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Abstract. Landslide inventories are used for multiple pur-
poses including landscape characterisation and monitoring,
and landslide susceptibility, hazard and risk evaluation. Their
quality and completeness can depend on the data and the
methods with which they were produced. In this work we
evaluate the effects of a variable visibility of the territory to
map on the spatial distribution of the information collected
in different landslide inventories prepared using different ap-
proaches in a study area.

The method first classifies the territory in areas with dif-
ferent visibility levels from the paths (roads) used to map
landslides and then estimates the landslide density reported
in the inventories into the different visibility classes.

Our results show that (1) the density of the informa-
tion is strongly related to the visibility in inventories ob-
tained through fieldwork, technical reports and/or newspa-
pers, where landslides are under-sampled in low-visibility ar-
eas; and (2) the inventories obtained by photo interpretation
of images suffer from a marked under-representation of small
landslides close to roads or infrastructures. We maintain that
the proposed procedure can be useful to evaluate the quality
and completeness of landslide inventories and then properly
orient their use.

1 Introduction

Landslides affect the evolution of the territory and represent
a hazard to the population, structures and infrastructure (Fell
et al., 2008). Detailed information about the spatial and tem-
poral distribution, and characteristics of past landslides, is es-

sential for susceptibility/hazard statistical (Hao et al., 2020;
Reichenbach et al., 2018; Steger et al., 2016a; van Den Eeck-
haut and Hervés, 2012; Galli et al., 2008) and physically
based modelling (Lee et al., 2020; Park et al., 2019). How-
ever, complete landslide inventories are difficult or impos-
sible to achieve (Corominas et al., 2014). Inventories used
for basin or regional modelling should at least be statistically
representative of the slope processes occurring in the studied
areas (Guzzetti et al., 2012; Melzner et al., 2020).

Bias in sampling can prevent the realisation of statisti-
cally representative inventories and introduce errors that are
difficult to investigate, manage and communicate (Guzzetti
et al., 1999). Lack of completeness can largely depend on
the mapping approach, the study area extent or the analysed
time span, the availability of data, time and human resources
(Fiorucci et al., 2018; Mondini et al., 2014; Santangelo et al.,
2015). Inventories can be compiled in several ways (Guzzetti
etal., 2012), exploiting different sources of data and respond-
ing to different requirements according to their usage. For ex-
ample, geographical accuracy and representativeness are rel-
evant for susceptibility analysis when carried out by means
of statistical models (Santangelo et al., 2015; Steger et al.,
2021), while occurrence dates, size and location are priori-
tised for damage evaluation studies, also related to climate
changes (Gariano and Guzzetti, 2016). In addition, the qual-
ity and then the usefulness of a landslide susceptibility map
is directly related to the quality of the data used to build
the model (Cascini, 2008; Corominas et al., 2014; Fressard
et al., 2014; Guzzetti et al., 2006; van Westen et al., 2008).
The propagation of errors caused by large incompleteness in
inventories used to produce susceptibility maps was inves-
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tigated by Steger et al. (2016b) and Steger et al. (2017) in
Lower Austria. They discovered that biased input data gen-
erated unrealistic (or even meaningless) results, enhancing an
apparent predictive performance of the models (Steger et al.,
2021).

According to Guzzetti et al. (2012) the quality of a land-
slide inventory refers to the geographical and thematic in-
formation accuracy, in particular, “completeness refers to the
proportion of landslides shown in the inventory compared to
the real (and most of the times unknown) number of land-
slides in the study area”.

Some authors have already suggested ways to assess qual-
ity aspects and/or completeness of an inventory. Malamud et
al. (2004), starting from the work of Stark and Hovius (2001),
focused on characteristic landslide area statistical distribu-
tions, i.e. frequency area distribution (FAD), as an indicator
of completeness. Galli et al. (2008) suggested pairwise com-
parisons to rank the quality of different inventories prepared
in the same study area. Piacentini et al. (2018) analysed the
spatial accuracy of an historical geospatial landslide database
comparing different periods within the time lapse covered by
the catalogue. Trigila et al. (2010) used landslide densities
in urban and non-urban areas to rank landslide inventories
quality across the different administrative regions of Italy. Fi-
nally, Tanyas and Lombardo (2020) proposed a completeness
index for earthquake-induced landslide inventories.

