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Abstract. Droughts form a large part of climate- or weather-
related disasters reported globally. In Africa, pastoralists liv-
ing in the arid and semi-arid lands (ASALs) are the worse
affected. Prolonged dry spells that cause vegetation stress in
these regions have resulted in the loss of income and liveli-
hoods. To curb this, global initiatives like the Paris Agree-
ment and the United Nations recognised the need to estab-
lish early warning systems (EWSs) to save lives and liveli-
hoods. Existing EWSs use a combination of satellite earth
observation (EO)-based biophysical indicators like the veg-
etation condition index (VCI) and socio-economic factors to
measure and monitor droughts. Most of these EWSs rely
on expert knowledge in estimating upcoming drought con-
ditions without using forecast models. Recent research has
shown that the use of robust algorithms like auto-regression,
Gaussian processes, and artificial neural networks can pro-
vide very skilled models for forecasting vegetation condi-
tion at short- to medium-range lead times. However, to en-
able preparedness for early action, forecasts with a longer
lead time are needed. In a previous paper, a Gaussian pro-
cess model and an auto-regression model were used to fore-
cast VCI in pastoral communities in Kenya. The objective of
this research was to build on this work by developing an im-
proved model that forecasts vegetation conditions at longer
lead times. The premise of this research was that vegeta-
tion condition is controlled by factors like precipitation and
soil moisture; thus, we used a Bayesian auto-regressive dis-
tributed lag (BARDL) modelling approach, which enabled
us to include the effects of lagged information from precip-

itation and soil moisture to improve VCI forecasting. The
results showed a ∼ 2-week gain in the forecast range com-
pared to the univariate auto-regression model used as a base-
line. TheR2 scores for the Bayesian ARDL model were 0.94,
0.85, and 0.74, compared to the auto-regression model’s R2

of 0.88, 0.77, and 0.65 for 6-, 8-, and 10-week lead time,
respectively.

1 Introduction

Drought events are amongst the most prevalent natural dis-
asters reported globally and affect some 55 million people
annually (Deleersnyder, 2018). In Africa, the devastating
effects of droughts are mostly seen in the arid and semi-
arid lands (ASALs), where people’s lives and livelihoods
mostly depend on agro-pastoral activities (Gebremeskel
et al., 2019). Pastoralism in these regions contributes im-
mensely to food security and local economies (Vatter, 2019).
However, the ASALs grass- and shrublands, which serve as
the main source of fodder for the livestock, are among the
first to be hit by low rains and extreme temperature (FAO,
2018). These dry spells, when prolonged, adversely impact
the food markets and income and eventually lead to the
loss of livelihoods (FAO, 2018). As a consequence, several
drought early warning systems (EWSs) have been developed
to avert and minimise the impacts of these hazards.

Global initiatives, such as the 2015 Paris Agreement and
the United Nation’s Sustainable Development Goals (SDGs),
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recognise the importance of establishing robust EWSs to save
lives and livelihoods (UNFCCC, 2015). Existing EWSs com-
bine data on biophysical indicators that measure hazard risk
with a series of socio-economic factors to account for vulner-
ability and exposure for early action. Satellite earth observa-
tion (EO) rainfall estimates and vegetation health are some of
the datasets commonly used to monitor these drought con-
ditions. The USAID’s (United States Agency for Interna-
tional Development – USAID) Famine Early Warning Sys-
tems Network (FEWS NET) utilises household livelihood
information, rainfall estimates, and the normalised differ-
ence vegetation index (NDVI) to monitor drought and its
impact on food security (FEWSNET, 2019). In Kenya, the
National Drought Management Authority (NDMA) monitors
EO-based biophysical indicators in combination with forage,
livestock conditions, and socio-economic data to monitor and
anticipate future drought scenarios for early finance and early
action (Klisch and Atzberger, 2016; FAO, 2017).

Recent research has highlighted robust methods for fore-
casting biophysical indicators used to measure vegetation
condition. AghaKouchak (2014) harnessed the persistence
property in soil moisture with the ensemble streamflow pre-
diction (ESP) to provide skilful forecasts of the standardised
soil moisture index for up to 2 months ahead. Barrett et al.
(2020) forecasted the vegetation condition index (VCI) with
auto-regression (AR) and Gaussian process (GP) models us-
ing historical values of the same indicator. Both models per-
formed well for lead times up to 6 weeks. Adede et al. (2019)
used a multivariate approach that considered the effects of
exogenous variables on VCI. The model was based on an
artificial neural network (ANN) and provided precise fore-
casts for 1-month lead time. Other related research studies
involved the use of an auto-regressive integrated moving av-
erage (ARIMA) and the seasonal auto-regressive integrated
moving average (SARIMA) models to simulate and forecast
vegetation temperature condition index (VTCI) (Han et al.,
2010; Tian et al., 2016). Jalili et al. (2014) also used a mul-
tilayer perceptron (MLP) model and a support vector ma-
chine (SVM) model to forecast standard precipitation in-
dex using normalised difference vegetation index (NDVI),
temperature condition index (TCI), and VCI and input vari-
ables. The gradient boost machine (GBM) model was also
used by Nay et al. (2018) to predict vegetation health using
the enhanced vegetation index (EVI) as an indicator. While
all these models gave good forecast accuracies for short-
range forecasts, forecasts with longer lead times beyond 6
weeks will provide disaster risk managers ample time to pre-
pare and implement relief measures. Apart from the various
models used in the research studies cited earlier, a number
of different indicators were also used; however for this pa-
per we used VCI mainly because it is the indicator used
by our major stakeholder, the NDMA. Secondly, the com-
plex nature of agricultural droughts requires an indicator that
adequately responds to changes in hydro-climatic and bio-
physical factors like rainfall, temperature, and soil moisture

level (Vicente-Serrano et al., 2012; Yihdego et al., 2019),
which are amongst the properties of the NDVI used to de-
rive VCI for this paper. Although NDVI-based VCI has been
extensively used in drought research, a comparative analysis
by Bowell et al. (2021) showed that in ASAL regions with
sparse vegetation cover, VCI based on the soil adjusted veg-
etation index (SAVI) is a more suitable indicator due to the
correction of the background effect from soil reflectance.

