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Supplementary Materials S1 Dependence Analysis 

First, we provide the matrix of pairwise correlation coefficients (considering two types of correlation, i.e. Pearson 

and Kendall) calculated for the database of hindcasts (Sect. 2.2) used to perform the multivariate extreme value 

analysis. 

 
 

 
 

Figure S1. Pairwise correlation coefficients for the offshore forcing conditions (Pearson – left, Kendall - right) 

Second, we provide insights in the extremal dependence, i.e. the dependence when the considered variables take 

large value. To do so, we focus on the empirical estimates of 𝜒̅ of summary statistics as defined by Coles et al. 

(1999) defined as follows: 

̅ = lim
𝑢→1

(
2log⁡(𝑃(𝑈 > 𝑢))

log⁡(𝑃(𝑈 > 𝑢⁡ ∩ 𝑉 > 𝑢))
− 1)⁡⁡⁡ 

where U, V are the two different forcing conditions, u is the quantile level. This indicator is used to screen locations 

where extremal dependence between both variables is exhibited: this is indicated where the 𝜒̅ tends to 1.0 for very 

large quantile level u of both variables. The evaluation of 𝜒̅ on the hindcast database shows that this remains below 

1.0 in the limiting case hence indicating asymptotic independence. In this class of extremal dependence, 𝜒̅⁡⁡ further 

provides a measure of the strength of dependence. Table S1 shows that this strength reaches non negligible values 

(>0). The same analysis was conducted on the randomly generated samples (Table S2) and shows that the extremal 

dependence is relatively well reproduced. We note that the differences are larger for (Hs, SWL) but these can be 

considered satisfactory given the relatively large width of the confidence intervals (values in brackets). 

Table S1.⁡𝝌̅ value for the hindcast database. Values in brackets correspond to the bounds of the 95% confidence interval 

 SWL Hs 

Hs 0.33 (0.10, 0.57)  

U 0.28 (0.06, 0.50) 0.46 (0.20, 0.70) 

 

Table S2.⁡𝝌̅ value for the randomly generated samples. Values in brackets correspond to the bounds of the 95% 

confidence interval 

 SWL Hs 

Hs 0.74 (0.42, 1.00)  

U 0.31 (0.08, 0.56) 0.48 (0.22, 0.76) 

 

Finally, we analyze in more details in Table S3 the values of the (a,b)-parameters (as defined in Eq. 4) of the 

dependence model. Note that the values should be read columnwise, which means that the value of the first column 

correspond to the (a,b)- parameters when SWL is used as the conditional variable in Eq. 4. As discussed by 

Heffernan and Tawn (2004), their semi-parametric model allows to cover different types of extremal dependence 

with the following general rules: 

For 2jd,  

- When aj=1 and bj=0, the variables (X1, Xj) are asymptotically dependent; 



- When aj<1, the variables (X1, Xj) are asymptotically independent. 

In this latter case,  

- When 0<aj<1 or aj=0 and bj>0, means positive dependence; 

- When aj=bj=0, means near independence. 

 

Table S3 clearly shows a non-negligible positive strength of dependence in the class of asymptotic independence 

(as indicated by 0<aj<1). 

Table S3. (a,b)-parameters of the dependence model.  

 SWL Hs U 

SWL  (0.189, 0.186) (0.514, 0.365) 

Hs (0.357, -0.10)  (0.193, 0.145) 

U (0.275, 0.10) (0.629, 0.242)  

 

  



Supplementary Material S2 Diagnostics of the marginals 

 

Figure S2: Diagnostic plots for the GPD fitted to Hs. (a) Quantile-Quantile plot (the band is the 95% confidence 

envelope); (b) Return level plot (the return period is expressed in number of events); (c) Comparison between the 

empirical and the theoretical density distribution.  



 

Figure S3: Diagnostic plots for the GPD fitted to SWL. (a) Quantile-Quantile plot (the band is the 95% confidence 

envelope); (b) Return level plot (the return period is expressed in number of events); (c) Comparison between the 

empirical and the theoretical density distribution.  



 

Figure S4: Diagnostic plots for the GPD fitted to U. (a) Quantile-Quantile plot (the band is the 95% confidence 

envelope); (b) Return level plot (the return period is expressed in number of events); (c) Comparison between the 

empirical and the theoretical density distribution.  