Currently, only the approach proposed by Malamud et
al. (2004) is commonly used in the literature as a tool to as-
sess the completeness of inventories (e.g. Chaparro-Cordén
et al., 2020; Ghorbanzadeh et al., 2019; Tanyas et al., 2019;
Zhang et al., 2019; Nicu et al., 2021; Roberts et al., 2021;
Tanyas and Lombardo, 2020; Tekin, 2021; Ubaidulloev et al.,
2021). However, the analysis of FADs does not include the
analysis of where landslides are eventually missing in an in-
ventory (Lima et al., 2021). In fact, an inventory may show
different levels of quality where the capacity of mapping of
an operator changes according to the different working con-
ditions across the study area.

Landslide inventories obtained from remotely sensed im-
ages are the most recurrent source of information used in
landslide susceptibility studies at regional scale (Reichen-
bach et al., 2018). In the inventories produced through the
interpretation of satellite or aerial images, geometric resolu-
tion of the image limits the minimum size of the landslides
that can be visible and mapped by the operator in the whole
scene (Guzzetti et al., 2012). Also, the presence of shaded ar-
eas and clouds may hamper landslide recognition. However,
for satellite or aerial images, the visibility of the territory is
referred to the position of the sensor, and it can be assumed
almost constant along the territory. Therefore, in this work
we assume that inventories based in remotely sensed images
were compiled in homogeneous working conditions and then
with uniform capacity of landslide mapping (CoLM) over
the studied area. In contrast, many scientific works were and
are still based on information acquired from field surveys or

Nat. Hazards Earth Syst. Sci., 22, 2929-2941, 2022

T. Bornaetxea et al.: Terrain visibility impact on landslide inventories

from historical inventories and catalogues derived from het-
erogeneous information sources (Bera et al., 2019; Hussain et
al., 2019; Jacobs et al., 2020; Knevels et al., 2020; Meena et
al., 2019; Reichenbach et al., 2018; Rohan and Shelef, 2019;
Zhang et al., 2019). In the case of field surveys is the visual
acuity, i.e. the ability of the human eye to resolve objects
that occupy a small portion of the field of view, which is
potentially affecting the possibility to detect landslides due
to their size and/or relative position or distance with respect
to the operator. In fact, size, distance and orientation deter-
mine the visibility of an observed object (like a landslide)
(Bornaetxea and Marchesini, 2021; Domingo-Santos et al.,
2011) and, since surveyors often follow predetermined roads
and observe different portions of the territory from differ-
ent observation points, the working condition changes and
the CoLM is not uniform over the surveyed area. This study
presents a framework to assess where and how the point of
observation of the operator affects the CoLM uniformity, and
hence the quality and completeness of the inventory.

The method is based on the concept of “estimated visibil-
ity” (EV), which is a computer-based simulation of the real
visibility of an object from a point of observation, and on the
measure of the spatial landslide density in an area related to
the EV. We tested the proposed framework using three inven-
tories available for the Darjeeling district (northeastern In-
dia), which were prepared based on different data and meth-
ods including field-based surveys, aerial and satellite photo
interpretation.

2 Study area

We applied the approach in an area of ~ 513 km? within the
Darjeeling district, the northernmost district of West Ben-
gal state (northeastern India) (Fig. 1). The area starts just
above the foothills of the Himalayas in the south and goes be-
yond the Higher Himalayas in the north. The area lies within
the highly dissected hill ranges of the Sub- to Higher Hi-
malayas with elevation varying from 200 to 2900 m. About
48 % of the area has slopes between 15 and 30°; however,
the steeper slopes are mainly restricted in the escarpment or
cliffs present in the area. The major part of the area is cov-
ered by tea plantations (39 %), followed by moderate veg-
etation (24 %), sparse vegetation (19 %), thick vegetation
(8 %), settlement and cultivated land (4 % each). The area is
a part of active fold—thrust belt of the Darjeeling Himalayas
where sedimentary rocks of the Sub-Himalayas, low grade
metamorphic sedimentary rocks of the lesser Himalayas and
high-grade metamorphic rocks of the Higher Himalayas are
present with or without the overburden cover of varied thick-
ness. These sequences of different rocks are separated by E—
W trending major tectonic features like Himalayan frontal
thrust (HFT), main boundary thrust (MBT) and its splay as
well as main central thrust (MCT). The area is located within
the seismic zone IV of the seismic zonation map of India.
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Figure 1. Location map of the Darjeeling district (India). Projec-
tion: WGS 84/UTM zone 45N. Inset: location base map based on
© OpenStreetMap contributors 2022. Distributed under the Open
Data Commons Open Database License (ODbL) v1.0.

