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Abstract. The increasing rate of occurrence of extreme
events (droughts and floods) and their rapid transition mag-
nify the associated socio-economic impacts with respect
to those caused by the individual event. Understanding of
spatio-temporal evolution of wet–dry events collectively,
their characteristics, and the transition (wet to dry and dry
to wet) is therefore significant to identify and locate most
vulnerable hotspots, providing the basis for the adaptation
and mitigation measures. The Upper Jhelum Basin (UJB)
in South Asia was selected as a case study, where the rel-
evance of wet–dry events and their transition has not been
assessed yet, despite clear evidence of climate change in the
region. The standardized precipitation evapotranspiration in-
dex (SPEI) at the monthly timescale was applied to detect
and characterize wet and dry events for the period 1981–
2014. The results of temporal variations in SPEI showed
a strong change in basin climatic features associated with
El Niño–Southern Oscillation (ENSO) at the end of 1997,
with the prevalence of wet and dry events before and af-
ter 1997 respectively. The results of spatial analysis show a
higher susceptibility of the monsoon-dominated region to-
wards wet events, with more intense events occurring in the
eastern part, whereas a higher severity and duration are fea-
tured in the southwestern part of the basin. In contrast, the
westerlies-dominated region was found to be the hotspot of
dry events with higher duration, severity, and intensity. More-
over, the surrounding region of the Himalaya divide line and
the monsoon-dominated part of the basin were found to be
the hotspots of rapid wet–dry transition events.

1 Introduction

There is growing evidence that recent warming is leading to
significant alteration in the hydrological cycle, exacerbating
extreme weather events in general (Peterson et al., 2012) in
many regions of the world. Extreme weather events such as
floods and droughts and their rapid successions (recurrent
spells) during the past few decades have taken a heavy toll on
both life and property. Moreover, such events can have large
impacts on water availability, agriculture and food security,
power production, and natural ecosystems (He et al., 2019;
Sheffield and Wood, 2012). These events are projected to re-
gionally intensify and be more frequent within the context
of global warming, underscoring the importance of research
on wet–dry extreme weather events collectively. The climate
change projections for the Asian continent in the sixth As-
sessment Report (AR6) of the Intergovernmental Panel on
Climate Change (IPCC) reported that during the 21st cen-
tury South Asia is likely to face more intense and frequent
heatwaves and humid heat stress, whereas both annual and
summer monsoon precipitation will increase, with enhanced
inter-annual variability (medium confidence) (Arias et al.,
2022). Various studies at local, basin, national, and regional
scales already documented and acknowledged the vulnerabil-
ity to climate change of that region (He and Sheffield, 2020;
Zhao et al., 2020; Visser-Quinn et al., 2019; He et al., 2017).

Typically, wet and dry events are generally considered in-
dependently in water resource management and planning.
However, these events are inherently interconnected and gov-
erned by the same underlying hydrological processes and
atmospheric dynamics, which may augment hydro-climatic
variability under the influence of climate change (He and
Sheffield, 2020). A number of rapid wet–dry events in the
last decade acknowledged the relevance of sequences of wet
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and dry events. For example, California’s large-scale flood
event in 2017 occurred at the offset of prolonged drought
(2011–2016) (He et al., 2017; NOAA National Centers for
Environmental Information, 2018). South Carolina observed
an abrupt transition (within a week) from drought to flood
in September 2015 (He and Sheffield, 2020). Other exam-
ples include the successive drought and flood events of 2010–
2012 and 2015–2016 in the UK (Parry et al., 2013) and Tas-
mania, Australia respectively (CSIRO, 2018). Such abrupt
flood–drought transitions pose a substantial risk for water
management practices, especially for reservoir operation, as
a trade-off should be set between short-term flood control and
long-term water storage imperatives to satisfy water demand
(He and Sheffield, 2020). This has aroused widespread con-
cern in the scientific community to understand the wet–dry
interplay under a changing environment.

During the past few decades, significant effort was put for-
ward towards the adoption of a multi-hazard approach (con-
sideration of both types of extreme hydrological conditions
at the same time) in developing resilience to climate change.
Kourgialas (2021) analysed floods and droughts collectively
in the Mediterranean agricultural region and proposed water-
saving and flood protection measures for adapting to the
inevitable adverse effects of climate change. Visser-Quinn
et al. (2019) identified hotspot regions in the UK where a
spatio-temporally concurrent increase in the number of flood
and drought events was projected. Zhao et al. (2020) investi-
gated the rapid transition of flood and drought events under
present and future climate change in the Hanjiang Basin and
found more frequent drought-to-flood rapid-transition events
of higher intensity in the 21st century. Other examples in-
clude the analysis of rapid drought-to-flood transitions in
river basins in China (Yan et al., 2013) and in England and
Wales (Parry et al., 2013). These studies employed the peak-
over-threshold (POT) method and various indices recom-
mended by the World Meteorological Organization (WMO)
for the detection and characterization of extreme wet and dry
events (floods and droughts).

