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Abstract. Probabilistic earthquake forecasts estimate the
likelihood of future earthquakes within a specified time-
space-magnitude window and are important because they in-
form planning of hazard mitigation activities on different
time scales. The spatial component of such forecasts, ex-
pressed as seismicity models, generally relies upon some
combination of past event locations and underlying fac-
tors which might affect spatial intensity, such as strain rate,
fault location and slip rate or past seismicity. For the first
time, we extend previously reported spatial seismicity mod-
els, generated using the open source inlabru package, to
time-independent earthquake forecasts using California as a
case study. The inlabru approach allows the rapid evalua-
tion of point process models which integrate different spa-
tial datasets. We explore how well various candidate fore-
casts perform compared to observed activity over three con-
tiguous S-year time periods using the same training window
for the input seismicity data. In each case we compare mod-
els constructed from both full and declustered earthquake
catalogues. In doing this, we compare the use of synthetic
catalogue forecasts to the more widely used grid-based ap-
proach of previous forecast testing experiments. The simu-
lated catalogue approach uses the full model posteriors to
create Bayesian earthquake forecasts, not just the mean. We
show that simulated catalogue based forecasts perform bet-
ter than the grid-based equivalents due to (a) their ability
to capture more uncertainty in the model components and
(b) the associated relaxation of the Poisson assumption in
testing. We demonstrate that the inlabru models perform well
overall over various time periods: The full catalogue models
perform favourably in the first testing period (2006-2011)
while the declustered catalogue models perform better in the
2011-2016 testing period, with both sets of models perform-

ing less well in the most recent (2016-2021) testing period.
Together, these findings demonstrate a significant improve-
ment in earthquake forecasting is possible although this has
yet to be tested and proven in true prospective mode.

1 Introduction

Probabilistic earthquake forecasts represent our best under-
standing of the expected occurrence of future seismicity
(Jordan and Jones, 2010). Developing demonstratively ro-
bust and reliable forecasts is therefore a key goal for seis-
mologists. A key component of such forecasts, regardless
of the timescale in question, is a reliable spatial seismicity
model that incorporates as much useful spatial information
as possible in order to identify areas at risk. For example
in probabilistic seismic hazard modelling (PSHA) a time-
independent spatial seismicity model is developed by com-
bining a spatial model for the seismic sources with a fre-
quency magnitude distribution. In light of the ever-growing
abundance of earthquake data and the presence of spatial
information that might help understand patterns of seis-
micity, Bayliss et al. (2020) developed a spatially varying
point process model for spatial seismicity using log-Gaussian
Cox processes evaluated with the Bayesian integrated nested
Laplace approximation method (Rue et al., 2009) imple-
mented with the open-source R package inlabru (Bachl et al.,
2019). Time-independent earthquake forecasts require not
only an understanding of spatial seismicity, but also need to
prove themselves to be consistent with observed event rates
and earthquake magnitudes in the future.

Forecasts can only be considered meaningful if they can
be shown to demonstrate a degree of proficiency at describ-
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ing what future seismicity might look like. The Regional
Earthquake Likelihood Model (RELM, Field, 2007) exper-
iment and subsequent collaboratory for the study of earth-
quake predictability (CSEP) experiments challenged fore-
casters to construct earthquake forecasts for California, Italy,
New Zealand and Japan (e.g. Schorlemmer et al., 2018; Ta-
roni et al., 2018; Rhoades et al., 2018, and other articles in
this special issue) to be tested in prospective mode using
a suite of predetermined statistical tests. The testing exper-
iments found that the best performing model for seismic-
ity in California was the Helmstetter et al. (2007) smoothed
seismicity model, whether aftershocks were included or not
(Zechar et al., 2013). This model requires no mosaic of seis-
mic source zones to be constructed, requiring only one free
parameter, the spatial dimension of the smoothing kernel. In
the years since this experiment originally took place, there
has been considerable work both to improve the testing pro-
tocols and to develop new forecast models which may im-
prove upon the performance of the data-driven Helmstetter
et al. (2007) model, primarily by including different types
of spatial information to augment what can be inferred from
the seismicity alone. Multiplicative hybrid models (Marzoc-
chi et al., 2012; Rhoades et al., 2014, 2015) have shown
some promise, but these require some care in construction
and further testing is needed (Bayona et al., 2022). The per-
formance of smoothed seismicity models has been found to
be inconsistent in testing outside of California, e.g. with the
ITtalian CSEP experiment finding smoothed past seismicity
alone did not do as well as models with much longer term
seismicity and fault information (Taroni et al., 2018). Thus,
finding and testing new methods of allowing different data
types to be easily included in developing a forecast model is
an important research goal. Here we explore in particular the
role of testing an ensemble of point process simulated cat-
alogues (Savran et al., 2020) in comparison with traditional
grid-based tests, where the underlying point process is lo-
cally averaged in a grid element.

In this paper we construct and test a series of time-
independent forecasts for California by building on the spa-
tial modelling approach described by Bayliss et al. (2020).
As a first step in the modelling we take a pseudo-prospective
approach to model design, with the forecasts being tested ret-
rospectively on time periods subsequent to the data on which
they were originally constructed, and test the models’ per-
formance against actual outcome using the pyCSEP package
(Savran et al., 2021, 2022). This is not a sufficient criterion
for evaluating forecast power in true prospective mode, but
is a necessary step on the way, and (given similar experience
of hindcasting in cognate disciplines such as meteorology)
can inform the development of better real-time forecasting
models. The results presented here will in due course be up-
dated and tested in true prospective mode, using a training
dataset up to the present. We first test the pseudo-prospective
seismicity forecasts in a manner consistent with the RELM
evaluations. For this comparison we use a grid of event rates
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and the same training and testing time windows to provide a
direct comparison to the forecasts of the smoothed seismic-
ity models of Helmstetter et al. (2007), which use seismicity
data alone as an input, and provide a suitable benchmark for
our study. We then extend this approach to the updated CSEP
evaluations for simulated catalogue forecasts (Savran et al.,
2020) and show that the synthetic catalogue-based forecasts
perform better than the grid-based equivalents, due to their
ability to capture more uncertainty in the model components
and the relaxation of the Poisson assumption in testing.