The Darjeeling study area experiences a temperate climate
with wet summers which gradually moves into monsoon sea-
son when the area receives a number of wet spells, notorious
for triggering landslides. This part of the eastern Himalayas
receives the maximum amount of precipitation within the en-
tire Himalayas.

The Darjeeling Himalayas is perennially landslide prone
and frequently experiences landslide events of variable mag-
nitudes. Most of these landslides are triggered by incessant
monsoon rain between June and September, with some oc-
casional major landsliding events in between. Notice that
in Darjeeling roads are usually positioned along the relief’s
ridges (Fig. 1).

3 Methods and data
3.1 Methods

Estimated visibility (EV) simulates the visibility of an object
from an observation point. In this paper EV is measured by
the “solid angle” (SA; unit of measurement: square minutes
[min?]), a metric that quantifies the level of visibility of an
object, of known size and orientation, located at a certain
distance from an observer or, in other words, a metric that
measures the portion of the observer field of view occupied
by an object.

We intend here the visibility of a landslide as the portion
of the field of view of an observer occupied by the landslide
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itself, and we estimate it (estimated visibility, or EV) through
the relative solid angle (SA) in square minutes. The apex is
the point from which the slope is observed and the landslide
subtends its solid angle from that point. The EV depends then
from the size and the orientation of the slope/landslide, and
the distance. (Fig. S1 in the Supplement illustrates the con-
cept of EV and solid angle.)

We used r.survey to simulate the EV (Bornaetxea and
Marchesini, 2021; Marchesini and Bornaetxea, 2022). The
r.survey is an open source spatial analysis tool useful in as-
sessing how the terrain morphology is perceived by an ob-
server located at a defined observation point, or a group of
points. It was designed for evaluating the visibility of features
lying on the terrain slopes, including landslides. Among the
different outputs, the tool provides the map of the maximum
SA. In the maximum solid angle map, each pixel has only
one value. However, each pixel is potentially observed from
several observation points. Here, the pixel value represents
the maximum solid angle value calculated among all obser-
vation points from which the pixel is visible. The SA value
depends on the size of the observed object, the distance (be-
tween observers and target) and the relative orientation of the
target with respect to the observation point.

The data required to run r.survey are a digital terrain model
(DTM), a landslide inventory and a set of points of observa-
tions.

In this work, during the field surveys, the surveyors mainly
travel on roads. Consequently, the simulation of visibility
was performed starting from the road network. For this pur-
pose, we generated a set of closely spaced points along the
roads to simulate the observation points of a surveyor mov-
ing along the roads. Then we used r.survey to calculate the
maximum SA map for a circular object, similar in size to the
smallest landslide in the inventory. The SA values were then
collapsed into SA classes in order to obtain an EV map. Ad-
ditionally, we filtered the EV map by replacing the central
pixel values with the most frequent class (mode) in a 3 x 3
moving window, in order to remove isolated pixels belong-
ing to different classes with respect to the surrounding ones.
Finally, we estimated the landslide density counting the num-
ber of landslides in each SA class. Since landslides are com-
monly collected as polygonal areas, it may happen that a sin-
gle landslide overlaps more than one SA class. In this case,
we assigned the landslide to the most present class within the
landslide polygon.

We used two metrics to measure the spatial density: the
normalised landslide count (NLC) and the standardised land-
slide density (SLD).

We used NLC to compare the spatial density of landslides
included in different inventories prepared for the same study
area (Eq. 1):

nj
NLC; = - (D
t
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Figure 2. Conceptual chart illustrating the proposed GIS-based ap-
proach.

where n; and n; represent the number of landslides in the SA
class i and the total number of landslides, in the inventory,
respectively.

Alternatively, we used SLD (Eq. 2) to compare the spatial
density of landslides inventories prepared for different study
areas (see Sect. 4.3):

SLD; = ——— )

where A; and A; are respectively the area of SA class i and
the total area.

The SLD metric normalises NLC according to the percent-
age of territory occupied by the SA classes. These percent-
ages, in fact, can be slightly different among the study areas,
due to the smoothing performed to remove isolated pixels.

The entire flowchart is shown in Fig. 2.

