the PRA model and only adds two input parameters
when running the PRA model, both of which are optional and
can be omitted to run the PRA model in the prior configura-
tion from Bühler et al. (2018).

3.3.1 Forest density

To estimate forest density, we used a focal function to cal-
culate the total number of forested pixels within a five-cell
neighborhood (625 m2). The function simply summed up the
total number of forested pixels and did not account for the
location of the forested pixels within the five-cell neighbor-
hood. This step resulted in a forest sum raster with values
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Figure 3. SPOT 6 DSM error estimates. Triangulation error for each set of stereo pairs (a) with pixels where error is greater than im-
age resolution (1.5 m) removed from DSM. Normalized median absolute deviation (NMAD) for mosaic of six stereo pairs (b) with inset
map showing slope-scale detail. Internal checkpoints (green points) with height difference in meters between DSM surface and DGNSS
measurement (negative values indicate that the DSM surface height is lower than internal checkpoint, ICP, height).

ranging from 0 to 25, with 0 meaning no forested cells, and
25 meaning all cells within the five-cell neighborhood are
forested (Fig. 4, step 3). We included this step to capture the
fuzzy transition between forested and non-forested snowpack
characteristics. In areas adjacent to forested terrain the snow-
pack can be altered by forest cover (i.e., wind dynamics, radi-
ation balance, canopy snowfall interception) despite not be-
ing directly covered by the forest canopy (Bebi et al., 2009).
This method also helps to identify glades or meadows within
the forest canopy by creating a fuzzy buffer around small
non-forested islands within densely forested terrain. The size
of the neighborhood function (625 m2) is representative of
small human-triggered avalanches that have the potential to
bury or injure a person, especially if they are carried into a
forested area (Schweizer and Lütschg, 2001).

We then reclassified each forest sum cell into an ordinal
variable with the forest density categories open (0 cells),
sparse (1–10 cells), moderate (11–20 cells), dense (21–24
cells), and very dense (25 cells) (Fig. 4, step 4). We chose this
uneven classification scheme to bias the application of the
forest-slope-scalar parameter towards increasing the slope
angle minimum more strongly in densely or very densely
forested areas (i.e., cells with 21 to 25 neighboring forested
cells). Since areas with more surrounding forested pixels
likely represent more mature forests, this approach captures
the fact that more mature forests have a greater potential im-
pact on avalanche release. The resulting forest density layer

provides a foundation to control how forested cells are in-
cluded in the PRA model.

3.3.2 Forest slope scalar

As an additional control on how the PRA model is applied in
forested terrain, we introduced a forest-slope-scalar parame-
ter to increase the slope angle minimum based on the forest
density value. Applying this parameter assumes that steeper
slopes are necessary for avalanche release in forested terrain,
which is supported by prior research (Campbell and Gould,
2013; Schneebeli and Bebi, 2004). The rate of slope angle
increase is controlled by the forest-slope-scalar parameter
(0.0–2.0), which is applied as an exponent to the forest den-
sity value (0–4) and added to the slope-angle-minimum value
(e.g., 30◦). For example, a slope angle minimum of 30◦ and
a forest-slope-scalar value of 1 would result in the follow-
ing slope angle minimums for forested terrain: open (0) 30◦,
sparse (1) 31◦, moderate (2) 32◦, dense (3) 33◦, very dense
(4) 34◦. A slope angle minimum of 30◦ and a forest-slope-
scalar value of 2 would result in the following slope angle
minimums: open (0) 30◦, sparse (1) 31◦, moderate (2) 34◦,
dense (3) 39◦, very dense (4) 46◦ (Fig. 5). Altering the slope-
angle-minimum input parameter changes the starting posi-
tion of the forest-slope-scalar function but does not impact
the rate of increase for each forest density value.
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Figure 4. Forest density layer processing workflow.

Figure 5. Forest-slope-scalar functions applied to a 30◦ minimum slope angle threshold.

3.4 Parameter tuning and validation

To develop a meaningful validation dataset in the absence of
long-term records of avalanche events, we collaborated with
two CMH Galena guides, who each have decades of experi-
ence in the study area, to develop a novel method that takes
advantage of their local expertise to optimize the PRA model
for our study area. For technical details on our statistical cal-
culations and processing workflow, our validation processing
script and data necessary to reproduce our results are avail-
able in our OSF repository (Sykes et al., 2021).

3.4.1 Validation data collection

CMH Galena primarily operates on approximately 300 de-
fined ski runs within their tenure. The runs range in size
from 0.2–19.0 km2, and their locations have been mapped
with polygons that outline the typical skiing terrain (Fig. 2).
The frequency of how often these runs are used varies sig-
nificantly depending on terrain characteristics, weather con-

ditions for flying, and snowpack conditions. To validate the
PRA model, the two collaborating guides selected five runs
(highlighted in Fig. 2) based on their familiarity with the ter-
rain, their representativeness of the terrain characteristics rel-
ative to the entire study area, and the balance of forested and
alpine avalanche terrain contained in the runs.