2 Method

We develop a series of spatial models of seismicity modelled
by a time-independent log-Gaussian Cox process and fitted
with inlabru. This process is summarized in the workflow in
Fig. 1, which describes the steps involved in constructing an
inlabru model, and takes the reader through the process from
data to forecasts so that an independent researcher can repro-
duce the method presented here. The models take as input
20 years (1985-2005) of California earthquakes with mag-
nitude > 4.95 from the UCERF3 dataset (Field et al., 2014),
with the magnitude cut-off chosen to be consistent with the
RELM forecast criteria. The locations of these events are an
intrinsic component of a point process model with spatially
varying intensity A(s), where the intensity is described as a
function of some underlying spatial covariates x,, (s), €.g. in-
put data from seismicity catalogues or geodetic observations
of strain rate, and a Gaussian random field ¢ (s) to account for
spatial structure that is not explained by the model covariates.
The spatially varying intensity can then be described with a
linear predictor n(s) such that

A(s) =e"®, (1)

and 7 (s) can be broken down into a sum of linearly combined
components:

M
n(s)=Bo+ Y _ Bmxm(S) +(s). )
m=1

The Bo term is an intercept term, which would describe a
spatially homogeneous Poisson intensity if no other compo-
nents were included, and each By, describes the weighting of
individual spatial components in the model. B is essentially
the uniform average or base level intensity, which allows the
possibility of earthquakes happening over all of the region
of interest as a null hypothesis, so “surprises” are possible,
although unlikely after adding the other terms and renormal-
ising. The models are built on a mesh (step 2 of Fig. 1) which
is required to perform numerical integration in the spatial do-
main, with the model intensity evaluated at each mesh vertex
as a function of the random field (RF, which is mapped by
stochastic partial differential equations or SPDE in step 3 of
Fig. 1) and other components of the linear predictor function
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(Eq. 2). Fitting the model with integrated nested Laplace ap-
proximations using inlabru results in a posterior probability
distribution for each of the model component weights, the
random field and the joint posterior probability distribution
for the intensity as a function of these components. The ex-
pected number of events can then be approximated by sum-
ming over the mesh and associated weights over the area of
interest (Step 5 of Fig. 1). The performance of the models can
then be evaluated by comparing the expected versus the ob-
served number of events, and the models ranked using the re-
sulting model deviance information criterion (DIC). The DIC
is commonly used in other applications of Bayesian infer-
ence, including inlabru applications to other problems, such
as spatial distributions of species in ecology. The DIC mea-
sures the relative likelihood of a model given the likelihood
inferred from some observed data and a penalty for the effec-
tive number of parameters to identify a preferred model, so
that models of varying complexity can be evaluated fairly in
competition with one another. With the definition used here,
DIC is lower for a model with a better likelihood.

In Bayliss et al. (2020) a range of California spatial fore-
cast models were tested on how well the spatial model cre-
ated by inlabru fitted the observed point locations, so were
essentially a retrospective test of the spatial model alone
in order to understand which components were most use-
ful in developing and improving such models. Here we ex-
tend these models to full time-independent forecasts and test
them in pseudo-prospective mode for California, again using
the approach of testing different combinations of data sets
as input data. We develop a series of new spatial models to
compare with the smoothed seismicity forecast of Helmstet-
ter et al. (2007). These models contain a combination of four
different covariates that were found to perform well in terms
of DIC in Bayliss et al. (2020). These are shown in Fig. 2
and include the strain rate (Kreemer et al., 2014) (SR) map,
NeoKinema model slip rates (NK) attached to mapped faults
in the UCERF3 model (Field et al., 2014), a past seismicity
model (MS) and a fault distance map (FD) constructed using
the UCERF3 fault geometry, with fault polygons buffered by
their recorded dip. The past seismicity model used here is
derived from events in the UCERF3 catalogue that occurred
prior to 1984. For this data set, we fitted a model which con-
tained only a Gaussian random field to the observed events,
thus modelling the seismicity with a random field where we
do not have to specify a smoothing kernel, the smoothing
is an emergent property of the latent random field. This re-
sults in a smoothed seismicity map of events which occurred
before our training dataset. This smoothed seismicity model
also includes smaller magnitude events and those where the
location or magnitude of the event is likely to be uncertain, so
may account for some activity that is not observed or explic-
itly modelled (e.g. due to short-term clustering) at this time.
Each of these components (SR, MS, NK, FD) is included as
a continuous spatial covariate combined with a random field
and intercept component. The M4.954 events from 1985—
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2005 are used to construct the point process itself (M is used
throughout to represent different magnitude scales depend-
ing on the source). The exact combination of components
in a model is reflected in the model name as set out in Ta-
ble 1: Model SRMS includes strain rate and past seismicity
as spatial covariates, model FDSRMS includes fault distance,
strain rate and past seismicity and model SRMSNK includes
the strain rate, past seismicity and fault slip rates. More de-
tails on each of these model components and their perfor-
mance in describing locations of observed seismicity can be
found in Bayliss et al. (2020). Step 7 of the workflow covers
the steps described below and results presented here.