Some commonly used indices are the standardized pre-
cipitation index (SPI) (McKee et al., 1993), standard-
ized precipitation evapotranspiration index (SPEI) (Vicente-
Serrano et al., 2010), Palmer drought severity index (PDSI)
(Palmer, 1965), normalized difference vegetation index
(NDVI) (Tucker, 1979), standardized drought indices (SDI)
(Svoboda and Fuchs, 2016), and standardized anomaly index
(SAI) (Katz and Glantz, 1986). Among these indices, SPI and
SPEI are more widely accepted for the following reasons: (a)
simple to calculate; (b) require few input data (precipitation
and temperature), that are easily accessible in most cases;
(c) standardized indices, which facilitate the comparison of
different climatic zones; and (d) can be calculated at mul-
tiple timescales, depending on the objective. For instance,
SPI and SPEI at short timescales (1, 2, 3, or 6 months) bet-
ter reflect the meteorological and agricultural drought, while
longer timescales (12, 24, or 48 months) are usually consid-

ered in hydrology (Kourgialas, 2021). The calculation of SPI
and SPEI is mathematically similar, but it differs in the input
parameters. The SPI only uses precipitation, whereas SPEI is
based on the climatic water balance. Many studies advocate
the use of SPEI, rather than SPI, due to its link to potential
evapotranspiration (PET), which makes it more sensitive in
the context of global warming (Himayoun and Roshni, 2019;
Yao et al., 2018; Huang et al., 2017; Vicente-Serrano et al.,
2010).

In this study, attempts were made to understand the re-
gional evolution of wet–dry events collectively, their charac-
teristics, and their transition (wet to dry and dry to wet) for
different severity levels ranging from moderate to extreme.
Here, the term “wet and dry events” does not necessarily im-
ply observed flood and drought events, unless explicitly men-
tioned. There exists a basic difference between a flood and a
wet event. The former has a short duration effect (e.g. a few
hours or days) while the latter is regarded as a long period
without precipitation shortage (e.g. several months or years)
(Wu and Chen, 2019).

The proposed framework was implemented with reference
to the Upper Jhelum Basin (UJB), where the relevance of
wet–dry events and their transition have not been assessed
yet, despite clear evidence of climate change in the region.
The UJB is located in the western Himalaya and shared
by Pakistan and India. The region already witnessed an in-
crease in extreme hydro-meteorological events in the last few
decades, but these events are expected to become even more
pronounced in the coming future (Pachauri et al., 2014). A
study conducted over the northern highlands of Pakistan in-
vestigated the trends in time distribution patterns (TDPs)
and return periods for event-based extreme precipitation for
the period of 1961 to 2014 and found maximum values of
20- and 50-year return levels of TDP for the UJB (Zaman
et al., 2020). Another study conducted on a portion of the
UJB located in Kashmir, India, uses the SPEI for spatio-
temporal characterization of drought events only (Himayoun
and Roshni, 2019). Akhtar et al. (2020) investigated the cor-
relation of meteorological and hydrological drought using
the SPEI and the standardized streamflow index (SSI) over
the Upper Indus Basin (UIB), including UJB. They validated
the results with a historically prolonged drought event ob-
served in Pakistan (1999–2002). Another study employed the
locally weighted SDI and compared it with SPI and SPEI on
10 meteorological stations within Pakistan (Ali et al., 2019).
Ullah et al. (2021a) evaluated four reanalysis products for
drought assessment in Pakistan using SPI and SPEI at multi-
ple timescales. All above-mentioned studies put a focus on
drought event characteristics only, whereas the wet events
and transition of wet–dry events were overlooked. This study
attempts to fill this gap by addressing the following specific
points.

1. How does climate change influence the evolution of the
regional wet–dry events?
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2. How comparatively frequent were wet or dry events in
the past?

3. What is the average transition time of wet-to-dry and
dry-to-wet events?

4. Which parts of the basin are hosting hotspots for rapid
wet–dry transition events?

The most widely used index, SPEI, is here adopted to detect
and characterize wet and dry events of different severity lev-
els (moderate, severe, and extreme). The analysis was carried
out both at each grid cell and averaged over the basin, using
corrected ERA5 precipitation and observed temperature data
for a period of 35 years (1981–2014).

2 Characterization of the study area

The Upper Jhelum Basin (UJB) has a latitudinal extent
stretching from 73◦07′ to 75◦40′ E and latitudinal extent
from 33◦00′ to 35◦12′ N (Fig. 1). The basin is mainly located
in the sub-tropics and partially in a temperate region. The
basin drains the foothills of the western Himalaya and Pir
Panjal mountains and feeds the second largest reservoir of
Pakistan, the “Mangla Reservoir”. The total area of the basin
is about 33 342 km2. The elevation ranges from nearly 223 m
in the southwest to about 6201 m in the north, with mean el-
evation of 2353 m a.s.l. Approximately 0.75 % (252 km2) of
the basin is covered by perennial glaciers in the north of the
basin (Consortium and Inventory, 2017). Grass, forest, and
agriculture are the three major land use–land cover (LULC)
types dominating over high-, mid-, and low-elevation areas
respectively. Permanent snow and ice cover a negligible area
in the northwest of the basin, whereas a small patch of barren
land exists over the densely grassy mountains of the western
Himalaya and Pir Panjal. The urban settlement covers a small
portion of the basin, concentrated in the Kashmir valley.

