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Abstract. Shallow landslides pose a risk to infrastructure and
residential areas. Therefore, we developed SlideforMAP, a
probabilistic model that allows for a regional assessment of
shallow-landslide probability while considering the effect of
different scenarios of forest cover, forest management and
rainfall intensity. SlideforMAP uses a probabilistic approach
by distributing hypothetical landslides to uniformly random-
ized coordinates in a 2D space. The surface areas for these
hypothetical landslides are derived from a distribution func-
tion calibrated on observed events. For each generated land-
slide, SlideforMAP calculates a factor of safety using the
limit equilibrium approach. Relevant soil parameters are as-
signed to the generated landslides from log-normal distribu-
tions based on mean and standard deviation values represen-
tative of the study area. The computation of the degree of
soil saturation is implemented using a stationary flow ap-
proach and the topographic wetness index. The root rein-
forcement is computed by root proximity and root strength
derived from single-tree-detection data. The ratio of unstable
landslides to the number of generated landslides, per raster
cell, is calculated and used as an index for landslide proba-
bility. We performed a calibration of SlideforMAP for three
test areas in Switzerland with a reliable landslide inventory
by randomly generating 1000 combinations of model param-
eters and then maximizing the area under the curve (AUC)
of the receiver operation curve. The test areas are located
in mountainous areas ranging from 0.5–7.5 km2 with mean

slope gradients from 18–28◦. The density of inventoried his-
torical landslides varies from 5–59 slides km−2. AUC values
between 0.64 and 0.93 with the implementation of single-tree
detection indicated a good model performance. A qualitative
sensitivity analysis indicated that the most relevant param-
eters for accurate modelling of shallow-landslide probabil-
ity are the soil thickness, soil cohesion and the precipitation
intensity / transmissivity ratio. Furthermore, we show that
the inclusion of single-tree detection improves overall model
performance compared to assumptions of uniform vegeta-
tion. In conclusion, our study shows that the approach used in
SlideforMAP can reproduce observed shallow-landslide oc-
currence at a catchment scale.

1 Introduction

Landslides pose serious threats to inhabited areas worldwide.
They were the cause of 17 % of the fatalities due to natu-
ral hazards in the period of 1994–2013 (Kjekstad and High-
land, 2009). Average annual monetary losses over the period
of 2010–2019 were approximately USD 25 billion (Munich
RE, 2018). In addition, Swiss Re Institute (2019) notes a sig-
nificant increase in damage by hydrologically related natu-
ral hazards over the past 5 years, including hydrologically
triggered shallow landslides. This has been attributed to in-
creased urbanization in risk-prone areas and to an increase in
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heavy-rainfall events. Furthermore, Swiss Re Institute (2019)
notes that the modelling of shallow landslides is underdevel-
oped compared to the severity of the danger they pose. In
mountainous regions, landsliding is a prominent natural haz-
ard. For instance, in the Alpine parts of Switzerland, 74 peo-
ple died as a result of landslide events between 1946 and
2015 (Badoux et al., 2016). The annual cost of landslide pro-
tective measures alone is approximately CHF 15 million each
year (Dorren and Sandri, 2009). No distinction is made be-
tween deep-seated and shallow landslides in these numbers.
Rain-induced shallow landslides are one of the most impor-
tant and dangerous types of mass movement in mountain-
ous regions (Varnes, 1978). Shallow landslides are defined
as translational mass movement with a maximum soil thick-
ness of 2 m and are the main focus in this paper. Fortunately,
improvements in hazard assessment have significantly de-
creased the number of shallow-landslide-related deaths over
the past decades (Badoux et al., 2016). This general trend is
also supported by long-term data (Munich RE, 2018). The
fatality decrease is related to better organizational measures
regarding hazards, such as warning-based evacuations and
road closures. Biological measures, such as management of
protection forests, also play a role in mitigation of natural
hazards. The latter role is especially important for (shal-
low) landslides, rockfall, snow avalanches and debris flows
(Corominas et al., 2014).

Modelling of shallow-landslide triggering has been an on-
going process. Shallow-landslide probability has been mod-
elled mostly using a deterministic approach (Corominas
et al., 2014). The deterministic approach is defined by using
average values of risk components, resulting in a univariate
result (Corominas et al., 2014). An example of a determinis-
tic approach in this sense is the SHALSTAB model of Diet-
rich and Montgomery (1998). Other contemporary examples
are TRIGRS (Baum et al., 2002) and SLIP (Montrasio et al.,
2011), the latter showing good results in assessing soil sat-
uration in a spatially heterogeneous way. In a comparative
piece of research it was noted that the SHALSTAB approach
was not representative of the spatial variability in the parame-
ters at a small scale (Cervi et al., 2010). In recent decades, the
development of probabilistic models and statistical methods
has improved model performance for quantifying landslide
probability and the interpretation of its results (Corominas
et al., 2014). In statistical methods (e.g. Baeza and Coromi-
nas, 2001), there is no explicit accounting for physical pro-
cesses. Probabilistic methods could take physical processes
into account and additionally quantify the reliability of the
results considering the probability distribution of values of
one or more input parameters (Salvatici et al., 2018). The
output is a probability rather than a univariate result. A prime
example of a probabilistic model is SINMAP (Pack et al.,
1998). Generally, these models perform better than determin-
istic ones (Park et al., 2013; Zhang et al., 2018), likely due to
natural landslides having a mode of movement significantly
controlled by internal inhomogeneities and discontinuities in

the soil (Varnes, 1978). These control mechanisms are un-
predictable at small scales, making it hard for deterministic
models to identify exact locations of instabilities and adjust
the heterogeneous parametrization accordingly. Below we go
into more detail on the initiation of shallow landslides.

Initiation of instability is a process that combines mechan-
ical and hydrological processes on different spatial and tem-
poral scales and can thereby be very localized, with suc-
cessive movement increasing the magnitude of the event
(Varnes, 1978). In alpine environments, instabilities are typ-
ically triggered by rainfall, leading to soil wetting and ensu-
ing increase in pore pressure, which destabilizes the soil and
can then initiate soil movement. An increase in pore pres-
sure can build up in minutes to months following a rain-
fall event (Bordoni et al., 2015; Lehmann et al., 2013), and
rapid pore pressure changes are attributed to the macrop-
ore flow and slow pore pressure changes to the matrix wa-
ter flow. The higher the horizontal hydraulic conductivity of
the soil, the faster pore pressure changes can develop (Iver-
son, 2000). The reaction of pore pressure to rainfall is vari-
able and highly dependent on soil type. A key experimental
study is the work of Bordoni et al. (2015) in which in situ
measurements were taken on a slope with clayey–sandy silt
and clayey–silty sand soils that experienced a shallow land-
slide. It showed that intense rainfall and a rapid increase in
pore pressure were the triggering factors of the landslide.
Over the duration of the measurements, comparable satura-
tion degrees were reached during both prolonged-rainfall and
intense-rainfall events. Prolonged rainfall did not result in the
pore pressure required to trigger a shallow landslide. Simi-
lar behaviour has been observed in an artificially triggered
landslide in Switzerland (Askarinejad et al., 2012; Lehmann
et al., 2013; Askarinejad et al., 2018). In the first wetting
phase (year 2008), homogeneously induced rainfall with a
duration of 3 d, accumulated rainfall of 1700 mm and an in-
tensity of 35 mm h−1 induced a maximum pore water pres-
sure of 2 kPa at 1.2 m soil depth, resulting in no landslide. In
the second phase of the experiment (year 2009), the rainfall
was heterogeneous, with a maximum intensity of 50 mm h−1

in the upper part of the slope that induced an increase in pore
water pressure of up to 5 kPa at 1.2 m soil depth, resulting
in the triggering of a shallow landslide. The triggering was
reached after 15 h with cumulative rainfall of 150 mm. In
addition, a computational study by Li et al. (2013) showed
that at a high rainfall intensity (80 mm h−1), the pore water
pressure at a depth of 1 m reached a constant value within
1 h. For a lower intensity of 20 mm h−1, this took approxi-
mately 3 h. This shows that landslide triggering is related to
a fast build-up of pore water pressure proportional to rain-
fall intensity. The work of Wiekenkamp et al. (2016) sug-
gests that preferential flow dominates the runoff in a het-
erogeneous catchment during extreme precipitation events.
Water can move downslope very rapidly through macropores
(in experimental conditions) under both saturated and unsat-
urated conditions (Mosley, 1982). The role of macropores
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can be important in a closed soil structure or in the presence
of a shallow impermeable bedrock, where they control the
soil hydrological behaviour. Further examples of the influ-
ence of macropores on hillslope hydrology in various soil
types are presented in the work of Weiler and Naef (2003)
and Bodner et al. (2014). Additionally, Torres et al. (1998)
demonstrate the strong role of macropore in preferential flow
paths for landslide triggering in an artificial-rain experiment
in a loamy sandy soil. Montgomery et al. (2002) and Mont-
gomery and Dietrich (2004) also underline the importance of
macropore flow but state that the vertical flow governs re-
sponse time and build-up of pore pressure rather than the lat-
eral flow in their study areas.