2.1 Developing full forecasts from spatial models

The inlabru models provide spatial intensity estimates which
can be converted to spatial event rates by considering the
time scales involved. Since the models we develop here are
to be considered time-independent, we assume that the num-
ber of events expected in this time period is “scaleable” in
a straightforward manner, consistent with a (temporally ho-
mogeneous) spatially varying Poisson process. However we
know that the rate of observed events is not Poissonian due to
observed spatiotemporal clustering (Vere-Jones and Davies,
1966; Gardner and Knopoff, 1974) and that short time scale
spatial clustering can lead to higher rates anticipated in ar-
eas where large clusters have previously been recorded (Mar-
zocchi et al., 2014). To test the impact of clustering on
our forecasts, we include models made from both the full
and declustered catalogues, assuming that the full catalogues
might overestimate the spatial intensity due to observed spa-
tiotemporal clustering and forecast higher rates in areas with
recent spatial clustering. We decluster the catalogue by re-
moving events allocated as aftershocks or foreshocks within
the UCERF3 catalogue, which were determined by a (Gard-
ner and Knopoff, 1974) clustering algorithm (UCERF3 Ap-
pendix K). This results in 6 spatial models that we use from
this point on, containing components as outlined in Table 1.
Figures 3 and 4 respectively show the differences between
the different models for the full and declustered catalogue
models, with the posterior median of the log intensity for
each of these on the diagonal. The top right part of each
plot shows a pairwise comparison of the log median inten-
sity of each model, while the bottom left component shows
the pairwise differences in model variance. The differences
in models are much clearer in the declustered catalogue mod-
els, once the clustering has been removed. This further high-
lights the role of random field in the full catalogue models
is largely to account for spatial clustering. The model out-
comes are constructed using an equal area projection of Cali-
fornia and converted to latitude and longitude only in the final
step before testing. This figure represents the set of models
formed by the training data set.

To extend this approach to a full forecast, we distribute
magnitudes across the number of expected events according
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2D time-independent seismicity modelling with inlabru
Main steps Main tasks Sub-tasks Key functions / codes
8 i « loading real data OR sp :: coordinates (catalogue) <- ¢ ("longitude", "latitude")
I~ —1 e « generating syntheticdata | | projastring (catalogue (SRS_string )
1 pataIMcdification « converting to SpatialPoint > spTransform(catalogue, local 3_s
Data « attaching CRS fm_crs_set_lengthunit(catalogue, "km")
« based on observed points OR inla.nonconvex.hull (coordinates (loc),..) ~ OR  read.delim (...) / read.csv (...) / readOGR (...) / etc.
Mesh b:undary « using a specified polygon
2\/ Mesh structure « tuning mesh quality parameters mesh <- inla.mesh.2d (boundary=..., max.edge=..., min.angle=..., max.n=c..., max.n.strict=..., cutoff=..., crs=...)
Mesh 2 - -
buildin Mesh assessment « checking number of vertices
9 « histogram and map of stdev mesh$n ) I
inla.mesh.assessment (mesh, spatial.range = ..., alpha = ..., dims = ...)
3\/ [*ﬁ g SPDE model for RF >« setting priors of range and stdev }
<—»| Linear predictor for RF |—> « SPDE + intercept | pcmatern <- inla.spde2.pcmatern (mesh, prior.sigma = ¢(..., ...), prior.range = c(..., ... )
Sp:“:gyellng [LJ J " | components <- coordinates ~ Smooth (coordinates, pcmatern) + Intercept (1)
\/ .| Linear predictor for | © faﬂ?f covariates . ‘
{ " q | « continuous covariates
spatial covariates | - ai pling data
4\/
Fitting Fitting LGCP f . [ . range, stdev, and ] fit <- Igep (components, data, domain , samplers, etc,) ]
LGCP model
. P « plotting range, variance, Matérn
posteriordistributions covariance & correlation, etc. | [ >[ plot (spde.posterior (fit, "Smooth", what = "...")) }
5 Predicting intensity . PIotting predicted (log) intensity
Predicting onapixelmap ] e »| predict (fit, pixels (mesh, mask=...), ~(Smooth + Intercept)) J
Estimating abundance « posterior mean distribution predict (fit, ipoints (boundary, mesh), ~ sum(weight * exp (Smooth + Intercept)))
\/ predict (fit, ipoints (boundary, mesh), ~ data.frame(N =...., dpois (..., lambda = sum (weight * exp (Smooth + Intercept))))
6
Comparing Ranking models « DIC or WAIC ranking deltalC (fity, fit2, fit3, ...)
@
i on grid ( h
o ~——1 ° ] esep_grid_wrapper(fit, lgcp_model, boundary, dh, mag_min, mag_mas, b_est, mesh
7 extending to full time- uslng'GR »»»»»»»» . csep_grid_wrapper(fit, lgep_model, boundary, dh, mag_min, mag_max, b_est, mesh) .
Spatial i . from forecast_sampler (loglambda, boundary, mesh, crs=crs_wgs84, num_events, b_val, m_min)
rat: model : SeiglToH h

number test (N-test)

magnitude test (M-test)

spatial test (S-test)

conditional likelihood test (CL-
test)

pseudo-likelihood test (PL-test)

v
\/ { CSEP tests

-3 | pyCSEP package (Savran et al., 2021) ‘

Figure 1. The workflow for generating spatial seismicity models in inlabru, with functions shown on the right.

to a frequency-magnitude distribution. Given the small num-
ber of large events in the input training catalogue, a prefer-
ence between a tapered Gutenberg-Richter (TGR) or stan-
dard Gutenberg-Richter magnitude distribution with a rate
parameter a, related to the intensity A, and an exponent b
cannot be fully expressed. The choice of a b-value is not
straightforward, as the b-value can be biased by several fac-
tors (Marzocchi et al., 2020) and is known to be affected by
declustering (Mizrahi et al., 2021). In this case, we assume
b =1 for both clustered and declustered catalogues, which
is different from the maximum likelihood b-value obtained
from the training catalogues (0.91 and 0.75 for the full and
declustered catalogues, respectively). This was a pragmatic
choice given that the high magnitude cut-off and therefore
limited catalogue size is likely to result in a biased b-value
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estimate (Geffers et al., 2022). For the TGR magnitude dis-
tribution we assume a corner magnitude of M, = 8 for the
California region as proposed by (Bird and Liu, 2007) and
used in the Helmstetter et al. (2007) models.