The process of collecting validation polygons from the
CMH guides was carried out on a custom-designed web-
site. The website platform enabled us to develop and present
meaningful reference layers (e.g., satellite imagery, topo
maps, terrain data, GPS tracks, heat maps) and provide the
guides with multiple perspectives of the study area to assist
with drawing the validation polygons. Both guides drew re-
lease area polygons for the five validation runs individually
before creating a final consensus set of polygons in collabo-
ration. Through the process of developing the validation data
collection workflow we found that mapping the precise lo-
cation of start zones based on personal recollection without
being in the terrain at the time is extremely difficult. There-
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fore, we developed an alternative method that would explic-
itly accommodate this uncertainty. Instead of forcing the par-
ticipating guides to explicitly outline all avalanche release
areas, we asked them to draw validation polygons around
terrain features with similar characteristics (i.e., slope an-
gle, forest density, ruggedness) and specify for each poly-
gon what proportion represents potential release areas (0 %,
25 %, 50 %, 75 %, 100 %) (Fig. 6). Polygons of obvious prob-
able release areas or non-release areas where guides had high
confidence about their spatial extent were labeled with 100 %
and 0 %, respectively. Areas with scattered probable release
areas, such as open forests with glades, where the identifica-
tion of each probable release area would be cumbersome and
unreliable, were marked as larger polygons and labeled with
the estimated spatial proportion of the probable release areas
(25 %, 50 %, or 75 %). Outliers, such as infrequent release ar-
eas with very low slope angles that require specific snowpack
structures and weak layer types (e.g., surface hoar), were not
included in the validation dataset in order to avoid biassing
the validation dataset toward rare events that are not repre-
sentative of typical conditions in the study area.

Our fuzzy approach to mapping probable release areas has
several advantages. Foremost, accommodating uncertainty in
the spatial extent of release areas is a requirement when re-
lying on human memory to generate the validation data as
specifying probable release areas with higher precision from
memory is simply unrealistic. This method also accounts for
the variability in release area extent that results from the
dynamic nature of snowpack and weather conditions. The
workflow also minimizes the effects of local errors in the
reference layers that we provided the guides with to record
their validation polygons. Specific examples of uncertainty
caused by reference layers are variations in satellite imagery
lighting due to sun angle and artifacts of the DSM generation
process, such as over-steepened slope angle values caused by
transitions from forested to non-forested terrain.

Our final validation dataset consists of 167 polygons
across five runs with a total area of 8.42 km2, with sam-
ple sizes of 100%= 91, 75%= 23, 50%= 23, 25%= 18,
0%= 7, and run polygons= 5. In locations where the poly-
gons overlapped, we retained the highest proportion value of
the overlapping polygons. The overlapping region was also
clipped from the total area of the lower-probability polygon.
Locations within the run polygons that were not explicitly
mapped by the guides were assumed not to be release ar-
eas. However, our validation approach differentiates between
these implied and the explicit 0 % validation polygons be-
cause we have more confidence in the latter.

3.4.2 PRA model grid search

In contrast to the raster-based validation approach of Bühler
et al. (2018), our validation dataset requires analysis on the
scale of individual polygons. Since we do not know the ex-
plicit locations of the release areas in polygons with release

Figure 6. Validation polygons from one run at CMH Galena. Poly-
gons are color-coded based on the release area proportion of each
polygon. Forest data created using Planet Labs RapidEye imagery
(Planet Team, 2017).

area proportions of 25 %, 50 %, or 75 %, we cannot directly
compare the PRA model output to the validation polygons
on a pixel-by-pixel basis. Instead, we have to compare the
total area within each polygon that is considered a PRA by
the model to the proportion provided by the local guides.
To calculate the PRA error we subtracted the proportion of
the polygon that the PRA model determines as a release area
(0 %–100 %) from the release area proportion determined by
the guides (0 %, 25 %, 50 %, 75 %, 100 %) for each valida-
tion polygon. For example, if the PRA model output pre-
dicted that 60 % of the area of a validation polygon contains
PRA, and the guides designated that 50 % of the area of that
polygon contains release areas, then the PRA error would be
−10%. This PRA error value is the basis of our grid search
process and can range from −100 % to 100 % depending on
whether the PRA model overpredicted or underpredicted the
guides’ estimated release area proportion.

To properly reflect the validation data collection process
in our analysis we also need to consider the hierarchical
structure of assessment polygons collected from the local
guides. The highest-value validation data are the 100 % and
0 % polygons because they provide explicit spatial extents for
PRA locations. These polygons are from locations the par-
ticipating guides are most familiar with and have the highest
level of confidence in. We therefore placed more emphasis
on PRA model performance in these areas when selecting
the optimal inputs. The validation polygons with the greatest
uncertainty are the run polygons. They were not explicitly
drawn by the guides, and the absence of PRA within these
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polygons was implicit and not explicitly specified. Hence,
the accuracy of these polygons was weighted least in select-
ing the optimal PRA input parameters.

To select optimal input parameters for the PRA model we
performed a grid search as described by Bühler et al. (2018)
using the following values: slope angle minimum (default
30◦, range 20–40◦), slope angle maximum (default 60◦,
range 45–65◦), ruggedness window (default 9, range 3–15),
ruggedness maximum (default 6.0, range 0.5–10.0), curva-
ture maximum (default 6.0, range 0.5–10.0), forest density
(default NA, range 0–4), forest slope scalar (default NA,
range 0.0–2.0) (Table 1). It is computationally not feasible to
test all possible combinations of input parameters; therefore
we used a set of default parameters from Bühler et al. (2018)
as a baseline and iterated over each parameter to analyze the
impact on the accuracy of the model. Based on validation
using the guide polygons we systematically updated the de-
fault parameters to optimize the PRA model accuracy for our
study area (Fig. 1, Step 3c). The input parameters slope an-
gle minimum, slope angle maximum, ruggedness window,
ruggedness maximum, and curvature maximum are derived
from the DEM (Fig. 7a–c). The forest density input parame-
ter is derived from the forest mask (Fig. 7d).