This paper aims to build on existing forecast initiatives
and develop models that accurately forecast VCI at longer
lead times. More specifically, our approach will include the
interaction between the lagged information from indicators
and variables like precipitation, soil moisture, and vegeta-
tion condition in an auto-regressive distributed lag (ARDL)
model (Gujarati, 2003; Pesaran and Shin, 1999). ARDL
models are useful in situations where variable Yt at a time t
is influenced by other variables Xt at time t and the same
variables at previous time steps Xt−i .

Parameter estimation with ARDL models has traditionally
been carried out with a maximum likelihood approach, which
produces point estimates and often results in over-fitting,
leading to imprecise predictions (Martin, 2018). To address
this, the ARDL model used in this work was implemented
within a Bayesian framework, which allows the incorpora-
tion of prior knowledge of the model parameters. This ap-
proach generates a posterior probability distribution for the
model parameters, which enables more accurate quantifica-
tion of prediction uncertainties and allows for more robust
risk analysis (Lambert, 2018).

2 Study area and data

2.1 Study area

This research was conducted in 20 counties within the ASAL
regions (Fig. 1) of Kenya, where the predominant activities
are pastoralism and wildlife conservation. The ASAL regions
make up about 80 % (46 000 km2) of Kenya’s total land area
(Marigi et al., 2016); farmers in these regions rely heavily on
pastures and grasslands as the main source of feed for their
animals (Sibanda et al., 2017). However, the erratic weather
patterns in the eastern African region make Kenya prone to
frequent drought events, which poses a threat to the country’s
food security and economy as a whole (Gebremeskel et al.,
2019). During the 2008–2011 droughts the Kenyan economy
lost a total of USD 21.1 billion (Cabot Venton et al., 2012;
Cenacchi, 2014), hence the need to develop a drought EWS
with the ability to provide timely warnings for drought pre-
paredness.

2.2 Data

Developing a highly skilled model required adequate histor-
ical data on drought indicators and biophysical factors ac-
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Figure 1. A map of Kenya showing the arid and semi-arid counties where the research was focused. Data were sampled from 8 arid and
12 semi-arid counties.
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quired over a long period. Table 1 shows details of the satel-
lite earth observation data used for this work.

2.2.1 Precipitation (rainfall estimates)

The precipitation data were acquired from the Climate Haz-
ards Group InfraRed Precipitation (CHIRPS) project (Funk
et al., 2015). The CHIRPS data comprise a combination of
weather station data and rainfall estimates captured via satel-
lite remote sensing using the cold cloud duration (CCD)
(Milford and Dugdale, 1990) approach. The approach is used
to estimate rainfall by using remotely sensed information on
the period of time a cloud remains at a given temperature.
The dataset is available as daily 5 km resolution images.

2.2.2 Soil moisture

The daily 30 km resolution soil moisture products by the
European Space Agency’s Climate Change Initiative (ESA-
CCI) were used for this work. The data are produced from an
algorithm that takes in back-scatter information from multi-
ple active and passive synthetic aperture radar (SAR) satel-
lites. The values generated represent soil moisture at a soil
depth of 10 cm. The ESA-CCI soil moisture products are
available as passive, active, or a combination of both. For
this work, the combined version of the data is used (Gruber
et al., 2019; Dorigo et al., 2017; Yang et al., 2017).

2.2.3 Surface reflectance

The bidirectional reflectance distribution function (BRDF)-
corrected MODIS product, MCD43A4 Version 6 (Schaaf and
Wang, 2015), was used to compute the NDVI and VCI. The
product is available as daily 500 m resolution images cap-
tured in seven bands ranging from visible to infrared. Infor-
mation on the vegetation health is derived from the red and
near-infrared (NIR) bands via Eq. (1).

NDVI=
NIR−Red
NIR+Red

(1)

3 Methods

3.1 Data pre-processing

The datasets were acquired from 1 January 2001 to 31 De-
cember 2018 to correspond with the availability of soil mois-
ture data at the time of research. Apart from the precipita-
tion, clouded and low-quality pixels from poor atmospheric
and radiometric correction were removed using the quality
flags from the quality assurance (QA) maps that came with
the surface reflectance and soil moisture products. Pixels rep-
resenting grassland and shrubland areas within our regions
of interest were retrieved with the European Space Agency
(ESA)’s 2016 Sentinel 2 land use and land Cover (LULC)

map1 (Ramoino et al., 2018). For the coastal semi-arid coun-
ties like Lamu and Kwale we could not extract enough soil
moisture data, so no results are shown for these counties.

To measure the drought condition at a period in time, the
minimum and maximum NDVI values for a chosen baseline
time interval and the NDVI value for that period are used
to compute the vegetation condition index (VCI) via Eq. (2)
(Kogan, 1995). VCI values range from 0–100, with values
below 35 depicting a moderate to severe drought condition
(Klisch and Atzberger, 2016).

VCIi = 100×
NDVIi −NDVImin,i

NDVImax,i −NDVImin,i
, (2)

where VCIi is the VCI value to be derived for the
ith week, the NDVIi is the NDVI values for ith week, and
NDVImin,i and NDVImax,i are the long-term minimum and
long-term maximum NDVI values of a pixel for the ith week
of the year.

The percentage of temporal gaps created by the removal of
clouded and poor-quality pixels varied per county and ranged
from as low as 0.1 % to 35 %. Counties with over 50 % miss-
ing data were dropped. Gaps were filled with the radial ba-
sis function (RBF) interpolation method. This approach uses
weighted basis functions derived from Euclidean distances
to approximate missing values (Rippa, 1999). The advantage
of using the RBF method was to ensure approximated values
did not fall outside the valid ranges, especially over periods
with long gaps. Noise resulting from faulty instruments was
reduced with the Whittaker smoother (Eilers, 2003), which
filters noise via a penalised least squares. The gap filling and
smoothing processes did not have any significant impact on
the forecast model as shown in Barrett et al. (2020). Since
our target variable was computed from the long-term mini-
mum and maximum NDVI, the additional variables were also
converted to anomalies by subtracting their long-term means
to produce soil moisture anomaly and precipitation anomaly.
The persistence within individual variables was enhanced by
computing with 3-month (12 weeks) rolling averages to de-
rive 3-month VCI (VCI3M), 3-month precipitation (P3M),
and 3-month soil moisture (SM3M). Finally, the precipitation
and soil moisture data were standardised to eliminate any as-
sociated units of measurements and avoid the dominance of
certain variables. This was done by subtracting their mean
and dividing it by the standard deviation.