3.2 Data

The Geological Survey of India (GSI) provided us with an
inventory that was the result of a fieldwork campaign car-
ried out after the monsoon period (June—September) of 2019.
This inventory, named GSI Field, provides landslide loca-
tions as points. Additionally, GSI also provided us with an
historical landslide inventory (GSI Historic) for the Dar-
jeeling area. It is a multi-temporal landslide inventory de-
voted to landslide susceptibility modelling and studying trig-
gering mechanisms, landslide domains and mitigation ac-
tions. This database gathers information about landslides
that have occurred since 1968. As usually occurs with na-
tional or regional multi-temporal databases (van Den Eeck-
haut and Hervas, 2012), the information in this database
is heterogeneous. Out of 1240 landslides, 80 % are repre-
sented as polygons, while 20 % are single points. Almost half
of the landslides (47.6 %) were mapped by means of satel-
lite image photo interpretation, using the available images
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coming from diverse sources such as Cartosat PAN (2 %)
(2.5m x 2.5m), LISS IV (1 %) (5.8 m x 5.8 m) and Google
Earth, or other base satellite maps available in ESRI’s Ar-
cGIS 10.2 (44.6 %). The rest of the data came mainly from
legacy data, including data collected from GSI reports, and
Toposheet (34.6 %). The latter corresponds to a Topobase
map of the Survey of India (SOI) surveyed in 1969—1970 at
1:25000 scale. Other sources, such as the Darjeeling Hi-
malayan Railway’s database (7.5 %), blogs or newspapers
(3.5%) and fieldwork (6.8 %), complete the available in-
formation. Debris slides (69.43 %) and rock slides (18.4 %)
are the most frequently reported failures together with de-
bris flows (5.3 %), rock fall (0.23 %), deep rotational slides
(1.95 %) and unknown causes (4.69 %). Lastly, we mapped
landslides triggered by the 2019-2020 monsoon season us-
ing a pre-event pan sharpened Spot 6 image acquired on
22 March 2019 and a pan sharpened post-event image ac-
quired on 3 April 2020 by the same satellite. We used the
two 2.5 x 2.5 m spatial resolution images to detect landslides
occurring in between the two acquisitions following a photo-
interpretation approach. In this inventory, referred to as Spot
2020, we classified most of the landslides (95 %) as earth and
debris flows, and the rest as complex movements. Figure 3
shows that GSI Historic and Spot 2020 FAD curves reveal a
power law shape on the right of the rollover value (Malamud
et al., 2004). The FAD curve could not be computed for GSI
Field inventory due to the absence of the information about
the landslide sizes. Figure 3 also describes some characteris-
tics of the available inventories.

In addition to the landslide information, GSI also provided
us with the road network map of Darjeeling, together with the
10 x 10 m resolution DTM.

4 Results
4.1 Classified estimated visibility map

We obtained the EV map of the study area using r.survey
with the settings listed in Table 1. We used the entire road
network (including roads slightly outside the boundaries of
the studied area) and a maximum distance between points
of 50 m for modelling the estimated visibility of an observer
moving along the study area. We considered all the possible
roads accessible in the study area, even though this probably
overestimates the actual places from which the territory is
commonly observed.

The EV map was calculated for hypothetical landslides
with an area equal to 78.54 m?, which corresponds to the
smallest landslides inventoried in Darjeeling (Table 1). We
set to infinity the maximum line of sight distance in order to
assess the visibility level for the complete territory.

We classified the EV map into six classes using the
16.67th, 33.33rd, 50th, 66.67th, 83.33rd and 100th quantiles
of the SA map values as thresholds. Then we applied a 3 x 3

https://doi.org/10.5194/nhess-22-2929-2022
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Figure 3. Frequency area distribution curves (FAD curves) for Spot 2020 (green) and GSI Historic (brown). Landslide distribution map for
Spot 2020, GSI Historic and GSI Field. Summary table of the inventories.

Table 1. Summary of the specific settings to calculate SA maps for
each study area.

Darjeeling
Distance between points 50
Number of points 11054
Maximum visible distance Infinity

DTM resolution (m) 10
Target object size (m?) 78.54

smoothing moving window. Details about the threshold val-
ues for each SA class are available in Fig. 4.

We carried out a spatial analysis to investigate possible
natural causes for different landslide densities in the differ-
ent SA classes. Terrain slope, lithology and land use are the
most important factors that may condition the occurrence of
landslides (Reichenbach et al. 2018). So, we analysed the
empirical densities distribution of the slope values and the
percentual spatial coverage of the lithology and land cover
categories inside each SA class. Figure 5 shows that slope
empirical distributions are similar among the SA classes, and
so are the distributions of the lithological and land cover cat-
egories. Data in Fig. 5 suggest that any difference in landslide
density, between SA classes, is unlikely to be related to mor-
phology, land cover and lithology.