A schematic diagram showing how grid-based and
catalogue-based approaches are applied is shown in Fig. 5,
again to allow reproducibility of our results. The flowchart
describes the necessary steps for extending a spatial model
on a non-uniform grid to the specific formats required in fore-
cast testing. For the gridded forecasts (which assume a uni-
form event rate or intensity within the area of each square ele-
ment), we use the posterior median intensity as shown on the
diagonals in Figs. 3 and 4, transformed to a uniform grid of
0.1° x 0.1°latitude and longitude within the RELM region.
We use latitude-longitude here as preferred by the pyCSEP
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Figure 2. Input model covariates: (a—d) strain rate (SR), NeoKinema slip rates from UCERF3 (NK), smoothed seismicity from a Gaussian
random field for events before 1984 (MS), distance to nearest (UCERF3, dip and uniformly buffered) fault in km (FD).

tests. Magnitudes are then distributed across magnitude bins
on a cell-by-cell basis according to the chosen magnitude-
frequency distribution and the total rate expected in the cell.
In this paper, we show GR magnitudes for the gridded fore-
casts. For the catalogue-based forecasts, we generate 10 000
samples from the full posteriors of the model components
to establish 10000 realizations of the model spatial inten-
sity within the testing polygon. We then sample a number
of points consistent with the modelled intensity. In this case,
we use the expected number of points given the mean inten-
sity (as in step 6 in Fig. 1) for 1 year, and randomly select
an exact number of events for a simulated catalogue from a
Poisson distribution about the mean rate, scaled to the num-
ber of years in the forecast. To sample events in a way that
is consistent with modelled spatial rates, we sample many
points and calculate the intensity value at the sampled points
given the realization of the model. We then implement a re-
jection sampler to retain points that have a significantly large
intensity ratio compared to the largest intensity in the spe-
cific model realization, with points retained only if the inten-
sity ratio is greater than a uniform random variable between
0 and 1, i.e. points are retained with a probability equal to
)‘P

— 5 The set of retained points for each catalogue is then
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assigned a magnitude sampled from a TGR distribution, by
methods described in Vere-Jones et al. (2001). Here, we only
sample magnitudes from a TGR distribution in line with the
approach of Helmstetter et al. (2007), to allow a like for like
comparison with this benchmark.

2.2 CSEP tests

To test how well each forecast performs, we first test the
consistency of the model forecasts, developed from data be-
tween 1985 and 2005, with observations from 3 subsequent
and contiguous 5-year time periods, using standard CSEP
tests for the number, spatial and magnitude distribution and
conditional likelihood of each forecast. The original CSEP
tests calculate a quantile score for the number (), likeli-
hood (L) (Schorlemmer et al., 2007) and spatial (S) and mag-
nitude (M) (Zechar et al., 2010) tests, based on simulations
that account for uncertainty in the forecast and a comparison
of the observed and simulated likelihoods. We use 100000
simulations of the forecasts to ensure convergence of the test
results. The number test is the most straightforward, sum-
ming the rates over all forecast bins and comparing this with
the total number of observed events. The quantile score is

Nat. Hazards Earth Syst. Sci., 22, 3231-3246, 2022



3236 K. Bayliss et al.: California forecasts with inlabru
SRMS SRMSNK FDSRMS
SRMS SRMS-SRMSNK SRMS-FDSRMS
-3995600 median -3995600 med diff -3995 600 med diff
- 2 - 2
2 2 1 2 1
£ 3996000 £ 3996000 £ 3996000
SRMS 5 5 0 5 0
z z z
-3996400 -20 -3996 400 -3996 400 . -1
-2
——
-500 -250 0 250 500 -500 -250 0 250 500 -500 -250 0 250 500
Easting Easting Easting
SRMSNK-SRMS var SRMSNK SRMSNK-FDSRMS
-3995 600 var diff -3995 600 median -3995 600 med diff
. 5.0 - 2
2 - 2 - 1
£ ~3996000 25 £ ~3996000 £ -3996000
SRMSNK &5 5 -15 S 0
P4 0.0 =z P4
-3996 400 -3996 400 -20 -3996 400 . -1
s 25 -2
e A e
-500 250 0 250 500 -500 -250 0 250 500 -500 -250 0 250 500
Easting Easting Easting
FDSRMS-SRMS var FDSRMS-SRMSNK var FDSRMS
-3995600 var diff -3995 600 var diff -3995600 median
. 5.0 . 5.0
g: - E) . g; -10
£ 3996000 25 £ 3996000 25 £ 3996000
FDSRMS & S S 15
z 0.0 z 0.0 z
-3996 400 -3996 400 -3996 400 -20
L 25 L 25
-500 =250 0 250 500 -500 =250 0 250 500 -500 -250 0 250 500
Easting Easting Easting

Figure 3. Pairwise comparison of models for full catalogue models. The top-right side of the plot shows differences in log median intensity
and the lower left section shows the differences in model variances between the different models. The median log intensities for each model

are shown on the diagonal. Models include combinations of smoothed
slip rates (NK).

then the probability of observing at least Nyps events given
the forecast, assuming a Poisson distribution of the number
of events. Zechar et al. (2010) suggest using a modified ver-
sion of the original N-test that tests the probability of (a) at
least Nops events with score 81 and (b) at most Nyps events
with score §, in order to test the range of events allowed by
a forecast. Here we report both N-test quantile scores in line
with this suggestion.

The likelihood test compares the performance of individ-
ual cells within the forecast. The likelihood of the observa-
tion given the model is described by a Poisson likelihood
function in each cell and the total joint likelihood described
by the product over all bins. The quantile score measures if
the joint log-likelihood over many simulations falls within
the tail of the observed likelihoods, with the score defined
by the fraction of simulated joint log-likelihoods less than or
equal to the observed. The conditional likelihood or CL test
is a modification of the L test developed due to the depen-
dence of L test results on the number of events in a forecast
(Werner et al., 2010, 2011). The CL test normalizes the num-
ber of events in the simulation stage to the observed number
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past seismicity (MS), strain rate (SR), fault distance (FD) and fault

of events in order to limit the effect of a significant mismatch
in event number between forecast and observation. The mag-
nitude and spatial tests compare the observed magnitude and
spatial distributions by isolating these from the full likeli-
hood. This is again achieved with a simulation approach and
by summing and normalizing over the other components. For
the M test, the sum is over the spatial bins while the § test
sums over all magnitude bins to isolate the respective compo-
nents of interest. The final test statistic in both cases is again
the fraction of observed log likelihoods within the range of
the simulated log likelihood values. In all cases small val-
ues are considered inconsistent with the observations. We
use a significance value of 0.05 for the likelihood-based tests
and 0.025 for the number tests to be consistent with previous
forecast testing experiments (Zechar et al., 2013).

