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Abstract. Agricultural drought, which occurs due to a sig-
nificant reduction in the moisture required for vegetation
growth, is the most complex amongst all drought categories.
The onset of agriculture drought is slow and can occur over
vast areas with varying spatial effects, differing in areas with
a particular vegetation land cover or specific agro-ecological
sub-regions. These spatial variations imply that monitoring
and forecasting agricultural drought require complex models
that consider the spatial variations in a given region of inter-
est. Hierarchical Bayesian models are suited for modelling
such complex systems. Using partially pooled data with sub-
groups that characterise spatial differences, these models can
capture the sub-group variation while allowing flexibility and
information sharing between these sub-groups. This paper’s
objective is to improve the accuracy and precision of agricul-
tural drought forecasting in spatially diverse regions with a
hierarchical Bayesian model. Results showed that the hierar-
chical Bayesian model was better at capturing the variability
for the different agro-ecological zones and vegetation land
covers compared to a regular Bayesian auto-regression dis-
tributed lags model. The forecasted vegetation condition and
associated drought probabilities were more accurate and pre-
cise with the hierarchical Bayesian model at 4- to 10-week
lead times. Forecasts from the hierarchical model exhibited
higher hit rates with a low probability of false alarms for
drought events in semi-arid and arid zones. The hierarchi-
cal Bayesian model also showed good transferable forecast
skills over counties not included in the training data.

1 Introduction

Drought is a naturally occurring phenomenon that affects the
food security of approximately 55 million people annually
and can severely impact a country’s economy (Vatter, 2019;
Deleersnyder, 2018; Nicolai-Shaw et al., 2017). Drought, in
most cases, is associated with below-average precipitation
and is referred to as meteorological drought. Prolonged me-
teorological drought events mainly lead to a significant re-
duction in the amount of soil moisture required for vegeta-
tion growth, thus resulting in an agricultural drought (Heim,
2002; Boken et al., 2005). Hence, agricultural drought events
are considered a physical manifestation of meteorological
drought (Boken et al., 2005).

Agricultural drought, which is the focus of this paper,
is known to be very complex (Boken et al., 2005); this is
because, aside from the soil moisture dynamics, the sever-
ity of agriculture drought events is further augmented by
over-exploitation of vegetation through various human and
wildlife activities like deforestation and overgrazing (Lal,
2012).

Its onset can be slow and can occur in vast areas with
varying spatial impact (Boken et al., 2005). For instance,
the impact of drought may differ within a given region de-
pending on whether it is dominated by trees, grasslands, or
croplands. In croplands especially, variation in drought oc-
currences may be also attributed to farming practices. Spatial
differences in drought impact can also arise due to the varied
agro-ecological sub-regions within an affected area. These
differences indicate that early warning systems (EWSs) for
agricultural drought will require very complex models.
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Drought EWSs have been recognised by global ini-
tiatives like the United Nations Sustainable Development
Goals (SDGs) for effective drought monitoring and hazard
preparedness (IISD, 2018). As such, international agencies
like the United Nations Development Programme (UNDP)
and the United States Agency for International Devel-
opment (USAID) (https://usaid.gov/, last access: 3 Octo-
ber 2021) mandated to monitor drought hazards have de-
veloped and deployed several EWSs. These systems as-
sist drought management officials and people living in
drought-prone communities to prepare for hazardous events
(UN, 2018). The Famine Early Warning Systems Net-
work (FEWS NET) (https://fews.net/, last access: 3 Octo-
ber 2021) is an example of such EWSs. The system, de-
veloped by the USAID, utilises household data together
with agro-climatic indicators and vegetation health to mon-
itor drought and its impact (FEWSNET, 2021). However,
drought forecasting for anticipatory action via the FEWS
NET platform is mainly based on expert judgement (Funk
et al., 2019) rather than the use of advanced statistical meth-
ods or machine learning models.

Recent advances in computational power and processing
hardware have enabled researchers to develop and deploy
machine learning models (Bishop and Nasrabadi, 2006) such
as support vector machines (Shao and Lunetta, 2012) and
various neural network architectures (Da Silva et al., 2017).
Machine learning models enable the construction of predic-
tive or prescriptive models using advanced statistical meth-
ods to capture hidden patterns in data (Bishop and Nasrabadi,
2006). In the field of drought research, most of the data used
within machine learning models come from satellite earth ob-
servation (EO) images. These datasets are available over long
temporal periods, cover vast areas, and are easy to access.
Therefore, they provide a cost-effective way of developing
models for monitoring and forecasting drought events over
vast regions. Examples of such EO datasets include precipi-
tation, soil moisture levels, normalised difference vegetation
index (NDVI), enhanced vegetation index (EVI), and vege-
tation condition index (VCI) (Kogan, 1995), all derived from
remotely sensed EO data. Nay et al. (2018), for instance,
used the gradient boosting machine (GBM) model to fore-
cast EVI with lagged spectral bands from the Moderate Res-
olution Imaging Spectroradiometer (MODIS) EO data. Tian
et al. (2019) worked on forecasting dryland vegetation con-
dition using NDVI via an eco-hydrological model driven by
surface water extent also derived from MODIS images. Oth-
ers include Barrett et al. (2020) and Adede et al. (2019), who
applied Gaussian processes and artificial neural networks,
respectively, in their research to develop robust models for
short- to medium-term forecasts of vegetation conditions. All
the models used in the cited works were mainly implemented
by aggregating data over similar land cover types and agro-
ecological zones (AEZs). The differences in the AEZs or
land covers within the region were not considered.

This paper is part 2 of a previous study (Salakpi et al.,
2022), where we used a Bayesian regression method to
model the relationship between biophysical drivers and their
effect on forecasting vegetation conditions. The approach
was based on the classical “no-pooling” method (see Fig. 1),
where we fitted separate regression models to data extracted
from their respective regions. Pixels representing the bio-
physical indicators and vegetation conditions were sampled
for different land cover and aggregated over the regions of
interest. The modelling approach also treated the effects of
climate and other biophysical factors on vegetation condi-
tions independently for each region. The models were very
skilful for medium- to long-term forecasts, but forecasts over
regions with extensive cloud cover suffered due to the lack
of data.