4.2 Description and analysis of NLC plots

Figure 6 shows NLC versus the SA classes of the EV map,
for the available landslide inventories. Figure 6a shows that,
in the GSI Field inventory (a field-based inventory), most of
the landslides are located within the classes having higher SA
values (class 1 and class 2). Landslide density in the other
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classes is very fluctuating, probably due to the small number
of landslides in the inventory.

GSI Historic (Fig. 6b) includes landslides mapped using
different methods. It shows a slight, but monotonic, decreas-
ing trend.

Figure 6¢ shows the calculated NLC values for the Spot
2020 inventory, produced through photo interpretation of
satellite imagery. The values calculated in the SA classes are
fairly homogeneous and without trends.

The GSI Historic inventory contains two main types of in-
formation: landslides mapped exploiting satellite/aerial im-
ages or collected during field-based survey and from legacy
data. We separated data obtained by satellite/aerial images
from the rest of the data sources and called them GSI His-
toric Sat and GSI Historic Others respectively.

The NLC values show a pronounced monotonic decreas-
ing trend for the GSI Historic Others inventory (Fig. 7a),
while GSI Historic Sat (Fig. 7b) behaves similarly to the Spot
2020 inventory (Fig. 6¢), with the landslide density not de-
pendent on SA classes.

We additionally compared landslide sizes in the differ-
ent SA classes (Fig. 8). In GSI Historic Others we merged
classes 4—-6 to have enough samples. We did not consider
Spot 2020 and GSI Field inventories because of the little
amount of data.

Landslides in class 1 are significantly smaller than those
included in the other classes for GSI Historic Others inven-
tory (Fig. 8a). Furthermore, the landslide size median in this
inventory tends to increase when the estimated visibility de-
creases (i.e. the median of the landslide area in classes 3-6
is up to 20 times larger than in classes 1 and 2). For the GSI
Historic Sat we did not observe a clear increasing trend in
the medians of the landslide sizes (Fig. 8b) which are more

Nat. Hazards Earth Syst. Sci., 22, 2929-2941, 2022
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Figure 5. Slope probability density plots and land use and lithology distribution by SA classes for Darjeeling study areas. Land use types
are Br: barren; Cult: cultivated land; Mveg: moderate vegetation; Riv: river; Spr: sparse vegetation; Stl: settlement; Tea: tea plantation; Tveg:
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gneiss, mica schist, biotite gneiss; Myl: mylonitic granite gneiss; Qrz: quartz arenite, black slate, cherty phyllite, quartzite; Snd1: sand, silt
and clay; Snd2: sandstone, clay, shale, conglomerate; Snd3: sandstone, shale with minor coal.

homogeneous across the SA classes (even if in classes 1 and
2 landslides are generally small).

4.3 Testing the method with external and modelled
data

We performed two additional analyses to further confirm the
observed behaviour. First, we verified how many of the land-
slides recorded in Spot 2020 and GSI Historic Sat invento-
ries would have been visible if observed from the same roads

Nat. Hazards Earth Syst. Sci., 22, 2929-2941, 2022

used to estimate the visibility for the other inventories. Sec-
ond, we applied the EV analysis to a purely field-based in-
ventory available for a different study area.

For the first analysis we estimated the solid angle of the
landslides included in Spot 2020 and GSI Historic Sat inven-
tories (by considering their real size). Then we selected only
those landslides with an SA larger than 400 min?, which is
a value slightly larger than a person’s maximum visual acu-
ity (Bornaetxea and Marchesini, 2021; Healey and Sawant,

https://doi.org/10.5194/nhess-22-2929-2(022
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2012). We refer to these two samples as “Spot 2020 visible”
and “GSI Historic Sat visible” respectively. In this scenario,
the number of (potentially) visible landslides became 55 for
“Spot 2020 visible” and 301 for “GSI Historic Sat visible”,
ie. —59.8 % and —32.9 % with respect to the original data
sets.

For the second analysis we used a landslide inventory
prepared, by one of the authors, during a field-work cam-
paign carried out in the period from June to August 2016 in
Gipuzkoa Province (Spain) (Bornaetxea et al., 2018). We de-
cided to run an extra experiment with this data set because
we sought confirmation of the relevant role played by EV
in influencing the spatial distribution of landslides in the in-
ventories. In fact, since in Gipuzkoa information on the de-
tailed road route followed by the surveyor was available, we
expected the distribution of landslides to be even more in-
fluenced by visibility than in Darjeeling, where, due to the
absence of specific information, the simulation of visibility
was done using the entire road network. This additional in-
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ventory includes 542 shallow landslides and is referred to as
Gipuzkoa inventory. We applied the approach explained in
Sect. 3 but using a 5 x 5 m resolution DTM and a distance of
200 m between observation points. (Figure S2 in the Supple-
ment shows the EV map obtained from the visibility analysis
in Gipuzkoa.)