3.2 Drought model and forecasting

The AR method used in Barrett et al. (2020) was used as a
baseline model for this study. The AR(q) model, with q be-
ing the number of lags, used historical values of VCI3M in
the linear regression model to forecast future VCI3M. The
AR(q) model was defined as

1Visit http://2016africalandcover20m.esrin.esa.int/ (last access:
21 July 2021) to learn more.
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Table 1. Summary of the datasets for the forecast model.

Data Source (producer) Spatial Temporal Acquisition Unit of
resolution resolution period measure

Precipitation Climate Hazards Group InfraRed 5 km Daily 2001–2018 mm
Precipitation (CHIRPS)

Soil moisture European Space Agency’s 30 km Daily 2001–2018 m3 m−3

Climate Change Initiative (CCI)

Surface reflectances NASA MODIS (MCD43A4 v006) 500 m Daily 2001–2018 n/a

n/a means not applicable.

Dt+n = α0+

q∑
i=0

βdDt−q + εt−q , (3)

where the Dt+n is the VCI3M at n lead time ahead, and
Dt−q represents the lags (0 to q = 3) of past VCI3M values.
α0 represents the intercept and εt−p the error term.

The results from the AR baseline model were compared
to the output of the auto-regressive distributed lag (ARDL)
proposed in this paper. The ARDL modelling approach used
for this work is a generalised form of the AR method mainly
used for multivariate time series analysis. The method en-
ables the variable of interest (dependent variable) to be mod-
elled as a function of its lags and that of additional explana-
tory variables (independent variable) (Gujarati, 2003). An
ARDL (p, q) consists of p, which represents the number of
lags of the independent variable, and q, which is the auto-
regressive part of the model, represents the number of lags of
the dependent variable. This approach has been extensively
used in the field of economics and modelling the effect of
climate and environmental variables on vegetation (Lei and
Peters, 2004; Ji and Peters, 2005).

For this study, however, parameter estimation for the
ARDL was implemented within a Bayesian framework in-
stead of using maximum likelihood methods based on ordi-
nary least squares (OLS). The Bayesian framework enables
the incorporation of domain knowledge about the parameters
through the use of informative priors. The model parame-
ters, with this approach, are inferred using the Markov Chain
Monte Carlo (MCMC) (Neal, 1993) sampling algorithm. The
sampling process generates posterior probability distribution
of the model parameters. As a consequence, we get a full
probability distribution of forecast values for all lead times,
which makes it easy to quantify forecast uncertainty for mak-
ing informed decisions (Martin, 2018; Lambert, 2018).

The MCMC is a well-established sampling algorithm used
for parameter inference in Bayesian models. However, Asaad
and Magadia (2019) outlined some of its limitations and rec-
ommended the use of the Hamiltonian Monte Carlo (HMC)
(Hoffman and Gelman, 2014), an improved variant of the tra-
ditional MCMC algorithm which is based on Hamiltonian

dynamics and converges faster to a global minimum for mod-
els with high-dimensional parameter space (Robert et al.,
2018). Parameter inference for this work was done with the
No-U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014)
version of HMC implemented with the PyMC3 (Salvatier
et al., 2016) Python package.

The Bayesian ARDL model was used for forecasting
VCI3M with lagged P3M, and S3M is defined as

Dt+n = α0+

q∑
i=0

βdDt−q +

p∑
i=0

θpPt−p +

p∑
i=0

δsSt−p + εt−p, (4)

where Dt+n is the drought index at n lead time, and
Dt−q represents the lags (0 to q) of the drought indicator (de-
pendent variable). Pt−p and St−p represent the lags 0 to p for
precipitation and soil moisture, respectively. α0 is a constant
representing the intercept, and βd , θp, and δs are the regres-
sion coefficients of the input variables with εt−p being the
error term, which is assumed to be Gaussian.

Equation (4) can be re-written as

Dt+n = α+

i∑
i=0

βiXt−i + εt−i, (5)

where n is the lead time, βi is the model parameters, and
Xt−i represents the lagged input variables in Eq. (4).

The Bayesian approach makes explicit the prior beliefs
about model parameters, which are then updated given some
new data via the likelihood function, to give the posterior
probability distribution.

Parameter inference with the Bayesian framework is based
on Bayes’ theorem via the equation below:

P (θ |Xt )=
P (Xt |θ) ·P(θ)

P (Xt )
, (6)

where θ is the model parameter; Xt represents Dt−q , Pt−p,
and St−p; P(θ |Xt ) is the posterior or the probability of our
model parameters given our data Xt ; P(Xt |θ) is the likeli-
hood or the probability of the data given the parameters; and
P(θ) is our prior belief about the parameters. P(Xt ), known
as the evidence, is a normalisation term that represents the
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probability of the data. The term is intractable and usually
ignored (Lambert, 2018; McElreath, 2016). Thus Eq. (6) for
Bayes’ theorem is re-written as

P (θ |Xt )∝ P (Xt |θ) ·P(θ). (7)

To put the ARDL model (Eq. 5) in the context of Eq. (7),
the likelihood function P(Xt |θ) is written as

P (Xt |α,βi,σ )∼N

(
α+

i∑
i=0

βiXt−i,σt−i

)
. (8)

Computing Eq. (7) requires very complex integrals (Lam-
bert, 2018); thus the HMC sampling algorithm (Hoffman and
Gelman, 2014) was used for estimating the model parame-
ters.

The prior P(θ) for the model’s regression coefficients are
assumed to be Gaussian P(θ)=N(µ,σ), with µ set to 0 to
allow inferred parameters to have both positive and negative
values and a weakly informative σ of 0.5 as a regularisation
prior. This was done to avoid the approximation of unreason-
able parameters (Martin, 2018). The weakly informative σ
of 0.5 was chosen after a grid search to select optimal param-
eters. A summary of the data pre-processing and modelling
can be seen in Fig. 2.