Although known to vary over the different regions, the ef-
fects of biophysical indicators on vegetation also show some
similarities across the different regions (Vicente-Serrano,
2007). Data for such analysis can be pooled over all the re-
gions of interest and analysed via the “complete-pooling”
modelling approach to capture these similarities. This ap-
proach allows information sharing between the regions of in-
terest, which is an advantage over the no-pooling approach
(Gelman and Hill, 2006). However, the complete-pooling
method is not very useful when the pooled data have sub-
groupings, e.g. pooled soil moisture data from different re-
gions with varied land cover types. In such a case, a more
advanced approach would be to combine the strengths of
both the no-pooling and complete-pooling methods into a
model known as a “partial-pooled” model or “hierarchi-
cal model” (Gelman and Hill, 2006; Gelman et al., 2013).
The hierarchical approach, which we demonstrate in this pa-
per, enables flexibility between the sub-groups while treat-
ing them independently at the same time (Gelman and Hill,
2006). A hierarchical model, when implemented within a
Bayesian framework, is referred to as a hierarchical Bayesian
model (HBM) (Gelman et al., 2013). HBMs have in recent
times been recognised as a powerful approach for modelling
and analysing very complex data. They have been exten-
sively used for research in fields like astrophysics, neuro-
science, and genetics (Sánchez and Bernstein, 2019; George
and Hawkins, 2005; Storz and Beaumont, 2002). Although
not commonly used in the study of vegetation dynamics and
drought monitoring, Senf et al. (2017) used an HBM to study
the spatial and temporal variation in broad-leaved forests
phenology using Landsat data.

The HBM is an extension of the regular Bayesian regres-
sion, where model parameters differ based on the variations
within a given dataset (Gelman et al., 2013; Gelman and Hill,
2006). Thus, this paper seeks to test the concept of forecast-
ing VCI, an EO-based agricultural drought indicator, with an
HBM and answer the following question. Can we improve
forecast accuracy and precision by separately learning pa-
rameters for the effects of lagged precipitation and soil mois-
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Figure 1. Figure illustrating the concept of no pooling, complete pooling, and partial pooling of the data.

ture on vegetation conditions in each AEZ or over varied land
cover types?.

Another advantage of using the HBM is its transferabil-
ity (Senf et al., 2017). Transfer learning in this context refers
to the process where models trained on a given dataset can
be re-used to make predictions on different but related data
that were not part of the training set (Z. Yang et al., 2017).
The partially pooled data used in HBMs make them suit-
able for transfer learning primarily because the training data
are pooled from multiple regions, and the sub-groupings
within the data are the same for the non-training sample data
(Rosenstein et al., 2005).

Our objectives for this proof of concept are to

– improve the forecast accuracy and precision of the
Bayesian auto-regression distributed lags (BARDL)
model with a hierarchical Bayesian model in regions
with diverse AEZs and land covers;

– test the transfer learning property of hierarchical models
that enables pre-trained models to be used on similar
data from a different location without the need to retrain
the model (Y. Yang et al., 2017).

2 Study area and data

2.1 Study area

To test our concept of forecasting vegetation condition
with HBM, we sampled data from some selected coun-
ties in Kenya (Baringo, Kitui, Marsabit, Narok, Tana River,
Turkana), shown in Fig. 2 with red boundary lines. The
selected counties have diverse land use and land cov-
ers (LULCs), ranging from crops to evergreen forests. These
counties also have varied AEZs, with rainfall and tempera-

ture patterns ranging from moderate to extreme. During the
short and long rainfall seasons, annual mean precipitation
ranges from 20 to 20 mm. Temperature across these coun-
ties also ranges from as low as 10 to 40 ◦C (Ayugi et al.,
2016). The main economic activity in these counties is agri-
culture, predominantly agro-pastoral practices (Gebremeskel
et al., 2019; Vatter, 2019). However, extreme climatic vari-
ations make this region prone to prolonged drought events,
and the impact of these dry spells varies over the various land
covers within the AEZs.

We selected only six counties because the algorithm used
for parameter sampling by the HBM can be very time-
consuming when the input data are more than 10 000 records.
The sampling time is also mainly due to the complex nature
of HBMs.

2.2 Data

2.2.1 Precipitation (rainfall estimates)

The precipitation data between 2001 and 2018 were ob-
tained from the Climate Hazards Group InfraRed Precipita-
tion (CHIRPS) project (Funk et al., 2015). The data comprise
weather station data combined with rainfall estimates cap-
tured via satellite remote sensing. The dataset is available as
daily 5km resolution images.

2.2.2 Soil moisture

The daily soil moisture products by the European Space
Agency’s Climate Change Initiative (ESA-CCI), from 2001
to 2018, were used for this work. The data represent soil
moisture at a 10 cm soil depth and are derived from an algo-
rithm that takes information from multiple active and passive
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Figure 2. Maps of Kenya showing agro-ecological zones (AEZs) and land cover maps for the counties from which pixels were sampled.
Kenya AEZ boundary map credit: IGAD Climate Prediction and Application Centre (ICPAC). Land cover map credit: European Space
Agency (ESA), Climate Change Initiative (CCI).

synthetic aperture radar (SAR) satellites (Gruber et al., 2019;
Dorigo et al., 2017; Y. Yang et al., 2017).

2.2.3 Surface reflectance

The vegetation index (VCI) used as a drought indica-
tor for the work was derived from the bidirectional re-
flectance distribution function (BRDF)-corrected MODIS
product, MCD43A4 Version 6 (Schaaf and Wang, 2015). The
MCD43A4 products, available as daily 500 m resolution im-
ages, are captured in bands that range from visible to in-
frared. The VCI was derived from the NDVI, using the red
and near-infrared (NIR) bands via Eq. (1).

NDVI=
NIR−Red
NIR+Red

(1)

After computing the NDVI, the VCI values are then com-
puted using Eq. (2).

VCIi = 100×
NDVIi −NDVImin,i

NDVImax,i −NDVImin,i
, (2)

where NDVIi is the values for a given ith week, and
NDVImin,i and NDVImax,i represent the long-term minimum
and maximum NDVI values of a pixel for the ith week within
a baseline year period.