Results are shown in Fig. 9, where we compared the stan-
dardised landslide density (SLD; see Sect. 3) values with re-
spect to the central value of each SA class. The SA values
are plotted in logarithmic scale and we excluded GSI Field
and GSI Historic inventories from this analysis due to data
scarcity or because of the non-homogeneous source of the
data.

In Fig. 9 we observe that, for values of log(SA) smaller
than about 3.0 (where the central value of the SA classes 3—6
are), “Spot 2020 visible” and “GSI Historic Sat visible” show
a marked reduction in the SLD with respect to the original
Spot 2020 and GSI Historic Sat inventories. The reduction is

Nat. Hazards Earth Syst. Sci., 22, 2929-2941, 2022



2936 T. Bornaetxea et al.: Terrain visibility impact on landslide inventories

(a) GSI Historic Others

(b) GSI Historic Sat

8 o
o o
o o
- —— N
- ; : o
| : S |
' H n N
o : 1 - :
gg_ : i ] J—
H : o i !
= © : ' S | —_ | H
« : B : S i ' :
2 i ! : - ; - ]
< : : i ; s
o ——— i S 4 : ]
g1 Bl +— -
" | — -
- o e L ) __J§ _
T T T
1 2 3

T
rest

Figure 8. Landslide area boxplots per SA classes. Numbers on the x axis are the SA classes of the EV map. The horizontal solid line inside

each box indicates the median value.
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Figure 9. Standardised landslide density plot for six different landslide inventories. Spot 2020 visible and GSI Historic Sat visible are

simulated sub-samples of Spot 2020 and GSI Historic Sat respectively.

caused by the worse visibility from roads than from satellites
in classes 3-6.

In the same range of log(SA) values, the pattern of SLD
for the “Spot 2020 visible” and “GSI Historic Sat visible” in-
ventories is monotonically non-decreasing, likewise the GSI
Historic Others inventory.

From Fig. 9 we note that also the Gipuzkoa inventory,
entirely field based, shows a marked monotonically non-
decreasing pattern. The SLD curve is similar to GSI Historic
Others in shape, which suggests that both show a substantial
dependence on the EV. This is also conformal to the pattern
of the SLD values for the “Spot 2020 visible” and “GSI His-
toric Sat visible” inventories when SA is low. In contrast, GSI
Historic Sat and Spot 2020 show an almost flat behaviour,
where the number of landslides does not vary according to
the EV from the roads.

It is interesting to note that for the highest log(SA) val-
ues (i.e. for estimated visibility class 1), the SLD values for
“Spot 2020 visible” and “GSI Historic Sat visible” are sim-
ilar to those in the original inventories. This shows that the
landslides in class 1 can all be mapped from roads.
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5 Discussion

In this paper we assess the CoLM uniformity of landslide in-
ventories in relation to the visibility offered by well-known
observation points. We estimated the visibility offered by
a set of points of observation using a geometric approach
that takes into account the local morphology of a territory.
The most visible areas are generally located near the points
of observations (i.e. roads in this work). But unlike in the
geometric distance buffering, the SA classes show a non-
symmetrical propagation of the EV, which allows detection
of portions of territories very close to roads but poorly visible
(Fig. 4).

The spatial densities of landslide information (measured
by the NLC and SLD metrics) and the EV are positively
related to the GSI Field (Fig. 6a) and GSI Historic Others
(Fig. 7a) inventories. The deviations from a monotonic trend,
observed in the GSI Field inventory, are probably related to
the low data density and location inaccuracy. Since the dis-
tribution of the main landslide predisposing factors is homo-
geneous across all the SA classes (Fig. 5), we consider these
trends as relevant evidence of the scarce CoLM uniformity of
the inventories and, as a consequence, of their uneven com-
pleteness. On the contrary, for the satellite imagery-based in-
ventories (Spot 2020 and GSI Historic Sat) the NLC and SLD
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values in the SA classes are quite uniform (Figs. 6¢c and 7b).
This is assumed to be a consequence of the neutral CoLM
uniformity offered by the remote acquisition.

