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Abstract. Evacuation is the most important and effective
method to save human lives during a tsunami. In this respect,
challenges exist in developing quantitative analyses of the
relationships between the evacuation potential and the built-
environment and geographical attributes of coastal locations.
This paper proposes a computer-based modelling approach
(including inundation, evacuation, and built-environment
metrics), followed by multivariate regressive analysis, to es-
timate how those attributes might influence the expected
tsunami death ratios of seven Chilean coastal cities. We ob-
tained, for the examined variables, their average values to dif-
ferent thresholds of the death ratio. Also, our statistical anal-
ysis allowed us to compare the relative importance of each
metric, showing that the maximum flood, the straightness of
the street network, the total route length, and the travel time
can have a significant impact on the expected death ratios.
Moreover, we suggest that these results could lead to spa-
tial planning guidelines for developing new urban areas into
exposed territories (if this expansion cannot be restricted or
discouraged) or retrofitting existing ones, with the final aim
of enhancing evacuation and therefore increasing resilience.

1 Introduction

Tsunamis are relatively rare phenomena but capable of trig-
gering widespread destruction and causing significant human
casualties in exposed coastal areas. In the last 2 decades, dev-
astating events, including those in Indonesia (2004, 2006,

2010, 2018), Samoa (2009), Chile (2010, 2014, 2015), and
Japan (2011), provoked more than 250 000 deaths glob-
ally (WHO, 2021). Authorities and scholars have suggested
and developed a range of integrated countermeasures to re-
duce tsunami risk: “hard” strategies, like structural defences
(e.g. sea walls, breakwaters, flood gates, and control forests)
and the construction of elevated ground, and “soft” ap-
proaches focused on education and policy, like land-use and
built-environment planning, plus early warning and emer-
gency management systems (Koshimura and Shuto, 2015;
Suppasri et al., 2012b, 2013; Ting et al., 2015; Tsimopoulou
et al., 2012). While hard countermeasures are uncommon out
of Japan, soft-planning-focused strategies require extended
periods and high political and community support to be im-
plemented. Typically, this support (plus its necessary tech-
nical and monetary resources) is hard to achieve in devel-
oping countries like Indonesia and Chile (with other urgent
everyday needs), where hence community-focused emer-
gency management, emphasising evacuation, is the most fea-
sible strategy to reduce the vulnerability of populations to
tsunamis. Moreover, there is a growing consensus on evacu-
ation as the most important and effective method for saving
human lives during a tsunami (Shuto, 2005; Suppasri et al.,
2012b), which is particularly true in areas exposed to near-
field events, with peak arrival times as short as 15 min, as
was shown for the 2014 and 2015 Chilean events by Catalán
et al. (2015) and Aránguiz et al. (2016), respectively.

In the context of disaster risk reduction policies and stud-
ies, we can define “risk” as the potential for adverse conse-
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quences for human or ecological systems, which results from
dynamic interactions between natural or man-made hazards
with the exposure and vulnerability of the affected human
or ecological systems (IPCC, 2020). According to the UN-
DRR terminology (United Nations Office for Disaster Risk
Reduction; UNDRR, 2022), a hazard is “a process, phe-
nomenon or human activity that may cause loss of life, in-
jury or other health impacts, property damage, social and
economic disruption or environmental degradation”, while
vulnerability can be defined as “the conditions determined
by physical, social, economic and environmental factors or
processes which increase the susceptibility of an individ-
ual, a community, assets or systems to the impacts of haz-
ards”, and exposure identifies “the situation of people, in-
frastructure, housing, production capacities and other tangi-
ble human assets located in hazard-prone areas”. Authors
like Birkmann (2006) and Frazier et al. (2014) stress the
need for strengthening and focus risk mitigation and adap-
tation plans through the spatial assessment of hazard, vul-
nerability, and exposure factors. In line with this, based on
thorough analyses of previous tsunami disaster outcomes (in-
cluding the 2011 Great East Japan Earthquake and Tsunami,
the 2010 Chilean tsunami, the 2009 Samoan tsunami, and
the 2004 Indian Ocean tsunami) or pre-disaster modelling,
scholars like Anwar et al. (2011), Birkmann et al. (2010),
Eckert et al. (2012), González-Riancho et al. (2015), Sup-
pasri et al. (2016), and Zamora et al. (2021) have underlined a
range of characteristics leading to tsunami risk (with a focus
on either the population or the built environment). These as-
pects comprise determinants of hazard (e.g. tsunami height,
flow depth, and arrival time), exposure (e.g. geomorphologi-
cal characteristics of the inhabited areas and man-made fea-
tures, including elevation, shoreline distance, number of peo-
ple exposed, population density, housing density, locations
of infrastructures, and types of land use), and vulnerability
(e.g. warning systems; governance and institutional arrange-
ments; evacuation potential; economic resources; education;
and personal awareness, knowledge, and decision-making
capacity).

Several studies aim at quantitatively examining tsunami
vulnerability and its correlation with geographical, built-
environment, and socio-psychological features, within a spa-
tially specific area or domain of study, from neighbour-
hoods to whole regions, including blocks, districts, cities,
and metropolitan areas. For instance, as shown by Tarbot-
ton et al. (2015), most researchers use post-tsunami destruc-
tion data to focus on built structures and develop statistically
based empirical vulnerability functions that model the dam-
age response to tsunamis. A common type of function is the
fragility function, which combines the probability of dam-
age (y axis) with hydrodynamic characteristics such as flood
depth, flow velocity, and force (x axis). Typically, researchers
develop these curves by integrating satellite remote sens-
ing, numerical modelling of tsunami inundation, and post-
tsunami survey data (examined in GIS – geographic infor-

mation system – systems) (Koshimura et al., 2009). A large
group of these studies focus on the losses in the built environ-
ment. For instance, Suppasri et al. (2012a) (using data from
the 2011 Great East Japan Earthquake and Tsunami) applied
least-square regression to demonstrate how building charac-
teristics like the structural material, number of stories, and
coastal topography can influence their damage levels. Other
tsunami disasters examined through this approach include
the 2010 Chilean tsunami in Dichato (Mas et al., 2012b) and
the 2018 Sulawesi tsunami at Palu Bay in Indonesia (Mas
et al., 2020). In the former, the researchers estimated the
affected houses’ structural fragility through a post-tsunami
survey. They combined this with an interpolated inundation
depth (developed in geographic information systems from
measures taken in the field) to deliver a tsunami fragility
curve. In the case of the Sulawesi tsunami, the authors cre-
ated the fragility functions by integrating field survey data,
visual interpretation of satellite images, and machine learn-
ing for multi-sensor and multitemporal satellite images.