2.3 Agro-ecological zones and vegetation land covers

Two HBMs were developed in this study, one based on AEZs
and the other on land covers. AEZs are geographical areas
characterised by similar climatic patterns and soil moisture
levels suitable for agriculture and vegetation growth. These
zones were created by the Food and Agriculture Organiza-
tion (FAO) in collaboration with the International Institute
for Applied Systems Analysis (IIASA) and are based on
a framework that utilises a series of models with climate
and land use information to quantify and map out the re-
gions (Fischer et al., 2000). The zones are categorised as hu-
mid, semi-humid, arid, semi-arid, and very arid. These AEZs,
from their definition, exhibit distinct climate properties; thus,
a modelling approach that can separately learn parameters
for the effects of precipitation and soil moisture on vegeta-
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Table 1. Table describing the agro-ecological zone, vegetation type,
and annual rainfall levels.

Zone Vegetation type Average
classification annual

zone
rainfall

(mm)

Humid Moist forest 1100–2700
Sub-humid Moist and dry forest 1000–1600
Semi-humid Dry forest and moist woodlands 800–1400
Semi-humid to arid Dry woodland and bushlands 600–1100
Arid Bush-, grass-, and shrublands 450–900
Semi-arid Bush-, grass-, and shrublands 300–500
Very arid Desert, sparse grass, and shrub 150–350

Source: Sombroek et al. (1982).

tion conditions based on the different AEZs can give a more
accurate VCI forecast.

The AEZs in our study area can be seen in Table 1.
Most drought-prone regions are made of diverse vegeta-

tion covers; these include tree covers (forests), grasslands,
shrubs, and croplands. The impact of drought on these land
cover types varies both spatially and temporally. Thus, a
drought forecast model should consider the varying effects
of the biophysical factors on the various land covers. Us-
ing an HBM framework in this context enables us to achieve
this. Data corresponding to the various vegetation land cov-
ers were extracted with the 2016 Sentinel 2 land use and land
cover (LULC) map1.

3 Methodology

3.1 Data pre-processing

A major challenge with using optical EO images is cloud
cover and cloud shadows. In addition, pixel reflectance val-
ues sometimes fall outside the meaningful range due to er-
rors during the atmospheric and radiometric correction pro-
cess. These clouded and poor-quality pixels were filtered
out with the quality assurance maps that come with the im-
ages. Weekly averages of VCI, precipitation, and soil mois-
ture data corresponding to the vegetation land covers of in-
terest were extracted from the selected counties using the
European Space Agency (ESA) 2016 Sentinel 2 land use
and land cover (LULC) map. The same data within the var-
ious AEZs were also extracted using the AEZ shapefiles
produced by the IGAD Climate Prediction and Application
Centre (ICPAC) (http://geoportal.icpac.net/layers/geonode%
3Aken_aczones, last access: 3 October 2021). The tempo-
ral gaps, left by the removal of clouded pixels, were filled

1Visit http://2016africalandcover20m.esrin.esa.int/ (last access:
3 October 2021) to learn more about the European Space
Agency (ESA) Climate Change Initiative (CCI) Sentinel 2 land
cover map.

using the radial basis function (BBF) interpolation method,
which ensures values obtained through interpolation over
wide intervals do not go beyond the valid ranges (Rippa,
1999). The noise resulting from optical instrument failures
and gap-filling processes was reduced with a penalised least-
squares method (Whittaker smoother) (Eilers, 2003; Klisch
and Atzberger, 2016). A 3-month (12 weeks) rolling aver-
age was applied to the VCI to make it VCI3M primarily be-
cause our stakeholders use it for their EWS. Applying the
rolling averages enhanced the persistence in the VCI. Three-
month precipitation (P3M) and soil moisture (SM3M) were
also computed for consistency. Finally, to avoid the influence
of strong seasonal cycles on the forecast values and make
data stationary, the VCI3M, P3M, and SM3M data were con-
verted to anomalies by subtracting the annual mean per land
cover type and AEZ before fitting to the HBM. After fore-
casting, the subtracted seasonal means for the VCI3M (for
each AEZ and land cover) were added back. All the variables
were also standardised by subtracting the mean and dividing
by the standard deviation to make the variable unitless and
avoid the dominance of certain variables over others.

3.2 Forecast model

The HBM implemented in this work was done via an auto-
regressive distributed lag (ARDL) model (Gujarati, 2003).
The ARDL(p,q) is a time series regression method used for
multivariate time series analysis where the variable of inter-
est (dependent variable) is modelled with its lags and that of
additional explanatory variables (independent variable) (Gu-
jarati, 2003). The p represents the number of lags for the
independent variable used in the model, and the q is the
auto-regressive part of the model, representing the lags of the
dependent variable passed to the ARDL model. Within the
HBM framework, a Bayesian probabilistic approach is used
to infer model parameters instead of the maximum likeli-
hood approach. The data Y for the model are partially pooled
as Yij , where i is the index of the variable (e.g. precipitation),
and j represents the indices of the sub-groups (e.g. AEZs)
within the data. This data structure enables parameter in-
ference at both the global θi and sub-group levels θj at the
same time as shown in Fig. 3. Using the Bayesian frame-
work also allows us to incorporate informative priors into
the parameter estimation process. Furthermore, we obtain a
full posterior probability distribution for both the parame-
ters and forecast values instead of just point estimates, which
gives a straightforward way to quantify forecast uncertainties
(Ravines et al., 2006; Asaad and Magadia, 2019).

The Bayesian framework used for the parameter inference
is based on Bayes’ theorem in Eq. (3):

P (θ |Xt )=
P (Xt |θ) ·P(θ)

P (Xt )
, (3)

where Xt represents the input data of the ARDL model;
P(θ |Xt ) represents the probability of our model parameters

https://doi.org/10.5194/nhess-22-2725-2022 Nat. Hazards Earth Syst. Sci., 22, 2725–2749, 2022

http://geoportal.icpac.net/layers/geonode%3Aken_aczones
http://geoportal.icpac.net/layers/geonode%3Aken_aczones
http://2016africalandcover20m.esrin.esa.int/


2730 E. E. Salakpi et al.: A dynamic hierarchical Bayesian approach for forecasting vegetation condition

Figure 3. An illustration of the parameter structure of the hierarchical Bayesian model based on partially pooled data (Yij ). The global param-
eter (θi ) represents the average posterior parameter distribution over an entire region of interest, while the group-level parameters θj (abcd)
are the individual posterior parameter distributions inferred from the sub-group data (Yjabc) within the region of interest.

given our data Xt , also known as the posterior; P(Xt |θ) rep-
resents the probability of the data given the parameters, re-
ferred to as the likelihood; and P(θ) represents the prior be-
lief about the parameters. P(Xt ) is the probability of data
or evidence. The evidence is a normalisation term and usu-
ally ignored, making the posterior proportional to the likeli-
hood and prior as seen in Eq. (4) (Lambert, 2018; McElreath,
2018).