3.3 Selecting optimal lags and forecasting

A full grid search was done with various combinations of
p and q values for dependent and independent values to se-
lect the optimal p and q for the BARDL model. The Akaike
information criterion (AIC) (Akaike, 1998) equation (Eq. 9)
and the R2 (Eq. 10) metric were used as the score criteria
to choose the optimal lags. AIC enables model selection by
determining the model that best fits the data. The model with
the lowest AIC value is preferred, whereas the R2 score ex-
plains how much variation in the observed data could be ex-
plained by the model. ValidR2 scores range between 0 and 1,
where models with scores close to 1 are considered more ac-
curate. The search was done on lag values ranging from 1 to
16 weeks. The best AIC andR2 scores varied for different lag
combinations and also for each county. However, across all
counties optimal AIC and R2 scores were obtained when all
input variables were set to a lag of 6 weeks. The AIC scores
are derived as follows:

AIC= 2K + n log
(

RSS
n

)
, (9)

where the RSS is the residual sum of squares error, n is the
number of data points, and K is the number of estimated pa-
rameters.

The R2 scores are derived as follows:

R2
− score= 1−

∑
i

(yi − fi)
2

∑
i

(yi − y)
2 , (10)

where the yi is the observed data, y is the mean of the ob-
served data, and the fi is the forecasts.

Forecasting with the BARDL was done using the direct
multi-step forecast approach, where separate models are fit-
ted for n steps ahead of forecasts (Ben Taieb et al., 2010;
Ben Taieb and Hyndman, 2014). To fit the model for n steps
ahead, the data were restructured to offset values of the de-
pendent (Dt+n), n weeks from lag 0 Xt−0, for all input vari-
ables. A rolling-window cross-validation approach (Hynd-
man and Athanasopoulos, 2018) was used for model training
and forecasting. With this approach, the data are divided into
chunks of 500 data points; for each chunk, 400 data points
are used to train the model, and the remaining 100 data points
are held out for prediction. The observed values from held-
out data and mean forecast distribution from the Bayesian
model were then used to evaluate the model skill.

3.4 Forecast skill assessment

The performance of the models was assessed by measuring
the accuracy, i.e. how well the forecasts agree with the ob-
servations and the precision (the quoted uncertainty and the
accuracy of that uncertainty).

The model accuracy was evaluated with the R2 (Eq. 10)
and root mean square error (RMSE) (Eq. 11). The RMSE
measures the mean deviation between the observed and fore-
cast values.

RMSE=

√√√√√ n∑
i=1
(yi − fi)

2

n
, (11)

where the yi is the observed data, fi is the forecasts, and n is
the total number of data points.

The precision was quantified with the prediction interval
coverage probability (PICP), and the mean prediction inter-
val width (MPIW) (Pang et al., 2018) was also computed.
The MPIW measures the average width between the up-
per (u(Di)) and lower bound l(Di) of a proportion of forecast
distribution (n weeks ahead) defined by a chosen prediction
interval (e.g. 95 %). See Fig. 3 for an illustration.

MPIWt+n =
1
N

N∑
i=1
|u(Di)− l (Di) | (12)

The PICP shows the percentage of time the observed variable
lies within the credible interval of the forecast distribution
and is derived as follows:

PICPt+n =
1
N

N∑
i=1

ci, (13)

where N represents the number of predicted samples, and
ci is either 0 or 1. If the observed drought target variable falls
within the upper and lower bound of the forecast distribution
(n weeks ahead) then ci = 1; ci = 0 (Fig. 3) if otherwise.

Nat. Hazards Earth Syst. Sci., 22, 2703–2723, 2022 https://doi.org/10.5194/nhess-22-2703-2022
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Figure 2. A flow chart showing a summary of the data pre-processing and modelling steps detailed in Sects. 3 and 3.1.

The goal is to minimise the MPIW while maintaining a
high PICP value. A high PICP value (0.90 to 0.99) indicates
that the observed values lie within the forecast distribution,
and a low MPIW value indicates a more precise forecast (Su
et al., 2018). For the AR model, the confidence interval used
to derive its PICP and MPIW was computed with the forecast
RMSE and z score of 1.96, representing the 95 % confidence
level of a standard normal distribution. This was done to per-
mit its comparison to the output of the full BARDL model.

The contribution of the individual lagged input in the
ARDL model was also measured by computing their per-
centage of relative importance via the relative weight anal-
ysis method (Tonidandel and LeBreton, 2011). With this ap-

proach, the input variables are initially transformed into or-
thogonal variables. Through an iterative process, each or-
thogonal variable is added to a linear regression model, and
the change in R2 score for each iteration is measured and
expressed as a percentage of the total R2 score.

The receiver operating characteristic (ROC) curve was
also plotted to see how well the model forecasts a drought
event given a threshold. The ROC shows the probability of a
forecasted event being true (true positive rate – TPR) against
the chance of that predicted event being a false alarm (false
positive rate – FPR) at different thresholds. The area under
the curve (AUC) quantifies the ability of the forecast model

https://doi.org/10.5194/nhess-22-2703-2022 Nat. Hazards Earth Syst. Sci., 22, 2703–2723, 2022
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Figure 3. A diagram illustrating how the prediction interval cov-
erage probability (PICP) (a) and the mean prediction interval
width (MPIW) (b) are computed.

to distinguish between drought events (Wilks, 2006; Bradley,
1997).

The forecast distribution from our BARDL model enabled
the computation of forecast probabilities given some drought
thresholds. The forecast probability of a drought event was
computed from the full forecast distribution from our pos-
terior at a drought threshold of VCI< 35. The model’s skill
at accurately forecasting these probabilities was assessed by
plotting and analysing a reliability diagram and sharpness.
The reliability diagrams were plotted by using the same
threshold of VCI< 35 to initially convert observed VCI3M
data at a lead time into binary events, where 0 indicates a
“no drought” and 1 indicates a “drought” event. The forecast
probabilities and observed binaries were binned into stan-
dard intervals and plotted as a joint distribution of forecast
probabilities and the relative frequency of the true observed
drought event (where observed binaries= 1). The sharpness
plots, on the other hand, are histograms of drought occur-
rences in each probability bin.