The mechanical aspect of shallow-landslide initiation usu-
ally results from local instabilities that could extend indef-
initely in an infinite constant slope if the shear resistance
is low (Varnes, 1978). In complex topography, however, the
passive earth pressure at the bottom of the triggering zone re-
acts with a resisting force, contributing thereby to landslide
stabilization (Schwarz et al., 2015; Cislaghi et al., 2018). It is
important to note here that the passive earth pressure is acti-
vated in a later phase of the triggering of a shallow landslide
and should not be added to active earth pressure or tensile
forces acting along the upper half of the shallow landslide
(Cohen and Schwarz, 2017).

Besides hydrology, slope and soil characteristics, vegeta-
tion plays a key role in landslide triggering (Salvatici et al.,
2018; Corominas et al., 2014; Greenway, 1987; González-
Ollauri and Mickovski, 2014). The role of vegetation can be
subdivided into hydrological and mechanical effects. Vegeta-
tion influences the effective soil moisture by interception, in-
creased evapotranspiration and increased infiltration (Green-
way, 1987; Masi et al., 2021). Over the short timescale with
intense rainfall, these hydrological effects are negligible but
do play an important role in pre-event disposition of slope in-
stability (Feng et al., 2020). Among the mechanical effects,
root reinforcement, mobilized during soil movement, is an
essential component (Greenway, 1987; Schwarz et al., 2010).
It is a leading factor in the failure criterion for many vege-
tated slopes (Dazio et al., 2018). In modelling studies, the in-
fluence of root reinforcement on slope stability is often quan-
tified as an apparent added cohesion (Wu et al., 1978; Borga
et al., 2002). This apparent cohesion in turn can be added in
the limit equilibrium computation of a safety factor (SF). Us-
ing a Monte Carlo approach to this method (Zhu et al., 2017),
it was found that the SF can gain up to 37 % stability when
including vegetation root reinforcement. In another study in
New Zealand, trees had an effect on soil stability up to 11 m
away from their position and had the ability to prevent 70 %
of instability events (Hawley and Dymond, 1988). Compu-
tational research furthermore shows that root reinforcement
by the larger roots is dominant over the smaller roots, even
though they are far less numerous (Vergani et al., 2014). The
planting pattern and management of the vegetation can have
a profound effect on root reinforcement and thus on slope

stability (Sidle, 1992). Therefore a detailed approach to cal-
culate the spatial distribution of root reinforcement is im-
portant for slope stability calculations. Root reinforcement
can be subdivided into two major components: basal root re-
inforcement and lateral root reinforcement. Basal root rein-
forcement is the anchoring of tree roots through the sliding
plane into the deeper soil. Lateral root reinforcement is the
reinforcement from roots on the edges of the potential slide
that stick into the soil outside of the potential slide (Schwarz
et al., 2010). In contrast, the mechanical influence of veg-
etation weight on slope stability is often considered negli-
gible (Reinhold et al., 2009). In current shallow-landslide
probability modelling, whether deterministic or probabilis-
tic, root reinforcement is generally modelled in a simplified
way, for example by including homogeneous root reinforce-
ment (Montgomery et al., 2000). These methods limit the
evaluation of the effects of different forest spatial properties
such as forest structure and the contribution of different root
reinforcement mechanisms to slope stabilization (Schwarz
et al., 2012). In order to overcome this limitation, we develop
a shallow-landslide probability model, named SlideforMAP.
To ensure wide applicability, SlideforMAP is designed for
a regional scale. In concrete terms this means SlideforMAP
should be applied to study areas of 1–1000 km2. The main
objectives of this work are to

– present the SlideforMAP model as a tool for shallow-
landslide probability assessment,

– show a calibration of SlideforMAP through a perfor-
mance indicator over three study areas with 78 field-
recorded shallow-landslide events in Switzerland,

– analyse the expected improvement in the performance
of SlideforMAP with a detailed inclusion of vegetation,

– provide a qualitative sensitivity analysis and identify the
parameters that are of greatest influence on the slope
stability.

Strong emphasis within the SlideforMAP framework and
this paper is put on the quantification of root reinforcement
on a regional scale. We will show the effect of accurate, quan-
titative representation of root reinforcement has on slope sta-
bility over three study areas. Simplifications, lack of a tempo-
ral component and calibration constraints make it impossible
to use SlideforMAP as an exact forecast tool. The main ap-
plication for SlideforMAP is as a tool to quantify the effects
of vegetation planting, growth and/or management for land
managers in relation to shallow landslides.

https://doi.org/10.5194/nhess-22-2611-2022 Nat. Hazards Earth Syst. Sci., 22, 2611–2635, 2022



2614 F. B. van Zadelhoff et al.: Introducing SlideforMAP: a probabilistic finite slope approach

2 Methods – SlideforMAP

2.1 Probabilistic modelling concept

SlideforMAP is a probabilistic model that generates a 2D
raster of shallow-landslide probability (Pls). It is an exten-
sion of the approach of Schwarz et al. (2010, 2015). It gen-
erates a large number of hypothetical landslides (HLs, sin-
gular – HL) within the limits of a pre-defined region of in-
terest. These HLs are assumed to have an elliptic shape and
are characterized by a mix of deterministic and probabilis-
tic parameters, from which the landslide stability is com-
puted following the limit equilibrium approach (Sect. 2.2).
The probabilistic parameters are the HL location, its surface
area and its soil cohesion, the internal friction angle, and soil
thickness parameters (drawn from appropriate random dis-
tributions). The location and surface area are approached in
a probabilistic way to compute a spatial probability distri-
bution. The soil parameters are probabilistic because we as-
sume their variation is high and important in mountainous
environments. The deterministic parameters include several
vegetation parameters and hydrological soil parameters. A
key original feature of the approach stems from the fact that
the vegetation parameters can be derived from single-tree-
scale information (Sect. 2.5). The number of generated land-
slides is high enough such that each point in a region of in-
terest is overlain by multiple HLs from which a relative Pls
can be estimated by considering the ratio of unstable HLs. A
general flow chart of SlideforMAP is given in Fig. 1. More
details on the modules follow in the subsequent sections.

2.2 Stability estimation

The estimate of the stability of each HL is calculated fol-
lowing the limit equilibrium approach (described well in the
work of Day, 1997). In this method, a landslide is assumed
to be stable if its safety factor (SF) is greater than 1.0. The
SF is computed as the ratio of the parallel to slope-stabilizing
forces to the destabilizing ones:

SF=
Fres

Fpar
, (1)

where Fpar [N] is the force parallel to the slope, Fres [N]
is the maximum mobilized resistance force. The assumed
forces that act upon a hypothetical landslide are schemati-
cally shown in Fig. 2.