Other studies focus on quantitatively assessing human vul-
nerability to tsunamis and its possible explanatory factors.
For instance, working with the case of the 2004 tsunami
disaster in Banda Aceh, Indonesia, Koshimura et al. (2009)
used regressive analysis to develop a fragility function for
the human death ratio through the combination of tsunami
modelling and post-tsunami data. This function used the
number of dead, missing, and saved residents in 88 exam-
ined villages, plus the modelled inundation depth. Yun and
Hamada (2015) interviewed 1153 witnesses (and also used
data for behaviour of the dead and missing) of the 2011 Great
East Japan Earthquake and Tsunami to develop a conditional
logistic regression model and identify the factors that influ-
enced life safety during that catastrophe. They found out that
the fatality rate is significantly influenced by the tsunami
height, aged population, speed, and region of analysis. Sup-
pasri et al. (2016) used spatially accurate data from areas less
than 3 km2 wide (with an inundation ratio greater than 70 %)
and statistical analysis to examine the fatality ratios and the
factors that affected human fatalities during that same event.
Their findings show that (in different manners depending
on the region of analysis) fatality ratios are affected by the
tsunami characteristics (inundation depth, wave force, arrival
time), topographical characteristics (slope, elevation, type of
coast), regional characteristics (existence or absence of de-
fence structures, warning systems, and evacuation facilities),
and human characteristics (existence or absence of knowl-
edge, awareness, and decision-making capacity). Nateghi et
al. (2016) analysed municipality-level and sub-municipality-
level data from the 1896, 1933, 1960, and 2011 tsunamis
that affected the Tohoku area in Japan. With this informa-
tion, they worked out a model based on statistical learning
methods that allowed them to appraise the effectiveness of
seawalls and coastal forests in mitigating destruction and
death rates provoked by tsunamis. Goto and Nakasu (2018)
used data from the 2011 Great East Japan Earthquake and
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Tsunami to propose a human vulnerability index (HVI) that
combines each location’s fatality rate and the rate of inci-
dence of washed-out buildings. Moreover, they applied mul-
tivariate regressive analysis to identify four explanatory vari-
ables for this index: (1) allowance period (the tsunami arrival
time divided by the distance to a safe place), (2) prepared-
ness (the rate of affected evacuees for analysis who had pre-
pared emergency carry-out bags beforehand), (3) road ser-
viceability (the rate of car-using evacuees multiplied by car
speed), and (4) warning effect (multiplication of announced
tsunami height and cognition rate of warning). Also working
in the context of the 2011 disaster, Latcharote et al. (2018)
integrated surveyed fatality ratios with tsunami arrival times
(obtained from flood modelling) into linear and nonlinear re-
gression analyses to find out the relationships between them.
Moreover, they examined the different findings for two to-
pographically different coastal areas (the Sanriku Coast and
the Sendai Plain). Their findings show that the fatality ra-
tios decrease as the tsunami arrival times increase (for all the
examined cases) and that (in the case of the Sendai Plain)
the fatality rates of females and those above 65 were higher
than those of males and those of all ages, respectively. Lastly,
Yavuz et al. (2020) used probabilistic tsunami modelling (de-
veloped from earthquake databases from 1900–2013) to eval-
uate social, economic, and environmental risks on the east-
ern Mediterranean coast. Specifically, they defined social risk
as to the number of people in areas where inundation depth
reaches 0.5 m or higher.

In cases where tsunamis have not occurred recently or their
data are not available, researchers typically use computer-
based models to estimate human vulnerability according to
simulated scenarios. For instance, Sugimoto et al. (2003)
developed a tsunami human damage prediction method for
the town of Usa, city of Tosa, Shikoku Island, Japan, in
the context of a possible Nankai earthquake to occur dur-
ing the first half of the 21st century. Their method com-
prised a GIS-based spatial model integrating tsunami numer-
ical modelling, exposed populations, and expected evacua-
tion behaviours (e.g. departure times) obtained from ques-
tionnaire surveys. This model delivered the predicted loss of
human lives in three different scenarios, depending on the
tsunami hazard factors (over 0.5 m inundation depth or more
than 2.0 m s−1 flow velocity) and evacuation behaviour (with
or without evacuation activities). In line with this, evacu-
ation modelling has been extensively used in recent years
to estimate human casualties during tsunami scenarios, us-
ing both “dynamic” and “static” approaches (Imamura et
al., 2012). Models couple expected evacuation performances
with discrete or probabilistic tsunami floods to estimate mor-
tality rates across evacuees. Examples of dynamic evacuation
models comprise, for instance, agent-based (Aguilar and Wi-
jerathne, 2016; León et al., 2019; Makinoshima et al., 2016,
2018; Mas et al., 2015; Mostafizi et al., 2017; Taubenböck
et al., 2009; Wang et al., 2016; Wang and Jia, 2020), cellular
automata (e.g. Kitamura et al., 2020), and the “evacuee gen-

eration model” of Dohi et al. (2016) (which includes the ef-
fect of external information on the evacuation behaviour). In
turn, GIS-based, least-cost distance (e.g. Fraser et al., 2014;
Priest et al., 2016; Wood et al., 2018, 2020), and network
approaches (Dewi, 2012; González-Riancho Calzada et al.,
2013) are examples of static evacuation models (whilst some-
times including variability in wave arrival times, population
exposure scenarios, evacuation departure times, and travel
speeds), which allow the identification of “evacuation land-
scapes” (Wood et al., 2014).

As Goto and Nakasu (2018) point out, a quantitative anal-
ysis of the relationships between fatality rates and geograph-
ical, built-environment, and socio-psychological features can
support the development of effective measures to reduce the
loss of human lives. Moreover, if place-based models’ find-
ings can be generalised, this “will produce a tool for mea-
suring areal vulnerability to future tsunamis and enable mu-
nicipalities to prioritise the order of their countermeasures”
(Goto and Nakasu, 2018, p. 2). In the case of evacuation
as a method for reducing disaster vulnerability, authors like
Perry et al. (1981), Mohareb (2011), and Murray-Tuite and
Wolshon (2013) provide analyses of geomorphological and
socio-psychological aspects that determine the evacuees’ be-
haviour during an emergency (e.g. selection of the escape
routes, the required times for evacuation, human response,
travel and waiting, and the role of the crowd influence).
In this respect, for the case of tsunamis Makinoshima et
al. (2020) deliver a comprehensive review of evacuation be-
haviours during 22 events since the Chilean tsunami of 1960,
built around a framework with three stages of notifications:
early, mid, and late. They found out a range of possible evac-
uation notifications across these stages, including ground
shaking, official warnings, informal communications, and
natural signs (e.g. unusual sea level changes, sighting the
landing tsunami, hearing unusual sounds). In turn, these noti-
fications can motivate a range of risk cognition and response
activities, with sharp variations among different individu-
als and groups (determined by factors like previous knowl-
edge or experience, culture, mental biases, and geographi-
cal location). These response activities include, for instance,
collecting information, confirming the safety and gather-
ing of family members, and preparatory actions (e.g. pack-
ing emergency kits, collecting important goods). Following
these activities, the actual evacuation begins, determined by
a destination, a route of travel, and a means of evacuation
(e.g. pedestrian or vehicular). Lastly, post-evacuation activi-
ties might include gathering additional information, contact-
ing family or friends, or returning home (e.g. to pick up valu-
ables or get the car).