The climate of the UJB is influenced by dynamic local and
regional weather systems, and the topography of the high
mountains causes a huge variability in the spatial and sea-
sonal distribution of precipitation (Dolk et al., 2020). Two
distinct precipitation patterns (i.e. western disturbances and
monsoon) exist in the basin. The western disturbances bring
precipitation in the form of snow during the winter sea-
son. The monsoon pattern brings liquid rainfall during sum-
mer seasons. The monsoon precipitation pattern dominates
in the two lower sub-basins, i.e Poonch and Kanshi, and pro-
gressively loses strength northward towards the foothills of
the western Himalaya, where the influence of western dis-
turbances is predominant (Neelum and Kunhar sub-basins).
The basin average annual precipitation and temperature is
about 1150 mmyr−1 and 13.2 ◦C respectively. Owing to the
steep rugged mountainous topography of the basin and con-
sequent short lag time, the flow level in the river and its tribu-
taries rises abruptly during a rainfall event (Dar et al., 2019).

Major extreme events witnessed by the basin are primar-
ily led by vigorous interactions of moisture-laden monsoon
circulation and southward-penetrating mid-latitude westerly
troughs into the Himalayan region (Vellore et al., 2016).

3 Data description

The daily observed precipitation and temperature data of 15
climatic stations located within the political boundary of Pak-
istan were collected from the Pakistan Meteorological De-
partment (PMD) and Water and Power Development Author-
ity (WAPDA). For the Indian region, Indian Meteorological
Department (IMD) daily gridded precipitation and tempera-
ture datasets, derived from a dense network of meteorologi-
cal stations for the Indian mainland (Pai et al., 2014), were
extracted at five stations and used for that region. The anal-
ysis was carried out for a period of 34 years (1981–2014),
due to the availability of observed data. In fact there are
only a few climatic stations where data are available starting
from 1971, but the number of stations would not be enough
for the spatial analysis. The observed temperature data were
used to calculate potential evapotranspiration (PET) using
the Thornthwaite equation (Thornthwaite, 1948) due to data
limitation. A study conducted by Beguería et al. (2014)
compared the SPEI values calculated with three different
methods (Penman–Monteith, Hargreaves, and Thornthwaite)
and found small differences in humid regions. Mavromatis
(2007) also reported similar outcomes of PET methods for
drought index calculation. Afterwards PET values were in-
terpolated at 0.25◦ using Kriging with external drift (KED),
considering elevation as a predictor (Goovaerts, 2000). For
the precipitation, contrasting reviews are reported in the lit-
erature about the performance of the KED technique. For in-
stance, Masson et al. (2014) reported considerable improve-
ment in interpolation accuracy with KED compared to other
linear regressions not accounting for any predictor in high
mountainous regions. On the other hand, Berndt and Haber-
landt (2018) and Ly et al. (2011) argue that topographical
impact was indispensable for only temperature reconstruc-
tion at all temporal resolutions and station densities, but its
influence was less clear for daily to monthly precipitation.
Furthermore, all spatial interpolation techniques can perform
poorly in regions with insufficient high-elevation data, due
to inaccurate estimation of local lapse rates (Ruelland and
Sciences, 2020). Therefore, the ERA5 precipitation estimates
(0.25◦ horizontal resolution) corrected for distribution map-
ping (DM) were used in the present study. ERA5 is a rela-
tively new reanalysis launched by the European Centre for
Medium-Range Weather Forecasts (ECMWF) (Saha et al.,
2010). The data are developed by using an advanced 4D-
Var assimilation scheme and provide various atmospheric
variables at 139 pressure levels for the period 1979–present.
The suitability of ERA5 to the UJB and surrounding region
was also reported by Liaqat et al. (2021) and Baudouin et
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Figure 1. Location of the UJB and spatial distribution of climatic stations.

al. (2020). The DM method adjusts the cumulative distri-
bution function (CDF) of modelled precipitation to match
with the observed precipitation CDF using a transfer func-
tion (Sennikovs and Bethers, 2009), and it is commonly used
to correct the systematic distributional biases (Cannon et al.,
2015). The gamma distribution (Thom, 1958) with a shape
and a scale parameter was found to be suitable for the precip-
itation distribution in the study region (Azmat et al., 2018).
The suitability of ERA5 precipitation and the bias correction
method with respect to extreme precipitation analysis were
checked against observed station data, and a few results of
the reliability check of DM-corrected ERA5 are provided in
the Supplement (see Fig. S1).

4 Methods

4.1 Wet and dry event identification

SPEI, the most widely used index, was adopted to detect and
characterize wet and dry events of different severity levels
(moderate, severe, and extreme). The SPEI supports compar-
isons over time and space, as proxies of wet and dry condi-
tions from both the meteorological and agricultural perspec-
tives. Although the SPEI was originally proposed for drought
monitoring, it can also be used as a tool to detect flood risk.
The calculation procedure of SPEI involves two steps: fitting
a log-logistic distribution to the monthly climatic water bal-
ance (P-PET) time series and then transforming the cumula-
tive probability of the fitted distribution into a standard nor-
mal distribution (with mean zero and variance 1). According
to this distribution method, the probability distribution func-

tion of a variable x is expressed as

F(x)=

[
1+

(
α

x− γ

)β]−1

, (1)

where α, β, and γ are the shape, scale, and origin parame-
ters respectively. In the second step, SPEI is calculated as the
standardized value of F(x) as follows:

SPEI=W −
C0+C1W +C2W

2

1+ d1W + d2W 2+ d3W 3 , (2)

where

W =
√
−2ln(F (x)) for F(x) < 0.5 (3)

W =
√
−2ln(1−F (x)) for F(x) > 0.5. (4)

The parameters C0, C1, C2, d1, d2, and d3 are SPEI con-
stants (Vicente-Serrano et al., 2010). The log-logistic distri-
bution for SPEI calculation was used and recommended by
many researchers (Ullah et al., 2021a; Akhtar et al., 2020;
Himayoun and Roshni, 2019; Vicente-Serrano et al., 2010).
The detailed description of the SPEI calculation procedure
can be found in Vicente-Serrano et al. (2010). In this study,
SPEI was calculated using the “SPEI” package in R environ-
ment (Beguería et al., 2017). The severity levels of wet and
dry events based on SPEI values were classified according to
Chen et al. (2020), and results are listed in Table 1. Positive
and negative values of SPEI represent the severity of wet and
dry events respectively.
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Table 1. SPEI classification of dry and wet events (from Chen et al.,
2020).