Selecting the optimal set of input parameters did not rely
on any single statistic. Each PRA model iteration was com-
pared using the mean absolute error (MAE), mean bias error
(MBE), proportion of accurate polygons, and proportion of
underestimated and overestimated errors. MAE values can
range from 0 to 100, with lower values indicating a more ac-
curate model. MBE values can range from−100 to 100, with
0 indicating a balance between positive and negative errors.
Polygons were considered accurately predicted if the PRA
error was within±12.5 %, meaning that the areas of the PRA
model output and guide estimate were within a 25 % range of
each other, which is equivalent to one step in the guides’ rat-
ing scale (0 %, 25 %, 50 %, 75 %, 100 %). Underestimated
and overestimated polygons are defined as having a PRA er-
ror greater than ±12.5 %, and polygons with a PRA error
greater than ±25 % were considered severely overestimated
or underestimated.

The accuracy statistics for each grid search iteration were
calculated on the basis of the total number of polygons (n=
167). We elected not to weight the statistics based on poly-
gon size because the highest-value validation polygons (0 %
and 100 %) are generally the smallest. Selecting the optimal
input parameters for our PRA model required evaluating per-
formance across all these statistics and taking the structure of
our validation dataset into account.

When selecting the optimal set of input parameters we
erred on the side of a model that overestimates the extent
of potential avalanche release areas, which is indicated by
a negative MBE. We consider this an appropriate approach
because the guides’ polygons reflect only the avalanche con-
ditions that they have experienced and recall. Despite their
multiple decades of experience, the guides have not wit-

nessed all potential combinations of snowpack conditions,
which could cause avalanche release in uncommon areas. In
contrast, the PRA model is a terrain-based tool which aims to
identify locations in the study area which have the potential
for avalanche release independent of snowpack conditions.

4 Results and discussion

Since the context of the input data, parameter settings, and
output from the original model are vital for evaluating the
performance of our updated version of the PRA model, we
combine the results and discussion into a single section. After
presenting and commenting on the results, we conclude this
section with an evaluation of some likely sources of error for
our updated PRA model and share our thoughts on the limi-
tations of a purely satellite-remote-sensing-based method for
capturing forest character in the PRA model.

4.1 Data preparation pipeline

The data preparation pipeline produced a 5 m resolution
satellite DSM and forested land cover dataset as input for
the PRA model. Using 15 internal checkpoints (ICPs), the
DSM accuracy can be described with a median vertical er-
ror of −0.43 m and normalized median absolute deviation
(NMAD) of 4.72 m (Table 2). These accuracy metrics in-
dicate good performance of the stereo DSM method, espe-
cially considering the rugged mountainous terrain across our
study area and close proximity of steep slopes to some of
the ICPs. Compared to the best available existing DEM for
our study area (18 m resolution CDEM), the SPOT 6 DSM
provides vastly improved small-scale terrain feature identifi-
cation (Fig. 8).

The forested land cover classification that emerged from
our random forest analysis yielded an overall accuracy of
98.88 % based on 253 training polygons (12.0 km2). The area
under the receiver operating characteristic curve (AUC) is
99.89 %. The classification feature importance showed heavy
reliance on the red edge (59.8 %), NDWI (15.2 %), and green
(14.9 %) bands. This indicates that the red edge band was by
far the most important imagery band to delineate forested
pixels.

Creating the forested land cover classification using the
same satellite imagery as the stereo DSM processing would
be the most efficient workflow for producing the necessary
input datasets for PRA modeling because it uses the fewest
possible input data and thereby minimizes data acquisition
costs and effort. However, in our study, we elected to uti-
lize RapidEye imagery as an alternative due to better overall
lighting conditions and improvements in accuracy, primar-
ily due to the red edge spectral band. The overall accuracy
of our classifier and the feature importance of the red edge
band highlight the strength of RapidEye imagery for forest
classification modeling.
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Figure 7. PRA model input parameters. Slope angle, curvature, and ruggedness derived from the DEM (a–c) and forest density derived from
the forest mask (d). Forest data created using Planet Labs RapidEye imagery (Planet Team, 2017).

Table 1. Grid search input parameter values. Optimized input parameters indicate that the grid search led us to change the default input
parameter to a value that improved the PRA model accuracy for our study area.

Input parameter Range Interval Default Optimized

Slope angle minimum 20–40◦ 1◦ 30◦ Yes
Slope angle maximum 45–65◦ 1◦ 60◦ No
Ruggedness window 3–15 2 9 No
Ruggedness maximum 0.5–10.0 0.5 6.0 No
Curvature maximum 0.5–10.0 0.5 6.0 No
Forest density 0–4 1 NA Yes
Forest slope scalar 0.0–2.0 0.25 NA Yes

NA: not available.

Our processing pipeline provides a cost-effective approach
for creating high-resolution DEM and forested land cover
classification data in remote and data-sparse regions. Com-
pared to alternative methods, such as lidar and commercial
satellite stereo DEM products, purchasing raw satellite stereo
imagery to produce a high-resolution DEM provides sig-
nificant cost savings and control over the DEM generation
settings and produces a DEM product with sufficient accu-

racy (Kramm and Hoffmeister, 2019; Shean et al., 2016).
The primary limitations are the inability to resolve bare-
ground terrain features, susceptibility to DEM holes due to
cloud cover and lighting conditions, and degree of techni-
cal knowhow and computer processing resources required to
convert the raw imagery to a DEM product. Despite these
limitations, the processing pipeline enhances accessibility for
high-resolution PRA modeling in remote regions.
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Figure 8. Comparison of existing 18 m resolution CDEM to 5 m resolution SPOT 6 satellite stereo DSM, derived from our data preparation
pipeline. Canadian DEM data from Natural Resources Canada.