The reliability diagram shows how well forecast probabil-
ities for a given drought event agreed with its corresponding
observed event, while the sharpness shows the frequency of
a forecasted drought event. (WWRP, 2009; Wilks, 2006).

4 Results

4.1 Forecast accuracy

The AR modelling approach had proved to be skilful for
short-range (2- to 6-week lead time) VCI3M forecasts (Bar-
rett et al., 2020). However, the goal of this study was to
extend the forecast range beyond 6 weeks while maintain-
ing high accuracy by using the BARDL model and consid-
ering the effect of exogenous factors like precipitation and
soil moisture. The results shown in this section are for 6-
to 12-week lead time for the BARDL models and with the
AR modelling as a comparative baseline. All the evalua-

Table 2.R2 scores (6- to 12-week lead times) for AR modelled with
lags of VCI3M only and BARDL modelled with lags of VCI3M
with precipitation (P3M) and soil moisture (SM3M) for arid and
semi-arid counties. The mean R2 values in this table do not corre-
spond to R2 values in Fig. 4 because Fig. 4 shows the overall scores
for all counties, while the table shows the scores for the separate
arid and semi-arid zones.

County AR BARDL

6 8 10 12 6 8 10 12

Arid counties

Garissa 0.88 0.78 0.66 0.54 0.92 0.83 0.71 0.60
Isiolo 0.89 0.79 0.67 0.55 0.95 0.88 0.77 0.66
Mandera 0.86 0.74 0.60 0.46 0.93 0.84 0.73 0.63
Marsabit 0.91 0.81 0.69 0.54 0.96 0.90 0.80 0.68
Samburu 0.88 0.75 0.59 0.43 0.95 0.87 0.75 0.62
Tana River 0.85 0.75 0.64 0.53 0.92 0.83 0.72 0.62
Turkana 0.90 0.79 0.65 0.50 0.96 0.89 0.79 0.65
Wajir 0.82 0.69 0.55 0.42 0.91 0.82 0.71 0.61

Mean 0.87 0.76 0.63 0.50 0.94 0.86 0.75 0.63

SD 0.03 0.04 0.04 0.05 0.02 0.03 0.03 0.03

Semi-arid counties

Baringo 0.92 0.83 0.70 0.56 0.95 0.86 0.74 0.60
Kajiado 0.90 0.80 0.69 0.57 0.96 0.90 0.81 0.71
Kilifi 0.84 0.72 0.60 0.48 0.88 0.76 0.62 0.49
Kitui 0.84 0.70 0.56 0.43 0.92 0.81 0.68 0.53
Laikipia 0.93 0.85 0.73 0.59 0.97 0.91 0.81 0.67
Makueni 0.84 0.72 0.59 0.46 0.93 0.83 0.71 0.59
Meru 0.83 0.67 0.49 0.33 0.92 0.81 0.67 0.52
Narok 0.85 0.74 0.60 0.45 0.92 0.81 0.67 0.50
Nyeri 0.90 0.81 0.68 0.54 0.93 0.85 0.73 0.60
Taita-Taveta 0.86 0.74 0.60 0.47 0.92 0.81 0.69 0.59
Tharaka-Nithi 0.81 0.64 0.45 0.28 0.83 0.63 0.39 0.17
West Pokot 0.91 0.82 0.69 0.54 0.95 0.86 0.72 0.57

Mean 0.87 0.75 0.62 0.48 0.92 0.82 0.69 0.54

SD 0.04 0.06 0.08 0.09 0.04 0.07 0.10 0.13

tion metrics for the BARDL outputs were computed with the
mean forecast distributions from our Bayesian models.

The contour plots in Fig. 4 show a joint distribution (scat-
terplot) of the observed VCI3M and forecasted VCI3M at 6,
8, 10, and 12 weeks for both AR and the BARDL models.
The coloured contour lines represent the bins of the joint his-
tograms, and for each plot, the correlation (r), RMSE, and
R2 were computed. Overall, the results from the BARDL
model showed a roughly 2-week gain in the performance
metrics. For instance, the R2 score for the AR model at
6 weeks is equivalent to the R2 score at 8-week lead time
for the BARDL models. This pattern can be seen across all
forecast ranges for the RMSE as well.

The performance metrics for the BARDL model in com-
parison to the AR model are shown in Fig. 5. This shows
a significant improvement in performance at the same lead
time, and, as a consequence, similar performance in the
BARDL models is seen 2 weeks ahead of the AR models.

Table 2 shows the R2 scores for 6- to 12-week fore-
casts for AR and BARDL models at the county level for
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Figure 4. Contour plots showing VCI3M forecast against true VCI3M. Panels (a)–(d) show the results from the AR method with VCI3M
only, and panels (e)–(h) show the overall results for BARDL modelled with lags of VCI3M plus lags of precipitation (P3M) and soil
moisture (S3M) anomalies for 6-, 8-, 10-, and 12-week lead time for all counties. The contour lines (ellipses) seen in each plot indicate the
various bins that make up the joint histogram plots between the forecasted and observed VCI3M values. Contour lines with a yellow shade
indicate values with stronger correlation between the observed and predicted values.

Figure 5. Performance metrics used to measure model accuracy as a function of forecast lead time. R2 (a), RMSE (b).

arid and semi-arid regions. Just as observed in the contour
plots, significant improvements are seen from 6- to 10-week
lead time across all counties. In an arid county like Man-
dera, the R2 improved from 0.84, 0.72, and 0.58 using AR
to 0.93, 0.84, and 0.73 using BARDL for 6-, 8-, and 10-
week lead times, respectively. Kitui in the semi-arid region
also showed an improvement in R2 score from 0.84, 0.71,
and 0.57 to 0.91, 0.81, and 0.67 for weeks 6, 8, and 10, re-
spectively. Overall the BARDL method demonstrated better
results compared to the AR across all counties.

Further evaluation of forecasts based on Kenya’s long
rain (March, April, May – MAM) and short rain (Octo-

ber, November, December – OND) seasons (Camberlin and
Wairoto, 1997) also showed even better R2 score for longer-
range forecasting in the MAM season compared to the OND
for the BARDL model as seen in Fig. 6 as well as in Fig. D1
in Appendix C.