SPEI value Description

> 1.99 Extremely wet
1.99 to 1.50 Severely wet
1.49 to 1.00 Moderately wet
0.99 to −0.99 Normal
−1.00 to −1.49 Moderately dry
−1.50 to −2.00 Severely dry
−2.00< Extremely dry

4.2 Wet and dry event characteristics

In this study, three characteristics (severity, duration, and in-
tensity) of wet and dry events were calculated for each pixel.
Following Spinoni et al. (2014), the duration (D) of a wet–
dry event is the length of time (months) that the index is
consecutively above or below a truncation value; the severity
(S) refers to the cumulative value of the index from the first
month to the last month of the wet–dry event, and it repre-
sents the water surplus and deficit respectively; and the inten-
sity (I) of an event is the ratio of severity (S) to duration (D).
These characteristics were computed for each event and then
further the total wet and dry event duration (TWD and TDD),
total wet and dry severity (TWS and TDS), total wet and dry
intensity (TWI and TDI), average wet and dry event duration
(AWD and ADD), average wet and dry severity (AWS and
ADS), average wet and dry intensity (AWI and ADI), max-
imum wet and dry event duration (MWD and MDD), maxi-
mum wet and dry severity (MWS and MDS), and maximum
wet and dry intensity (MWI and MDI) were calculated for a
period of 34 years (1981–2014).

4.3 Wet–dry (WD) ratio

The wet–dry (WD) ratio is defined as the natural logarithm
of the ratio of the total number of wet months (Nw) to the to-
tal number of dry months (Nd) (Luca et al., 2020). The WD
ratio was calculated for different levels of severity (moder-
ate, severe, and extreme) at each pixel for the studied period
(1981–2014) using Eq. (5):

WD ratio= ln
(
Nw

Nd

)
. (5)

The WD ratio provides information about the susceptibility
of a given area to be more affected by wet or dry events. A
WD ratio greater than 0 implies the prevalence of wet events,
whereas a WD ratio lower than 0 shows a dominance of dry
events. The natural logarithm was used to narrow the range
of WD ratio values and to separate the wet-dominated versus
dry-dominated regions by sign.

4.4 Wet–dry transition time

The total number of transitions and their average transition
time (Tt) in months for wet-to-dry and dry-to-wet events was
computed for each grid cell for the period 1981–2014, as de-
scribed by Luca et al. (2020). The calculation procedure of
wet-to-dry transition time (Tt) involves four steps: (i) extrac-
tion of wet and dry events and arranging them in an ascend-
ing order of time (from the oldest to the most recent); (ii) in
case of consecutive dry and wet months, keep only the first
and the last month value respectively; (iii) calculate the dif-
ference in months between wet to dry events within the time
series; and (iv) take the average of the time interval. The same
procedure was applied for calculating dry-to-wet transition
time (Tt), with the only difference being in step (ii) in which
the first and last months of wet and dry events were kept re-
spectively, and in step (iii) in which the time interval was cal-
culated between dry-to-wet events. The wet-to-dry and dry-
to-wet transition times were calculated separately for each
level of severity (moderate, severe, extreme).

4.5 Wet–dry rapid-transition events

The wet–dry rapid-transition event is defined as the consecu-
tive occurrence of wet and dry months/events. For instance, a
dry (or wet) event occurring in the ith month abruptly altered
to a wet (or dry) event in the i+1 month. In this study, the fre-
quency of wet-to-dry (wet event followed by dry event) and
dry-to-wet (dry event followed by wet event) rapid-transition
events was calculated for each pixel to identify the geograph-
ical hotspot for compound extreme events. Unlike the wet–
dry average transition time, which was calculated separately
for each severity level, the wet–dry rapid-transition events
were calculated considering all levels of severity together.

5 Results

5.1 Change trends of the wet–dry events

The basin average SPEI time series at 1-month (SPEI-1),
3-month (SPEI-3), 6-month (SPEI-6), and 12-month (SPEI-
12) timescales is presented in Fig. 2. It can be seen that the
study domain mostly experienced moderate-to-severe wet–
dry events, whereas the extreme wet–dry events (SPEI> 2
or SPEI<−2) rarely occurred during the study period. For
the SPEI-1, the wet (blue) and dry (red) events changed more
frequently than accumulated SPEI (at 3, 6, and 12 months),
and there was no extended dry or wet period. The reason
might be that the precipitation and temperature of each new
month have a substantial impact on the accumulative val-
ues of that period. By contrast, with the increase in SPEI
timescale (SPEI-1 to SPEI-12), a clear change/shift of basin
climate from wet to dry conditions can be seen (Fig. 2),
showing the stability in the frequency of incidence of wet–
dry events over the study domain. This could be explained

https://doi.org/10.5194/nhess-22-287-2022 Nat. Hazards Earth Syst. Sci., 22, 287–302, 2022



292 R. Ansari and G. Grossi: Spatio-temporal evolution of wet–dry event features

as the slow and consistent response of SPEI towards changes
in climatic variables, indicating strong and clear durations
of annual and multiple-year dry and wet conditions. This
means that at longer timescales of SPEI the number of oc-
currences of wet–dry events will decrease, but the duration
will increase.