Table 2. Accuracy statistics for SPOT 6 satellite stereo DSM based
on 15 ICPs. The error type 1h indicates the change in height be-
tween the ICP and the DSM surface.

Metric Error type Value (m)

Median 1h −0.43
NMAD 1h 4.72
68.3 % quantile |1h| 3.96
95 % quantile |1h| 9.25

An alternative approach, which has the advantage of de-
creasing the technical skills required to produce a stereo
DEM while still having significant cost saving benefits over
lidar, is to purchase an off-the-shelf stereo DEM from a com-
mercial satellite imagery provider. Costs vary greatly de-
pending on resolution, location, and whether archival im-
agery is available for a given study area. In our case exist-
ing DEMs or stereo imagery was not available in our study
area, so the added costs of new image acquisition and pro-
cessing made producing our own DEM more advantageous.
Those interested in applying these methods to their own area
should carefully evaluate costs of acquiring a 5 m DEM to
assess the feasibility of high-resolution PRA modeling.

4.2 Model parameter selection based on grid search

Based on the grid search we determined that the optimal
model input values for our study area are slope angle min-
imum 27◦, slope angle maximum 60◦, curvature maximum
6.0, ruggedness window 9, ruggedness maximum 6.0, for-
est density 4, and forest slope scalar 1.25. The grid search
method that we implemented is based on a set of default in-
put parameters and does not calculate all possible combina-

tions of input parameters in order to reduce the amount of
computer resources necessary. Therefore, the results of the
grid search are dependent on the selected default parameters.
We tested a wide range of potential default parameters for
our grid search and used the values from Bühler et al. (2018)
as a starting point. We selected the optimal values by visual-
izing the distribution of the PRA error and plotting the MAE
and MBE values for each grid search iteration (Fig. 9).

Due to the high-quality and long-term avalanche observa-
tion records used for validation in Bühler et al. (2018), we re-
tained their default parameter values if the grid search did not
demonstrate notable improvement in overall accuracy based
on the local validation dataset. This was the case for slope
angle maximum, ruggedness window, ruggedness maximum,
and curvature maximum. The results of our grid search for
these parameters are similar to those shown in Fig. 3 of Büh-
ler et al. (2018), with relatively low variation in accuracy
across the range of grid search values (Fig. 9b to e). The con-
sistency of these input parameters for both Davos and Galena
is likely due to using the same DEM resolution of 5 m and
points to the universality of the physical characteristics nec-
essary for avalanche release. In addition, this consistency is a
testament to the accuracy of our satellite DSM in comparison
to the high-resolution DEM data used in the Davos research.

4.2.1 Slope angle minimum

Slope angle minimum has the largest impact on the perfor-
mance of the PRA model. Selecting the optimal input param-
eter required balancing the performance of the PRA model
against the different types of validation polygons and consid-
ering our target of a frequent avalanche scenario. When con-
sidering the entire validation polygon dataset, there is a sharp
increase in the percentage of underestimated validation poly-
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Figure 9. Results of PRA model grid search. In each of the panels, the left y axis shows the percentage of polygons in different PRA error
classes with colored bars (accurate – yellow, underestimated – red, overestimated – blue). Black squares and triangles show the values of
MAE and MBE for each grid search iteration with a horizontal dashed gray line to show the 0 threshold, which corresponds to the right
y axis. The vertical black lines indicate the optimized parameter settings.

gons as the slope-angle-minimum threshold increases from
25◦, which indicates that the PRA model progressively ex-
cludes observed release areas (Fig. 9a). The MAE minimum
of approximately 18 occurs between 26 and 28◦, indicating
that these values produce the most accurate versions of the
PRA model. The MBE is negative for slope-angle-minimum
values below 30◦, with a steep decrease between 26 and 30◦.

This shows that decreasing the slope angle minimum below
30◦ creates PRA models that are progressively more biased
towards overestimating release areas.

To further analyze the performance of the PRA model we
separated the validation polygons based on the validation
polygon type; 0 % and 100 % polygons have the highest ac-
curacy with values of slope angle minimum less than 25◦
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(Fig. 10a). This trend strongly contrasts the other polygon
types (Fig. 10b and c), which have higher percentages of ac-
curate polygons for slope-angle-minimum values > 26◦. For
0 % and 100 % polygons the percentage of accurate poly-
gons declines steeply above 26◦, accompanied by an increase
in severely underestimated polygons. The MAE and MBE
statistics follow a similar trend, with relatively uniform val-
ues until 27◦ followed by steeply increasing error rates and
positive bias for the remaining grid search inputs.

The 25 %, 50 %, and 75 % polygons (Fig. 10b) have a
bimodal distribution for percent of accurate polygons, with
slight peaks at 27 and 33◦, accompanied by a steep increase
in underestimated polygons from 27◦ upward. The MAE val-
ues are at their minimum between 27 and 33◦, with relatively
uniform values within that range. Both above and below that
range we see increasing MAE values, indicating a less accu-
rate model for this group of polygons. Below 30◦ the MBE
values indicate a negative bias and have a steeply negative
trajectory. This shows a strong bias toward overestimating
PRA area for 25 %, 50 %, and 75 % polygons at lower values
of slope angle minimum.

The run polygons (Fig. 10c) have the highest accuracy
with slope angle minimum greater than 31◦. However, the
percentage of severely overestimated polygons decreases
drastically at 27◦. Below 28◦, the MAE and MBE have
steeply increasing error rates and negative biases, respec-
tively. Above 28◦ the curves flatten out and trend towards
0 for both MAE and MBE.