While socio-psychological aspects can be critical deter-
minants of evacuation, we will focus our research on some
of the most relevant geographical and built-environment at-
tributes (capable of being quantitatively assessed through
computer-based modelling) that could contribute to the suc-
cess (or failure) of evacuation in the case of a tsunami.
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These characteristics include those related to the tsunami
(maximum flood depth and the estimated time of arrival
of this maximum depth), context (elevation, distance to the
shoreline), the evacuation process (travel time, distance to
the shelter, route length, pedestrian directness ratio), and
the street network configuration (betweenness, closeness,
straightness). In this respect, authors like Allan et al. (2013),
Kubisch et al. (2020), Tumini et al. (2017), Villagra et
al. (2014), and Villagra and Quintana (2017) underline the
links between urban morphology/geospatial characteristics
and evacuation. They point out how the former physically af-
fects the latter and examine how behavioural aspects (e.g. the
decision of evacuation, route selection, or evacuation mode)
relate to the environmental factors. In line with this, fol-
lowing Goto and Nakasu (2018), we aim at quantitatively
assessing the relationship between the geographical and
built-environment attributes and tsunami vulnerability (rep-
resented by the expected death ratio) as a first step towards
the proposal of evidence-based countermeasures for risk re-
duction. For instance, as most evacuations take place in
cities, planners and decision-makers could apply our rec-
ommendations for built-environment changes and standards
(aimed at increasing the number of evacuees that can reach
safe areas) to guide the physical development retrofitting of
tsunami-prone coastal communities around the world, thus,
with the final aim of enhancing pedestrian evacuation, sav-
ing lives, and therefore increasing resilience.

León et al. (2021b) deliver a modelling framework (in-
cluding flood and agent-based evacuation) to examine the re-
lationship between the evacuation potential and urban-form
characteristics of 67 urban samples from 12 case studies
in Chile. In turn, they use the model’s outcomes to de-
velop a multivariate regressive analysis, which allows them
to “weight” the relative importance of each of the indepen-
dent variables (i.e. the urban-form characteristics) on the
evacuation times. In this paper, we propose to enhance their
approach with a greater emphasis on the description of real-
world geographical and built-environment conditions that
might influence tsunami evacuation. Therefore, while León
et al. (2021b) set up a generic tsunami scenario where they
test selected urban samples for flood and evacuation, we aim
at developing a multi-case-study approach that encompasses
real-world-based large flood and evacuation models for seven
coastal cities in Chile: Arica, Iquique, Coquimbo, La Serena,
Viña del Mar, Valparaíso, and Talcahuano. Moreover, we fo-
cus our descriptive and multivariate regressive analyses on
the expected death ratios of these cities’ exposed areas (as an
indicator of human vulnerability to tsunamis) and how they
can be affected by the geographical and built-environment
characteristics.

The rest of this paper is as follows. Section 2 describes
the methodology, which comprises the selection of the seven
examined Chilean cities and a description of two scaffolding
cross-case research phases: a descriptive statistical analysis
and a multivariate regressive analysis. Section 3 presents the

results of our research, which we discuss in Sect. 4. Lastly,
Sect. 5 delivers the study’s main findings and proposes paths
for future investigation.

2 Methodology

2.1 Case studies

Chile is one of the most tsunami-prone countries glob-
ally, with more than 100 tsunamis recorded since the
16th century, including 35 destructive events up to 2005
(Lagos and Gutiérrez, 2005) and recent disasters in 2010,
2014, and 2015. Moreover, researchers including Drápela et
al. (2021), Klein et al. (2017), and Medina et al. (2021) have
underlined the existence of extensive submarine areas in seis-
mic locking along the central and northern coasts of Chile,
capable of triggering large destructive tsunamis if major rup-
ture earthquakes occur. Among the Chilean coastal cities,
we selected seven case studies, distributed from north to
south: Arica, Iquique, Coquimbo, La Serena, Viña del Mar,
Valparaíso, and Talcahuano (see Fig. 1).

According to the National Statistics Institute of
Chile (INE), these cities are among the top 20 in Chile
for the most significant ratios of exposed populations to
tsunamis (INE, 2021). This information is based on census
data and the official tsunami flood charts by SHOA (Hydro-
graphic and Oceanographic Service of the Chilean Navy,
the Chilean Navy’s agency aimed at providing technical
elements, information, and technical assistance to offer
navigational safety in Chilean waters) (SHOA, 2012).
Talcahuano, Iquique, and Arica occupy the first three places
in the list, with 43.01 %, 29.77 %, and 23.44 % of their
populations living in floodable areas, respectively. In each of
these cities we focused our analysis only on inhabited areas.
Overall, the seven case studies gather roughly 240 000 ex-
posed residents. As seen in Table 1, historical records
(since the 16th century) show that destructive tsunamis have
repeatedly affected these cities.

2.2 Descriptive analysis

This phase aimed to develop a thorough description of the
current geographical and built-environment conditions that
might influence the outcome of tsunami evacuations in each
of the case studies and, second, to integrate those results
through GIS spatial post-processing based on 4× 4 m cells
as the basic units of study.

2.2.1 Tsunami inundation and evacuation models

We developed coupled tsunami inundation and evacuation
models for each case study, using the methodologies exten-
sively described in León et al. (2019, 2020). First, we worked
out flood simulations according to the worst-case feasible
seismic scenario (i.e. a high-consequence event of a rela-
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Figure 1. Location, topo-bathymetry, and tsunami-related features of the examined case studies in Chile.
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Table 1. Attributes of the examined case studies in Chile. CITSU: Carta de Inundación por Tsunami. SECTRA: Programa de Vialidad y
Transporte Urbano.

Case study Location Total Exposed Ratio of Years of Modelled Source of Total Number
population resident exposed recorded population for daytime number of of “lethal”

(census population resident destructive evacuation population 4× 4 m 4× 4 m
2017) (CITSU) population tsunamis (daytime cells cells

(%) scenario,
departure

time: 8 min)

Arica Northern 221 364 51 888 23.44 1604, 1868, 81 420 Call detail 52 358 11 159
Chile 1877 records

(Lomnitz, (CDRs)
2004) provided by

Movistar
(8 May
2019,
between
10:00 and
11:00 LT)

Iquique Northern 191 468 57 000 29.77 1604, 1868, 109 891 Origin– 108 689 32 296
Chile 1877, 2014 destination

(Catalán et study by
al., 2015; SECTRA
Lomnitz, (2014)
2004)

La Serena Northern 221 054 19 939 9.02 1849, 1922, 172 631 Call detail 211 451 20 844
Chile 2015 records

Coquimbo Northern 227 730 6240 2.74 (Aránguiz (CDRs)
Chile et al., 2016; provided by

Lomnitz, Movistar
2004) (19 January

2019,
between
22:00 and
24:00 LT)

Viña del Central 334 248 35 096 10.5 1730, 1822 62 519 Origin– 37 859 20 592
Mar Chile (Carvajal et destination

al., 2017; study by
Lomnitz, SECTRA
2004) (2016)

Valparaíso Central 296 655 4450 1.5 1730, 1822 32 492 Origin– 16 063 7038
Chile (Carvajal et destination

al., 2017; study by
Lomnitz, SECTRA
2004) (2016)

Talcahuano Southern 151 749 65 267 43.01 1570, 1657, 34 996 Call detail 103 671 774
Chile 1751, 1835, records

1868, 2010 (CDRs)
(Fritz et provided
al., 2011; by Movistar
Lomnitz, (8 May
2004) 2019,

between
10:00 and
11:00 LT)
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Figure 2. Seismic scenarios used for the examined case studies.