As seen in Fig. 2, all landslides are assumed to be elliptical
(Rickli and Graf, 2009) with a ratio between length and
width of lwr = 2. The forces assumed in SlideforMAP are
typical of the second stage of the activation phase: the dis-
placement at which lateral root reinforcement is maximized
under tension along the tension crack and at which passive
earth pressure and lateral root compression are assumed to
not be fully mobilized (Cohen and Schwarz, 2017). The
magnitude of the stabilization’s effects under compression

considerably changes depending on the stiffness of the
landslide material and the dimensions of the landslide. The
quantification of those effects is still a challenge for slope
stability calculation at large scales. In order to develop
a conservative approach, we neglect those effects in the
stability calculations of SlideforMAP. The tension crack is
assumed to span the entire upper half of the circumference of
the HL and has an assumed length in the range of 0.01–0.1 m
(Schwarz et al., 2015) depending on the root distribution.
This behaviour of progressive shallow-landslide failure with
a tension crack opening up in the upper half of a shallow
landslide is described in detail in Cohen et al. (2009) and
Askarinejad et al. (2012). This is different from the assump-
tions taken in most landslide models involving root reinforce-
ment (e.g. Montgomery et al., 2000; Schmidt et al., 2001)
that assume lateral root reinforcement is activated at the
same time along the entire landslide perimeter. Quantifica-
tion of the forces in the safety factor calculation follows the
limit equilibrium assumptions. This method is outlined in
Eqs. (2) to (5) below:

Fpar = g(msoil+mw+mveg) · sin(s), (2)

Fres =
cls

2
·Rlat+Fres,bas , (3)

Fres,bas = Als ·Csoil+Als ·Rbas+Fper,eff · tan(φ), (4)
Fper,eff = g · (msoil+mw+mveg) · cos(s)−Pwater . (5)

In these equations,msoil is the soil mass [kg],mw is the mass
of the water [kg], mveg is the vegetation mass [kg], g is the
gravitational acceleration assumed at 9.81 [m s−2], s is the
slope [◦], cls is the circumference of the landslide [m], Rlat
is the lateral root reinforcement [N m−1], Fres,bas is the basal
resisting force,Als [m2] is the area of the landslide, Csoil [Pa]
is the soil cohesion [Pa], Rbas is the basal root reinforcement
[Pa], Fper,eff is the effective perpendicular resisting forces
[N], φ is the angle of internal friction [◦] and Pwater is the
water pressure [Pa].

2.3 Placement and extent

The location of the centre of mass of the HLs is generated
from two uniform distributions covering the latitudinal and
longitudinal extent of the study area. HLs on the edge of the
study area are taken into account as well, though cut to the
extent of the study area in the later spatial processes of Slide-
forMAP. The total number of HLs is determined by multiply-
ing the landslide density parameter (ρls) with the total sur-
face area of the study area. This number is then uniformly
sampled with replacements from the latitudinal and longitu-
dinal distribution. The value of ρls should be high enough
such that each raster cell of the study domain is covered by
several HLs. The HL surface area is sampled from an in-
verse gamma distribution following the work of Malamud
et al. (2004), which showed that the probability distribution
of shallow-landslide surface areas follows an inverse gamma
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Figure 1. Flow chart of the computational steps in SlideforMAP. Separate sections are outlined in colours. The central workflow is high-
lighted.

distribution (Johnson and Kotz, 1970). The parametrization
of a three-parameter inverse gamma distribution is shown in
Eq. (6) below.

PAls =
1

a ·0(ρ)

(
a

Als− s

)(ρ+1)

e

(
−a
Als−s

)
, (6)

where Als is the area of the landslide; PAls is the probability
of Als; 0 is the gamma function; and a, ρ and s are parame-
ters. These distributional parameters are estimated using the
landslide surface area data of the inventory (Sect. 3). The
estimation is based on minimizing the root mean square er-
ror (RMSE) between the histogram counts (size of histogram
bins is 10) of the surface areas from the inventory and the
distribution of Eq. (6). Users can follow this approach with
an inventory or use a custom parametrization. The maxi-
mum HL surface area is set for all case studies based on the
maximum surface area observed in the landslide inventory.
This maximum is set to 3000 m2, based on the rounded-up

maximum value of a well-distributed landslide inventory in
Switzerland (Sect. 3.3), but users can vary this parameter.

2.4 Soil parameters

Steeply sloped mountainous areas are prone to extreme
and unpredictable heterogeneity in soil parameters (Cohen
et al., 2009). This makes a heterogeneous deterministic
parametrization inaccurate, even if based on observations.
To overcome this limitation, a probabilistic approach to the
parametrization of soil parameters of the model is applied.
Values of soil cohesion and the internal friction angle of
each HL are randomly generated from independent probabil-
ity distributions. This is an approach similar to the one taken
in Griffiths et al. (2009), who use the log-normal distribu-
tion for soil cohesion only, and Pack et al. (1998), who use a
uniform distribution for soil cohesion and the friction angle.
We choose the log-normal distributions in our parametriza-
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Figure 2. Schematic overview of the forces acting upon a hypothetical landslide, as assumed in SlideforMAP. The blue arrow, Fres, indicates
the stabilizing forces, and the red arrow, Fpar, indicates the destabilizing forces. Lateral root reinforcement only acts upon the green part of
the hypothetical landslide, where tension takes place. In purple is the compression zone in the shallow landslide. Basal root reinforcement
and soil shear strength act on the whole potential failure surface.

tion because it has been shown to give a good fit (Fig. A1
with a comparison to a normal distribution in the Appendix;
corresponding code in the Supplement), it ensures generat-
ing positive values only and its accuracy has been shown in
Griffiths et al. (2009). The distribution is parametrized by the
mean and the standard deviation of observed samples. The
mean and the standard deviation are based on different in-
formation such as field soil classification or a geotechnical
analysis. The soil cohesion in our computations is assumed
to be representative of saturated, drained and unconsolidated
conditions. Soil thickness is parametrized following a differ-
ent approach to account for the shallow soils found on steep
slopes. An initial soil thickness (hsoil) is derived from a log-
normal distribution. This is then multiplied by a correction
factor which is a function of slope inclination as shown in
Eq. (7). Soil thickness is defined here perpendicularly to the
slope as opposed to soil depth, which is measured in the ver-
tical direction.

Hsoil = hsoil (1−PN (S ≤ s|µ1,σ1)) , (7)

where Hsoil [m] is the soil thickness and s is the observed
slope, extracted for the HL. PN (S ≤ s|µ1,σ1) is the cumu-
lative normal distribution of the slope S with µ1 = a ·mh and
σ1 = b ·σh.mh and σh are the mean and standard deviation of
the slope angle of shallow landslides from an inventory or a

best guess. a and b are estimated by fitting data from a land-
slide inventory containing the slope angle and soil thickness.
Relations other than those used by SlideforMAP to correct
the soil thickness to the slope (e.g. Prancevic et al., 2020) are
possible as well.

2.5 Mechanical effects of vegetation

Three properties of vegetation are included in the model.
These are vegetation weight, lateral root reinforcement and
basal root reinforcement. SlideforMAP only incorporates
trees and ignores possible effects by shrubs, grasses and
other vegetation. This choice is due to the fact that trees
are predominant in influencing slope stability (Greenway,
1987). Single-tree detection (Korpela et al., 2007; Menk
et al., 2017) serves as a basis to estimate these proper-
ties. Single-tree position and dimensions are derived from
a canopy height model (CHM), which is the difference be-
tween the digital surface model (DSM) and the digital eleva-
tion model (DEM), using a local maxima detection (LMD)
method described in the work of Eysn et al. (2015) and
Menk et al. (2017). First, the trees are rasterized. The resolu-
tion of this raster has to exceed the effective radial dimension
of the trees in order to calculate representative vegetation pa-
rameter values at the stand scale. The weight of the tree is
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calculated by using the tree height and the diameter at breast
height (DBH), assuming that the trees are cone shaped. The
tree mass,mveg, used in Eqs. (2) and (5), is calculated assum-
ing a mean tree density (ρtree) of 850 kg m−3. Root reinforce-
ment is added in the model using the method proposed by
Schwarz et al. (2012), which relates the root reinforcement to
the distance to a tree, the size of the tree and the tree species.
Two rasters are computed. A raster with the shortest distance
to a tree (Dtrees) and a raster with the average DBH of all
trees within an assumed maximum distance of root influence
(Dtrees,max), set at 15 m. We compute actual lateral root re-
inforcement for a given grid cell as a function of maximum
lateral root reinforcement and soil thickness, which reduces
maximum lateral root reinforcement. The maximum lateral
root reinforcement, RRmax [N m−1], is computed as a func-
tion of Dtrees and DBH (Moos et al., 2016; Gehring et al.,
2019) according to Eq. (8) below:

RRmax = (c ·DBH) ·0PDF

(
Dtrees

DBH · 18.5

∣∣∣∣α1,β1

)
. (8)

In Eq. (8), c is a fitting parameter in N m−2 based on the
work of Schwarz et al. (2010). DBH is in metres [m]. The
0PDF(x|α1,β1) is the gamma probability density function
(0PDF) evaluated as a function of x with shape parameter
α1 and rate parameter β1. Both α1 and β1 are dimensionless.
The parameters should ideally reflect any knowledge about
how root reinforcement decreases with distance for specific
tree species. The general 0PDF is written as

0PDF(x|α,σ )=
xα−1e−x/σ

σα0(α)
,(x,α,σ > 0). (9)

In this equation α and σ are the shape and scale parame-
ter. The rate parameter, β, as used in this research, is defined
as 1 / scale. Soil thickness reduces the effects of lateral root
reinforcement that contribute to stabilizing a shallow land-
slide. This decrease in lateral root reinforcement with soil
thickness is obtained as follows:

Rlat = RRmax ·

Hsoil∫
0

0PDF

(
H

∣∣∣∣α2,β2

)
dH. (10)

In this equation 0PDF(H |α2,β2) is the 0PDF for the normal-
ized root distribution over the soil thickness with shape pa-
rameter α2 and rate parameter β2. β2 has the unit of metres
[m] in order to make the integral of the 0PDF dimensionless.
SlideforMAP computes this integral by numerical approxi-
mation. This method computes the root reinforcement where
only one tree can influence a cell. A spatially representative
minimum root reinforcement value is calculated in a stand
assuming a triangular lattice (Giadrossich et al., 2020). Un-
der this assumption, three root systems interact additively.
Basal root reinforcement, Rbas, is assumed to be proportional
to lateral root reinforcement and dependent on soil thickness

according to the relation shown in Eq. (11):

Rbas = RRmax ·0PDF (Hsoil|α2,β2) , (11)

where 0PDF (Hsoil|α2,β2) is the normalized root distribution
in the vertical direction. The 0PDF in this application has the
unit of inverse metres [m−1], which leads to a unit of pas-
cals [Pa] for the term Rbas, under the assumption of isotropic
conditions.

2.6 Hydrology

The hydrological module in SlideforMAP is based on the
TOPOG model (O’Loughlin, 1986), which includes a spe-
cific topographic index as inspired by Kirkby (1975). In
this framework we specifically assume macropore flow dom-
inates hillslope hydrology. An identical model is used in
the SHALSTAB stability model (Montgomery and Dietrich,
1994) and SINMAP (Pack et al., 1998). It is assumed that the
saturated soil fraction of each cell holds a relation to its spe-
cific catchment area, its slope angle, a constant precipitation
intensity and the soil transmissivity (Eq. 12). This is in close
correspondence with the parametrization used in the widely
used TOPMODEL (Beven and Kirkby, 1979). Limitations of
this approach is the assumption of uniform soil transmissiv-
ity, no inclusion of initial conditions, steady-state flow and
lateral-flow governing of soil moisture pattern. These lim-
itations and generalizations make the model insufficient in
capturing detailed hydrological patterns, especially in moun-
tainous regions modelled by SlideforMAP. Despite this, we
assume the approach to be suitable for a general pattern of
the saturated fraction and subsequent pore pressure. In addi-
tion to this shortcoming we ignore the apparent hydrological
cohesion (Chae et al., 2017) prominent in unsaturated fine
and clayey soils but of little prominence in other conditions
(Montrasio and Valentino, 2008). The saturated soil fraction,
h∗sat [−], of a soil column is defined in Eq. (12) below:

h∗sat =
I · a

T · b · sin(s)
, (12)

where I [m s−1] is the constant precipitation intensity, T
[m2 s−1] is the transmissivity, a is the contributing catchment
area [m2], s is the slope inclination [◦], and b is the contour
length [m] that in our model corresponds to the cell size (see
Sect. 3.2 for details on its computation). We assume domi-
nant macropore flow, which has the ability to quickly drain
a catchment and potentially reach a state of stationary flow.
Using this estimated h∗sat, pore water pressure is computed as

Pwater =Hsoil · cos(s) ·h∗sat · g · ρwater , (13)

where Pwater [Pa] is the pore water pressure (used in Eq. 5),
Hsoil [m] is the soil thickness, s is the slope angle, g =
9.81 m s−2 is the gravitational acceleration and ρwater is the
density of water assumed equal to 998 kg m−3. The same
value for water density is used in the computation of the wa-
ter mass in the HL.
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2.7 Model initialization

The model has a total of 3 probabilistic parameters and 15
deterministic parameters (Table 1). The deterministic param-
eters as well as the distributional parameters for the proba-
bilistic parameters are determined from in situ data or from
the literature (Sect. 3). In a first step of the workflow for the
application of SlideforMAP, after assigning the deterministic
parameter values and sampling a value for each probabilistic
parameter, a minimum value of soil cohesion is computed for
each HL to obtain stable conditions (safety factor SF≥ 1.0)
under a uniform precipitation intensity of 28.3 mm d−1 or
1.2 mm h−1. This threshold of precipitation intensity is cho-
sen according to Leonarduzzi et al. (2017), who statistically
analysed over 2000 landslides in Switzerland over the pe-
riod 1972–2012 and found this as a triggering threshold. The
minimum value of soil cohesion is obtained by equating Fpar
(Eq. 2) and Fres (Eq. 3). If the minimum value of soil cohe-
sion is larger than the sampled soil cohesion, the soil cohe-
sion is updated to the minimum value. This procedure can be
altered by users when another threshold or no threshold at all
applies.

2.8 Landslide probability computation

After model initialization, the SF (Eq. 1) is computed for
each of the generated HLs. Based on the SF for all generated
HLs, landslide probability per raster cell (with the resolution
of the original DEM), Pls, is computed as

Pls =
nus

nHL
, (14)

where nus is the number of unstable HLs, i.e. of HLs with
SF< 1.0, and nHL is the total number of generated HLs (the
HLs are overlapping). Both are per raster cell. Finally, this
results in a raster of shallow-landslide probability at a reso-
lution of the input DEM.

3 Data

3.1 Study areas

Three study areas were chosen to test SlideforMAP based on
the availability of elevation data and detailed records of his-
torical shallow-landslide events (Fig. 3), each varying in size
and location to test the robustness and the general applicabil-
ity of the model.

The geological formations in the Eriz study area vary with
Oligocene freshwater molasse in the lower northern part,
morainic material in the central part and Cretaceous lime-
stone in the highest parts. Forests are dominated by spruce
(Picea abies), except for the lower regions where broad-
leaved trees are dominant. In the Trub study area, the dom-
inant geological formation is Miocene marine molasse and
forests are dominated by spruce. In the St. Antönien (from

here abbreviated to “StA”) study area, the dominant geologi-
cal formation is flysch (Prättigauer flysch), partially covered
by till (Moos et al., 2016). The forest in this study area is also
dominated by spruce (Moos et al., 2016). Further character-
istics of the study areas are given in Table 2.

3.2 Input data

To accurately measure Pls for each study area, the following
data are required.

1. a digital surface model (DSM) and digital elevation
model (DEM);

2. average and standard deviation values for soil cohesion,
thickness and the friction angle;

3. a representative landslide inventory containing at least

a. average landslide soil thickness,

b. landslide surface area.

In addition to the DEM, the DSM is applied in the vege-
tation module of SlideforMAP. The DEM and the DSM are
both acquired from the swissALTI3D database (Swisstopo,
2018), which makes use of aerial laser scanning (ALS). Both
the DSM and the DEM are available at a resolution of 0.5 m.
As an alternative to the use of a landslide inventory and the
DSM for single-tree identification, users can also use synthe-
sized values for the parameters derived from these data. After
pit filling, the DEM is used to compute a slope map follow-
ing the method of Zevenbergen and Thorne (1987). The to-
pographic wetness index θ for Fig. 4 is computed on a raster
cell basis based on the 2 m DEM using Eq. 15.