In the new CSEP tests (Savran et al., 2020) the test dis-
tribution is determined from the simulated catalogues rather
than a parametric likelihood function. For the N test the con-
struction of the test distribution is straightforward, being cre-
ated from the number of events in each simulated catalogue
and the quantile score calculated relative to this distribution.
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Figure 4. Pairwise comparison of models for declustered catalogue models. The top-right side of the plot shows differences in log median
intensity and the lower left section shows the differences in model variances between the different models. The median log intensities for
each model are shown on the diagonal. Models include combinations of smoothed past seismicity (MS), strain rate (SR), fault distance (FD)

and fault slip rates (NK).

For the equivalent to the likelihood test a numerical, grid-
based approximation to a point process likelihood is calcu-
lated (Savran et al., 2020). This is a more general approach
than using the Poisson likelihood as in the grid-based tests,
which penalizes models that do not conform to a Poisson
model. The distribution of pseudo-likelihood is then the col-
lection of calculated pseudo-likelihood results for each simu-
lated catalogue. The spatial and magnitude test distributions
are derived from the pseudo-likelihood in a similar fashion
to the grid-based approach, as explained in detail by Savran
et al. (2020). The quantile scores are calculated similar to
the original test cases, but because the simulations are based
on the constructed pseudo-likelihood rather than a Poisson
likelihood, the simulated catalogue approach allows for fore-
casts which are overdispersed relative to a Poisson distribu-
tion. Similarly to the original tests, very small values will be
considered inconsistent with the observations.

https://doi.org/10.5194/nhess-22-3231-2022

3 Full and declustered catalogue models

In constructing the three models both with and without clus-
tering, we can examine relative contributions of the model
components given differences in spatial intensity resulting
from short-term spatiotemporal clustering. Table 1 shows the
posterior mean component of the log intensity for each model
both with and without clustering for M4.95+ seismicity, and
the number of expected events per year for each model. The
greatest contribution in the full catalogue models comes from
the strain rate (SR) for each model, with the past seismicity
also making a significant contribution to the intensity. For the
models where the catalogue has been declustered, the contri-
bution to the posterior mean from the past seismicity is only
slightly lower while the SR contribution is much smaller, ef-
fectively swapping the relative contributions of these com-
ponents. This suggests that the SR component is more useful
when considering the full earthquake catalogue than when
the catalogue has been declustered. In both full and declus-
tered catalogue models, the number of expected events is
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Figure 5. Schematic of the code for constructing grid-based (left) and simulated catalogue-based (right) earthquake forecasts given an inlabru

LGCP intensity model. These represent step 7 of the workflow.

similar across all three models, thus we expect the models
to perform similarly in the CSEP N tests.

Figure 4 shows that the declustered catalogue models ap-
pear much smoother than those constructed from the full
catalogue, as they have lower intensity in areas with large
seismic sequences in the training period. They also have a
smaller range in intensity than the full catalogue models,
with the (median) highest rates lower and the (median) low-
est rates higher than the full catalogue models, meaning they
cover less of the extremes at either end.

4 Model testing

We now test the models using the pyCSEP package for
python (Savran et al., 2021, 2022). We begin with the stan-
dard (grid-based) CSEP test models described by Schorlem-
mer et al. (2007) and Zechar et al. (2010) included in pyC-
SEP and described in Sect. 2.2.

4.1 Grid-based forecast tests

We first compare the performance of our 5-year forecasts, de-
veloped with a training window of 1985-2005, over the test-
ing period 1 January 2006-1 January 2011 with the Helm-
stetter et al. (2007) forecast. This testing time period was
chosen to be consistent with the original RELM testing pe-
riod. In this time, the comcat catalogue (https://earthquake.
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usgs.gov/data/comcat/, last access: 28 August 2022) includes
32 M4.95+ events in the study region defined by the RELM
polygon. All the models, regardless of their components or
which catalogue is used, perform well in the magnitude tests
due to the use of the GR distribution. This is true even though
we have used a fixed b-value of 1 for both catalogues, sug-
gesting that the choice of b-value is not hugely influential in
this testing period. The forecast tests are shown visually in
Fig. 6 and the quantile scores are reported in Table 2 for all
tests and time periods. A model is considered to pass a test
if the quantile score is > 0.05 for all tests except the N test,
where the significance level is set at > 0.025 for both score
components and the model fails if either score fails (Schor-
lemmer et al., 2010; Zechar et al., 2010). In Fig. 6 the ob-
served likelihood is shown as a coloured symbol (red circle
for a failed test and green square for a passed test) and the
forecast range is shown as a horizontal bar, for ease of com-
parison. In the number test (N test), the declustered forecasts
significantly underpredict the number of expected events in
all cases due to the much smaller number of expected events
per year and the large number of events that actually occurred
in the testing time period. In spatial testing (S test), the full
catalogue models all perform poorly. In contrast, the declus-
tered catalogue models all pass the S test. In the conditional
likelihood tests (CL test), all of the models perform well and
pass the CL test (Fig. 6), with the declustered models per-
forming better due to better spatial performance.

https://doi.org/10.5194/nhess-22-3231-2022
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Table 1. Posterior means of model components and number of expected events for full and declustered (DC) models.

Mean component contribution to log intensity

Models Strain rate (SR)  Past seismicity (MS)  Slip rates (NK)  Fault distance (FD) N
SRMS 1.551 0.853 - - 6.373
SRMSDC 0.415 0.777 - - 3.679
SRMSNK 1.488 0.837 0.017 - 6.44
SRMSNKDC 0.425 0.779 0.001 - 3.79
FDSRMS 1.574 0.857 - 0.001 6.456
FDSRMSDC 0.491 0.784 - 0.004 3.737

Table 2. Quantile scores for CSEP tests. Upper bounds for S, L and PL tests, lower bound for N. Bold indicates consistency with observations

and italics highlight declustered models.