tively small likelihood; Løvholt et al., 2014) for each city.
To do this, we used the Storm Surge and Tsunami Simulator
in Oceans and Coastal Areas (STOC), specifically the Multi-
layered Static Dynamics Model (STOC-ML) (Tomita et al.,
2006). We used seismic models by Carvajal et al. (2017) and
Fujii and Satake (2012), and for the Iquique scenario we cal-
culated the seismic parameters, including length, width, and
slip, according to the scaling law by Papazachos et al. (2004)
(see Table 2 and Fig. 2). The input data for the simulations in-
cluded bathymetry, coastline, topography, and elevation data,
compiled from various sources including SHOA, local gov-
ernments, and GEBCO (General Bathymetric Chart of the
Oceans; https://www.gebco.net/, 8 January 2021). Each case
study’s simulation used five nested grids for numerical anal-
ysis, with spatial resolutions of 1536, 256, 32, 8 and 4 m,
respectively. Tsunamis were simulated for 60 min (capable
of comprising their development from the occurrence of the
earthquake to the maximum inland penetration, i.e. the in-
undation line or run-up). The model used a time step of
0.1 s, also recording time series, the inundation depth (every
10 min), the maximum inundation depth, and the estimated
time of arrival (ETA) of this maximum depth (see Fig. 3).

We also developed agent-based evacuation simulations
(see Sect. 1) for each case study, using an evacuation thresh-
old of 45 min. While we had the 60 min long tsunami simu-
lations from the STOC-ML model (and the sea level anoma-
lies may last for several hours after the earthquake), prelim-
inary tests showed that a 45 min threshold was sufficient to
encompass the total evacuation time of every examined city,
therefore allowing us to reduce computing time. To carry
out the evacuation analyses we used an enhanced version of
the PARI-AGENT model (Arikawa, 2015). We modified this
source code to assess the impact of the slope on the evacuees’
speed, to include a Rayleigh probabilistic distribution of de-
parture times for evacuees, and to assign a range of age-based
evacuation speeds across the agents (see León et al., 2020).
Recently, this model was validated using real-world data of
1966 pupils from four K–12 schools (primary and secondary
education from kindergarten to 12th grade) in Valparaíso and
Viña del Mar, Chile, collected during an evacuation drill held
in September 2019 (León et al., 2021a).

Agent-based models are bottom-up computer simulations
where individual disaggregated elements (the agents, which
in our model correspond to evacuees) are modelled as
autonomous decision-making entities that follow simple
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Table 2. Seismic parameters of the examined case studies.

Case study Mw Total Total Slip (m) Source Description
length width
(km) (km)

Arica 9.0 600 150 Uniform slip Own Large earthquake and
of 17.0 m tsunami

Iquique 8.5–8.7 500 160 Variable slip with Matías Carvajal As a result of the
peak of 10.0 m accumulated slip since

1877

Coquimbo, 9.1–9.3 600 180 Variable slip with Carvajal et al. The 1730 Valparaíso
La Serena, peak of 19.7 m (2017) earthquake
Valparaíso, and
Viña del Mar

Talcahuano 8.8 See the Fujii and Satake (2012) model for the 2010 Maule earthquake, developed from tsunami and
coastal geodetic data

Figure 3. Tsunami time series for the examined case studies, as measured by virtual gauges (see their locations in Fig. 1).

rules, which are iteratively performed within a set time
threshold, usually including stochastic features. The agents’
interactions (also with their environment) lead to emer-
gent phenomena, which is helpful for the examination
of complex, real-life events like mass evacuation. As we
adopted a cross-case study perspective to examine extensive

urban areas (534 881 agents overall), with a focus on the
geomorphological conditions affecting the evacuation, we
formulated our agent-based model under a macroscopic
perspective, disregarding microscopic interactions among
agents (Makinoshima et al., 2018). Rather, we examined the
overall outcomes of the evacuation processes (i.e. number
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of saved, moving, and dead evacuees, for each time step),
determined by the environmental conditions and the moving
crowd (see below). To develop the agent-based models
for each case study, we had to follow these steps. First,
we included the inundation parameters obtained from the
STOC-ML analyses. Second, we determined the evacuation
territories of each case study (henceforth denominated “move
boundary”; see Fig. 1), comprising the streets and open
spaces connecting the coastline with the safe assembly areas
(shelters) as defined by the evacuation plans from ONEMI
(National Office of Emergency of the Interior Ministry), the
Chilean emergency management agency (available at https:
//geoportalonemi.maps.arcgis.com/apps/webappviewer/
index.html?id=5062b40cc3e347c8b11fd8b20a639a88,
last access: 30 July 2021). For their spatial definition,
these move boundaries used the smallest nested grid
from the inundation model (with 4× 4 m cells). We ob-
tained their specific configuration through its intersection
with the street network obtained from OpenStreetMap
(https://www.openstreetmap.org/, last access: 10 September
2021) and post-processed in ArcMap 10.4.1 (see Fig. 1).
Third, we had to establish worst-case daytime population
distributions (different from census data), reflecting that
most of the examined zones comprise downtown, CBD
(central business district), or touristic areas that significantly
increase their populations during daytime due to commuting
and visiting (see Table 1). In the case of Iquique, Viña
del Mar, and Valparaíso, we obtained daytime populations
from previous origin–destination studies conducted by the
Chilean Ministry of Transportation (SECTRA, 2014, 2016).
For Arica, Coquimbo, La Serena, and Talcahuano, in turn,
we used extrapolations of mobile CDR (call detail record)
databases provided by one of the largest telecom companies
in Chile (with a market share of roughly 28 %). In the case
of Arica and Talcahuano, we used the morning peak time
(10:00 to 11:00 LT) of a random weekday (8 May 2019)
as the worst-case daytime scenario. For Coquimbo and
La Serena, popular summer touristic destinations with a
vibrant nightlife along their coastlines, we used Saturday,
19 January 2019, between 22:00 and 24:00 LT. The PARI-
AGENT code randomly distributed these populations across
the move boundaries within each case study (locating one or
more agents on each 4×4 m cell). Fourth, we established the
agents’ performance parameters, including (1) the impact
of the slope on the evacuees’ speed, according to Tobler’s
exponential hiking function (Tobler, 1993); (2) a Rayleigh
probabilistic distribution of departure times for evacuees
(see Mas et al., 2012a), with a mean of the distribution (the
µ factor) equal to 8 min, which corresponds to the average
time that ONEMI takes to release an evacuation warning;
(3) an evacuation speed for each agent, according to its
age (Buchmueller and Weidmann, 2006), probabilistically
defined based on the case studies’ population pyramids from
the 2017 census (INE, 2018); (4) a random-walk parameter
that introduces an aleatory fluctuation up to 10◦ on the

evacuation direction; and (5) a crowd potential parameter
that makes the agent tend to follow the direction in which
other evacuees are moving, stochastically assigned (with
a probability of 0.5). Fifth, we executed the simulation, in
which the code initially computes the optimal route for each
agent, according to its initial position and closest shelter,
using the A∗ algorithm, frequently applied in evacuation
studies (e.g. Mas et al., 2012a; Takabatake et al., 2020; Wang
and Jia, 2021). Then, it calculates every agent’s position at
each time step (1 s), based on its departure time and velocity
(which could be modified by the slope, random-walk, and
crowd parameters). The code compares this new position
with the water height at that moment (obtained from the
inundation file) and updates the agent’s status: (1) moving
(i.e. alive), (2) dead (i.e. reached by the water), or (3) es-
caped (i.e. alive in the shelter). This process continues for
45 min, and then the computation stops.