θ =
a

b · sin(s)
, (15)

where a is the specific upslope catchment area, b is the con-
tour length and s is the slope angle. To avoid numerical prob-
lems for elongated catchments, θ is computed using a 2 km
buffer around the catchment. The large buffer size is cho-
sen arbitrarily but can be reduced by other users. The stan-
dard D8 method is applied for the computation of the ups-
lope catchment area from the DEM (O’Callaghan and Mark,
1984). For single-tree detection, the FINT algorithm (Menk
et al., 2017) is used. Since the results of such detection meth-
ods are strongly influenced by the resolution and smoothness
of the input data (Eysn et al., 2015), we applied the LMD
method to the canopy height model (CHM). This canopy
height model is computed by subtracting the DEM from the
DSM and is resampled to a resolution of 1, 1.5 and 2 m. In
addition, three different Gaussian filters were applied to the
1 m resolution CHM. These three filters have a radius of 3, 5
and 7 cells and a standard deviation of 2 m. To identify the
input data that lead to LMD results with the highest accuracy,
we evaluated the identified trees in three randomly selected
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Table 1. An overview of all variable model parameters of SlideforMAP. The second-to-last column indicates the source of the default value.
The last column indicates whether the default is global or specific for this research in Switzerland (CH).

Parameter Description Default value Unit Source Extent

md Soil thickness mean 1 m Estimate Global
σd Soil thickness standard deviation 0.25 m Estimate Global
mC Soil cohesion mean 2 kPa Estimate Global
σC Soil cohesion standard deviation 0.5 kPa Estimate Global
mφ Angle of internal friction mean 30 ◦ Estimate Global
σφ Angle of internal friction standard deviation 4 ◦ Estimate Global
ρls Density of the randomly generated landslides 0.1 HL m−2 Estimate Global
ρsoil Dry soil density 1500 kg m−3 Estimate Global
T Soil transmissivity 0.1 m2 s−1 Estimate Global
I The precipitation event that is tested 10 mm h−1 Estimate Global
Imin Precipitation intensity threshold for instability 1.2 mm h−1 Leonarduzzi et al. (2017) CH
rxy Raster resolution of the SlideforMAP run 2 m Estimate Global
lwr Ratio between length and width of the landslides 2 – Estimate Global
c Fitting parameter for the lateral root reinforcement 25 068.54 – Gehring et al. (2019) CH
α1 Shape of root distribution in horizontal direction 0.862 – Gehring et al. (2019) CH
β1 Rate of root distribution in horizontal direction 3.225 – Gehring et al. (2019) CH
α2 Shape of root distribution in vertical direction 1.284 – Gehring et al. (2019) CH
β2 Rate of root distribution in vertical direction 3.688 m Gehring et al. (2019) CH
Dtrees,max Maximum distance for influence of tree roots 15 m Estimate Global
ρtree Density of a tree 850 kg m−3 Estimate CH
ρwater Density of water 998 kg m−3 Estimate Global

Figure 3. Locations of the study areas in Switzerland with observed shallow-landslide occurrence over the period 1997–2012 (blue dots);
the case study names are given according to nearby villages: Trub, St. Antönien and Eriz. Forest-covered area is presented in green. Source
of forest cover: Federal Office of Topography swisstopo (Swisstopo, 2020). Source of hillshade: Federal Office of Topography swisstopo
(Swisstopo, 2018).

forest inventory plots with an area of 20 m× 20 m for each
study site. In these plots, we visually identified all recogniz-
able tree crowns, on the basis of aerial photos (Swisstopo,
2017) and the CHM. The identified trees were then com-
pared to the LMD result, using the difference in the number
of detected trees. The input data leading to the most accu-
rate results in all three study sites were the 1 m resolution
CHM with a Gaussian filter of a 3-cell radius and with the
fixed standard deviation of 2 m. This combination has been
applied to the entire area of the three study sites. To estimate
the DBH from the tree heights of all detected trees, the fol-

lowing empirical equation (Dorren, 2017) was used:

DBHtree =
(Htree)

1.25

100
, (16)

where DBHtree [m] is the diameter at breast height of a given
tree and Htree [m] its height. Details resulting from the LMD
method for the three study areas are shown in Table 3.

The lateral root reinforcement and the basal root rein-
forcement (Eqs. 10 and 11) are parametrized using the val-
ues from Gehring et al. (2019) (α1 = 0.862, β1 = 3.225,
c = 25068.54, α2 = 1.284, β2 = 3.688). In their work, the
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Table 2. Study area characteristics. Meteorological data are from the HADES yearly average precipitation for the time period 1981–2010
(Frei et al., 2020). Shallow-landslide number and density are from the inventory in Sect. 3.3.

Name Centre coordinate Surface area Mean prec. Elevation Number of slides Slide density Mean slope
lat, long (WGS84) [km2] [mm yr−1

] [m a.s.l.] [slides km−2] [◦]

Eriz 7.81, 46.78 7.54 1700 960–1750 37 4.9 20.4
Trub 7.90, 46.96 1.00 1620 820–1020 8 8.0 18.3
StA 9.80, 46.98 0.56 1310 1540–2010 33 58.9 27.5

Table 3. Vegetation parameters in the study areas. Source of forest cover: Federal Office of Topography swisstopo (Swisstopo, 2020). Source
of hillshade: Federal Office of Topography swisstopo (Swisstopo, 2018).

Study area Trees identified Forest cover Mean stem density Mean DBH SD DBH
[%] [stems ha−1] [m] [m]

Eriz 38 923 32 165 0.51 0.27
Trub 7267 26 270 0.55 0.30
StA 1796 27 120 0.31 0.18

Figure 4. Overview of landslide properties for the studied regions.
Top row: mean soil thickness (a) and the surface area (b) of the
shallow landslide (SL) for the test areas and the total inventory;
bottom row: mean slope (c) and mean topographic wetness index
(TWI) (d). The box plots show the 25th, 50th and 75th percentiles;
the whiskers extend to 1.5 times the length between the 25th and
75th percentile. Outliers are marked as circles. The TWI was ex-
tracted from the TWI raster cells that lie inside the landslide inven-
tory polygons.

calibration was performed on beech (Fagus sylvatica) stands
over varying elevations. Our study areas, however, are pre-
dominantly vegetated by spruce trees. Therefore a discrep-
ancy in the estimated root reinforcement will likely arise.
Unfortunately, this is the only published set of calibrated val-
ues.

3.3 Landslide inventory

A landslide inventory is required to quantify a distribution
for slope, surface area and soil thickness for the HLs. This
inventory does not necessarily have to be well distributed in
the study area or even be present in the area. However, it
should be representative of the conditions in the area of in-
terest as much as possible. A dataset of 668 shallow land-
slides that occurred between 1997 and 2012 in Switzerland
has been created by the Swiss Federal Office for the Environ-
ment (BAFU; Rickli et al., 2019). Statistical information on
the landslides can be seen in Fig. 4. We assume the properties
in this inventory to be representative of shallow landslides in
Switzerland. All landslides are triggered by rainfall, and the
majority of the landslides are shallower than 1.5 m (Fig. 4).
The landslides in the StA and Trub area took place in 2005
during or shortly after heavy rainfall in August. The land-
slides in the Eriz area from 2012 are related to heavy rainfall
in July. Exact precipitation amounts and intensities are un-
known. The data are formatted with centre points and the
surface area of the shallow-landslide initiation area. In our
analysis we assume the areas have an elliptical shape.

The inventory is used to estimate the parameters for
the surface area distribution used in SlideforMAP (Eq. 6),
via minimization of the RMSE between observed frequen-
cies and theoretical frequencies. The estimated values of
the parameters are as follows: a = 1.40, ρ = 1.5−4 m2, s =
4.28−8 m2. In addition, the inventory is used to calibrate the
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Table 4. The confusion matrix, resulting from the comparison of a
reference Boolean raster and a raster corresponding to a simulation.