Roads, which are by definition always included in the first
visibility class, are also considered by many authors as a
predisposing factor since cut-and-fill failures, drainage and
groundwater alteration can influence the occurrence of land-
slides (Brenning et al., 2015; Donnini et al., 2017; Gior-
dan et al., 2018; McAdoo et al., 2018). Moreover, Taylor
et al. (2020) suggest that transport networks and landslides
are interconnected in terms of process and impacts. Indeed,
Tanyas et al. (2022) also state that road construction acts as
a major causative factor of landslides. However, the reasons
of that close relationship are very complex and not fully un-
ravelled (Meneses et al., 2019; Santangelo et al., 2015; Si-
dle et al., 2014; Sidle and Ziegler, 2012), which justifies the
need to investigate whether the major availability of road-
side landslide information in inventories may also depend on
other factors.

Based on the above considerations, a higher density of
landslides (higher NLC and SLD values) should be expected
only along the roads and, as a consequence, in the SA class 1
with respect to the SA classes 2—6. But at the same time, all
the SA classes, except for the first one, should show fairly
similar density of landslides. In inventories based on satellite
imagery (GSI Historic Sat and Spot 2020) the latter condi-
tion was fulfilled, but we did not observe a higher number of
landslides in SA class 1 (Figs. 6¢ and 7b). In the GSI Field
and GSI Historic Others, the abundance in SA class 1 is ev-
ident, but the number of landslides still drops monotonically
also in SA classes 2—-6. So, we conclude that in both types
of inventories, there is a data collection effect (Steger et al.,
2021), albeit different.

In fact, since roadside landslides are typically small
(Voumard et al., 2018), they can be easily under-represented
when the inventories are prepared with images without an ad-
equate resolution or unsuitable acquisition geometry (Martha
et al., 2021). When considering GSI Historic Others, land-
slides are very abundant in the highly visible areas (Fig. 7a),
and at the same time they are considerably smaller than in
the rest of the classes (Fig. 8a). On the contrary, for GSI His-
toric Sat inventory, comparing Figs. 7b and 8b, we observe
a relatively low number of small size landslides in class 1.
In this case, limits in the type and quality of the satellite im-
ages (e.g. spatial resolution, acquisition time and geometry,
etc.) can be the factors hampering the possibility of mapping
small landslides (Mondini et al., 2014). Furthermore, in GSI
Historic Sat the variation of landslide size in the different
visibility classes does not show a clear trend and presents
much smaller variations than in GSI Historic Others inven-
tories (Fig. 8), where the size of the mapped landslides rises
progressively according to the lack of visibility. This sug-
gests that the visibility can also affect the size distributions
(Fig. 8) of the reported landslide information. These results
are in line with the Steger et al. (2021) hypothesis on the
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“data collection effect”, which states that the method used
to compile inventories can influence the distribution of land-
slide information in the inventories.

We observed a partially monotonic behaviour in the rela-
tionship between estimated visibility and landslide density
obtained in the field and historic-based inventories also in
Spot 2020 Visible and GSI Historic Sat Visible. These two
inventories include only those landslides present in the re-
motely sensed inventories that would result as visible through
hypothetical field surveys along the roads. The SLD values
(Fig. 9) highlight that the least visible areas (low SA values)
lost the majority of landslides. Moreover, in the most visi-
ble areas, SLD values from the Spot 2020 Visible and GSI
Historic Sat Visible inventories are much lower than those
observed for the GSI Historic Others. This possibly suggests
that some small landslides were not detected in visibility
class 1 for Spot 2020 and GSI Historic Sat, eventually caused
by the inadequate resolution of the images. We conclude that
even if the CoLM uniformity of the landslide inventories pro-
duced using satellite-based images is generally large, they
can still be unable to reach, in the SA class 1 (i.e. in the ar-
eas very visible from the roads), the same completeness they
have in the other SA classes.

The monotonic non-decreasing trend observed for field-
based or legacy-based landslide inventories was confirmed
by the analysis carried out with a landslide inventory
prepared in a completely different study area, in Spain
(Gipuzkoa). For this inventory, the accurate road path fol-
lowed by the surveyor was also well known and there was
not the need to conservatively assess the EV along the entire
road network (as we did for the Darjeeling study area). This
allowed a more accurate simulation of the EV which, in turn,
determined a pronounced non-descending monotonic pattern
of the SLD values (Fig. 9). Results obtained on Gipuzkoa
confirm that by means of the EV analysis it is possible to as-
sess the CoLM uniformity of an inventory, and therefore also
of its completeness. In addition, the use of the SLD metric
makes it possible to compare the CoLM uniformity of dif-
ferent inventories produced in the same or in different study
areas.