This study focuses on the short-timescale conditions to
analyse frequent variations in climatic conditions and their
interplay; therefore, more detailed analysis was carried out
at the monthly timescale. Moreover, the floods and flash
droughts are not clearly associated with long-term SPEI, be-
cause the averaging effect of long-term accumulated precip-
itation and temperature surpasses the signal of extreme pre-
cipitation and temperature over a short period. Flash drought
is a relatively new type of drought. Currently, there is not a
universally accepted definition or criteria for flash drought,
though there is general consensus on the principle of rapid
onset or intensification characterized by moisture deficits and
abnormally high temperatures for a period lasting at least
3 weeks (Lisonbee et al., 2021; Otkin et al., 2018; Hunt et al.,
2009). This highlights the usefulness of SPEI at the monthly
scale in representing flood and flash drought events. It is
noted that the terms “wet–dry events” or “wet–dry months”
present similar meaning for our study, as the analysis was
made at the monthly time step. A clearer picture of the
monthly evolution of wet–dry events of different severity lev-
els and their variability can be seen in Table 2. The SPEI-1
values fluctuate remarkably from one month to another. For
example, an extremely wet October in 1987 was followed by
a severely dry November, and a severely wet June occurred
at the tail of the longest drought spell in May 2001. Such
rapid transition from wet to dry and from dry to wet events
was more prominent during the first half of the study period
(before the year 1997). Another interesting observation con-
cerns the strong change in the basin climatic features which
can be noticed around the years 1997–1998. During the first
half of the study period (1981–1997), the dominancy of wet
events of different categories prevails whereas the basin con-
ditions lean towards dryer conditions during the second half
of the period (1998–2014).

Annual variations in the number of months affected by
dry–wet events (SPEI ≤−1 and SPEI ≥ 1) is displayed in
Fig. 3. Usually, every year encountered at least one dry and
wet month of any severity level. Approximately 35 % of
the total number of months experienced anomalous dry or
wet conditions. The proportion of wet months (18.1 %) was
slightly higher than that of dry ones (16.9 %).

5.2 Wet–dry event analysis

The wet–dry event characteristics (duration, severity, and in-
tensity) were computed for each pixel to analyse their spa-
tial distribution. Pixel-based analysis shows the location of
the most vulnerable parts of the basin, providing the basis
for future decisions on adaptation and mitigation measures.

In this study, the total, average, and maximum values of du-
ration, severity, and intensity were computed for the study
period (1981–2014). The maps of wet and dry duration are
displayed in Fig. 4. Overall, the study area encountered rel-
atively more wet months than dry months during the whole
study period. The total wet duration (TWD) and the total dry
duration (TDD) vary from 66 to 80 and from 61 to 65 months
respectively for most of the basin. The low-elevation parts
in the south of the basin show the highest value of TWD
whereas the TDD is higher across the Himalaya divide line
than in other parts of the basin. The Himalaya divide line is
a line in the middle of the UJB at the Pir Panjal mountain-
ous range, separating the dominance of the two precipitation
patterns: westerlies in the north-facing slopes and monsoon
in the south-facing slopes of the line (Archer and Fowler,
2008).

The average wet and dry event durations (AWD and ADD)
were found to be similar throughout the basin with a slight
difference in the range of 1–2 weeks. However, their spatial
patterns were found to be mostly complementary. Maximum
wet and dry event durations (MWD and MDD) exhibit high
values in two distinct parts of the basin. The MWD is about
6–7 months in the east of the basin, which is located in Kash-
mir, India, whereas it varies between about 4–5 months and
2–3 months in the northwest and southwest parts of the basin.
For the MDD, the northwest and central parts of the basin
show higher values (4–5 months) than the remaining parts
(2–3 months).

The spatial distribution of total, average, and maximum
severity of wet–dry events is presented in Fig. 5. All wet–dry
severity maps show similar spatial patterns as wet–dry dura-
tion maps. In terms of total wet severity (TWS) and total dry
severity (TDS), the wet and dry hotspots are located in the
south and middle (across Himalaya divide line) of the basin
respectively. Unlike the spatial patterns of TDD, the TDS is
relatively higher in the north of the basin above the Himalaya
divide line. This shows more intense dry events in this part
of the basin. The underlying reason for higher TDS could
be the higher warming rates in western Himalaya, hosted in
the north of the basin. The average severity of wet and dry
events is categorized from moderate to severe levels. The av-
erage wet severity (AWS) exhibits random spatial patterns,
whereas the average dry severity (ADS) is relatively higher
in the north of the basin. Observed spatial patterns of maxi-
mum wet severity (MWS) and maximum dry severity (MDS)
were similar to those of MWD and MDD. The eastern part of
the basin experienced wet events of higher severity than the
western one, whereas the most severe dry events affected the
northwest and central parts of the basin.