P (θ |Xt )∝ P (Xt |θ) ·P(θ) (4)

It is important to note that working with the Bayes’ frame-
work allows us to explicitly define our prior beliefs about
model parameters. These priors are then updated with the
likelihood function to generate the posterior probability dis-
tribution when informed by observed data.

The HBM will enable us to fit the ARDL model by si-
multaneously inferring global parameters (Nodes A and B in
Fig. 4) across the partially pooled data as well as their sub-
group-level variations (Node G in Fig. 4) (Gelman and Hill,
2006). The sub-group levels, in this case, refer to the differ-
ent LULCs or AEZs within our data. The varying effect of
the sub-groups was incorporated into our HBM as categori-
cal variables (Node K in Fig. 4).

The HBM was based on an ARDL (p = 6, q = 6), where
the lagged values of P3M, SM3M, and VCI3M were all set
to lags of 6 weeks. The nature of the input variables sug-
gests a high likelihood for our model parameters to have
a strong correlation. We addressed this by modelling our
group-level parameters as a multivariate normal distribu-
tion using a Cholesky matrix decomposition as hyper-priors
(prior of a prior distribution) (Nodes C–E in Fig. 4) (McEl-
reath, 2018). The Cholesky factorisation was used to trans-
form the multivariate distribution to increase the efficiency
of parameter sampling (Stan Development Team, 2018). The
group-level parameters of the HBM are modelled as condi-
tional probabilities of the global parameters; however, these
group-level parameters tend to not separate well from the
global parameters. When this happens, the model does not
converge, resulting in less precise forecasts. We handled this
by introducing an offset factor (Node F in Fig. 4) to make
the model non-centred (Betancourt and Girolami, 2013). The
global parameters were set to follow a normal distribution to
enable parameter values to take on positive and negative val-
ues. Due to the hierarchical structure of the model parame-
ters, global prior distribution usually serves as hyper-priors
for the group-level parameters.
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Figure 4. A directed acyclic graph (DAG) schema representing the hierarchical model based on varying agro-ecological zones. The figure
depicts how the hierarchical model parameters and input data are defined and structured.

Parameter approximation for the HBM was sampled with
the Hamiltonian Monte Carlo (HMC) algorithm (Hoffman
and Gelman, 2014), an improved version of the classic
Markov Chain Monte Carlo (MCMC) based on the notion of
Hamiltonian dynamics. For this research, however, the No-
U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014) ver-
sion of HMC was used.

The hierarchical BARDL model in this study was defined
as

Dt+n = αj [i]+

q∑
i=0

βj [d]Dt−q +

p∑
i=0

θj [p]Pt−p

+

p∑
i=0

δj [s]St−p + εt−p, (5)

whereDt+n is the VCI3M at nweeks ahead, andDt−q repre-
sents the data for lags 0 to q of VCI3M (dependent variable).
Pt−p and St−p are the lags 0 to p, P3M, and SM3M, respec-
tively. αj [i] is the global (i) and group-level (j ) regression
intercept, and βj [d], θj [p], and δj [s] are the regression coeffi-
cients for the lagged P3M and SM3M input variables at the
global (i) and group level (j ). εt−p is the regression error
term. Equation (5) can be simplified as Eq. (6) and re-written
as a Bayesian likelihood function P(Xt |θ) in Eq. (7):

Dt+n = αj [i]+

i∑
i=0

βj [i]Xt−i + εt−i, (6)

where n is the lead time, βj [i] is the global and group-level
model parameters, andXt−i represents the lagged input vari-
ables in Eq. (5).

P
(
Xt |αj [i],βj [i],σ

)
∼N

(
αj [i]+

i∑
i=0

βj [i]Xt−i,σt−i

)
, (7)

where αj [i] ∼N(µαi ,σ
2
αi
), βj [i] ∼Nµβi , σ

2
βi
), and σt−i ∼

Half-Norm(0,σ 2) (half-normal distribution).
Below (Fig. 4) is a directed acyclic graph (DAG)

schematic representation of an example of the HBM used for
this study.

The nodes seen in the HBM DAG in Fig. 4 are defined as
follows:

– Node A is the global (mean) regression intercept or (αi)
parameter assumed to be Gaussian.

– Node B represents global (mean) regression coefficients
for each of the lagged input variables (precipitation and
soil moisture) or (βi) parameters for the 18 lagged vari-
ables (6 lags each for VCI3M, P3M, and SM3M).

– Node C represents the Cholesky covariance matrix used
as hyper-priors for the group-level αj and βj parame-
ters;

– Nodes D and E are the Cholesky standard deviation and
correlation from the matrix decomposition, respectively.

– Node F represents the offset distribution (Gaussian)
hyper-prior to make the model non-centred.

– Node G is the prior group-level parameters for αj and
βj parameters for each vegetation AEZ within our se-
lected counties – i.e. 5 AEZs (βj ) within each of the
18 (βi) parameters plus 1 (αi).

– Node H represents the error term in the HBM regres-
sion.

– Node I is the likelihood function (Eq. 7) of the HBM
regression and is based on ARDL (p = 6, q = 6) shown
in Eqs. (5) and (6).

– Node J is our lagged inputs datasets.

https://doi.org/10.5194/nhess-22-2725-2022 Nat. Hazards Earth Syst. Sci., 22, 2725–2749, 2022



2732 E. E. Salakpi et al.: A dynamic hierarchical Bayesian approach for forecasting vegetation condition

– Node K is the categorical values that map the input data
to their respective AEZs.

– Node L is the observed VCI3M values at an i lead time.

3.3 Forecasting and model evaluation

The forecast method used in this work was the direct multi-
step forecast approach as described by Ben Taieb et al. (2010)
and Ben Taieb and Hyndman (2014).

Dt+n =

i∑
i=0

νiXt−i + εt−i, (8)

where νi is the model parameters, and Xt−i is the lagged
inputs.

With this approach, separate models are fitted for every
n lead time forecast. Meaning, for each nth step ahead of a
forecast (Dt−n), the observed VCI3M for the training dataset
is shifted by n weeks ahead from lag 0 Xt−0 for all input
variables.