 

Figure S5: Quantile-Quantile plot considering the observations (hindcast) and the N=50,000 randomly simulated 

samples for Hs (a), SWL (b), and U (c). 

 

  



Supplementary Materials S3 GSA with first-order Sobol’ indices 

Figure S6 provides the GSA results using the first-order Sobol’ indices (which do not account for the dependence 

among the variables, see Sect. 3.4). This shows that the identification of the major contributors to the uncertainty 

would have been similar, i.e. high influence of SWL in the short term, and an increase impact of SLR until reaching 

an overwhelming role in the very long term. Yet, the interpretation of the importance of the remaining variables 

would have been more difficult, if not leading to wrong conclusions. Before 2100, we note very low values of the 

corresponding 1st order Sobol’ indices from which a low influence could have been concluded. Yet, these indices 

account neither for the interaction terms (measured by one minus the sum of all 1st order indices as outlined by the 

large white area in Fig. S6) nor for the dependence (as clearly shown in Fig. 3). Here, the Shapley effects are useful 

to clearly indicate the significant (though moderate) importance of these variables, and more importantly they 

provide a strong evidence that the wave and wind characteristics have all minor influence in the very long term 

because of their low Shapley effect values. 

 

Figure S6: Time evolution of the first-order Sobol’ indices for the base case (RCP4.5, YC=2,000m3, DEM 2015 and use 

of the median value to account for wave stochasticity) estimated by computing the median value from 50 replicates of 

the estimation procedure (Sect. 3.5) accounting for GP and sampling error. 

 

 



Supplementary Materials S4 Differences between DEM 2015 and 2008 

 

Figure S7: DEM 2015 (a); Difference (denoted DZ) between DEM 2015 and DEM 2008 (b); Elevation for DEM 2015 

and 2008 along transects P1 (c) and P2 (d). 

  



Supplementary Materials S5 Influence of the modelling choices 

Here, we investigate to which extent alternative scenario assumptions underlying our approach might change the 

afore-described conclusions, namely: the volume threshold YC used to define when a flooding event occurs; the 

RCP scenario; the use of an alternative DEM; and the impact of wave stochasticity. For each analysis, the 

corresponding assumption was changed and the whole analysis was re-conducted, i.e. (1) new hydrodynamic 

simulations; (2) training of new GP models (the predictive capability is provided in Table S4); (3) GP-based 

estimate of the flooding probability and of the Shapley effects within a Monte-Carlo-based simulation procedure. 

Table S4. Statistics of the performance indicator Q² (calculated across the folds) of the different GP metamodels 

calculated using a 10-fold cross validation procedure. 

GP model Median of 

Q² (%) 

Interquartile 

of Q² (%) 

Analysis 

Median Q50, DEM 2015 99.35 1.25 Sect. 4 

3rd quartile Q75, DEM 2015 99.22 1.12 Sect. E4 

1st quartile Q25, DEM 2015 99.45 1.73 Sect. E4 

Median Q50, DEM 2008 95.97 3.81 Sect. E3 

 

 

Figure S8: Flooding probability (log10-transformed) at different time instants for different assumptions: volume 

threshold YC (a); RCP scenarios (b); DEM (c); and wave stochasticity modelled with different quartiles (respectively 

denoted Q25, Q50 and Q75) (d). The inserted figures indicate the small uncertainty band’s width estimated with the lower 

and upper bound computed for B=50 replicates of the estimation approach (Sect. 3.5) accounting for GP and sampling 

error. The lines correspond to the median value computed for 50 replicates. The green lines represent the base case 

(defined for the median value Q50 of Y with a threshold of YC=2,000m3 given RCP4.5 and the DEM 2015). Note that the 

different flooding probability estimates for (d) overlap due to minor influence of wave stochasticity. 

1. Influence of the volume threshold 

The uncertainty partitioning in Sect. 4 was performed given a threshold YC=2,000m3 that determines whether a 

flooding event occurs or not. The analysis is here re-conducted by respectively focusing on minor and very large 

flooding events defined for YC=50 and 15,000m3 (as illustrated in Fig. 2). 