Model

True False

Inventory
True True positive (TP) False negative (FN)
False False positive (FP) True negative (TN)

a and b parameters for the soil thickness correction factor
as used in Eq. (7). For the fitting (Appendix, Fig. A2) of
the correction factor we use classes of inclination of 2.5◦

and the soil thickness values corresponding to the 95th per-
centile. This best fit for Eq. (7) was obtained with the values
of a = 1.47 and b = 0.50.

3.4 Model calibration and sensitivity analysis

The model has a total of 21 parameters that are derived from
observed data, derived from the literature or set to default val-
ues; their values, given in Table 1, are not further varied in the
model behaviour analysis due to their assumed low variance.
The remaining parameters can potentially influence the land-
slide probability, mostly given their variation as observed in
nature. These parameters are as follows: Imin, lwr, c, α1, β1,
α2, β2, Dtrees,max, ρtree, ρwater. The remaining 12 parame-
ters are then calibrated by Monte Carlo simulation, drawing a
high number of parameter samples for all calibration param-
eters and evaluating the corresponding model performance
based on the area under the curve (AUC) method (Metz,
1978; Fawcett, 2006). We hereafter first present the perfor-
mance evaluation method used, followed by the parameter
sampling method used for the calibration as well as for the
sensitivity analysis. In addition, we present four vegetation
parameter scenarios that are developed to test the potential
influence of vegetation. Due to the limited size of the land-
slide inventory, we do not include an independent validation
of SlideforMAP.

3.4.1 Model performance evaluation

The basis of the application of the AUC method is a spatial
representation of the landslide inventory in a Boolean raster
(0 is no past landslide present, 1 is past landslide present).
For each randomly generated parameter set, the simulated Pls
(Sect. 2.8) is also converted to a Boolean raster, by selecting
a threshold to assign 0 or 1. Overlaying the inventory raster
onto the modelled raster results in a confusion matrix with
four possible combinations, as shown in Table 4.

A so-called receiver operator curve (ROC) can be ob-
tained by computing the values of the confusion matrix for
all unique values in the simulated raster as threshold values
and for each plotting the sensitivity, TP / (TP+FN), against
the specificity, TN / (TN+FP). The area under the ROC is
the AUC and defines the accuracy of the model on a scale of
0.5–1.0, where 0.5 is no better than a random guess and 1.0
is a perfect prediction.

3.4.2 Parameter sampling and qualitative sensitivity

The parameter samples for the Monte Carlo-based model
calibration and the subsequent sensitivity analysis are gen-
erated using the Latin hypercube sampling (LHS) technique
(McKay et al., 1979). This makes use of semi-random sam-
ples of variables over pre-defined ranges. The outcome of
a Monte Carlo-based calibration is highly influenced by the
ranges chosen for the parameters. For this reason, parameter
ranges were chosen as realistically as possible. To estimate
the parameter ranges for soil properties, soil types in USCS
(Unified Soil Classification System) classes are taken from
the shallow-landslide inventory (a total of 377 had their soil
type listed). Soil types present more than 10 times are taken
into account and aggregated into a hybrid table of soil cohe-
sion and angle of internal friction values per soil type based
on the values given in the work of Dysli and Rybisar (1992)
and VSS-Kommission (1998) (see Appendix, Table A1). In
order to obtain a realistic range for the soil cohesion, first
the mean soil cohesion (weighted on USCS soil type occur-
rence) is computed and then the weighted standard deviation
is subtracted and added twice to the weighted mean. This
is to account for 95 % of the variation in the observed soil
cohesion (assuming a normal distribution). The same pro-
cedure is performed for the angle of internal friction. The
range of transmissivity values is obtained by taking the sat-
urated hydraulic conductivity from the work of Freeze and
Cherry (1979) for the respective soil classes and by multi-
plying these saturated hydraulic conductivities with the min-
imum and maximum soil thickness of the soil class. From the
resulting list of possible transmissivity values per soil class,
the minimum and maximum are taken for the LHS range.
For the precipitation intensity, four depth duration values are
defined. These correspond to a duration of 1 and 24 h with
subsequent return periods of 10 and 100 years. The duration
of 1 to 24 h is in line with the SlideforMAP assumption of
quick macropore-flow-dominated lateral groundwater flow.
The return periods of 10 and 100 years were chosen arbitrar-
ily in line with forest management timescales. Precipitation
intensities are computed using data from the work of Jensen
et al. (1997) and the methodology as described in the work of
HADES (2020). An overview of the intensity–return period
rainfall values is given in Table 5.

The R script implementing the sampling methodology and
a description are included in the Supplement. The minimum
and maximum values from Table 5 are used as the range in
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Table 5. Rainfall intensity [mm h−1] for specific durations and re-
turn periods, used to define the boundaries in the sensitivity analy-
sis. D denotes duration; T denotes return period.

D = 1 h D = 1 h D = 24 h D = 24 h
T = 10 yr T = 100 yr T = 10 yr T = 100 yr

Eriz 32 48 4 5
Trub 30 42 4 5
StA 30 43 4 4

the sensitivity analysis (Table 6). The maximum value for
vegetation weight is taken from a biomass study in Switzer-
land by Price et al. (2017). For the other parameters, real-
istic ranges have been assumed. In Table 6 an overview is
given of the tested parameters and the ranges used to generate
the parameter samples. The precipitation intensity and trans-
missivity together determine the saturation degree of the soil
(Eq. 12) and are therefore prone to equifinality. We grouped
them as an additional parameter, the I/T ratio.

For the model calibration and qualitative sensitivity analy-
sis, 1000 LHS parameter sets were generated per study area
by drawing samples from the ranges in Table 6. The number
1000 was chosen arbitrarily for computational constraints.
The vegetation is set to a global uniform vegetation, which
results in constant root reinforcement and vegetation weight
in space. This is necessary because the same runs are used for
model calibration and for model sensitivity analysis, where
we need such uniform vegetation to ensure that the sensi-
tivity of the (hypothetical) vegetation has an effect on all
raster cells of the whole study area (and not only on the ac-
tually vegetated cells). The parameter set with the highest
AUC value is retained for model calibration. In addition, all
1000 parameter sets are used for a qualitative sensitivity anal-
ysis. The response variables are the AUC as a measure for
accuracy and the ratio of unstable landslides as a measure for
instability. The AUC is chosen for the sensitivity analysis as
the main response variable since it expresses the performance
relative to the independent landslide inventory. We then con-
sider the AUC as a generalized measure of parameter likeli-
hood (Beven and Binley, 1992) and assess how selected best
parameter sets (e.g. the best 10 % out of the 1000 sampled
sets) are distributed (parameter subsampling).

3.4.3 Vegetation parameter scenario analysis

SlideforMAP has potential in testing the effect of different
vegetation scenarios on the landslide probability. For this re-
search, besides the reference scenario for model calibration
and sensitivity analysis (global uniform vegetation), three ad-
ditional scenarios are tested: (i) without vegetation, (ii) with
uniform vegetation in forested areas and (iii) with a fully di-
verse vegetation based on single-tree detection. The single-
tree version uses the input data as mentioned in Sect. 3.2.
The forested areas are defined as areas where the single-tree-

detection method leads to a lateral root reinforcement (Fig. 9)
which is not equal to zero.