Our choice of a 27◦ slope angle minimum strikes a balance
between PRA model performance for each polygon type with
a priority towards optimizing performance on the 0 % and
100 % polygons, which are the most spatially explicit and
have the highest degree of certainty. Setting the slope an-
gle minimum lower than 27◦ would result in too strong of
a bias towards minimizing underestimated errors, which is
not appropriate given our target of a frequent avalanche sce-
nario. This is illustrated by a decrease in overestimated and
severely overestimated polygons at a slope-angle-minimum
value of 27◦ for the 25 %, 50 %, and 75 % polygon dataset as
well as the run polygons (Fig. 10b and c).

4.2.2 Forest density and forest slope scalar

Determining the optimal value for forest density was the
most straightforward of the three parameters we optimized
because the percentage of accurate polygons, lowest MAE,
and lowest proportion of underestimated polygons all occur
at a density value of very dense (4) (Fig. 9f). Setting forest
density to very dense (4) means that the PRA model is not
restricted by any forest mask, and the forest slope scalar is
applied across the full range of forest density values.

Out of the three parameters we optimized, forest slope
scalar has the least variation in percentage of accurate poly-
gons, MAE, and MBE across the range of values tested in
the grid search (Fig. 9g). This indicates that the PRA model

performance is less sensitive to changes in forest slope scalar
compared to slope angle minimum and forest density. How-
ever, setting this parameter to 1.25 helps to create a more
balanced model by decreasing the number of overestimated
polygons, which is illustrated in the upward trend of the
MBE value.

Similar to slope angle minimum, we see a decrease in the
percentage of severely overestimated polygons for the 25 %,
50 %, and 75 % and run polygon datasets for higher values of
forest slope scalar (Fig. 11b and c). This is a tradeoff with a
slight decrease in the percentage of accurate polygons and
increase in percentage of underestimated polygons for the
0 % and 100 % polygons (Fig. 11a). This is reflected in the
0 % and 100 % polygon MBE value of −0.81 at 1.25, which
is relatively high compared to the other polygon types. Given
our target of a frequent avalanche scenario this tradeoff is
justified to create a balanced PRA model and account for the
influence of forested terrain on avalanche release.

4.3 PRA model output and comparison

The final PRA model captures 57.5 % (96 of 167) of the
consensus validation polygon dataset accurately. Validation
polygons are considered accurately predicted if the PRA-
estimated area and the guide-estimated release area are
within ±12.5 %. The remainder of the validation polygons
were either underestimated 10.2 % (17 of 167) or overesti-
mated 32.3 % (54 of 167), compared to the guides’ consen-
sus estimates of release area proportion. The MAE value is
18.2, which is a measure of the average error across all poly-
gons. The MBE value is−10.9, which indicates that the PRA
model errors are negatively biased towards overestimating
release areas. This interpretation of the MBE value aligns
with the skewed distribution of underestimated and overesti-
mated polygons.

To evaluate whether our parameter optimization demon-
strates meaningful improvement, we compared the accu-
racy statistics of the model using the optimized parameters
(present model) to the Bühler et al. (2018) defaults both with
and without a forest mask (Table 3). The “Bühler 2018 – for-
est mask” PRA model does not identify release areas in any
terrain identified as forested based on the land cover clas-
sification, whereas the “no forest mask” version allows the
PRA model to calculate release areas in all terrain. Since
the “forest mask” version naturally performs substantially
worse in most accuracy statistics due to the large proportion
of forested terrain in our study area, we focus the comparison
on the “Bühler 2018 – no forest mask” model version.

Overall, we see improvements in the MAE, percent of ac-
curate polygons, and percent of underestimated polygons us-
ing the locally optimized input parameters. The MAE for the
present model is 18.2 compared to 21.4 for the “Bühler 2018
– no forest mask” version, demonstrating a slight improve-
ment in overall model error (Table 3). The present model
improves the percent of accurate polygons by 11.7 per-
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Figure 10. Frequent avalanche scenario PRA model grid search results for slope angle minimum with validation polygons split based on the
type of polygon.

Figure 11. Frequent avalanche scenario PRA model grid search results for forest slope scalar with validation polygons split based on the
type of polygon.
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Table 3. PRA model comparison.

PRA model MAE MBE Accurate % Under % Over %

Present model 18.2 −10.9 57.5 10.2 32.3
Bühler 2018 – forest mask 33.1 22.3 31.0 58.3 10.7
Bühler 2018 – No forest mask 21.4 −3.7 45.8 25.0 29.1

centage points over the “Bühler 2018 – no forest mask”
PRA model, which is a substantial improvement given the
marginal gains observed in prior PRA model comparisons
(Bühler et al., 2018). Similarly, the reduction of 14.8 percent-
age points for underestimated polygons between the present
model and the “Bühler 2018 – no forest mask” demon-
strates the improved performance of the grid search opti-
mization. These improvements can be attributed to optimiz-
ing the slope-angle-minimum and forest-slope-scalar input
parameters using the local validation data.

The tradeoff of the optimized input parameters for the
present model is a bias towards overestimation, which is indi-
cated by the MBE of −10.9 compared to −3.7 for the “Büh-
ler 2018 – no forest mask”. This is also shown by the slight
increase of 3.2 percentage points in overestimated polygons
from the “Bühler 2018 – no forest mask” compared to the
present model. Producing a more negatively biased PRA
model is in line with our mindset of creating a PRA model
that errs on the side of overestimating observed release areas.
In our opinion, the benefits of improved percentage of ac-
curate polygons and underestimated polygons outweigh the
downside of a slight increase in overestimated polygons.