As the model included stochastic parameters (the initial
positions of the agents, their walking speeds and departure
times, and the random-walk factor), we carried out 10 simu-
lation rounds for each case study, intending to achieve a 95 %
confidence interval with a margin of error< 1 % in the av-
erage values of the number of escaped, moving, and dead
evacuees after 45 min. The model also recorded each agent’s
travel time and evacuation route (for every iteration).

2.2.2 Street network configuration model

According to Fakhrurrazi and Van Nes (2012), an appropri-
ate street network configuration can increase the evacuees’
chances of successfully evacuating in the case of a tsunami.
The suitability of a street network for evacuation depends
on factors like its accessibility; variety of route options; and
the possibility of short, direct trips (Dill, 2004; Handy et al.,
2003). While a range of metrics has been proposed to ex-
amine these characteristics (Sharifi, 2019), we will focus our
analysis on centrality indicators, which can be used “to mea-
sure the degree of importance of specific nodes/links in a
street network” (Sharifi, 2019, p. 174), based on how cen-
tral the locations are compared to the rest of the urban layout
(Porta et al., 2006). Moreover, centrality is a good predictor
of everyday human movement (Sasabe et al., 2020; Turner,
2007), and authors like Mohareb (2011) and Marín Maureira
and Karimi (2017) point out that evacuees tend to choose
well-known paths instead of the designated ones.

We examined the move boundaries (described in
Sect. 2.2.1 above) from each case study with the Urban Net-
work Analysis Toolkit for ArcGIS (UNA) (Sevtsuk et al.,
2013). For each street segment belonging to the input net-
work, we analysed three centrality metrics: (1) betweenness,
(2) straightness, and (3) closeness. These can be defined, re-
spectively, as follows (Sevtsuk et al., 2013; Sharifi, 2019):
(1) the fraction of shortest paths between all pairs of des-
tinations in the street network that pass through an exam-
ined street segment, (2) the extent to which the shortest paths
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from a segment of interest to all the other segments in the
street network resemble straight Euclidean paths, and (3) an
indication of how close a street segment is to all other street
segments in the network. To compare the street network’s
components, the toolkit normalises the outcomes according
to the total number of segments in the network. The Urban
Network Analysis Toolkit for ArcGIS delivers its outputs as
a new GIS vector shapefile, with the input street network in-
cluding these metrics.

2.2.3 Context-determined evacuation metrics

Each discrete location belonging to the examined areas of
each case study (represented in our model by a 4× 4 m cell)
has a set of evacuation metrics determined by its existing spa-
tial relationships to the geographical and built contexts. We
examined these metrics using ArcMap 10.4.1 and the same
data sources mentioned in Sect. 2.2.3 and 2.2.4 above. These
indicators include (1) elevation; (2) sea distance, i.e. the
straight-line distance between the cell’s centre and its closest
shoreline point; (3) distance to shelter, i.e. the straight-line
distance between the cell’s centre and the closest safe as-
sembly area; and (4) pedestrian directness ratio (PDR) (also
termed “Pedestrian Route Directness (PRD)” by Dill, 2004),
which is the ratio of the “real-world” route distance (as de-
termined by the street network) and the straight-line distance
connecting the cell’s centre and its closest safe assembly
area. In this respect, Hillier and Iida (2005) and Hillier (2009)
underline that the strongest movement predictor is the least
angle change along the routes. Therefore, networks includ-
ing fewer direction changes (i.e. lower PDR values) might
improve the evacuees’ wayfinding performance. Wayfinding
is “the process of determining and following a path or route
between an origin and a destination” (Allen, 1999, p. 6).

2.2.4 Spatial post-processing

In this research phase, we aimed to integrate the previous
sections’ outcomes into a descriptive spatial analysis that
could also serve as the basis for the subsequent multivari-
ate regressive study. We carried out this integration with the
aid of the ArcMap 10.4.1 software. Our canvas included the
move boundaries described in Sect. 2.2.1 above for each case
study, which comprised a network of streets and open spaces
represented by raster files with 4× 4 m cells. Each of these
cells corresponded to a specific location in the evacuation
landscape, for which all the calculated metrics had to be spa-
tialised. First, as the inundation and agent-based models used
the same base raster, the former’s results did not need to
be post-processed. Second, the data from each case study’s
evacuation model included a range of at least 10 different
groups of agents’ initial locations (each with an associated
final status: moving, dead, or escaped). Due to our purpose
of examining vulnerability, we aimed at quantifying, for each
cell, its death ratio (i.e. the percentage of dead agents that

began their journey from it, comprising all the model’s it-
erations). To do this, we used ArcMap’s Spatial Join tool,
which joined the attributes from the source feature (i.e. the
initial locations of agents, all merged in a single shapefile) to
the target feature (i.e. the raster-based street network). Third,
for the case of the street configuration model, we applied the
same Spatial Join tool to cast the properties from the out-
coming street network into the base raster. Lastly, as we also
calculated the context-determined evacuation metrics on the
base raster, their results did not need to be post-processed
either.

Our analysis, comprising all the case studies, included
530 091 cells, each of them containing the following data
fields: (1) death ratio; (2) maximum, (3) minimum, and
(4) mean travel time; (5) sea distance; (6) elevation; (7) to-
tal route length; (8) shelter distance; (9) estimated time of
arrival (ETA) of the maximum flood; (10) maximum flood;
(11) closeness, (12) betweenness, and (13) straightness (and
their three normalised values); (17) pedestrian directness ra-
tio (PDR); and the UTM (Universal Transverse Mercator)
latitude and longitude coordinates (18 and 19). Assuming
that the death ratio was our dependent variable, we ran a cor-
relation test to prevent the correlation between the other pre-
dictor (independent) variables and therefore avoid collinear-
ity problems in the regressive model (see Fig. 4). This test
demonstrated that seven of these variables (numbers 2, 3, 8,
12, 14, 15, and 16 above) should not be included in the anal-
ysis, as they were correlated at |r|> 0.7 (Dormann et al.,
2013). We did not include the UTM coordinates, as they are
defined according to global reference systems and not to lo-
cal conditions.

Table 1 shows the number of examined cells for each case
study.

2.3 Multivariate regressive analysis

For each case study, the result from the spatial post-
processing was a raster shapefile representing the evacuation
territory, where each cell included the 19 data fields men-
tioned in Sect. 2.2.4. The objective of our regressive analy-
sis was to test, for each of the 530 091 cells, the death ratio
(the dependent variable) against the other nine selected in-
dependent variables, which represent characteristics of the
geography and built environment. In this way, we could ex-
amine how much each of these characteristics contributes to
the expected death ratios. To do this, we developed a mul-
tivariate regressive analysis using a random forest method-
ology, which combines a multitude of simple decision trees
(Breiman, 2001). Tree-based methods for regression and
classification stratify or segment the predictor space into sev-
eral simple regions. To predict a given observation, we typi-
cally use the mean or the mode response value for the training
observations in the region it belongs. Since the splitting rules
used to segment the predictor space can be summarised in
a tree, these approaches are known as decision tree methods
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Figure 4. Correlations between the examined variables.