Figures 6 illustrates the spatial distribution of intensities of
wet–dry events, calculated as the ratio of severity to duration.
The total wet intensity (TWI) and total dry intensity (TDI)
vary from moderate to severe with a noted range of 1.44 to
1.55 and−1.36 to−1.52 for wet and dry events respectively.
Irrespective of TWD and TWS, which is highest in the south
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Figure 2. Temporal variations in SPEI at 1-, 3-, 6-, and 12-month timescales over UJB for the period 1981–2014.

Figure 3. Annual variations in the number of months affected by wet–dry conditions during 1984–2014. The brown and blue colours present
dry and wet months respectively. Different shades of the colours define the different severity levels (EW – extreme wet; ED – extreme dry;
SW – severe wet; SD – severe dry; MW – moderate wet; MD – moderate dry).
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Table 2. Temporal variations in monthly SPEI over UJB from 1981–2014. The blank cells show normal months, and the different severity
levels are presented as EW – extremely wet; ED – extremely dry; SW – severely wet; SD –severely dry; MW – moderately wet; and MD –
moderately dry). The line between 1997 and 1998 indicates the strong change in the basin climatic features.

Year/months 1 2 3 4 5 6 7 8 9 10 11 12

1981 MW
1982 MD SD MW SW MW
1983 SW MW MW
1984 MW MD
1985 SD MD MW MD SW
1986 MD SW MW SW MW
1987 MD MW EW SD MD EW SD
1988 MW MD MD SW MD
1989 MW MW
1990 MD EW
1991 SW MW SD MW
1992 SW SW MD SW
1993 MW SD SW ED MW MD
1994 EW MW SW MD SW
1995 SW EW MW MD
1996 MW SW EW MW SD SW
1997 MD MW MW SW MW

1998 MW SD SD
1999 MW MD SD MW SD
2000 MD MD SD SD MD
2001 SD SD MD SD SW MW
2002 MD SD MD
2003 MD SW MD
2004 MD SD MD MD MW
2005 EW SD MD
2006 SW MD SD SW MW MW
2007 SD ED SW MD SD MD
2008 SW SD MW MW
2009 MD SD
2010 MD SW MD MW SW MW MD MD
2011 SW MD MW
2012 SD SD SW
2013 MD MD EW
2014 MW EW MD

of the basin, TWI is more intense in the middle and north-
east of the basin. The TDI is found to be more intense over
western Himalaya, north of the basin. The average wet in-
tensity (AWI) and average dry intensity (ADI) vary within
the moderate class of hazard. However, their spatial patterns
are much different from average duration (AWD and ADD)
and average severity (AWS and ADS) patterns. Regarding
maximum intensities, the spatial patterns of maximum wet
intensity (MWI) resemble the patterns of MWD and MWS
well, whereas the maximum dry intensity (MDI) exhibits
much different spatial patterns from MDD and MDS. The
dry events are found to be more intense than wet events, but
only for a few pixels in the southwest of the basin. On the
other hand, wet events with higher intensities are found to be
more widespread than dry events.

5.3 Wet–dry ratio

The WD ratio features the dominance of wet or dry events
for the period of 34 years (1981–2014). The WD ratio for the
three severity levels (moderate, severe, and extreme) at pixel
basis is presented in Fig. 7. The positive and negative values
of WD ratio depict the prevalence of wet and dry events re-
spectively. As the figure shows, higher frequencies of mod-
erate dry events with respect to moderate wet events were
found throughout the basin except for a few pixels in the
south. By contrast, severe to extreme wet events are more
frequent for most parts of the basin. The highest positive val-
ues of WD ratio for extreme level of hazard were found in the
southwest of the basin, which shows the higher susceptibility
of the area towards extreme wet events. Moreover, the anal-
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Figure 4. Spatial distribution of total wet duration (TWD), total dry
duration (TDD), average wet duration (AWD), average dry duration
(ADD), maximum wet duration (MWD), and maximum dry dura-
tion (MDD) for the period 1981–2014.

Figure 5. Spatial distribution of total wet severity (TWS), total dry
severity (TDS), average wet severity (AWS), average dry severity
(ADS), maximum wet severity (MWS), and maximum dry severity
(MDS) for the period 1981–2014.

ysis of wet–dry event characteristics also revealed the preva-
lence of wet events with higher duration and severity over
monsoon-dominated regions.

5.4 Wet–dry transition time

The number of transitions and their average transition time
for wet-to-dry and dry-to-wet events for the period 1981–

Figure 6. Spatial distribution of total wet intensity (TWI), total dry
intensity (TDI), average wet intensity (AWI), average dry intensity
(ADI), maximum wet intensity (MWI), and maximum dry intensity
(MDI) for the period 1981–2014.

Figure 7. Spatial distribution of wet–dry (WD) ratio derived for
three levels of severity (moderate, severe, and extreme) during the
period 1981–2014. Blue (WD ratio> 0) means that the area expe-
rienced more wet than dry events. Brown (WD ratio< 0) indicates
the opposite.