After the parameter estimation via HMC sampling, the
held-out dataset is passed to the fitted model (without the
target variable) to produce forecast values for n weeks
ahead. The held-out observed values and mean values of
our forecast distributions were used to compute the coeffi-
cient of determination (R2) (Eq. 10) and root mean square
error (RMSE) (Eq. 9) metrics for forecast evaluation. The
R2 score quantifies the variation in the observed data that the
model could explain, while the RMSE measures the average
difference between the observed and forecast values.

RMSE=

√√√√√ n∑
i=n

(yi − fi)
2

n
, (9)

where the yi is the observed data, fi is the forecasts, and n is
the total number of data points.

R2
= 1−

∑
i

(yi − fi)
2

∑
i

(yi − y)
2 , (10)

where yi is the observed data, and fi is the forecasts.
The forecast uncertainties were analysed with the mean

prediction interval width (MPIW) and the prediction interval
coverage probability (PICP) (Pang et al., 2018). The PICP
computes the percentage of time the observed variable falls
within a chosen prediction interval. The MPIW measures the
mean distance between the upper (u) and lower (l) bound for
a chosen prediction interval.

The MPIW was derived as follows:

MPIWt+n =
1
N

n∑
i=1
|u(Di)− l (Di) |, (11)

where u(Di) and l(Di) are the absolute upper- and lower-
bound values of the forecast distribution.

The PICP was derived as follows:

PICPt+n =
1
N

n∑
i=1

ci, (12)

where N is the number of forecast samples, ci is either 0 if
the observed drought indicator value at Dt+n falls outside
the prediction interval or 1 if the observed value is within the
upper and lower bound of the forecast distribution.

Other forecast verification metrics used in this paper are
the receiver operating characteristic (ROC) curve (Wilks,
2006) and forecast probability reliability diagrams and sharp-
ness plots (Wilks, 2006; Jolliffe and Stephenson, 2012).

The ROC curve tells us the likelihood of a forecast be-
ing true (true positive rate – TPR) for the given drought
threshold and the probability of the forecast event being false
(false alarm rate – FAR). In addition, the area under the
curve (AUC) was also computed to determine the propensity
of our model to separate drought events for the set threshold
(Bradley, 1997).

The reliability diagram allows us to assess the accuracy of
the forecast probability predicted by our model. The proba-
bility of a drought event is computed using the full posterior
distribution of our forecasts at a given drought threshold. The
same threshold is used to convert observed data into binary
events, where 0 indicates a “no drought”, and 1 indicates a
“drought” event. The forecast probabilities and observed bi-
naries are binned into probability intervals and used to plot
the forecast reliability diagrams. The reliability of the fore-
cast is assessed by the number of times an observed event
agrees with a given forecast probability (Wilks, 2006). The
sharpness plots, on the other hand, tell the frequency with
which a drought event is predicted within a probability bin
(WWRP, 2009).

4 Results

Our dynamic HBM for forecasting VCI3M was tested on
datasets based on their AEZs and vegetation land covers.
Two models were developed, a BARDL model based on a
no-pooling approach as a base model and an HBM based
on the partial-pooling approach. The BARDL model was
used to forecast VCI3M for the different AEZs, referred to
as “BARDL-AEZ”, and different land covers, referred to as
“BARDL-LC”. The HBM, which was modelled with par-
tially pooled AEZ data, is referred to as “HBM-AEZ”, and
the model-based partially pooled land cover data are referred
to as “HBM-LC”. The results shown in this section are a
comparison of BARDL-AEZ to HBM-AEZ and BARDL-LC
to HBM-LC.
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Figure 5. Plots showing R2 score (a) and RMSE (b) for BARDL-AEZ (dotted) and HBM-AEZ (solid) and for the VCI3M forecast over the
different agro-ecological zones.

Figure 6. Plots showing R2 (a) score and RMSE (b) for BARDL-LC (dotted) and HBM-LC (solid) and for the VCI3M forecast over the
different vegetation land cover types.

4.1 Model performance for AEZ-based models

The AEZ-based models were used to forecast VCI3M for
the humid, semi-humid, semi-arid, arid, and very arid zones.
The R2 scores and RMSE showed in Fig. 5 are for the semi-
arid, arid, and very arid zones since they were of most in-
terest. The results for humid zones can be seen in Fig. A1.
Both R2 scores and RMSE in Fig. 5a and b showed that the
HBM-AEZ model performed better than the BARDL-AEZ
model at all the lead times across all the AEZs. TheR2 scores
were very high for forecasts in the very arid zones, with
HBM-AEZ having 0.97, 0.90, and 0.79 compared to 0.93,
0.86, and 0.75 for the BARDL-AEZ at 6-, 8-, and 10-week
lead time, respectively. These scores indicate that the HBM
was better at capturing the variability within the observed

data than the BARDL model. In terms of the forecast er-
rors (RMSE), the HBM-AEZ also performed better than the
BARDL-AEZ model, with lower RMSE scores across the
lead times.

4.2 Model performance for land-cover-based models

Figure 6 shows the performance metrics for the VCI3M fore-
cast for the vegetation land covers. Overall, the HBM-LC
performed better than the BARDL-LC except for the forest
covers (where both models had almost identical R2 scores
across all lead times). The HBM-LC also performed well up
to 10 weeks ahead for cropland, with R2 scores of 0.70 com-
pared to 0.66 for the BARDL model. The R2 score for fore-
casts over shrublands and grasslands remained between 0.90
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Figure 7. Plots showing R2 (a, c) score and RMSE (b, d) for BARDL-AEZ (dotted) and HBM-AEZ (solid) for the MAM and OND seasons.
Panels (a) and (b) are for the MAM season, and panels (c) and (d) are for the OND season.

and 0.70 up to 8 weeks ahead for the HBM-LC. The forecast
errors from the RMSE plot (Fig. 6b) showed a slightly differ-
ent pattern. The forecast errors for all the land covers except
for forest covers were lower for the HBM-LC. There was,
however, no difference in R2 and RMSE over forest cover,
probably because the group-level effects did not differ sig-
nificantly from the global effects.

4.3 Model performance during long and short rain
seasons

Forecasts by both the HBM-AEZ and the HBM-LC were
also evaluated for long rain (March, April, May – MAM) and
short rain (October, November, December – OND) seasons.
In both seasons, the HBM-AEZ model gave higher forecast
accuracies across all lead times as seen in Fig. 7. During the
OND season, where drought events mostly occur, forecasts in
the arid and very arid zones showed high R2 scores till a lead
time of 10 weeks (Fig. 7c), and RMSE stayed below 10 until

12 weeks (see Fig. 7d). The HBM-LC on the other hand only
shows significant improvements for the forest and cropland
covers in the MAM season. During the OND season, only
forecasts over the croplands showed very significant differ-
ences (see Fig. B1).