(James et al., 2013). Random forest is an ensemble method
that combines many simple decision trees models to obtain a
single and potentially powerful model. Each tree takes ran-
dom samples of the observations and performs split steps us-
ing a subset of features, thereby decorrelating the trees and
leading to a more thorough exploration of model space.

We applied a k-fold cross-validation method to assess this
model’s outcomes (Mosteller and Tukey, 1968). Following
this method, we randomly split all the input data (comprising
the nine independent variables and one dependent variable)
into five equal-size packages (folds). In four of them (the
training packages), we applied our regressive random forest
model to internally predict the values of the death ratio, ac-
cording to the independent variables; this was the “training”
test. We repeat this process for the “external” fifth package
(the testing one) on the “testing” test. Then, we calculated the

coefficient of determination (R2) to assess the strength of the
relationship between the predicted and actual dependent vari-
able in the training and testing packages. After that, we tried
the other four combinations of training and testing packages
to obtain further R2 scores. Then, we executed five other ran-
dom splits of the input data, leading to 30 overall repetitions
of the procedure. Overall, our mean R2 scores were 0.9101
(SD= 0.0021) and 0.8607 (SD= 0.0022) for the training and
testing analyses, respectively, which underline our model’s
goodness of fit.

To enhance the interpretation of the model’s results, we
used SHAP (SHapley Additive exPlanations) values (Lund-
berg and Lee, 2017). SHAP values are a unified framework
for explaining model predictions, motivated by the idea that
model interpretability is as important as model accuracy,
since some modern models act as black boxes due to their
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complexity. It has three significant advantages over other ex-
planatory approaches: (1) it considers that interpreting a pre-
diction model is a model itself, commonly named as an ex-
planation model; (2) game theory results guarantee a unique
solution; and (3) the method is better aligned with human in-
tuition. SHAP values are a unique unified measure of feature
importance, since it meets three desired properties: (i) local
accuracy (approximating the original model), (ii) missing-
ness (a missing feature in the original input has no impact),
and (iii) consistency (if a model changes, then the attributes
of the inputs should be updated as well). Classic Shapley re-
gression values examine feature importance for linear models
in the presence of multicollinearity. To do this, SHAP retrains
the model on all feature subsets, assigning an importance
value to each feature that represents the effect of including
that feature on the model prediction: a model is trained with
a particular feature present, and another model is trained with
the feature withheld, and then predictions from the two mod-
els are compared (Lundberg and Lee, 2017). SHAP values
are the Shapley values of a conditional expectation function
of the original model. The exact computation of SHAP val-
ues is challenging. However, combining insights from cur-
rent additive feature attribution methods makes it possible to
approximate them, leading to good computational efficiency.
Since this method is, essentially, a sum of the contributions
of each feature, which is consistent with human intuition.

To develop our statistical analysis, we used an ad hoc
Python model, comprising the data analysis libraries NumPy
(Berg et al., 2020) (https://numpy.org/, last access: 10
September 2021), pandas (McKinney et al., 2020) (https:
//pandas.pydata.org/, last access: 10 September 2021), and
SHAP (Lundberg, 2020) (https://github.com/slundberg/shap,
last access: 10 September 2021).

Lastly, to ensure the validity of our results and to assess
the potential effect of the resolution of the data generated
by our flood and evacuation model, we carried out an inte-
grated SHAP value analysis including the same source in-
formation but combined in different resolutions, according
to a geometric sequence with a factor of 2 between the size
of each examined unit. To do this, we developed an algo-
rithm that, starting from the 4×4 m cell (resolution× 1) with
the largest southern latitude and western longitude in each
case study (i.e. located at the bottom left corner of the study
area), grouped these basic units into five successive spatial
partitions, each of them covering the complete evacuation
move boundary. These partitions comprised cells 8×8 (reso-
lution× 2), 16×16 (resolution× 4), 32×32 (resolution× 8),
64×64 (resolution× 16), and 128×128 m (resolution× 32)
wide, respectively. For each of these larger cells, the algo-
rithm calculated the value of every independent variable as
the average of the combined 4× 4 m units. Then, we ran the
SHAP value analysis at these coarser resolutions again.

3 Results

3.1 Death ratios and the natural- and
built-environment characteristics

Table 3 summarises our descriptive analysis comprising
530 091 cells belonging to the case studies’ move bound-
aries. This table arranges the data in 11 intervals according
to growing (in 10 % steps) death ratio thresholds. For each of
these intervals, we include the mean and standard deviation
values of nine independent variables (mean travel time, sea
distance, elevation, total route length, estimated time of ar-
rival – ETA – of the maximum flood depth, maximum flood
depth, closeness, straightness, and pedestrian directness ra-
tio – PDR). Figure 5, in turn, shows scatterplots (summaris-
ing all the examined cells with positive death ratios) of the
death ratio compared with each of the nine independent vari-
ables, plus one extra chart that shows the death ratio distribu-
tion across the case studies. To enhance readability, we post-
processed the 530 091 scattered records into a 10× 10 grid,
where each square’s colour depth represents the percentage
of all the data comprised by it.

Our analysis shows that 92 703 of 530 091 cells (17.49 %)
have at least one “dead” agent (evacuee) across the simula-
tions. Moreover, Fig. 5 shows that Arica, Iquique, Valparaíso,
and Viña del Mar have cells where the death ratio reaches
up to 1; i.e. every agent departing from them is caught by
the modelled tsunamis. The analysis also shows that some
of the geographical and built-environment attributes have
clear spatial relationships with death ratios. In this respect,
it is useful to compare their average values for two differ-
ent death ratio thresholds, 0 and > 0.0 (i.e. without and with
dead agents in the cells), to highlight their differences. For
instance, cells with positive death ratios have an average el-
evation of 5.39 m a.s.l., i.e. 39.03 % of the average value of
the “safe” cells (13.82 m a.s.l.). In line with this, Fig. 5 shows
that the maximum values of elevation for “deadly” cells stay
below 20 m a.s.l. In the case of the distance to the sea, the
ratio between the average values of deadly and safe cells
is 0.25 (296.57 and 1185.38 m, respectively), with maximum
levels smaller than 1750 m (according to Fig. 5). For the max-
imum flood depth attribute, the ratio is 0.13 (average values
of 0.611 and 4.67 m for the safe and deadly cells, respec-
tively), with no cells above 15 m. A similarly steep difference
occurs in the case of the ETA of the maximum flood, with
a ratio of 0.13 due to an average value of 49.16 s for those
cells with a death ratio= 0 and of 364.76 s for cells with a
death ratio> 0.0. In the case of the variables related to evac-
uation and urban-form parameters (mean travel time, total
route length, closeness, straightness, and pedestrian direct-
ness ratio – PDR), the differences between the average values
of safe and deadly cells are also pronounced in some cases
(0.57 for straightness and 0.64 for both total route length and
closeness), while they are mild in others (0.97 and 0.93 for
PDR and mean travel time, respectively).
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Figure 5. Data scatterplots showing the distribution of the death ratios, in comparison to the nine examined independent variables. The
prevalence of different death ratios across the case studies is also included (top left image).
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To assess the dispersion of results shown by Fig. 5, it is
useful to compare the coefficients of variation in each data
field, in the case of the average values of two different death
ratio thresholds (0 and > 0.0). According to Abdi (2010),
the coefficient of variation allows for the comparison of data
distributions with different units. It is defined as the stan-
dard deviation of a series of numbers, divided by the mean of
this series of numbers. Along these lines, in the case of the
safe cells (death ratio= 0), the examined data fields (mean
travel time, sea distance, elevation, total route length, esti-
mated time of arrival – ETA – of the maximum flood, maxi-
mum flood depth, closeness, straightness, and pedestrian di-
rectness ratio – PDR) show coefficients of variation of 0.96,
0.74, 0.89, 0.74, 4.95, 2.98, 1.26, 1.22, and 0.41, respectively.
On the other hand, for the deadly cells (death ratio> 0.0)
and the same variables, the coefficients of variation are 0.54,
0.95, 0.55, 0.47, 1.47, 0.67, 1.41, 1.62, and 0.35, respectively.
These values show that, in the case of cells with a death ra-
tio= 0, the dispersion of results is in a similar range, except
for two variables: ETA of the maximum flood and maximum
flood depth. In the case of death ratio> 0.0, variation among
results is more limited, with three highlighted variables: esti-
mated time of arrival (ETA), closeness, and straightness.