The R2 scores for the AR model in the MAM season how-
ever dropped significantly compared to the OND season.

4.2 Uncertainty analysis (PICP and MPIW)

The PICP and MPIW for a 95 % forecast confidence inter-
val were computed for each lead time for both the AR and
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Figure 6. Performance metrics used to measure model accuracy as a function of forecast lead time for MAM and OND season.

BARDL models. In Fig. 7, the time series plots show that
the observed VCI3M values lie within the 95 % forecast in-
terval between 90 %–94 % of the time across all lead times
for both the BARDL and AR models. However, lower values
of MPIW demonstrate that the BARDL provided more pre-
cise forecasts. Appendix A tabulates PICP and MPIW for 6-
to 12-week forecasts for the AR and BARDL models for all
counties (Table A1).

4.3 Drought event ROC curve

The receiver operating characteristic (ROC) curve (Fig. 8)
illustrates how well the model can discriminate drought
events. Drought events are forecasted when the predicted
VCI3M drops below a threshold and are deemed correct
if the observed VCI3M is below 35 (moderate to severe
drought) (Klisch and Atzberger, 2016). The ROC curve and
AUC metric for the BARDL model also demonstrated an
improvement over the AR model. The points plotted on the
curve represent the TPR and FPR where VCI3M< 35. This
indicates that when the AR model (dotted curve) forecasts
a drought condition (i.e. VCI3M< 35) for 6 weeks ahead,
the probability of it being true is 86 % with a FPR of 9 %,
whereas a forecast by the BARDL model (solid curve) at the
same 6 weeks had a TPR of 89 % and a FPR of 7 %. The

improvements with the BARDL model were mainly seen in
the TPRs (6- to 10-week lead time) for the BARDL model,
while the FPR remained almost the same. The improvements
seen in the ROC curves in Fig. 8 are however not reflective of
the distinct improvement seen in Fig. 5. The observed differ-
ence was because, whereas the R2 and RMSE are compar-
ing the explained variances and deviation between the ob-
served and forecast VCI3M, the ROC is mainly assessing the
skill of both models at predicting drought occurrence at the
VCI3M< 35 threshold.

4.4 Forecast reliability

Using the Bayesian approach also enabled the computa-
tion of forecast probabilities for a given drought event
(no-drought condition: VCI3m> 35; drought condition:
VCI3M< 35). To assess the skill for forecasting drought
probabilities, we used the reliability diagrams in Fig. 9. The
plot shows a joint distribution between the forecast proba-
bilities in bins and the frequencies of the observed drought
events that fall in those bins. For each lead time, the sharp-
ness histogram, which shows the frequency at which an event
is forecasted (WWRP, 2009), is also plotted. The reliabil-
ity of a perfect model would follow the line y = x, which
has been represented by a dashed line in Fig. 9. The closer a
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Figure 7. Time series plot showing uncertainty for 6-, 8-, 10-, and 12-week lead time for Mandera County. Plots on the left side are from the
AR model, and plots to the right are BARDL. The PICP and MPIW for the other counties can found in Appendix A. The forecast line (green
line) represents the mean values of the BARDL outputs.

model is to this dashed line, the more reliable it is. Figure 9
shows the reliability for drought events (VCI3M< 35) in
arid counties from the forecast skill assessment. Our BARDL
model indicates that when we forecast a “drought event” with
a probability between 80 % and 100 % for 6-week lead time,
it corresponds with the observed drought events about 88 %
to 99 % of the time. This diagram, however, showed that the
forecast probabilities from the BARDL model do not always
agree with the observed event, indicating a situation known
as “under-forecasting” (Wilks, 2006).

In terms of the model’s sharpness, it can be seen that most
of the drought events forecasted by the BARDL model have
a probability between 90 % 100 %. The peak at the 0 % to
10 % bin of the sharpness plot shows the frequency of “no
drought” forecasts in the arid counties. This indicates the
likelihood of the model missing some drought events, espe-
cially from 8-week lead time and beyond.

Another key observation of the reliability diagrams for the
MAM and OND seasons (Fig. 10) showed that the model
was sharp at identifying more drought events in the short-
rain season compared to the long-rain season.

4.5 Relative importance

Figure 11 shows the cumulative percentage of relative im-
portance for the lags of VCI3M, P3M anomaly, and SM3M
anomaly. The lags of VCI3M contribute the most for shorter
lead time and decrease longer lead times. The precipitation
anomaly also contributes significantly to future VCI3M, and
its relative importance increases with increasing forecast lead
times. The relative importance of soil moisture, although it
varies less across various lead times, also contributes signif-
icantly. Detailed plots of the relative importance for individ-
ual lag contribution for each arid and semi-arid county are
shown in Fig. B1 (Appendix B). Figure B1 also shows that
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Figure 8. ROC curve showing true positive rate (TPR), false pos-
itive rate (FPR), and AUC for 6-, 8-, 10-, and 12-week lead time
for both AR (dotted line) and BARDL (solid line) models. The
VCI3M< 35 threshold is plotted as points on the lines. The AUC
scores for models was above 80 %, indicating that both models were
effective at identifying drought events.

input variables contributed mostly at lag 0. A critical look at
these plots also shows that VCI3M responds better to precip-
itation anomaly in most arid counties like Turkana and Wajir
compared to semi-arid counties like Kitui and West Pokot.
The relative importance of the lagged exogenous factors for
different MAM and OND seasons also confirms the reliance
of future VCI3M on precipitation anomalies as seen Fig. C1
in Appendix D.

5 Discussion

Our BARDL model, which incorporated lagged precipitation
and soil moisture anomalies as exogenous factors, exhibited
an approximately 2-week gain in forecast range compared to
the baseline model. These gains can be seen in Fig. 5 and Ta-
ble 2, where, for instance, an R2 score obtained at a 6-week
forecast for the AR model was equivalent to an R2 score at
8 weeks for the BARDL model. Forecasts from the BARDL
were mostly driven by the variables at lag 0 (see Fig. B1).
However, the collective contribution of the additional lags
substantially improved the forecast ranges. Finally, the skill
assessment based on forecast probabilities indicated a good
separation between no-drought and drought events.