The present model has a substantially lower slope angle
minimum of 27◦ compared to the default value of 30◦ from
Bühler et al. (2018), which results in a notable increase in the
overall area of the PRA output due to expansion into lower-
angle terrain (Fig. 12). The fact that the validation data led
us to a substantial decrease in slope angle minimum is likely
due to differences in the terrain and snowpack characteris-
tics in our study area compared to the region of Davos in
Switzerland, where the model was initially validated. The
avalanche character in our study area is prone to persistent
avalanche problem types with the most common weak layers
being either surface hoar or faceted crystals associated with
a crust (Hägeli and McClung, 2003; Haegeli and McClung,
2007; Shandro and Haegeli, 2018). As a weak layer, surface
hoar can release at lower slope angles and has increased po-
tential to propagate across terrain features compared to other
weak layer types (McClung and Schaerer, 2006). Despite our
aim of excluding outlier release areas with extremely low
slope angles that are only capable of producing avalanches
under very specific snowpack conditions from the validation
dataset in order to target a more frequent avalanche scenario,
the widespread influence of surface hoar as a weak layer in
our study area still contributes to an overall lower minimum
slope angle threshold. The fact that our validation dataset and

grid search approach produced a PRA model that also aligns
with our theoretical understanding of the snowpack proper-
ties in our study area is an encouraging result. However, in
terrain within the study area that is not prone to surface hoar
development, such as alpine terrain with a high degree of
wind and sun exposure, our PRA model is likely to overesti-
mate PRA extent.

4.4 Potential sources of PRA model errors

Based on discussions with our collaborating guides and ex-
ploring spatial patterns of discrepancies between our vali-
dation dataset and PRA model output, we have highlighted
two likely sources of error in our PRA model. First is the
limitation of using a relatively simple remote-sensing-based
approach to account for forested release areas in the PRA
model, which does not explicitly capture forest characteris-
tics that are known to have a strong bearing on the interaction
of avalanches and forest, such as crown cover, stem density,
and gap size (Bebi et al., 2009; Teich et al., 2012). Second
is the inherent uncertainty in relying on human experience
to generate validation data, which can be subject to individ-
ual biases and faulty recollection. Overall, we believe that
the forest characterization is responsible for a larger portion
of the PRA model error and is the most fruitful direction for
future research to try and address. This section provides ex-
amples of these sources of error and discusses how we have
attempted to minimize their impact on the PRA model accu-
racy.

4.4.1 Forest characteristics

To shed light on potential sources of PRA model errors we
applied two different approaches that consider different spa-
tial scales. First, we visualized the spatial patterns in the PRA
errors for each validation run and consulted the local guides
to obtain their insight. Second, we extracted the terrain char-
acteristics of the entire set of validation polygons and com-
pared the distributions of the terrain characteristics based on
the PRA error value. Both approaches yielded similar in-
sight, which highlights the challenge of capturing forested
avalanche release areas accurately using an approach based
purely on satellite imagery.

Visualizing the patterns of PRA model error by validation
run reveals concentrated clusters of higher PRA error on spe-
cific runs or subregions within runs (Fig. 13). The “Lunatic
Fringe” run has by far the highest proportion of overesti-
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Figure 12. Comparison of present PRA model to “Bühler 2018 – forest mask”. Present model PRA area is dark purple with light purple for
forested areas. “Bühler 2018 – forest mask” is shown in orange for comparison. Inset map shows detailed PRA comparison on a local scale;
extent shown by dotted black line. Forest data created using Planet Labs RapidEye imagery (Planet Team, 2017).

mated polygons out of the five validation runs, with 22 out
of the 42 validation polygons being overestimated (Fig. 13a).
Based on information provided by the local guides, this run
is characterized by a steep continuous face with several well-
defined large avalanche paths dissecting mostly forested ter-
rain. The forest is very dense and impassable for a guided
group at the upper elevations of this run. In contrast, the
“Red Baron” run, which is located directly across the val-
ley from Lunatic Fringe, contains lower-slope-angle terrain
with a large proportion of mature forest (Fig. 13b). The for-
est has greater canopy height with widely spaced gaps be-
tween the individual trees. The forest canopy between each
tree extends horizontally enough that the land cover classifi-
cation is unable to detect many of the gaps on the forest floor.
This run contains seven out of eight of the severely underesti-
mated validation polygons, with the other polygon located in
a forested area with similar characteristics on the “Bandito”
run.

While the forest-slope-scalar input parameter is designed
to account for the interaction of forest and avalanche release,

it is challenging to apply it on these two drastically different
types of forested terrain. For Lunatic Fringe, increasing the
forest-slope-scalar input parameter would improve accuracy
by increasing the slope-angle-minimum threshold based on
the local forest density. However, increasing the forest slope
scalar would be detrimental for Red Baron because of the
potential for avalanche release in forest gaps within densely
forested areas. These two contrasting examples of how the
PRA model handles avalanche forest interaction highlight the
challenge in creating a balanced PRA model which compro-
mises performance in each type of forested terrain.

The guides’ descriptions of the local forest character caus-
ing PRA errors for Lunatic Fringe and Red Baron are sup-
ported by our analysis of terrain characteristics based on
the validation polygon dataset. To investigate whether there
are common patterns in the terrain characteristics of valida-
tion polygons based on their PRA error value we extracted
the aspect, curvature, elevation, forest cover, forest density,
ruggedness, and slope angle distributions for the validation
polygon dataset. While the majority of these terrain charac-
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Figure 13. PRA model accuracy for each validation run, with the downslope direction at the bottom of each panel. Validation polygons are
labeled by the guides’ estimated release area proportion and color-coded based on their PRA error. For overlapping validation polygons we
retain the highest release area proportion value and clip that area from the surrounding lower-proportion polygon.

teristics had similar distributions for all classes of PRA er-
ror, forest cover percentage and forest density had distinct
differences. For “severely underestimated” polygons the dis-
tributions and median values are biased towards higher per-
centages of forest cover and forest density compared to other
PRA error classes (Fig. 14).