Fig. S8(a) shows the time evolution of the flooding probability for the three cases. Compared to the base case 

(outlined in green), the results indicate that the occurrence of the minor (respectively very large) flooding events 

have a higher (lower) probability by ~8% (~-3%) in the very long term (2200). The time evolution of the 

uncertainty contribution is modified depending on the chosen threshold (Fig. S9). When YC=50m3, SWL has the 

higher contribution (of 37%) in the short term (compare the blue with the green and orange bars in Fig. S9a), while 

the other offshore conditions all have lower influence (with Shapley effects of ~9-13%). Over time (Fig. S9b,c), 

the case YC=50m3 presents a slower increase of SLR influence, which is directly translated into a slower reduction 

of SWL contribution (compare the two first groups of bars in Fig. S9c). 

This SLR-threshold relation directly reflects how SLR acts on the flooding likelihood: it acts as an “offset”, which 

means that it induces a higher sea water level at the coast; hence a higher likelihood of flooding. Thus, the lower 

the threshold value, the lower the necessary SLR magnitude to induce flooding, hence the lower influence. 

 

Figure S9: Shapley effects for different volume threshold values YC at three time horizons: in the short term, by 2050 

(a); in the long term by 2100 (b) and in the very long term by 2200 (c). The green bars correspond to the base case 

analysed in Sect. 4. The bar height is estimated by the median value over B=50 replicates of the Monte-Carlo-based 

estimation approach (Sect. 3.5) accounting for GP and sampling error. The lower and upper bounds of the error bar 

are estimated by using the B=50 replicates. 

2. Influence of the RCP scenario 

The uncertainty partitioning in Sect. 4 was conducted given the RCP4.5 scenario i.e. given a scenario related to 

relatively moderate SLR magnitude (Fig. 4b), compared to RCP8.5 in particular (Fig. 4c). The analysis is here re-

conducted for the two other RCP scenarios. Compared to the base case, Fig. S8(b) indicates that the occurrence of 

the flooding events for RCP8.5 (respectively RCP2.6) have a higher (lower) probability by about ~20% (-7%) for 

time horizon 2100. Regarding the time evolution of the Shapley effects, it appears to be the same regardless of the 

scenario in the short term (Fig. S10a), but starts to differ in the long term (Fig. S10b) and even more significantly 

in the very long term (Fig. S10c). We note that for RCP8.5, the influence of SLR is lower by almost 8% relative to 

RCP2.6, which is translated into a higher influence of SWL.  

Like for the threshold value, this is the “offset” effect of SLR that influences the most: for RCP8.5, the mode of 

the SLR distribution (in red in Fig. 4c) exceeds the one of the other scenarios after 2100, and can induce a high 

water level at the coast, hence potentially a water volume value close to YC=2,000 m3, and a higher flooding 

likelihood. This means that SLR values sampled around the mode will less impact the occurrence of the flooding 

event (and the flooding probability), because a small SLR offset is here necessary to trigger the flooding event. 

This is not the case for the two remaining scenarios, because the mode is of lower magnitude and any SLR values 

sampled above it will have a key impact on the flooding occurrence. 

 



 

Figure S10: Shapley effects for different RCP scenarios at three time horizons: in the short term 2050 (a); in the long 

term by 2100 (b) and in the very long term by 2200 (c). The green bars correspond to the base case analysed in Sect. 4. 

The bar height is estimated with the median value calculated with B=50 replicates of the estimation approach (Sect. 3.5) 

accounting for GP and sampling error. The lower and upper bounds of the error bar are estimated using the B=50 

replicates. 

3. Influence of DEM 

The flooding simulations described in Sect. 2 were performed using a DEM that is representative of the conditions 

of 2015. Here, we investigate to which extent an alternative DEM might change the sensitivity analysis results. To 

do so, we use the DEM 2008 (with the same resolution of 3m than DEM 2015), which corresponds to the conditions 

before the major flooding event of Johanna 2008  i.e. prior to the protectives measures relying on the raise of the 

dykes in the aftermath of this event. This means that DEM 2008 presents some sectors of lower topographic 

elevation of coastal defences compared to DEM 2015 (in particular on the south-eastern sector, which is highly 

exposed to storm impacts; see Supplementary Materials S4). 