4 Results

4.1 Sensitivity analysis

We use the 1000 model simulations corresponding to the
1000 generated parameter sets per study area for a sensi-
tivity analysis of the model. The objective of this analysis
is to quantify how the distribution of AUC values and of
the landslide probability vary as a function of the param-
eters. Applying the parameter subsampling technique (see
Sect. 3.4.2), we see that for some parameters, the histogram
shape (i.e. their marginal distribution) does not significantly
deviate from the initial uniform distribution (from which we
sampled), even if we retain only the best 10 % (in terms of
the AUC) of all parameter sets (Fig. 5). This apparent lack
of sensitivity does not necessarily mean that the model is not
sensitive to this parameter; in fact, the sensitivity could be
hidden by strong parameter correlation (see Bárdossy, 2007,
for a discussion of how uniform marginal distributions can
result from strong parameter correlation). Our addition of
the I/T ratio gives a hint of such behaviour. From Fig. 5
it appears that the sensitivity to the AUC of the I/T ratio is
slightly stronger than either the precipitation or the transmis-
sivity independently. Some parameters, in exchange, show
very strong sensitivity of their marginal distributions if only
the best (in terms of the AUC) parameter sets are retained.
For the Trub case study (Fig. 5), we see that the mean thick-
ness md , the mean cohesion mC, the I/T ratio and the trans-
missivity show a well-defined maximum around the parame-
ter values retained for calibration (the best-performing ones).
This suggests a good sensitivity of the model to these pa-
rameters in terms of model performance. Two of these three
parameters also show a clear sensitivity if we retain subsam-
ples that lead to successively higher unstable landslide ratio
(Fig. 6): high unstable ratios are obtained for high md val-
ues or for low mC. Also for RRmax, the highest ratios are
clearly obtained for low lateral root reinforcement values (for
all three case studies, Figs. 6 and S1 and S4 in the Supple-
ment). For transmissivity, while it shows a clear effect on
model performance, the relation between its marginal distri-
bution and the ratio of unstable landslides is less visible.

4.2 Model calibration

Based on the generated 1000 parameter sets, we identified
the parameter set that resulted in the highest AUC value and
assumed this to be an optimal calibration of the model. These
calibrated parameter sets for each study area and their AUC
values are shown in Table 7 together with the ratio of gener-
ated HLs that are unstable.

Parameter consistency between the study areas appears to
be visible in ρsoil,md ,mC, σC,mφ , σφ , T andWveg. Other pa-
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Table 6. Parameters used in the SlideforMAP qualitative sensitivity analysis and corresponding ranges for parameter sampling via LHS.
RRmax andWveg are given as spatially uniform parameters and are not computed by the methodology in Sect. 2.5. This is to create scenarios
that are comparable with and without single-tree detection.

Parameter Unit Description LHS range

ρls m−2 Density of the randomly generated landslides 0.02–0.10
ρsoil kg m−3 Dry soil density 1.00–1.50
md m Mean soil thickness 0.20–1.80
σd m Standard deviation of the soil thickness, as a fraction of md 0.00–0.50
mC kPa Mean saturated soil cohesion 0.00–12.5
σC kPa Standard deviation of the soil cohesion, as a fraction of mC 0.00–0.50
mφ

◦ Mean angle of internal friction 24.00–41.50
σφ

◦ Standard deviation of the angle of internal friction 0.00–5.00
T m2 s−1 Soil transmissivity 10−8–10−3

I mm h−1 The precipitation event that is tested 4.0–48.0
I/T m−1 Ratio between precipitation and transmissivity 8.9−3–1390
RRmax N m−1 Maximum lateral root reinforcement 0.00–15.0
Wveg t m−2 The weight of the vegetation 0.00–0.10

Figure 5. Histograms of different subsamples of the LHS parameter sets for the Trub study area. The shading (from light to dark) corresponds
to subsamples retaining only the x% highest parameter sets in terms of the AUC; the fractions shown are as follows: 1, 0.7, 0.4 and 0.1.

rameters show stronger variation, relative to their LHS range,
between case studies. A realization of the shallow-landslide
probability computed with SlideforMAP for the three areas
with their calibrated parameter set is given in Fig. 7.

In general, the model represents well the spatial distribu-
tion of the shallow landslides from the inventory. A cumu-
lative plot of the shallow-landslide probability for the study
areas based on Fig. 7 is given in Fig. 8.

4.3 Mechanical effects of vegetation

To test the impact of vegetation on the model behaviour, we
compare the different vegetation scenarios. The spatial dis-
tribution of lateral root reinforcement, resulting from single-
tree detection and SlideforMAP, is given in Fig. 9.

The selected vegetation scenarios (no vegetation, global
uniform vegetation, forest area uniform vegetation, single-
tree detection) affect the computation of the vegetation
weight, the lateral root reinforcement and the basal root re-

inforcement. The latter is due to its dependence on lateral
root reinforcement (Eq. 11). Accordingly, the vegetation sce-
nario has a direct impact on the SF (Eqs. 1, 3, 4) and on Pls
(Eq. 14). For the analysis, we use the optimal parameter set
from Table 7, obtained for a global uniform vegetation cover.
The model runs are repeated 10 times to produce an aver-
age result and to show the variation from the probabilistic
approach. Due to sampling from distributions, every realiza-
tion produces a (slightly) different result. The resulting influ-
ence of the selected vegetation scenarios on the AUC and on
the ratio of unstable landslides is given in Table 8. The re-
sults from Tables 8 and 9 display that the model is sensitive
to the vegetation scenarios and that it predicts lower ratios
of unstable ratios for vegetated scenarios as compared to the
unvegetated scenario. This underlines the value of the model
for future-scenario analyses.

ROCs corresponding to the scenarios with repetitions as
presented in Table 8 are given in Fig. 10. Significance of
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Figure 6. Histograms of different subsamples of the LHS parameter sets for the Trub study area. The shading (from light to dark) corresponds
to subsamples retaining only the x% highest parameter sets in terms of the unstable ratio; the fractions shown are as follows: 1, 0.7, 0.4 and
0.1.

Table 7. Outcome of the Monte Carlo-based calibration: the parameter sets per study area resulting in the highest AUC value. The last row
shows the ratio of unstable HLs resulting from these parameter sets.

Parameter Eriz Trub StA Parameter Eriz Trub StA

ρls 0.095 0.041 0.093 T 0.000148 0.000473 0.000582
ρsoil 1.40 1.20 1.49 I 40.3 24.2 14.0
md 1.62 1.02 1.78 I/T 0.077 0.014 0.007
σd 0.32 0.13 0.31 RRmax 12.3 4.7 10.3
mC 4.29 1.75 2.51 Wveg 0.05 0.02 0.03
σC 0.43 0.32 0.30 AUC 0.924 0.940 0.693
mφ 34.0 29.3 26.0 Unstable ratio 0.197 0.308 0.387
σφ 0.37 1.39 0.92

Figure 7. Overview of the landslide probability of the study areas simulated with the calibrated parameter sets of Table 7. Added as black
crosses are the observed landslides from the inventory.
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Table 8. The AUC and unstable ratio under different vegetation scenarios with the optimal parameter sets of Table 7 and averaged over 10
runs. “Overall” is composed of the mean value of all three study areas. In the global uniform-vegetation scenario, the reference scenario is
used during parameter optimization.

AUC Unstable ratio

Overall Eriz Trub StA Overall Eriz Trub StA

Mean

Global uniform vegetation 0.808 0.910 0.844 0.669 0.299 0.197 0.311 0.388
Forest area uniform vegetation 0.801 0.901 0.861 0.641 0.400 0.250 0.371 0.580
Single-tree detection 0.831 0.925 0.925 0.644 0.336 0.199 0.217 0.593
No vegetation 0.785 0.880 0.854 0.622 0.475 0.309 0.413 0.704

SD

Global uniform vegetation 0.017 0.007 0.029 0.016 0.001 0.000 0.001 0.002
Forest area uniform vegetation 0.021 0.008 0.039 0.016 0.001 0.000 0.001 0.002
Single-tree detection 0.012 0.005 0.011 0.021 0.001 0.001 0.001 0.001
No vegetation 0.025 0.013 0.044 0.019 0.002 0.001 0.002 0.002

Figure 8. Cumulative plots for shallow-landslide probability in the
study areas, derived from the results in Fig. 7.

Table 9. Significance of the difference in distribution between re-
sults of vegetation scenarios at a 90 % and 99 % confidence level.
Scenario names are shortened. Significance measured by Welch’s
t test (Welch, 1947). T (true) indicates a significant difference;
F (false) indicates no significant difference. Three indicators per
cell are related to the three study areas, ordered as follows: Eriz,
Trub and StA.

99 %

Global Forest Single No

90 %

Global – T, F, T T, T, T T, F, T
Forest T, F, T – F, T, F T, F, F
Single T, T, T T, T, F – T, T, F
No T, F, T T, F, T T, T, T –

the differences between vegetation scenarios from Table 8
is given in Table 9.