4.4 Uncertainty analysis

The forecast uncertainty in both forecast models was anal-
ysed using the PICP and MPIW. The desired PICP value
usually ranges between 0.90 and 0.99 (Pang et al., 2018).
The PICP indicates the number of times observed values fall
within our forecast interval. On the other hand, the MPIW
values show forecast precision and are expected to remain
very low. Figure 8 shows the time series plots of forecast
and observed VCI3M for the arid zone in Baringo County.
Each plot shows the 95 % prediction interval along with the
PICP and MPIW for 4- to 10-week lead time. The PICP val-
ues for both models indicate that observed values for all the
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Figure 8. Plots showing forecast for arid zones for 4- and 10-week lead times and their uncertainties (PICP and MPIW).

lead times fall within a 95 % credible interval of our fore-
cast distributions over 90 % of the time. The high PICP seen
for the BARDL model from 8 weeks was due to the wider
forecast interval (error bars). A closer look at the MPIW
values indicates that the HBM-AEZ forecasts are more pre-
cise than BARDL-AEZ, indicating that forecasts from HBM-
AEZ have reduced uncertainties. A similar trend was seen for
forecasts across all land covers. Overall, the MPIW metrics
reiterate that forecasts by the HBM have lower errors than the
BARDL. In addition, the partially pooled parameters also in-
dicate errors from the HBM are a better representation of the
actual forecast error. Thus, even though PICP from 10 weeks
ahead seems high for the BARDL model, it does not reflect
the truth.

The mean PICP and MPIW for both AEZs and land covers
over the selected counties are in Tables C1 and C2.

4.5 Predicting drought event (ROC curves)

Although our models produce accurate VCI3M values at the
various lead times, our target users are also interested in
whether or not a drought event alarm will be triggered at a
defined threshold. Therefore, the skill of the forecast mod-

els at predicting drought events was assessed with the ROC
curve with a threshold of VCI3M< 35 %. VCI3M values be-
low this threshold depict moderate to severe drought condi-
tions (Klisch and Atzberger, 2016).

The ROC plots in Fig. 9 show the TPR (hit rate) and
FAR (false alarm) for the three arid zones. The dot on the
curves indicates the VCI3M< 35 threshold. Apart from the
very arid zones (Fig. 9c), significant differences were seen
between TPR and FAR for drought events predicted by the
HBM-AEZ compared to the BARDL-AEZ (Fig. 9a and b)
at all lead times. The hit rates for the HBM-AEZ were
higher than the BARDL-AEZ and were mostly above 80 %
for drought events from 4 to 10 weeks ahead in the arid ar-
eas (Fig. 9b) with false alarm rates between 1 % and 18 %.
Drought events in semi-arid zones also had hit rates above
80 % up until 8 weeks (Fig. 9b). Both models performed very
well at detecting moderate to severe drought events in the
very arid zones, as seen in Fig. 9c, which was mostly because
of the frequent occurrence of drought events in the very arid
zones.

Figure 10 shows the ROC plots for the croplands, grass-
lands, and shrubs for the BARDL-LC compared to HBM-LC.
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Figure 9. ROC plots generally showing higher hit rates for HBM in semi-arid, arid, and very arid zones.

Overall, drought events predicted by the HBM-LC also had
higher hit rates with lower false alarm rates than the BARDL-
LC model. The hit rates for drought events over croplands
remained above 80 % up to 10 weeks ahead, with false alarm
rates ranging between 1 % and 16 %. The TPR for grasslands
and shrubs dropped quickly after 6 weeks. The TPRs were
generally above 60 % for all land covers at all lead times.

4.6 Forecast reliability

The reliability plots in Fig. 11 are a joint distribution of the
binned forecast probabilities and relative frequency of the ac-
tual observed drought event (observed binaries= 1) for their
respective probability bins. In a perfect system, the joint plots
should lie on the diagonal line. The plots also show a his-
togram that depicts the model’s sharpness. A perfect sharp-
ness plot should have peaks at the extreme ends of the his-
togram. A peak close to the 0 % probability bin indicates the
frequency at which the model predicted a “no drought” event,
whereas a peak close to the 100 % probability bin means oth-
erwise. It is essential to state that a forecast system is said to

exhibit little or no sharpness when a sharpness peak is close
to the long-term mean or climatology (Jolliffe and Stephen-
son, 2012).

The reliability diagrams for both BARDL-AEZ and HBM-
AEZ (Fig. 11) showed some differences but were not very
significant. The proximity of the reliability curves to the di-
agonal line, especially for the arid zones (Fig. 11a and c), in-
dicates that the forecast probabilities from both models can
be trusted for early warning and early action. From Fig. 11a,
we see that when the BARDL-AEZ model predicts a drought
event with a probability ranging between 80 % and 100 %
4 to 6 weeks ahead, the forecast probability agrees with the
observed frequency 90% to 99% of the time, which can also
be seen in Fig. 11c for the HBM-AEZ model. For the very
arid zones, forecast probabilities between 60 % and about
80 % (Fig. 11b and d) corresponded to very high observed
relative frequencies above 80 %, a situation referred to as
“under-forecasting”. Under-forecasting describes the situa-
tion where forecast probabilities do not adequately reflect
observed events (Wilks, 2006). However, a closer look shows
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Figure 10. ROC plots for crops, grass, and shrubland covers.

some subtle improvements with the HBM-AEZ, with a slight
difference in the under-forecasting effect from 4- to 6-week
lead times. Regarding the sharpness of the models, a higher
frequency of drought events was seen in the higher forecast
probability bin for the HBM-AEZ (Fig. 11c and d) com-
pared to the BARDL-AEZ (Fig. 11a and b), especially from
6 to 12 weeks in the arid zone. The reliability diagrams for
croplands and grasslands for both BARDL-LC and HBM-
LC models also showed similar patterns. Please see Fig. D1
in Appendix C.