Gridded ‘ Catalogue
Time Models Ntest(8;) Ntest(dy) Stest Mtest CLtest ‘ Ntest (8;) Ntest(dy) Stest Mtest PL test
2006-2011 SRMS 0.465 0.603 0.031 0.126 0.440 0.625 0.180 0.404 0.268
SRMSDC 0.002 0.999 0.694 0.288 0.822 0.001 0.999 0.922 0.842 0.006
FDSRMS 0.491 0.578 0.019 0.289 0.091 0.462 0.605 0.196 0.398 0.305
FDSRMSDC 0.003 0.998 0.733 0.289 0.846 0.001 0.998 0.891 0.838 0.007
SRMSNK 0.485 0.584 0.055 0.289 0.170 0.463 0.605 0.243 0.389 0.327
SRMSNKDC 0.002 0.999 0.702 0.292 0.824 0.002 0.999 0.874 0.833 0.007
2011-2016  SRMS 0.999 0 0.057 0.153 0.036 1 0 0.018 0 1
SRMSDC 0.961 0.067 0.756 0.156 0.474 0.960 0.067 0.843 0.036 0.961
FDSRMS 0.9999 0 0.066 0.156 0.040 1 0 0.016 0 1
FDSRMSDC 0.971 0.052 0.754  0.155 0.476 0.971 0.050 0.858 0.026 0.972
SRMSNK 0.999 0 0.082 0.154 0.050 1 0 0.036 0 1
SRMSNKDC 0.963 0.064 0.768 0.158 0.495 0.958 0.070 0.827 0.035 0.959
2016-2021 SRMS 0.792 0.264 0 0.003 0.794 0.260 0.006 0.415 0.384
SRMSDC 0.027 0.983 0.005 0.368 0.054 0.026 0.985 0.094 0.844 0.008
FDSRMS 0.810 0.244 0 0.366 0.003 0.822 0.233  0.004 0.385 0.399
FDSRMSDC 0.038 0.976 0.003 0.368 0.038 0.039 0.975 0.101 0.831 0.012
SRMSNK 0.806 0.249 0 0367 0.003 0.767 0.290 0.005 0.439 0.319
SRMSNKDC 0.029 0.982 0.003 0.368 0.041 0.024 0.985 0.114 0.856 0.009

We then repeat the tests for two additional 5-year periods
of California earthquakes illustrated in Fig. 6. In all time win-
dows, the M test results remain consistent across all mod-
els. In the 2011-2016 period, there are 13 M4.95+ events
within the RELM polygon, and this significant reduction in
event number means that our full catalogue models and the
Helmstetter models all significantly overestimate the actual
number of events, with the true number outside of the 95 %
confidence intervals of the models. In contrast, most of the
models perform better in the S test during this time period
with all full catalogue models and all declustered catalogue
models recording a passing quantile score (Table 2). Each of
the models made with a declustered catalogue passes the CL
test, and the full catalogue model with slip rates also passes.

In the 2016-2021 period (Fig. 6 bottom) there are 30
M4.95+ events, which is within the confidence intervals
shown for all tested models so all models pass the N test
for the first time. However none of the tested models pass

https://doi.org/10.5194/nhess-22-3231-2022

the S test due to the spatial distribution of the events in this
time period being highly clustered in areas without excep-
tionally high rates, even for models developed from the full
catalogue. The CL test results for the 2016-2021 period show
that none of the models perform particularly well in this time
period, with only one of the declustered catalogue models
passing the test, and only barely.

These statistical tests (N, S, M and CL) investigate the
consistency of a forecast made during the training window
with the observed outcome. They do not compare the perfor-
mance of models directly with each other, but with observed
events. One method of comparing forecasts is by consider-
ing their information gain relative to a fixed model with a
paired T -test (Rhoades et al., 2011). Here, we implement the
paired T -test for the gridded forecast to test the performance
against the Helmstetter et al. (2007) aftershock forecast as a
benchmark, because it performed best in comparison to other
RELM models in previous CSEP testing over various time

Nat. Hazards Earth Syst. Sci., 22, 3231-3246, 2022
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Figure 6. Grid-based forecast tests for all forecasts for three 5-year time periods: 20062011 (top), 2011-2016 (middle) and 2016—
2021(bottom). The bars represent the 95 % confidence interval derived from simulated likelihoods from the forecast, while the symbol
represents the observed likelihood for observed events. The green square identifies that a model has passed the test and a red circle indicates
inconsistency between forecast and observation. The forecasts are compared to both the full (Helmstetter aftershock) and declustered models
of Helmstetter et al. (2007). Models include combinations of smoothed past seismicity (MS), strain rate (SR), fault distance (FD) and fault

slip rates (NK).

scales (Strader et al., 2017). The results of the comparison
are shown in Fig. 7. For the first time period (2006-2011)
the models perform similarly in terms of information gain,
and all of the inlabru models perform worse than the Helm-
stetter model. For the 2011-2016 period, the inlabru mod-
els developed from the declustered catalogues perform better
in terms of information gain than those developed from the
full catalogue and significantly better than the Helmstetter
model. In the most recent testing period (2016-2021), the in-
labru models have an information gain range that includes
the Helmstetter model. Together these results imply that the
inlabru models provide a positive and significant information
gain on a 5-10-year time period after the end of the training
period for declustered catalogue models, and not otherwise.

Nat. Hazards Earth Syst. Sci., 22, 3231-3246, 2022

4.2 Simulated catalogue forecasts

Our second stage of testing uses simulated catalogues in or-
der to make use of the newer CSEP tests (Savran et al., 2020).
We use the number, spatial and pseudo-likelihood (PL) tests
to evaluate these forecasts, with the PL test replacing the
grid-based L test. In our case, as described above, the num-
ber of events in the simulated catalogues is inherently Pois-
son due to the way they are constructed, but the spatial dis-
tribution is perturbed from a homogeneous Poisson distribu-
tion due to the contributions of model covariates and the ran-
dom field itself (e.g. see Eq. 1, where a homogenous Pois-
son process would include only the intercept term fp) and
the parameter values are sampled from the posterior at each
simulation and therefore vary from simulation to simulation.
Figure 8 shows the test distributions for each forecast as a
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Figure 7. T-test results for the inlabru models showing information gain per earthquake relative to the full Helmstetter et al. (2007) model
(Helmstetter aftershock in Fig. 6) for three time periods. Red indicates forecasts are worse in terms of information gain and green indicates
forecasts performing better than the benchmark forecast. Grey forecasts are not significantly different in terms of information gain. Models
include combinations of smoothed past seismicity (MS), strain rate (SR), fault distance (FD) and fault slip rates (NK).

letter-value plot (Hofmann et al., 2011), an extended box-
plot which includes more quantiles of the distribution until
the quantiles become too uncertain to discriminate. This al-
lows us to understand more of the full distribution of model
pseudo-likelihood than a standard quantile range or boxplot,
while allowing easy comparisons between the results for dif-
ferent forecast models.