Fig. S8(c) shows the time evolution of Pf for both DEMs: this indicates that the changes in topography leads to 

higher values relative to DEM 2015 before 2100 (with a ratio 𝑃𝑓
DEM2008 𝑃𝑓

DEM2015⁄  of ~14 for 2050). A reverse 

tendency after 2100 (with a ratio 𝑃𝑓
DEM2008 𝑃𝑓

DEM2015⁄ ~0.75 for 2200) is however noticed in the very long term. 

These differences in the short/long term were expected due to the lower elevation in some sectors of DEM 2008, 

but they remain more difficult to explain in the very long term. An extraction of the forcing conditions (Fig. S11) 

that lead to exceeding YC=2,000 m3 by 2200 for DEM 2015 but not for DEM 2008, reveals that the differences in 

Pf are related to particular storm events with moderate-to-high SLR level, small-to-moderate wave and wind 

contributions and higher wave direction (with higher mode at ~265°). This explorative analysis points out the 

importance of the forcing conditions in the occurrence of the flooding, which is further analysed with the Shapley 

effects in Fig. S12. 



 

Figure S11: Empirical cumulative probability distribution calculated for N=50,000 random forcing conditions that lead 

to exceeding YC=2,000m3 by 2200 for both DEMs (DEM 2008 and 2015, black) and for DEM 2015 but not for DEM 

2008 (light blue). SLR(p) denotes the percentile level of the SLR time series. The wind direction is not plotted because 

of the very minor changes between both distributions. 

Before 2100, Fig. S12a,b shows that the influence of wave characteristics, Hs, Tp, and Dp, is higher for DEM 2008 

of the order of ~10-18% while the influence of wind characteristics (U and Du) remains moderate (<10%). There 

are also differences in the influence of SLR with a lower contribution for DEM 2008 (compensated by a higher 

influence of SWL). These differences increase over time until reaching values >30% (Fig. S12c). These results 

relate to the different drivers of flooding depending on the DEM: the sectors with lower topographic elevation are 

known have a higher sensitivity to wave-induced flooding, i.e. overtopping at least until 2100. In the very long 

term, both cases present a small-to-moderate influence of wave characteristics (<10%), hence indicating a lower 

contribution of overtopping.  

Our analysis illustrates how adaptation measures mainly based on raising dykes might affect the drivers of the 

different flooding processes (overtopping, overflow or combined), but also its complexity. Though all physical 

processes are not fully understood here (in particular in the very long term, >2100), our results justify deepening 

the analysis through complementary investigations for instance based on numerical simulations. 



 

Figure S12: Shapley effects for two different DEMs at three time horizons: in the short term 2050 (a); in the long term 

by 2100 (b) and in the very long term by 2200 (c). The green bars correspond to the base case analysed in Sect. 4. The 

bar height is estimated with the median value calculated with B=50 replicates of the estimation approach (Sect. 3.5) 

accounting for GP and sampling error. The lower and upper bounds of the error bar are estimated using the B=50 

replicates. 

4. Influence of wave stochasticity 

The effect of wave stochasticity was tested by re-conducting the whole analysis but using the 1st quartile (denoted 

Q25), or the 3rd quartile (denoted Q75) instead of the median (denoted Q50) of Y. Figure S8(d) confirms the very 

minor influence of wave stochasticity on the flooding probability estimate (with differences <1%). The uncertainty 

partitioning is also very little influenced (Fig. S13) whatever the time horizon. This result differs from the one of 

Idier et al. (2020b), who showed the importance of this effect that was there comparable to the one of SLR as long 

as the still water level remains smaller than the critical level above which overflow occurs. The differences between 

both studies may be explained by the differences in the procedure. Idier et al. (2020b) analysed this effect for two 

specific past storm events, whereas our study covers a large number of events by randomly sampling different 

offshore forcing conditions (Fig. 3). To conclude on this effect (relative to the others), further investigations are 

thus necessary and could benefit for instance from recent GSA for stochastic simulators (Zhu and Sudret, 2021). 

 

Figure S13: Shapley effects using quartiles (denoted Q25,Q50,Q75) of the water volume at three time horizons: in the 

short term 2050 (a); in the long term by 2100 (b) and in the very long term by 2200 (c). The green bars correspond to 

the base case analysed in Sect. 4. The bar height is estimated with the median value calculated with 50 replicates of the 

estimation approach (Sect. 3.5) accounting for GP and sampling error. The lower and upper bounds of the error bar 

are estimated using the B=50 replicates. 