The skill of the models at predicting the onset and end of
a drought period can be seen in Fig. 12. The figure shows a
time series plot of observed and forecasted VCI3M at a 4-
week lead time in a very arid zone within Turkana County of
Kenya for 2017. The plot also shows the forecast probabil-
ity as a dot on vertical lines depicting the onset and end of
a drought period. We can see from Fig. 12a that at the start
of a drought period where the observed VCI3M dropped be-
low the threshold (VCI3M< 35) line, the forecasted proba-
bility for the drought event predicted by the BARDL-AEZ

was 9.4 %. The low probability was because the forecasted
VCI3M model value was higher than the observed value and
threshold. However, the likelihood of a drought onset pre-
dicted by the HBM-AEZ in Fig. 12b was 73 %, prompting a
trigger for early action. Towards the end of the drought pe-
riod, the BARDL-AEZ model gave a high drought probabil-
ity even though the drought duration had ended. Although
these differences are not seen in all cases at the onset and
end of a drought period, the few occurrences in some regions
of interest emphasise that HBMs provide a better approach
to forecasting VCI3M over a diverse region.

4.7 Test transfer learning

Although the data used for training and developing forecast
models are usually sampled to represent a given area of inter-
est, the goal in most cases is to have models that can scale up
to produce forecasts over more expansive areas. The second
objective of this study was to test the transfer learning capa-
bility of HBMs over other regions. The partially pooled data
used for hierarchical parameter approximations were sam-
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Figure 11. Reliability and sharpness plots showing a joint distribution of forecast probabilities and observed frequencies for various arid and
very arid agro-ecological zones for the different lead times.

pled from six counties. The trained models for the different
lead times were then used to forecast VCI3M for the AEZs
and land covers over 10 additional counties (shown with
black boundaries in Fig. 2), which were not part of the train-
ing sets. The comparison of their R2 and RMSE metrics in
Fig. 13 proved that both HBMs were able to forecast VCI3M
over the non-trained counties accurately. For the AEZs, some
significant differences were seen between the trained and
non-trained counties in the semi-arid zones in terms of ex-
plained variances (R2 score) (Fig. 13a). The case was differ-
ent for forecast error in the same zone as seen in Fig. 13b.
A significant gap was also seen for the forecast error over
the very arid area but not for the explained variances. Per-
formance over the different land covers, however, remained
very close, especially for the RMSE (Fig. 13d) despite the
gap seen for grassland in the R2 score plots (Fig. 13c). These
differences can be linked to the fact that although some non-
trained counties may have similar AEZs or land covers, their
climatic and vegetation phonology cycles are not similar.
Aside from these observed differences, the HBMs could gen-
eralise and accurately forecast when given new unseen data.

5 Discussion

In this paper, we seek to improve the forecast accuracy of
VCI3M over vast areas with varying AEZs and land covers
using an HBM. Compared to the non-hierarchical BARDL
model, the HBM presented a more realistic approach for
forecasting VCI3M in regions with different AEZs or land
covers. The evaluation of the HBM based on R2 metrics
indicated that forecasts over the very arid zones and forest
cover areas showed higher accuracies at longer lead times.
The high accuracy observed for the very arid zones could be
a consequence of the significant contribution from the lagged
soil moisture to future VCI3M in addition to precipitation as
seen in Figs. E1 and F1. For the forest areas, the observation
could be because some dense forests show slight variation
during drought periods.

The strong relationship between lagged soil moisture
VCI3M over forest areas could be due to the frequent pre-
cipitation and high soil moisture retention in areas as seen in
Fig. F1. On the other hand, the low contribution of soil mois-
ture to forecasts in croplands, grasslands, and shrubs could be
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Figure 12. A time series plot showing the observed and forecasted VCI3M for the period of 2017. Forecast probabilities are indicated as
points on the horizontal lines marking the onset and end of a drought period.

attributed to the low soil moisture levels over grass and shrub
areas (James et al., 2003; Tyagi et al., 2013). For croplands,
the low contribution of soil moisture could be due to several
factors, including high temperature and soil type. However,
in the very arid areas, the high relative importance of soil
moisture could be due to the rapid response of vegetation to
sudden increases in soil moisture, especially after long peri-
ods of dryness (see Fig. E1).

Overall, results from the various skill assessments showed
that forecasts with HBM were more precise, with a lower
false alarm rate for drought events than the BARDL model.
The HBM was also able to effectively identify drought events
in counties with diverse AEZs and some land covers. The
HBM also performed well in both the long and short rain sea-
sons for the arid and very arid AEZs, which are more prone
to drought occurrences.

Relating the overall forecast skill assessments from this
work to previous works, the HBM showed an approximately
1-week increase in the forecast range compared to the results
from the BARDL method used in Salakpi et al. (2022). On
average, the HBM also exhibited an approximately 2-week
increase in forecast range, compared to the auto-regression
method used in Salakpi et al. (2022) and Barrett et al. (2020).
Furthermore, using the HBM also enabled the simultaneous
forecast of VCI3M for different AEZs and land covers, which
we could not do with the methods used in Salakpi et al.

(2022) and Barrett et al. (2020). Finally, despite the improve-
ment seen with the HBM, the BARDL models also proved to
be useful at predicting drought events at the set threshold as
demonstrated by Salakpi et al. (2022).

Aside from the improvement in the forecast range, the
HBM also had some added strengths. First of all, the hier-
archical nature of the model parameters (see Fig. 3) enabled
the incorporation of the varying (AEZ or land cover) effects
of climate and other biophysical factors on vegetation condi-
tions. Thus, modelling within the HBM framework made it
possible to learn the within-sample parameters in addition to
the global parameters and accurately forecast VCI3M values
specific to the AEZs and land covers. Secondly, modelling
within a Bayesian context means the model outputs prob-
ability distributions instead of point values. These distribu-
tions present a direct approach to quantifying forecast uncer-
tainties. The probability distribution of forecasts also made
it possible to derive forecast probabilities, which allowed us
to quantify the likelihood of drought events in different lo-
cations. Finally, the HBM also makes it possible to transfer
trained models to similar datasets that were not part of the
initial training data. Transferring the model also means that,
even though the HBM model was calibrated on the data from
Kenya, it can be scaled up to generate forecasts for wider
regions without the need to re-calibrate.
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Figure 13. Plot showing R2 score and RMSE for forecasts over counties not included in the training data (solid lines) used for the HBM
versus the counties included in the training data (dotted lines).