3.2 Multivariate regressive analysis

Figures 6 and 7 show the results of the SHAP value analy-
sis for the random forest model’s outcomes. Figure 6 shows,
for every independent variable and all the examined cells, the
amount of the former’s contribution (either positive or neg-
ative) to the predicted death ratio (compared to the average
prediction across all the cells). Red dots mean higher val-
ues of the independent variable, while blue ones imply the
opposite. Figure 7 processes this data to display, for each in-
dependent variable, the average absolute contribution to the
predicted death ratio. These results show that the most impor-
tant feature in predicting death ratios is the maximum flood
depth, followed by the straightness, the total route length, and
the mean travel time. On average, the maximum flood depth
can vary the death ratio up to 0.08 points, more than twice
the impact of the straightness (0.037). In turn, this value is
higher than those of the total route length (0.032) and the
mean travel time (0.024).

Figure 8, in turn, summarises the results of the SHAP
value analysis including different resolutions (×1, ×2, ×4,
×8, ×16, and ×32) developed from the basic 4× 4 m unit
(i.e. with cells 8×8, 16×16, 32×32, 64×64 and 128×128 m,
respectively). According to these results, the overall impor-
tance hierarchy of the independent variables remains un-
changed through the different resolutions of analysis. Com-
plementarily, noticeable and disparate changes can be seen
in the amount of their impacts on the predicted death ratio if
we compare the more and less accurate resolutions. For in-
stance, while the maximum flood depth increases its impact
value by 35.44 % between the ×1 and ×32 resolutions, the
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Figure 6. SHAP values of the independent variables.

Figure 7. Average absolute SHAP values of the independent vari-
ables.

straightness and the total length of the street network reduce
their impacts by 2.78 % and 12.5 %, respectively. Moreover,
reduction reaches 45.83 % in the case of the mean travel time.
In turn, the ETA of the maximum flood exhibits shifting re-
sults: its impact on the death ratio grows by 33.33 % until
the ×16 resolution and then decreases to 0.015 points at the
×32 resolution, i.e. 16.66 % less than in its original value
at ×1.

4 Discussion

Our descriptive analysis included 530 091 cells. Of these,
92 703 (17.49 %) have a death ratio> 0.0 (i.e. at least one
agent from any of the model’s run, who started its evacua-

tion from one of them, was caught by the tsunami). In turn,
13 825 cells (2.61 %) have a death ratio= 1, which means
that the waters reach every agent departing from them be-
fore they arrive at a safe assembly area. As shown by Table 1
and Fig. 5, the rate of cells with elevated death ratios is un-
evenly distributed across the case studies. Cities like Viña
del Mar, Valparaíso, and Iquique show large percentages of
cells susceptible to having dead evacuees (54.78 %, 43.81 %,
and 29.71 %, respectively). On the contrary, Talcahuano has
only 0.74 % of its cells on this condition. As we can see in
the maps included in Fig. 1, while the first three cities gather
considerable urban development and residential populations
on exposed locations right next to the coastline, most of the
last one’s territory is roughly 1.0 to 1.5 km from the coast,
from whom large, marshy areas separate it.

The death ratio thresholds included in Table 3 and the re-
sults in Figs. 6 and 7 allow for appraising, for the examined
case studies, how each independent variable relates to the
possibility of death in the case of a tsunami and how these
variables change between deadly and safe locations. First,
the data show that three of the four of most important pre-
dictor variables (the maximum flood depth, straightness, and
total route length, whose impacts are on average 5.1 times
larger than the other eight examined variables) have signifi-
cant differences between their average values for the deadly
and safe cells (ratios of 0.13, 0.57, and 0.64, respectively).
Second, some of the variables exhibit what we might call an
expected behaviour: the probability (for an agent) of “dying”
because of a tsunami increases if the departing cell has com-
paratively lower elevation or shorter distance to the sea. In a
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Figure 8. Mean SHAP values of the independent variables, for different spatial resolutions.

similar manner, a higher maximum flood depth also increases
the cells’ death ratios. Third, three variables show somewhat
counter-intuitive results: the death ratio increases when the
mean travel time reduces and when the estimated time of ar-
rival (ETA) of the maximum flood, as well as the closeness,
grow. In the case of the first of these independent variables,
the results are likely influenced by the fact that the evacuees
that departed from lethal cells have comparatively shorter
(actual) evacuation times, as the tsunami soon reaches them
and cannot complete their evacuation paths. In the case of the
street network’s closeness (which is a measure of how close
a cell is to all other cells within the “evacuation territory”),
one may expect that more compact street networks should
lead to shorter evacuation routes (and times) and, therefore,
fewer dead evacuees. Nevertheless, according to our results,
it would be possible that these smaller networks are faster
to flood by the incoming tsunami. Lastly, in the case of the
ETA, it is essential to underline that the estimated time of ar-
rival of the maximum flood is not necessarily the same as the
onset time of the first tsunami front. In our model, the latter
can have much more impact on the evacuees’ survival rates.

While tsunamis and their related evacuation potentials are
highly context-dependent, our cross-case results could serve
to identify and appraise other tsunami-vulnerable areas in
Chile. Moreover, they highlight possible spatial planning
guidelines that could be applied to develop new urban re-
gions in exposed territories (if this expansion cannot be re-
stricted or discouraged). For instance, our results show that
the average number of tsunami-caused deaths would occur
across those evacuees initially located within an approxi-

mately 300 m wide buffer zone from the coastline. In line
with this, Løvholt et al. (2014, p. 133) point out that studies
of the impact of the 2004 Indian Ocean tsunami show that “in
Sri Lanka, people within the 100-m zone from the shoreline
were more likely to die and to be seriously injured than peo-
ple living outside this zone”. In turn, González-Riancho et
al. (2015) underline that 72 % of the housing units within the
200 m line from the shoreline in Sri Lanka were completely
or partially damaged, leading to a higher number of victims.
Eckert et al. (2012) also point out that buildings within that
area are highly vulnerable. In the case of the tsunami flood,
while inundation depths can be above 10 m at several of our
case studies’ coastlines, our model shows that the average
flood depth at the lethal departure cells is roughly 4.67 m.
In turn, safe cells have a comparatively low mean value of
0.61 m, implying that some evacuees can avoid being caught
by the advancing tsunami front if they rapidly leave the low
floodable areas. These results are in line with the literature
on human casualties during past tsunamis. For instance, Sup-
pasri et al. (2016) point out that the inundation depths that
increased fatality ratios during the 2011 Great East Japan
Earthquake and Tsunami are primarily around 10 or 5 m, de-
pending on the specific geographical characteristics of differ-
ent examined areas. In line with this, Murakami et al. (2012)
examined the human loss distribution during the 2011 dis-
aster in the district of Yuriage, city of Natori, showing that
inundation depths between 1.87 and 8.50 m triggered death
ratios up to 22.3 %. In turn, in the case of the ground eleva-
tion, the average value of the safe cells is 13.82 m. When we
include lethal cells in the analysis, we can see that fatalities