The results from the model evaluation revealed a strong
persistence within soil moisture and VCI3M, a property that
enables future values to be inferred from their past values
(AghaKouchak, 2014). These could be seen from the lag

contribution of soil moisture and precipitation in Figs. 11,
B1, and C1. Despite this inherent persistence in the VCI3M,
it still required the information from additional biophysical
factors to improve its forecast range, as seen in Fig. B1 and
the overall performance of the BARDL model. Another inter-
esting observation from Fig. 11 also showed that VCI3M re-
sponded very slowly to short-term moisture anomalies (Quir-
ing and Ganesh, 2010; Vicente-Serrano, 2007). From a spa-
tial perspective, both models (AR and BARDL) gave a higher
forecast R2 score in the arid areas compared to the semi-arid
areas. This was more significant for the BARDL model.

The performance (R2 scores) of the BARDL model dur-
ing the long rain (MAM) seasons indicated that although
VCI3M responds slowly to short-term moisture levels, the
impact of precipitation and soil moisture on vegetation con-
dition is very vital. However the low R2 scores seen for the
AR model in the MAM season could be attributed to the ab-
sence of information from the moisture levels (precipitation
and soil moisture) in the AR model. The reliability plots for
the MAM and OND seasons also showed that the contribu-
tion of the lagged soil moisture anomalies during the OND
seasons also increased compared to the MAM season. This
was an indication that during the short rain season, vegetation
condition is controlled mostly by soil moisture. The sharp-
ness plots in Fig. 9 also indicated that the model was gener-
ally sensitive to identifying drought events more frequently
till 8 weeks ahead. However, when it comes to forecasting
drought events, a much higher frequency is seen during the
OND season (see Fig. 10). This is expected since there are
fewer rainfalls in the OND seasons.

The uncertainty analysis from the PICP showed the ob-
served VCI3M values were within the upper and lower
bounds of the forecast distribution about 90 % of the time,
indicating a low forecast uncertainty. The MPIW revealed
that the forecast intervals were generally slightly narrower
for the BARDL model compared to the AR model. Overall,
higher PICP values were seen for AR; however, the PICP and
MPIW values for the BARDL model are assumed to be a true
representation of the forecast error since they were computed
from forecast distribution.

Aside from the significant improvements in the forecast
range and precision, the strength of our model hinges on
the fact that we implemented it in a Bayesian context. Using
the Bayesian approach generates a full posterior probability
distribution of forecasted VCI3M values, which gave us the
power to easily gain insight into the uncertainty in forecasted
VCI3M values (Lambert, 2018). It also allowed the compu-
tation of probabilistic forecasting of specific drought events
(e.g. VCI3M falling in a particular range) (Wilks, 2006). For
our target end-users and stakeholders like the NDMA, us-
ing the Bayesian model proposed in this paper as part of
their EWSs will enable them to confidently report on drought
events. Also, policymakers and administrators of disaster re-
lief organisations based on the forecast-based finance initia-
tives (Coughlan de Perez et al., 2015) can make better de-
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Figure 9. Reliability diagram showing forecast probability and the corresponding observed frequencies for 6-, 8-, 10-, and 12-week lead
time together with their corresponding sharpness plots for drought events (VCI3M< 35) in the arid and semi-arid counties.

Figure 10. Reliability diagram showing forecast probability and the corresponding observed frequencies for 6-, 8-, 10-, and 12-week lead
time together with their corresponding sharpness plots for drought events (VCI3M< 35) in MAM and OND.
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Figure 11. Bar plots showing the cumulative (all lags) relative im-
portance of additional variables to the VCI3M forecast for all coun-
ties.

cisions and prioritise which drought alarms to act on. This
will help with the efficient management of funds. The soil
moisture data though retrieved via a combination of remote
sensing and a soil moisture model (Gruber et al., 2019) also
proved useful for drought monitoring and forecasting. The
extensive model skill assessments done here show that our
Bayesian ARDL approach not only performs better com-
pared to results from previous studies (Barrett et al., 2020),
but also, the BARDL model, by design, provides additional
uncertainty information for better decision-making.

Although we have shown that we can extend forecast
ranges with the added variables, the limitations to the work
include the availability of soil moisture data. The ESA CCI
soil moisture products used in this paper are released annu-
ally and are also a year behind. Thus they cannot currently
be used for producing real-time forecasts. Another limitation
was the use of the 2016 ESA Sentinel 2 land cover map for
sampling grassland and shrub pixels across an 18-year pe-
riod. Even though the land cover product accurately depicted
areas with grassland and shrubs, pixel values from regions
with significant land cover changes over time may be mis-
leading.

6 Conclusion and future work

In this paper we increase the range of VCI3M forecasts,
using additional lagged information from P3M and S3M
anomalies. The VCI3M used here was derived from the 12-
week rolling mean of VCI, as used by Kenya’s NDMA for
monitoring and reporting agricultural drought occurrences.
Key highlights in this paper include the improvement in the
forecast range of VCI3M by approximately 2 weeks com-
pared to the AR model used in our previous work. The im-
provement is attributed to lagged information from precipi-
tation (P3M) and soil moisture (S3M). Secondly, modelling
within the Bayesian framework also gave the added advan-
tage of easily assessing model uncertainty and probability
of a drought event. Results showed that our proposed model
forecasted VCI3M at higher accuracy at a longer range dur-
ing the MAM season and was also more sensitive to drought
events during the OND season.

The forecast-based finance initiatives aimed at monitor-
ing agricultural drought indicators and their impact on liveli-
hoods should consider Bayesian approaches to enable better
decision-making. We would also recommend that soil mois-
ture data be made available sooner and promptly to enable
near-real-time forecasting of vegetation condition via our
proposed method.