We expect the grid-based and simulated catalogue ap-
proaches to have similar results in terms of the magnitude
(M) tests due to the similarity of magnitude distributions
used in construction. All models pass the M test in the test-
ing periods 2006-2011 and 2016-2021, but only the declus-
tered models pass the M test in the 2011-2016 testing period
when the number of observed events was smaller. Similarly,
we do not expect significant differences in the N-tests with
this approach, since our method of determining the number
of events will result in a Poisson distribution of the num-
ber of events. However, since the number of events varies
in each synthetic catalogue we can look at the distribution
of the number of events in the synthetic data produced by
the ensemble of forecast catalogues relative to the observed
number. This is shown in the left panel of Fig. 8, with the
observed number of events for each time period shown with
a dashed line. Again, the declustered models do better in the
2011-2016 period, although it is clear that the observed num-
ber of events is low even for them.

We might expect the most noticeable differences to occur
in the spatial test, because it measures the spatial component
consistency with observed events and because we are now us-
ing the full posterior distribution of spatial components, and
therefore potentially allowing more variation in the observed
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spatial models. The middle panel of Fig. 8 shows the spa-
tial likelihood distribution constructed from simulated cata-
logues.

Similar to the grid-based examples, for the 20062011 pe-
riod (red star indicator) the spatial performance of the SRMS
and FDSRMS models is better when the full, rather than
declustered catalogue, has been used in model construction.

All of the models pass the S test when considering quan-
tile scores in this time period. Similarly, when testing the
2011-2016 period (test statistic shown with a blue diamond),
all of the models built from the declustered catalogue pass
the S test, while the full catalogue models do more poorly.
In 2016-2021 (green circle), the spatial performance of all
models is again poor. The best-performing models in this
time period are the FDSRMS declustered and SRMSNK
declustered models (Table 2), with the declustered catalogue
models generally doing better than the full catalogue models.

Finally, the pseudo-likelihood test (Fig. 8, right) incor-
porates both spatial and rate components of the forecast,
much like the grid-based likelihood. For the inlabru models,
the preference between the models for the full and declus-
tered catalogues changes with time period with both sets of
models doing poorly in the 2016-2021 period (green cir-
cle). All of the full catalogue models pass in 2006-2011
and in 2016-2021. Like the grid-based likelihood test, the
pseudo-likelihood test penalizes for the number of events in
the forecast, which allows the full catalogue models to pass
the pseudo-likelihood test even when they have poor spatial
performance, as in the 20162021 testing period.

Nat. Hazards Earth Syst. Sci., 22, 3231-3246, 2022
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Figure 8. N test, S test and pseudo-likelihood results for each of the 6 inlabru models when forecasts are generated from 10000 synthetic
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model built with a declustered catalogue.

5 Discussion
5.1 Number of events

While the full catalogue models performed well in the tests
for the first 5-year time window, the other two sets of test re-
sults were less promising. This can be largely explained by
the number of events that occurred in the 10-year period from
2006-2016 (red and blue backgrounds in Fig. 9, top right). In
this time 45 events were recorded in the comcat catalog, com-
pared to 32 events in the 5 years between 2006-2011. In the
20 years from 1985-2005 used in our model construction,
a total of 155 events with M > 4.95 were recorded, which

Nat. Hazards Earth Syst. Sci., 22, 3231-3246, 2022

is an average of 7.8 events per year. Bayona et al. (2022)
found that 10-year prospective tests of hybrid RELM mod-
els mostly overestimated the number of events, again due
to the small number of events in the 2011-2020 testing pe-
riod used in their analysis. Helmstetter et al. (2007) explicitly
used the average number of events per year with magnitude
> 4.95 (7.38 events) to condition their models. It is therefore
not surprising that the declustered forecasts perform oppo-
sitely, with poor performance in the 20062011 time period
and better performances in the 2011-2016 time period when
fewer events occurred. This is a common issue in CSEP test-
ing, reported both in Italy when the 5-year tests occurred in
a time period with a large cluster of events in a historically
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low seismicity area (Taroni et al., 2018) and in New Zealand,
where the Canterbury earthquake sequence occurred in the
middle of the CSEP testing period (Rhoades et al., 2018) re-
sulting in significantly more events than expected. Strader
et al. (2017) found that 4 of the original RELM forecasts
overpredicted the number of events in the 2006-2011 time
window and 11 overpredicted the number of events in the
second 5-year testing window (2011-2016), including the
Helmstetter model. Overall, the inlabru model N test results
were comparable to the Helmstetter model performance in
the grid-based assessment and performed well at forecasting
at least the minimum number of events in all but the declus-
tered models in the first testing period (Table 2).

5.2 Full and declustered catalogue models

We did not filter for main shocks in the observed events, so
we might expect the N test results for the declustered mod-
els to do poorly, but they were consistent with observed be-
haviour in 2 of the 3 tested time periods in both the grid-
based and catalogue-based testing. If we consider only the
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lower bound of the N test, the declustered models pass the
test in the full 2011-2021 time period and only perform
poorly in 2006-2011, a time period which arguably con-
tained many more than the average number of events (Fig. 9).
Similarly, the full catalogue models do poorly on the upper N
test in 2011-2016 but otherwise pass in time windows with
higher numbers of events.