This further illustrates the guides’ interpretation that the
severely underestimated polygons on Red Baron have high
forest density and the limitation of our forest-slope-scalar
approach for accounting for forested terrain with highly vari-
able characteristics. It is important to note that the sample
size of “severely underestimated” polygons is small, with
only eight polygons. For context, the distribution of “severely

overestimated” (n= 37) polygons also includes high per-
centages of forest cover and forest density, which can be
partially attributed to the dense and tightly spaced forested
terrain on Lunatic Fringe.

The PRA errors on Lunatic Fringe and Red Baron demon-
strate the limitations of our approach in capturing the real-
world forest characteristics. Further improving the perfor-
mance of the PRA model in forested terrain would require
more detailed datasets such as lidar or a field-based forest
inventory which could capture additional forest character-
istics such as stem spacing (Waser et al., 2015; Hyyppä et
al., 2000; Dash et al., 2016), which are beyond the scope
of this research. A notable publicly available source of li-
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Figure 14. Analysis of PRA error based on forest density and percentage of forested area for the validation polygon dataset. The plots show
the distribution of forest density and forest cover percentage for validation polygons based on their PRA error.

dar vegetation height measurements which could be used to
interpolate forest height or overall biomass and potentially
improve the performance of PRA models in forested terrain
is the NASA ICESat-2, which collects lidar point measure-
ments across the globe. The benefit of our method is to cre-
ate cost-effective and high-resolution avalanche terrain maps
based exclusively on remotely sensed data which can be ap-
plied in any location, regardless of remoteness or accessibil-
ity. For this purpose, our approach allows forested terrain to
be captured in the PRA model on a basic level and broadens
the range of avalanche terrain that the model can be applied
to.

4.4.2 Uncertainty in validation data

One of the key differences in relying on local expertise for
model validation is the necessity to incorporate uncertainty.
There are two distinct types of uncertainty that are relevant
for validating the PRA model: (1) uncertainty in the accuracy
of the observations, recollection, and experience of our col-
laborating guides and (2) uncertainty in the reference datasets
we provided them with to transfer their knowledge into spa-
tial datasets and precision of polygon drawing.

In the case of guide observations, the primary sources of
uncertainty in determining the location of avalanche release
areas are the variability in avalanche conditions, how often
the terrain is observed throughout the season, the guides’
recollection of avalanche events, and the potential for al-
tered snowpack structure due to frequent guiding. These lim-
itations are inherent to relying on human recollection as a
source of validation data. However, our approach for cap-
turing validation polygons from local experts accommodates
these limitations by allowing for fuzzy boundaries in drawing
polygons, collecting validation data from multiple guides in-

dependently, and intentionally minimizing the specificity that
we ask the guides to label the release area proportions (0 %,
25 %, 50 %, 75 %, 100 %).

The process for collecting validation data from our collab-
orating guides evolved through frequent back-and-forth dis-
cussions. When applying the validation polygons to select
optimal input parameters for our study area we accounted
for the nature of the data collection by placing more empha-
sis on the performance of 0 % and 100 % polygons, which
have the highest level of certainty for the guides and are the
most spatially explicit. We also preferred input parameters
that resulted in a PRA model that is biased toward overesti-
mating release areas in order to account for the potential that
the guides have not witnessed all possible combinations of
snowpack and weather conditions in our study area, despite
their extensive experience.

An example of how the guides’ experience can influence
our validation dataset can be seen in the right half of the
“Rendezvous” ski run, where there are many severely over-
estimated validation polygons (Fig. 13c). According to our
DEM, the slope angles in this area are predominantly in the
low to mid-30s, which are within the range observed for
human-triggered avalanches (Schweizer and Lütschg, 2001).
However, the guiding operation frequently uses this piece of
terrain and intentionally manages the snowpack using skier
traffic to minimize the potential for weak layers to form and
persist on the surface (e.g., surface hoar). Frequent guiding
use and intentional maintenance of weak layers can create
a modified snowpack structure (Haegeli and Atkins, 2016)
and have the potential to impact the guides’ perception of
release area potential. In areas where the guide’s experience
is largely based on modified snowpack structures there is a
high potential for the PRA model to overestimate avalanche
release compared to the validation dataset.
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While our workflow for collecting validation data from lo-
cal guides was customized for our use case, these methods
could be adapted to other professional communities such as
avalanche forecasters or ski patrol. We recommended consid-
ering the following key principles for developing meaningful
PRA validation datasets:

1. Identify a manageable-size area to create the validation
dataset that is representative of the terrain and snowpack
conditions in the larger study area you want to apply the
PRA model.

2. Solicit feedback from collaborators to identify sources
of uncertainty in their ability to translate their local ex-
perience into polygons that can be compared to the PRA
model output.

3. Incorporate that uncertainty into the validation process
by allowing them to use fuzzy boundaries to identify
potential release areas.

4. Take the structure of the validation data into account
when performing statistical comparisons to the PRA
model output.

This process can be time-consuming and iterative, but it
is critical to ensure shared understanding of the validation
data between researchers and collaborators. In the absence
of long-term observations of avalanche events in most moun-
tainous regions the development of methods to extract local
knowledge from human experts is critical to the application
and validation of PRA models.