The disparity in model performance between arid and
semi-arid regions points to the fact that the differences in cli-
mate and vegetation land use and land cover (LULC) should
also be considered when developing such forecast models.
A natural expansion of our BARDL model would be to si-
multaneously explore and model for spatial variations like
LULC in a county or any region of interest via a hierarchical
modelling approach. Doing this will give us the advantage of
pooling information between spatial variations whilst still al-
lowing flexibility between them. The full version of the paper
forecasting VCI3M with a hierarchical model can be found
in Salakpi et al. (2022a), which is part 2 to this paper.
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Appendix A: A table showing the PICP and MPIW (in
brackets) estimates for the arid and semi-arid counties

Table A1. The PICP and MPIW (in parentheses) estimates for all arid and semi-arid counties.

County AR model BARDL model

6 8 10 12 6 8 10 12

Arid counties

Garissa 0.93 (0.33) 0.94 (0.46) 0.94 (0.57) 0.93 (0.67) 0.86 (0.21) 0.84 (0.31) 0.83 (0.39) 0.81 (0.46)
Isiolo 0.93 (0.29) 0.93 (0.4) 0.93 (0.51) 0.93 (0.6) 0.94 (0.18) 0.92 (0.27) 0.9 (0.36) 0.89 (0.43)
Mandera 0.93 (0.33) 0.94 (0.44) 0.94 (0.55) 0.93 (0.63) 0.94 (0.23) 0.95 (0.34) 0.96 (0.44) 0.96 (0.53)
Marsabit 0.92 (0.25) 0.91 (0.36) 0.93 (0.46) 0.94 (0.56) 0.93 (0.15) 0.9 (0.23) 0.88 (0.32) 0.88 (0.38)
Samburu 0.95 (0.26) 0.94 (0.37) 0.95 (0.47) 0.95 (0.56) 0.95 (0.17) 0.97 (0.27) 0.95 (0.37) 0.94 (0.44)
Tana River 0.94 (0.32) 0.93 (0.43) 0.94 (0.51) 0.94 (0.58) 0.87 (0.2) 0.86 (0.28) 0.85 (0.35) 0.85 (0.41)
Turkana 0.95 (0.24) 0.95 (0.34) 0.95 (0.43) 0.95 (0.52) 0.92 (0.14) 0.92 (0.23) 0.93 (0.33) 0.94 (0.41)
Wajir 0.94 (0.37) 0.94 (0.49) 0.94 (0.59) 0.95 (0.67) 0.9 (0.22) 0.89 (0.32) 0.9 (0.4) 0.9 (0.48)

Mean 0.94 (0.3) 0.94 (0.41) 0.94 (0.51) 0.94 (0.6) 0.91 (0.19) 0.91 (0.28) 0.9 (0.37) 0.9 (0.44)

Semi-arid counties

Baringo 0.95 (0.29) 0.96 (0.42) 0.95 (0.54) 0.95 (0.65) 0.95 (0.22) 0.94 (0.36) 0.94 (0.49) 0.95 (0.61)
Kajiado 0.93 (0.3) 0.93 (0.42) 0.93 (0.53) 0.93 (0.63) 0.94 (0.18) 0.93 (0.29) 0.94 (0.4) 0.93 (0.48)
Kilifi 0.94 (0.23) 0.94 (0.31) 0.95 (0.36) 0.94 (0.41) 0.88 (0.2) 0.89 (0.28) 0.89 (0.36) 0.9 (0.42)
Kitui 0.93 (0.34) 0.95 (0.47) 0.94 (0.57) 0.94 (0.64) 0.9 (0.21) 0.89 (0.31) 0.88 (0.4) 0.89 (0.47)
Laikipia 0.94 (0.24) 0.95 (0.35) 0.96 (0.46) 0.96 (0.56) 0.96 (0.17) 0.95 (0.28) 0.94 (0.4) 0.93 (0.5)
Makueni 0.94 (0.34) 0.94 (0.46) 0.93 (0.56) 0.94 (0.64) 0.93 (0.22) 0.91 (0.32) 0.88 (0.4) 0.89 (0.47)
Meru 0.95 (0.3) 0.95 (0.43) 0.95 (0.54) 0.95 (0.62) 0.93 (0.2) 0.93 (0.31) 0.92 (0.4) 0.91 (0.47)
Narok 0.95 (0.27) 0.95 (0.37) 0.94 (0.45) 0.94 (0.53) 0.95 (0.19) 0.95 (0.29) 0.93 (0.39) 0.92 (0.48)
Nyeri 0.94 (0.23) 0.95 (0.32) 0.96 (0.41) 0.95 (0.49) 0.91 (0.18) 0.89 (0.27) 0.88 (0.35) 0.89 (0.43)
Taita-Taveta 0.92 (0.32) 0.92 (0.44) 0.92 (0.55) 0.93 (0.63) 0.85 (0.2) 0.84 (0.29) 0.84 (0.38) 0.85 (0.44)
Tharaka-Nithi 0.94 (0.26) 0.94 (0.37) 0.95 (0.45) 0.94 (0.52) 0.92 (0.21) 0.91 (0.3) 0.9 (0.38) 0.9 (0.45)
West Pokot 0.96 (0.25) 0.96 (0.36) 0.95 (0.47) 0.95 (0.56) 0.95 (0.19) 0.94 (0.32) 0.93 (0.44) 0.95 (0.54)

Mean 0.94 (0.28) 0.94 (0.39) 0.94 (0.49) 0.94 (0.57) 0.92 (0.2) 0.91 (0.3) 0.91 (0.4) 0.91 (0.48)
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Appendix B: Relative importance plots for each county

Figure B1. Relative importance for each exogenous factor for each lag (0–5) variable per county. The distinct colour bands show the overall
contribution of each input variable, while the varying shades within each band show the individual contribution of each lagged input variable
of precipitation, soil moisture, and VCI.
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Appendix C: Relative importance plots for MAM and
OND seasons

Figure C1. Cumulative lag relative importance plots for counties for the MAM and OND seasons.
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Appendix D: Contour plots showing forecast
performance for MAM and OND seasons

Figure D1. Contour plots showing VCI3M forecast against true VCI3M for MAM and OND seasons. Panels (a)–(d) show the results from the
AR method with VCI3M only, and (e)–(h) show the overall results for BARDL modelled with lags of VCI3M plus lags of precipitation (P3M)
and soil moisture (S3M) anomalies for 6-, 8-, 10-, and 12-week lead time for all counties.
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