2014 are presented in Figs. 8 and 9. As expected, the num-
ber of transitions for wet-to-dry and dry-to-wet events was
the highest for the moderate level of events, followed by se-
vere and extreme levels of events. Consequently the average
transition time from wet-to-dry and dry-to-wet events was
found to be the highest for the extreme level of event fol-
lowed by severe and moderate levels of events. The num-
ber of transitions for moderate, severe, and extreme levels of
events varies from 15 to 26, from 6 to 16, and from 1 to 5 re-
spectively. Overall, the number of transitions for dry-to-wet
events is larger than the wet-to-dry events for severe and ex-
treme levels of events, whereas the opposite was found for
the moderate level of events. The transition time for mod-
erate, severe, and extreme levels of events varies from 1.8
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Figure 8. Number of transitions from wet-to-dry (left) and dry-to-
wet (right) events for three levels of severity (moderate, severe, ex-
treme) for the period 1981–2014.

to 6.5, from 1.8 to 16.75, and from 3.5 to 187.0 months re-
spectively. Overall, 53.57 % and 17.86 % of pixels in the UJB
showed longer transition time from wet to dry than from dry
to wet for moderate and extreme levels, whereas the opposite
was seen for severe events.

5.5 Wet–dry rapid-transition events

The wet–dry rapid transition is the consecutive occurrence
of wet and dry months of any severity level. The fre-
quency of wet-to-dry (wet month followed by dry month)
and dry-to-wet (dry month followed by wet month) rapid-
transition events was computed for each grid cell and is
shown in Fig. 10. The frequency of wet–dry transition events
varies/ranges from 5 to 20 events during the 34 years of the
study period. About 50 % of pixels in the UJB encountered a
higher number of wet events terminated at dry months. The
spatial distribution of frequency of wet–dry rapid-transition
events revealed that the wet-to-dry events are less frequent
over the westerlies-dominated region of the basin, whereas
the southwestern part of the basin was more affected by
the abrupt wet-to-dry events. By contrast, abrupt dry-to-wet
events are found to be more frequent over pixels surrounding
the Himalaya divide line, whereas the remaining part of the
basin depicts less incidence of dry-to-wet events.

Figure 9. Average transition time (Tt) intervals in months for wet-
to-dry (left) and dry-to-wet (right) events for three levels of severity
(moderate, severe, extreme) for the period 1981–2014.

Figure 10. Frequency of occurrence of abrupt events, wet to dry
(left) and dry to wet (right), during the period 1981–2014.

6 Discussion and conclusion

This study attempts to investigate the spatiotemporal varia-
tions in wet–dry events collectively, their characteristics (du-
ration, severity, intensity), and transition from wet-to-dry and
dry-to-wet events during the period 1981–2014 in the Up-
per Jhelum Basin (UJB) in South Asia. The SPEI, which
incorporates both precipitation and potential evapotranspira-
tion, was used to extract and analyse the wet–dry events. The

Nat. Hazards Earth Syst. Sci., 22, 287–302, 2022 https://doi.org/10.5194/nhess-22-287-2022



R. Ansari and G. Grossi: Spatio-temporal evolution of wet–dry event features 297

whole analysis was carried out at the monthly timescale, but
the temporal evolution of the basin-averaged index was also
simulated at multiple timescales (1, 3, 6, and 12 months). The
reason for selecting the monthly timescale for this study is
that it is expected to provide the best performance in detect-
ing floods and flash droughts, as longer time steps are more
appropriate for long-term droughts only and not for floods.

The results of temporal variations in SPEI showed that the
study domain mostly encountered moderate to severe wet–
dry events, whereas the extreme wet–dry events rarely oc-
curred during the study period. The results of basin-average
SPEI at multiple timescales revealed that the response of
SPEI to the deviations in climatic features varies with the
accumulation time. Therefore, shorter timescales are more
appropriate for detecting frequent seasonal and inter-annual
variations, whereas longer timescales provide useful infor-
mation regarding the signature of the events over the region
(Ayugi et al., 2020; Du et al., 2013). Furthermore, the SPEI
time-series plots capture the observed extreme floods and
drought events that occurred in the basin during the study
period well: for instance, the longest drought event occurred
from the late 1990s to early 2000s, as evident in Fig. 2 and
Table 2. The drought started in 1998 and was considered to
be the worst in the history of Pakistan. The drought spell
in 2001–2002 resulted in water shortage of up to 51 % of
normal supplies (Ahmad et al., 2004). Likewise, the notable
flooding events, usually flash floods ranging from moder-
ate to severe, occurred in the years 1988, 1992, 1994, 1997,
2007, and 2014 (Bhat et al., 2019) and were well captured by
the SPEI, confirming its valuable contribution to this type of
analysis.

An interesting clue to the changing climate is the strong
change that occurred in the basin at the end of 1997 (Table 2).
Before this change (1981–1997), wet events of different
severity levels predominated in the basin, whereas dryer con-
ditions prevailed after 1997. However, it still needs to be in-
vestigated whether dryer conditions are expected to continue
in the future or whether a large multi-decadal variation is tak-
ing place. This strong change in the basin climate coincides
with the strongest El Niño–Southern Oscillation (ENSO)
event in the winter season of 1997–1998, where the Oceanic
Niño Index (ONI) peaked at 2.3 and influenced the climate
conditions all over the world (MRCC, 2021). The 1998–2002
drought in southwestern Asia, accompanied by the most se-
vere drought conditions in the last 50 years, was also a re-
sult of this strong ENSO event (Ain et al., 2020; Ahmed et
al., 2018). ENSO is the primary mode of inter-annual vari-
ability, having great influence on global weather and climate
via atmospheric circulations (Ullah et al., 2021a). Many re-
searchers reported the close association between variations in
atmospheric circulation patterns and climatic variables, ex-
treme weather phenomena like drought and flood (Luca et
al., 2020; Omidvar et al., 2016; Sun et al., 2015). Kenyon
and Hegerl (2010) examined the response patterns of hydro-
climate extremes to ENSO over global land areas and stated a