4.5 Limitations

The primary limitations of this research are direct conse-
quences of our aim to minimize the cost of input data produc-
tion and create a flexible workflow to apply and validate the
PRA model in remote and data-sparse regions. Using a DSM
as input for a PRA model has not been thoroughly tested,
and the inability to detect bare-ground features within for-
est canopy likely causes localized errors in the PRA model.
Recently, a comparison of high-resolution DSM and DTM
models for avalanche runout modeling demonstrated some of
the limitations of a DSM for dynamic avalanche simulation
(Brožová et al., 2020). We were unable to test the accuracy
of the SPOT 6 DSM compared to a DTM due to the lack of
alternative high-resolution data in our study area.

Relying exclusively on optical satellite imagery to account
for forest avalanche interaction provides limited detail on
meaningful forest characteristics. Explicit modeling of stem
density, gap size, or crown cover could improve the PRA
model’s ability to capture forest avalanche interaction (Dash
et al., 2016; Wallner et al., 2015). However, our focus is on
minimizing field data collection to create a workflow that is
applicable in remote areas.

Finally, the experience of local experts is not an ideal
source to generate validation data compared to long-term ob-
servation records. Observations from individual experts are
prone to biases in their experience and potential for faulty
recollection. We attempted to minimize these effects on our
dataset by collaborating closely with the guides to develop a
system for recording their observations that allows for uncer-
tainty and is based on independent observations of multiple
guides.

5 Conclusions

This research aimed to increase the range of application
for existing high-resolution PRA modeling by developing
a cost-effective workflow for generating the required in-
put datasets, expanding current PRA modeling methods to
include avalanche forest interaction, and creating a novel
approach for validating the model based on the local ex-
pertise of avalanche practitioners for data-sparse regions.
The research produced an updated version of the Bühler
et al. (2018) PRA model which enables high-resolution
avalanche terrain modeling in a vastly greater proportion of
mountainous terrain than previously possible. This is thanks
to the widespread availability of the necessary satellite re-
mote sensing input data and local expertise required to vali-
date and optimize the PRA model input parameters. The up-
dated model also allows for inclusion of forested terrain with
varying densities, contributing to a substantial improvement
in the performance of the PRA model in our study area.

The data preparation pipeline developed for this research
is based on open source software and intended to be re-
producible in areas without existing high-resolution DEM
and forest cover datasets, which achieves our goal of mak-
ing high-resolution PRA modeling more accessible in re-
mote and data-sparse areas. Producing a satellite stereo DSM
based on raw imagery provides control over the DSM char-
acteristics and minimizes the cost associated with acquiring
this essential dataset. Further testing of the DSM pipeline de-
veloped for this research is required, especially in forested
terrain, and could provide a meaningful direction for future
research. Despite the dramatic cost reduction in our work-
flow, high-resolution satellite stereo imagery is still relatively
costly, so readers interested in applying PRA models in their
own area should carefully evaluate costs of acquiring the nec-
essary input data.

Using locally optimized input parameters, our updated
PRA model has a higher overall accuracy and fewer under-
estimated release areas compared to the default parameters
developed for Davos, Switzerland, in Bühler et al. (2018).
Our validation approach utilizes local expertise to collect
avalanche release area polygons via a custom-built online
mapping tool and applies spatial and statistical analysis to
quantify the accuracy of the PRA model. We leveraged this
unique validation dataset to develop a new polygon-based
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grid search approach to optimize the PRA model input pa-
rameters. Creating a validation method that allows for opti-
mization of the PRA model in areas without a long-standing
avalanche observation dataset is essential to evaluate the
PRA model performance in new locations. This method also
provides the opportunity for comparison of optimal input pa-
rameters in different snow and avalanche climates. Future re-
search applying the PRA model in maritime and continen-
tal snow climates would provide additional insight into how
the input parameters can be optimized for a broader range of
snowpack and avalanche conditions, which are not captured
in the existing Davos or Galena study areas.

To include forested terrain in the PRA model we focused
on creating a simple addition to the existing PRA model
which does not require any additional input data and remains
an optional extension of the existing PRA model framework.
We also focused on maintaining the ability to create the in-
put datasets via optical satellite remote sensing methods to
minimize the overhead cost and effort to produce forest char-
acteristic data. Our approach allows the PRA model to cap-
ture the interactions between forests and avalanche release
by controlling the forest density where the PRA model is ap-
plied and altering the slope-angle-minimum threshold based
on the local forest density. These two changes are simple yet
effective methods to account for forest cover in PRA model-
ing.

Additional research focused on satellite-imagery-based
modeling of forest characteristics (Dash et al., 2016; Hyyppä
et al., 2000), such as stem density and gap size, could further
improve the performance of PRA models in forested terrain.
While the availability of high-resolution lidar, laser scanning,
or field-measured forest characteristics is essential for mean-
ingfully validating the derivation of these forest character-
istic datasets (Waser et al., 2015), this type of development
and analysis was beyond the scope of this research. The for-
est regions in our study area are dominated by coniferous tree
species, which limits our ability to generalize the effective-
ness of the PRA model in coniferous or mixed forest ecosys-
tems. Hence, we encourage other researchers to explore our
approach in other forest types.

Despite the limitations and shortcomings of our approach,
the present research improves the accessibility of high-
resolution PRA modeling by combining an existing state-
of-the-art PRA model with open-source software tools and
lower-cost input data and presenting a flexible validation
method to assess accuracy of the model output based on lo-
cal terrain expertise. These developments have the potential
to enable a more widespread application of high-resolution
avalanche terrain indication modeling worldwide.
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