The threat of agricultural drought to food security and
global economies has pushed agencies like the USAID and
FAO to develop early warning systems that continually mon-
itor drought events. However, agricultural drought over vast
and diverse arid and semi-arid lands (ASAL) regions poses
a challenge to effective monitoring (Boken et al., 2005;
Vicente-Serrano, 2006). Policy- and decision-makers at these
agencies, including Kenya’s National Drought Management
Authority (NDMA), our primary stakeholder, can incorpo-
rate the HBM demonstrated in this paper into their existing
early warning systems to enhance their efforts. Aside from
accounting for the different AEZs or land covers, the fore-
casted drought probabilities from the HBM will also enable
intelligent decision-making for drought relief agencies that
practise forecast-based financing (FbF) (Coughlan de Perez
et al., 2015) for drought early action.

The methods used in this paper also had a few limitations.
A fundamental limitation was the timely availability of the
ESA CCI soil moisture data, a setback that can affect the
prospects of producing real-time forecasts. Parameter infer-
ence via the HMC sampler also takes a long time to complete
partly due to the complex nature of the HBM and the num-
ber of data points involved. However, this was not consid-

ered to be a significant limitation as it only occurs during the
model training phase. Once the model converges, and sam-
pling completes, the posterior predictive sampling or fore-
casting of VCI3M takes seconds.

6 Conclusion and future work

In this paper, we present a proof of concept that HBM can
factor spatial differences into drought forecasting. Using this
approach also allowed us to understand the vegetation dy-
namics in agro-climatic areas and regions with diverse vege-
tation covers. For instance, we saw an approximately 1-week
gain in forecast range for vegetation conditions in very arid
areas as well as forests (tree cover) and cropping areas. Fur-
thermore, we show that soil moisture contributes more when
forecasting VCI3M over very arid areas and forest covers.
However, future work on drought forecasting should explore
other indicators like the vegetation health indicator (VHI)
or VCI based on the soil adjusted vegetation index (SAVI)
instead of NDVI as demonstrated by Bowell et al. (2021).
Other factors that may directly affect agriculture drought
like atmospheric evaporative demand (Vicente-Serrano et al.,
2020) should also be considered.
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We also show that HBM trained with data in one area
could be transferred to other similar datasets in other regions.
Future research work should consider more complex HBMs
that take into account variations for different land cover types
within the various agro-ecological zones and the seasonal
differences.

Appendix A: Forecast metrics for semi-humid and
humid zones

Figure A1. Plots showing R2 score and RMSE for BARDL-AEZ (dotted) and HBM-AEZ (solid) and for the VCI3M forecast over the
different humid zones.
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Appendix B: Forecast metrics for MAM and OND
seasons for the various land covers

Figure B1. Plots showing R2 ((a, c) score and RMSE (b, d) for BARDL-LC (dotted) and HBM-LC (solid) for the MAM and OND seasons.
Panels (a) and (b) are for the MAM season, and panels(c) and (d) are for the OND season.
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Appendix C: PICP and MPIW for land covers and
agro-ecological zones

Table C1. Table showing a PICP and MPIW (in parentheses) for the various agro-ecological zones.

Models AEZ 4 6 8 10 12

BARDL

Humid 0.88 (0.09) 0.88 (0.21) 0.9 (0.32) 0.91 (0.42) 0.91 (0.52)
Semi-humid 0.87 (0.1) 0.88 (0.22) 0.88 (0.33) 0.89 (0.43) 0.9 (0.52)
Semi-arid 0.97 (0.1) 0.96 (0.22) 0.94 (0.32) 0.95 (0.42) 0.95 (0.5)
Arid 0.98 (0.11) 0.98 (0.23) 0.97 (0.33) 0.97 (0.43) 0.96 (0.51)
Very arid 0.96 (0.11) 0.95 (0.23) 0.94 (0.33) 0.94 (0.42) 0.94 (0.5)

Hierarchical

Humid 0.97 (0.09) 0.95 (0.18) 0.94 (0.29) 0.94 (0.4) 0.93 (0.48)
Semi-humid 0.81 (0.09) 0.84 (0.18) 0.88 (0.29) 0.88 (0.39) 0.88 (0.48)
Semi-arid 0.94 (0.09) 0.94 (0.18) 0.95 (0.29) 0.95 (0.39) 0.95 (0.48)
Arid 1.0 (0.09) 0.98 (0.18) 0.96 (0.29) 0.95 (0.39) 0.94 (0.48)
Very arid 1.0 (0.09) 0.97 (0.18) 0.94 (0.29) 0.93 (0.39) 0.93 (0.48)

Table C2. Table showing a PICP and MPIW (in parentheses) for the various vegetation land covers.

Model Land covers 4 6 8 10 12

BARDL

Forest 0.97 (0.09) 0.96 (0.19) 0.95 (0.29) 0.95 (0.38) 0.94 (0.46)
Crops 0.97 (0.09) 0.95 (0.19) 0.94 (0.29) 0.95 (0.38) 0.95 (0.46)
Grass 0.97 (0.09) 0.96 (0.19) 0.96 (0.29) 0.97 (0.38) 0.96 (0.46)
Shrub 0.96 (0.09) 0.96 (0.19) 0.96 (0.29) 0.96 (0.38) 0.96 (0.46)

Hierarchical

Forest 0.94 (0.08) 0.93 (0.17) 0.94 (0.27) 0.94 (0.37) 0.94 (0.46)
Crops 0.99 (0.08) 0.97 (0.17) 0.96 (0.27) 0.95 (0.37) 0.95 (0.46)
Grass 0.98 (0.08) 0.97 (0.17) 0.96 (0.27) 0.96 (0.37) 0.95 (0.46)
Shrub 0.98 (0.08) 0.98 (0.17) 0.98 (0.27) 0.97 (0.37) 0.96 (0.46)
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Appendix D: Reliability diagram for crop and grass
covers

Figure D1. Reliability and sharpness plots showing a joint distribution of forecast probabilities and observed frequencies for various agro-
ecological zones and land cover for different lead times.
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Appendix E: Percentage of relative importance
(agro-ecological zones)

Figure E1. Plots showing the relative importance of the lagged input variables (VCI3M, P3M, SM3M) and VCI3M at 4- to 12-week lead
times for the different agro-ecological zones.
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Appendix F: Percentage of relative importance (land
cover)

Figure F1. Plots showing the relative importance of the lagged input variables (VCI3M, P3M, SM3M) and VCI3M at 4- to 12-week lead
times for the different vegetation land covers.
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