Nat. Hazards Earth Syst. Sci., 22, 2857–2878, 2022 https://doi.org/10.5194/nhess-22-2857-2022



J. León et al.: Modelling geographical and built-environment attributes as predictors of human vulnerability 2873

concentrate around elevations of 6 m and below. In this re-
spect, Eckert et al. (2012) argue that buildings located at a
height of 5–10 m can be considered of medium vulnerability
to tsunamis, while those with an elevation above 10 m have
low vulnerability. For the previously mentioned case of the
district of Yuriage, Murakami et al. (2012) report elevations
less than 5 m in the deadly areas. It is also noticeable that
cells belonging to street networks with good integration lev-
els that also allow for short walks to the safe assembly areas
and have few direction changes (i.e. with high betweenness,
straightness, and PDR values, respectively) have lower death
ratios. In this respect, as Sharifi (2019) underlines, locations
with high betweenness centrality values can easily lead to
many other sites within the network. Therefore, it is critical
to maintain their functionality during disasters.

To focus on possible paths to improvement for these case
studies, it is helpful to examine the outcomes from our mul-
tivariate regressive analysis. In this respect, as we pointed
out above, some independent variables have comparatively
higher impacts on the death ratios as predicted by our regres-
sive model. The most significant one is the maximum flood
depth, followed by the straightness, the total route length,
and the travel time. The maximum floods on lethal cells are
difficult to mitigate unless hardware-type defences are built
(which, as mentioned above, is unlikely in developing coun-
tries like Chile). Moreover, we already pointed out that the
tsunami flood also affects the travel time in our regressive
analysis. Nevertheless, the straightness and total route length
depend on real-world urban configurations, resulting from
the case studies’ historical development process. They hence
can be subject to strategic interventions to modify their val-
ues to reduce the cells’ death ratios. In this respect, more
direct routes are not only faster to walk (thus reducing es-
cape distances and evacuation times) but also help to improve
wayfinding, as they reduce the changes in direction that evac-
uees must undertake between their origins and destinations
(Fakhrurrazi and Van Nes, 2012; Mohareb, 2011). The im-
portance of wayfinding cannot be underestimated, especially
in the case of tourists and non-locals, who may constitute a
large percentage of casualties during a tsunami (as shown by
the Chilean disaster of 2010) (Kubisch et al., 2020). Also, the
total route length (and the shelter distance) could also be re-
duced by incorporating vertical evacuation across the urban
fabric, which has been proven to reduce the evacuation times
significantly (León et al., 2019; Mostafizi et al., 2019). Cur-
rently, vertical evacuation in Chile is recommended as only a
second choice of escape if horizontal evacuation is not feasi-
ble (ONEMI, 2014).

Thorough evacuation analyses are context-dependent and
must take care of geographical and socio-psychological as-
pects that affect the populations’ behaviour (Makinoshima
et al., 2021; Mohareb, 2011; Murray-Tuite and Wolshon,
2013; Perry et al., 1981). In this respect, one limitation of
our study is that socio-psychological factors are not anal-
ysed. However, future research on this type of determinants

of tsunami evacuation could help to critically review some
of our model’s central assumptions (e.g. a “full compliance”
evacuation, the probabilistically distributed departure times,
or the routing process) and strengthen future outputs. Fur-
thermore, as Suppasri et al. (2016, p. 11) point out, “anal-
yses involving statistically significant correlations between
characteristics and fatality rate must be performed with cau-
tion and based on various data sources”. We are aware that
the reliability of our findings depends on the quality of the
model’s assumptions, functions, and source data. In this re-
spect, we included a secondary SHAP value analysis to as-
sess the validity of our results at coarser resolutions of the
input data generated by our flood and evacuation model. This
analysis showed that the overall importance hierarchy of the
examined independent variables (as predictors of the death
ratio) remains unchanged throughout the different resolu-
tions of the study. Moreover, halving the resolution of our
input data could lead to absolute changes not greater than
18 % on the impact of the most significant independent vari-
ables on the expected death ratio. Our results also show that
increasingly less accurate resolutions might lead to notice-
able variations in these impacts (for instance, up to roughly
35 % when the maximum flood depth is compared between
the ×1 and ×32 resolutions). Along these lines, future re-
search could deepen into the possible sources of these vari-
ations (including, but not limited to, the scale of the input
data), for instance, the appropriate resolution, type, function-
ing and parameters of the evacuation models; the character-
istics of the examined independent variables; and the cho-
sen regressive analysis method, among others. We also point
out that reality-based validation procedures (as the one men-
tioned in León et al., 2021a) will always be necessary and
that the related spatial planning guidelines for evacuation im-
provement should be delivered cautiously. Nevertheless, as
tsunamis are relative rare phenomena (where populations’
actual behaviours are still hard to capture), our simulation-
based analysis provides a significant step into identifying and
examining geographical and built-environment attributes that
might influence the evacuation potential of coastal commu-
nities, as a spatial framework for the subsequent analysis of
their specific socio-psychological characteristics.

5 Conclusion

– We proposed a modelling-based approach (including in-
undation, evacuation, and urban-form metrics) to quan-
titatively appraise, through statistical regressive analy-
sis, some of the most relevant geographical and built-
environment aspects that could contribute to the success
(or failure) of evacuation in the case of a tsunami, using
a cross-case study of seven Chilean coastal cities.

– According to our results, some of these cities can have
up to roughly 55 % of their move boundaries (i.e. the
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evacuation area between the coastline and the safe in-
land assembly areas) susceptible to having dead evac-
uees.

– We also demonstrated that geographical, urban-form,
and evacuation variables, including the maximum flood
depth (within the examined evacuation threshold),
straightness, total route length, and mean travel time,
could significantly impact the expected death ratios in
each case study. Moreover, we describe the average val-
ues of these metrics related to different thresholds of
death ratio.

– We argued that, while engineered countermeasures to
control flood levels are unlikely in developing countries
like Chile, urban-form metrics like the street network’s
straightness could be the subject of improvements
through planning processes. Moreover, this would allow
for other enhancements in other evacuation dimensions
like the travel time and evacuees’ wayfinding.

– Future research could enhance our approach with the
incorporation of socio-psychological aspects and prob-
abilistic tsunami flood modelling. Also, more case stud-
ies (at both the national and global levels) and validation
procedures (also considering different resolutions of the
input data) could help test our findings’ robustness and
generalisability.
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