significant decrease in precipitation extremes over Southeast
Asia, Indonesia, Australia, and the northernmost region of
South America during El Niño phases, whereas in the south-
ern tier of the United States and the region from Argentina to
southern Brazil heavy precipitation increased during El Niño
phases, and vice versa during La Niña phases. The strength
of such connections for Pakistan was also demonstrated in
several studies. El Niño suppresses monsoon rainfall activity
over Pakistan, while La Nina has a negative impact on win-
ter precipitation over Pakistan (Farooqi et al., 2005; Khan,
2004). Ullah et al. (2021a) found significant impacts of three
large-scale climate indices, i.e sea surface temperature (SST)
and multivariate El Niño–Southern Oscillation (ENSO4.0),
on seasonal droughts across Pakistan.

The results of wet–dry event characteristics (duration,
severity, intensity) at pixel basis outline the greater suscep-
tibility of the westerlies-dominated region to dry events with
higher duration, severity, and intensity. The dryer condi-
tions in this region could be explained with the increasing
rates of global warming over the mountainous region of the
basin, also reported by many researchers (Rashid et al., 2020;
Shafiq et al., 2020; Zaz et al., 2019). Studies by Negi et al.
(2018) and Dimri and Dash (2012) also confirm that most of
the western Himalayan region recorded a significant warm-
ing trend from 1975 onwards in particular. This is also sup-
ported by the tree-ring chronologies of the region, which in-
dicate a rapid growth of the tree rings in recent decades, es-
pecially at higher altitudes (Borgaonkar et al., 2009). The im-
pact of global warming on short-term dry events (soil mois-
ture drought) is not straightforward as rising temperature did
not necessarily cause increase in actual ET, especially in arid
and semiarid regions (Trenberth et al., 2014; Sheffield et al.,
2012). In fact the rate and amount of ET results from a com-
plex interaction of temperature, radiation balance, precipita-
tion rates and vegetation physiological control, rather than
being exclusively limited by one of these factors. For flash
drought, the rapid soil moisture decline should be a result
of the intensification of ET driven by higher temperature,
which is very common in humid and semi-humid regions,
where soil moisture can sustain higher ET amounts up to a
few weeks (Yuan et al., 2019). Further decrease in winter
and spring precipitation leads to water deficit conditions in
this part of the basin. The worst drought event period (2000–
2001), partially induced by a stronger ENSO in winter, was
also due to the low winter and spring precipitation, as shown
in Table 2. During 2000–2001, winter and spring seasons
were moderately to severely dry, whereas the monsoon and
autumn seasons observed normal months. By contrast, the
higher duration and severity of wet events were detected in
the monsoon-dominated region, implying that floods mainly
occurred during monsoon season with heavy rainfall along
with snowmelt. However, the eastern part of the basin was
the hotspot of more intense wet events. The above discussion
is also supported by the historic database of observed flood
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events, as most of these events occurred during monsoon sea-
son.

The results of the WD ratio showed the prevalence of se-
vere to extreme wet events for most of the basin, while the
dry events of moderate severity level were more frequent in
the study domain. The southwestern part of the basin, lo-
cated in the monsoon-dominated region, was found to be
the hotspot for the extreme wet events. Moreover, the analy-
sis of wet–dry event characteristics also revealed the preva-
lence of wet events with higher duration and severity over
the same monsoon-dominated region. The spatial patterns of
average transition time from one extreme type to the other
type was found to be heterogeneous and different for the
three severity levels. Overall, a greater number of pixels took
a shorter time to switch from dry to wet events than from
wet to dry events. Apart from the average transition period,
the study domain also experienced rapid transition of wet–
dry events. In general, the surrounding region of the Hi-
malaya divide line and the monsoon-dominated part of the
basin were found to be the hotspots of rapid wet–dry tran-
sition. The rapid wet–dry swings could be explained in the
context of global warming. In a warmer climate, increased
evapotranspiration rates in response to increased temperature
could elevate the drought risk and frequency. At the same
time, the prospect of localized heavy precipitation causing
floods is expected to increase in response to increased atmo-
spheric moisture content due to increased evapotranspiration
rates (He and Sheffield, 2020; Krishnan et al., 2020). Further
warming-induced changes in global climate variability, such
as El Niño and La Niña, can cause more inter-annual variabil-
ity or persistence in global weather and climate, significantly
affecting regional precipitation and temperature distribution
in space and time (Ullah et al., 2021b). Further compelling
scientific evidence of human interventions, such as boosted
human water intake and land use changes, exacerbates the
extreme flood and drought risk hazard.

To conclude, knowledge of wet–dry event characteristics
and their rapid transition provides meaningful insight into the
geographical hotspots of compound extreme events, which
could be of practical value to inform a group of stakeholders
(researchers, local authorities, policy makers, relief agencies,
non-governmental organizations (NGOs), and (re)insurance
companies) on the potential risk. In general, results con-
tribute to hydrological predictability and risk assessment and
therefore effectively support disaster preparedness and risk
management, ensuring the regional water, food, and socio-
economic security and stability against the background of a
changing environment. Future work should explore to what
extent future wet–dry event frequency will respond to anthro-
pogenic forcing, internal atmospheric processes, and human
interventions.
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