Notwithstanding these observations, we acknowledge that
our results depend on some user-driven decisions, such as
the distance between observation points placed along the
roads, and the choice of the thresholds to obtain the visibility
classes. In Darjeeling, the real path followed by the field sur-
veyor was unknown and we applied a conservative approach
(visibility overestimation) by considering all roads as poten-
tial observation points and a four-times-smaller maximum
distance between points than in Gipuzkoa. This is probably
one of the reasons for the more pronounced monotonic pat-
tern shown in Gipuzkoa with respect to GSI Historic Oth-
ers. Furthermore, we chose quantile values of the EV map to
obtain the SA classes covering similar portions of the study
area. We run several tests with different threshold values
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showing results in terms of landslide densities always very
similar to those described by Figs. 6, 7, and 9.

The resolution of the DTM can also have an impact on the
results. A coarse representation of the morphology of the ter-
ritory can affect the calculation of the solid angle and the de-
lineation of non-visible areas. In this work, we performed the
analysis with the higher resolution DTMs available in each
study area, but further tests on the influence of the quality of
the data should be conducted. Future works should also in-
corporate the role of the vegetation in the visibility for land-
slide detection by fieldwork, although the information about
the elevation of each type of vegetation is rare.

In addition, although EV could be measured using differ-
ent metrics (e.g. by counting the number of points that have
a direct line of sight to a particular object (Fontani, 2017),
we maintain that our method offers the unique perspective of
considering several geometric aspects of the object and the
territory under investigation. This makes our approach ap-
propriate for morphologically complex areas.

6 Conclusions

We analysed the relationship between the spatial density of
landslides reported in different inventories prepared through
field surveys, collection of previous data and interpretation of
remotely acquired images, and the visibility of the territory
from observation points located along the roads. We also in-
troduced the concept of uniformity in capacity of landslide
mapping (CoLM) as a tool to discern whether the complete-
ness of a landslide inventory is homogeneous across the ter-
ritory.

The results of the present work show that in inventories
prepared using field survey and/or historic legacy data, the
CoLM uniformity can be poor, and this is reflected in marked
inhomogeneity in completeness. This is demonstrated by
(1) the positive correlation observed between landslide den-
sity and the visibility of the terrain from the observation
points, (ii) the lack of small landslides in areas with low vis-
ibility and (iii) a number of landslides in remote areas inter-
cepted by the satellite images but invisible from roads.

In addition, we observed that inventories based on the use
of remote sensing images, where the CoLM is uniform, may
also be affected by a different form of “data collection effect”
(sensu Steger et al., 2021). In fact, results show that, contrary
to what is expected (Brenning et al., 2015; Donnini et al.,
2017; Giordan et al., 2018; McAdoo et al., 2018; Meneses et
al., 2019; Santangelo et al., 2015; Sidle et al., 2014; Sidle and
Ziegler, 2012), our inventories do not show an abundance of
landslides close to roads. The reasons may be due to the in-
adequate spatial resolution of the satellite images, which can
prevent the recognition of small roadside landslides. Thus,
our inventories proved not to be uniformly representative of
the real spatial distribution of landslides in the study area,
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requiring an informed and appropriate usage (Bornaetxea et
al., 2018; Steger et al., 2021).

Our procedure enriches the portfolio of solutions to evalu-
ate the quality of landslide inventories introducing local mor-
phology in the analysis. We think that the procedure and
methods presented in this work can be used in other study ar-
eas to: (i) test whether the information in existing inventories
(especially those created by fieldwork) is affected by a scarce
CoLM (and therefore completeness) uniformity, (ii) identify
portions of land where landslide density information is larger
with respect to other areas and can be more properly used to
train susceptibility, hazard and risk models, (iii) identify por-
tions of land where landslide inventories need improvement
and (iv) plan exhaustive field mapping campaigns.

Data availability. The digital elevation model of
Gipuzkoa Province with 5x5m of resolution was
downloaded from the official geospatial data repository

https://www.geo.euskadi.eus/modelo-digital-del-terreno-mdt-
remuestreado-de-5m-de-la-comunidad-autonoma-del-pais-vasco-
ano-2016/webgeo00-dataset/es/ (Govierno Vasco, 2016). The
Gipuzkoa inventory and the field work paths are data generated by
the authors and are available upon request. The digital elevation
model of Darjeeling with 10 x 10 m resolution road maps of
Darjeeling and all the landslide inventories used in this work were
provided by the Geological Survey of India. The tool r.survey is
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