The declustered models pass spatial tests more often than
the full catalogue models because they are less affected by
recent clustering, and perhaps benefit from being smoother
overall than the full catalogue models (Figs. 3 and 4). The su-
perior performance of the declustered models may not have
been entirely obvious had we tested only the 2006-2011 pe-
riod and relied solely on the “pass” criterion from the full
suite of tests: only the full-catalogue (non-declustered) syn-
thetic catalogue forecast models get a pass in all consistency
tests in this time period. This highlights a need for forecasts
to be assessed over different time scales in order to truly un-
derstand how well they perform, a point previously raised
by Strader et al. (2017) when assessing the RELM forecasts,
and more generally embedded in the evaluation of forecast-
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ing power since the early calculations of Lorenz (1963) for
a simple but nonlinear model for the earth’s atmosphere in
meteorological forecasting.

We conclude that neither a full nor declustered catalogue
necessarily gives a better estimate of the future number of
events in any 5-year time period, although the declustered
models tend to perform better spatially, and may be more
suitable for longer term forecasting. Given that different
declustering methods may retain different specific events and
different total numbers of events, different declustering ap-
proaches may lead to significant differences in model perfor-
mances, especially in time periods with a small number of
events in the full catalogue. To truly discriminate between
which approach is best, a much longer testing time frame
would be needed to ensure a suitably large number of events.

5.3 Spatial performance of gridded and simulated
catalogue forecasts

In general, the simulated catalogue-based forecasts were
more likely to pass the tests than the gridded models. This is
most obvious in the first testing period, when the simulated
catalogue-based models based on the full catalogue passed
all tests and those for the declustered catalogues only failed
due to the smaller expected number of events. Similarly, in
the most recent testing period (2016-2021) the simulated cat-
alogue forecasts are able to just pass the S test where all mod-
els fail in the gridded approach. Bayona et al. (2022) sug-
gested that the spatial performance of multiplicative hybrid
models in the 2011-2020 period suffered due to the presence
of significant clustering associated with the 2016 Hawthorne
Swarm in northwestern Nevada at the edge of the testing re-
gion and the 2019 Ridgecrest sequence, and that the absence
of large on-fault earthquakes in the testing period had poten-
tially affected model performance of hybrids with geodetic
components. They further suggested that the performance of
these models in this testing period could be a result of re-
duced predictive ability with time, since hybrid models have
performed better in retrospective analyses.

The simulated catalogue approach allows us to consider
more aspects of the uncertainty in our model. For example,
we could further improve upon this by considering potential
variation in the b-value in the ensemble catalogues which
arises from magnitude uncertainties, an issue that may be
particularly relevant when dealing with homogenized earth-
quake catalogues (Griffin et al., 2020) or where the b-value
of the catalogue is more uncertain (Herrmann and Marzoc-
chi, 2020).

5.4 Roadmap — where next?
The main limitation of the work presented here, and many
other forecast methodologies, is how aftershock events are

handled. Our choice of (a relatively high) magnitude thresh-
old for modelling may have also benefited the full model
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by ignoring many small magnitude events that would be re-
moved by a formal declustering procedure. The real solution
to this is to formally model the clustering process.

The approach presented here strongly conforms with cur-
rent practice. In time-independent forecasting and PSHA,
catalogues are routinely declustered to be consistent with
Poisson occurrence assumptions. Operational forecasting al-
ready relies heavily on models, such as the epidemic type
aftershock sequence model (ETAS, Ogata, 1988), to handle
aftershock clustering (Marzocchi et al., 2014), but few at-
tempts have been made to account for background spatial
effects beyond a simple continuous Poisson rate. The excep-
tions to this are changes to the spatial components of ETAS
models (Bach and Hainzl, 2012), the recent developments in
spatially varying ETAS (Nandan et al., 2017) and extensions
to the ETAS model that also incorporate spatial covariates
(Adelfio and Chiodi, 2020). However, the more versatile in-
labru approach allows for more complex spatial models than
has yet been implemented with these approaches. The in-
labru approach also provides a general framework to test the
importance of different covariates in the model, and a fully
Bayesian method for forecast generation as we have imple-
mented here.

One way to handle these conflicts is to model the seis-
micity formally as a Hawkes process, where the uncertainty
in the tradeoff between the background and clustered com-
ponents is explicit and can be formally accounted for. In
future work we will modify the workflow of Fig. 1 to test
the hypothesis that this approach will improve the ability for
inlabru to forecast using both time-independent and time-
dependent models.

6 Conclusions

We have demonstrated the first extension of spatial inlabru
intensity models for seismicity to fully time-independent
models, created using both classical uniform grids and fully
Bayesian catalogue-type forecasts that make use of full
model posteriors. We demonstrate that the inlabru models
perform well in pseudo-prospective testing mode, passing
the standard CSEP tests and performing favourably in com-
petition with existing time-independent CSEP models over
the 20062011 period. Forecasts constructed using a declus-
tered catalogue as input performed less well in terms of the
number of expected events, but nevertheless described spa-
tial seismicity well even where the testing catalogue had not
been declustered, and the declustered models performed bet-
ter than the full catalogue models in the 2011-2016 testing
period. Further testing on longer time scales would be nec-
essary to assess if full or declustered catalogues provide a
better estimate of the number of expected events on the time
scales examined here. In the most recent testing period, i.e.
the one with the longest time lag between the learning and
the testing phase, neither full or declustered catalogue mod-
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els perform well, suggesting a possible degree of memory
loss over a decadal time scale in both clustered and declus-
tered seismicity. Simulated catalogue forecasts that make use
of full model posteriors passed consistency tests more often
than the grid-based equivalents, most likely due to their abil-
ity to account for uncertainty in the model itself, including
test metrics that do not rely on the Poisson assumption. This
demonstrates the potential of fully Bayesian earthquake fore-
casts that include spatial covariates to improve upon existing
forecasting approaches.

Code and data availability. The code and data required to produce
all of the results in this paper, including figures, can be downloaded
from https://doi.org/10.5281/zenodo.6534724 (Bayliss et al., 2021).

Supplement. An earlier version of this paper tests models con-
structed with data from 1984-2004. These results can be found in
the Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/nhess-22-3231-2022-supplement.
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