5 Discussion

It is important to point out that the inventory to which the
model performance is calibrated plays a key role in all the
results discussed below. The inventory was obtained after
triggering rainfall events, for which the precipitation inten-
sity, duration and the spatial distribution are not known pre-
cisely. Despite this shortcoming, the inventory represents a
unique source of information, and the spatial localization of
the landslides can be assumed to be of high quality. Below,
we discuss the model behaviour as a function of the different
model parameter groups and the performance of the model
and give directions for future research.

5.1 Soil parameters

The best-performing parameter sets show high values for the
soil thickness for all study areas (by comparing the values of
Tables 7 and 6). The qualitative sensitivity analysis (Fig. 6)
also shows that the highest unstable ratios are obtained for
the highest soil thicknesses; this indicates that a certain mini-
mum soil thickness is required for landslide triggering, which
is in line with previous findings by D’Odorico and Fagher-
azzi (2003) and by Iida (1999). In these studies, soil thick-
ness is noted as the conditional factor for landslide trigger-
ing along with precipitation intensity and duration. The best-
performing parameter sets display cohesion values with a
clear tendency towards low values for all three study areas
(Figs. 5 and S1 and S3 in the Supplement), which suggests
that the observed landslides can only be reproduced with
low soil cohesion for all case studies. The mean angle of in-
ternal friction appears to show consistency for a low value
(Table 7). The sensitivity of the AUC and unstable ratio to
the angle of internal friction, however, appears to be small
(Figs. 6 and 5).
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Figure 9. The spatial distribution of maximum root reinforcement (Eq. 8) in the study areas as used in SlideforMAP. Source of hillshade:
Federal Office of Topography swisstopo (Swisstopo, 2018).

Figure 10. ROCs of the 10 runs per vegetation scenario from Table 8. Orange: global uniform vegetation; light green: forest area uniform
vegetation; dark green: single-tree detection; brown: no vegetation. Corresponding study areas from left to right are as follows: Eriz, Trub
and StA.

5.2 Hydrological parameters

Soil transmissivity showed considerable sensitivity to the
AUC (Fig. 5), and the values are consistently high for all
three case studies for the parameter range (Fig. 7), which
is a hint that a correct estimation of soil transmissivity is
paramount for a reliable estimate of shallow-landslide occur-
rence. Regarding precipitation intensity, we see variability
between the best values for the three case studies and minor
univariate sensitivity of the model performance or the model
output (ratio of unstable landslides). The application of the
TOPOG approach has the major shortcoming that it assumes
a groundwater gradient parallel to the surface gradient. It has
been shown in the past that this assumption decreases the
accuracy of water content simulations as compared to dis-
tributed dynamic hydrological models (Grabs et al., 2009).
However, as discussed earlier, it has also been shown in the
past that macropore flow is omnipresent in landslide trigger-
ing, and SlideforMAP has been parametrized assuming an
important role of macropore flow. In macropore-driven sys-
tems, steady-state groundwater flow can be reached (see In-

troduction), which implies that the TOPOG assumption holds
well in this case. Due to the lack of detailed meteorological
data, the precipitation intensity and duration are unknown.
This makes computation on the exact pore pressure dur-
ing the landslide event impossible. The precipitation inten-
sity / transmissivity ratio (I/T ) is assumed to include both
precipitation intensity and transmissivity sensitivity. This is
reflected in Figs. 5 and 6. The calibrated values for the I/T
ratio and subsequent pore pressure computation should be
regarded as a measure for landslide propensity. In the land-
slide inventory underlying the study here, the dominant soil
types are GM (silty gravel), GC (clayey gravel) and CL (low-
plasticity clayey silt) accordingly. Due to large pore sizes, we
can assume that the TOPOG assumptions are valid for a wide
range of the domain (for GM and GC soil types), even if this
probably holds less well for the CL soil types.

5.3 Vegetation

A key aspect of the model is the use of single-tree detec-
tion to parametrize vegetation, a method that was previously
found by Menk et al. (2017) to be reliable to detect single
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trees and derive their DBHs from the detected tree heights for
sloped forests. As mentioned in Sect. 3.2, we found for the
selected case studies that single-tree detection provides the
best results in terms of the correct number of trees counted
if applied to a 1 m resolution DSM with a three-cell kernel
Gaussian filter. This is in line with the results of Menk et al.
(2017), who found in a similar scenario-testing approach that
a 1 m resolution DSM with no Gaussian correction provided
the most accurate results, noting, however, that the difference
in performance between these two methods (with and with-
out Gaussian filter) is small. In SlideforMAP, we consider not
only basal but also lateral root reinforcement. This is unique
for shallow-landslide probability models. As shown in the
sensitivity analysis (Fig. 6), RRmax has a clear effect on the
ratio of unstable landslides, with low values leading to high
ratios. In the SlideforMAP workflow and calibration, a fixed
relationship between the lateral and the basal root reinforce-
ment is assumed; accordingly, the model sensitivity cannot
be attributed to Rlat or Rbas. Mobilization of the lateral root
reinforcement in the SlideforMAP workflow is independent
of time and not countered by passive earth pressure. A short-
coming in this parametrization of the effect of vegetation is
the assumption of uniform forest structure and a uniform tree
species (beech) within a landslide area. The field recordings
in the StA area of Moos et al. (2016) show that the forest con-
sists mainly of Norway spruce. For the Trub and Eriz area,
visual interpretation of aerial photos allowed us to identify
mixed forests with Norway spruce and beech. The latter is
known for having a high root reinforcement, and therefore
the beech assumption will overestimate both the lateral and
the basal root reinforcement (Gehring et al., 2019). Vegeta-
tion weight shows no clear relation to both the AUC and the
unstable ratio (Figs. 5, 6). However, this does not mean that
vegetation weight does not influence the response variables.
The relationship could depend on other parameters and there-
fore be obscured (Bárdossy, 2007). In contrast to the soil and
hydrological parameters, vegetation configures both the mag-
nitude and the spatial pattern of the probability. Vegetation
can be modified by land management practices with relative
ease (Amishev et al., 2014) and is therefore of ultimate im-
portance in shallow-landslide mitigation.

5.4 Implementation of the mechanical effects of
vegetation

In Table 8 it can be seen that the vegetation scenario has a
considerable impact on the modelled unstable ratio for all
study areas. The unstable ratio is lowest in the single-tree-
detection scenario for the Trub study area. In the StA and
Eriz study areas, it is the lowest for the uniform vegeta-
tion. We assume this is caused by the low calibrated uni-
form root reinforcement in Trub and a higher value in the
other study areas (Table 7). Both single-tree detection and
uniform vegetation are determined to have the ability to de-
crease instability. From a practical perspective vegetating

parts of a study area is more realistic than uniformly veg-
etating the whole area. Influence of the vegetation scenario
on the AUC is present, with an absolute mean increase of
0.023, 0.030 and 0.046 AUC points between single-tree de-
tection and uniform vegetation, forest uniform vegetation and
unvegetated respectively (Table 8). Additionally the perfor-
mance improvement can be described relatively in terms of
the percentage of extra AUC gained (AUC range from 0.5–
1.0) between two vegetation scenarios. For the overall single-
tree detection compared to uniform vegetation, forest uni-
form vegetation and no vegetation this is 8 %, 10 % and 16 %
respectively. Results in Table 9 show that the differences are
relevant for the uniform scenario in all study areas at both
a 90 % and 99 % confidence level. The difference between
single-tree detection and no vegetation is relevant for all con-
fidence levels and study areas except for the StA study area
at 99 % confidence. The difference between single-tree de-
tection and forest uniform is more ambiguous, with notably
a significant difference at a 90 % confidence level in the Trub
and Eriz study area. This is likely related to the forest uni-
form scenario being closest to single-tree detection in the
distribution of root reinforcement of all scenarios.

In both Eriz and Trub, the single-tree detection is the
best-performing scenario. Our overall finding that the model
output is sensitive to the vegetation scenario and gives the
second-lowest values in the unstable ratio and highest val-
ues in the AUC for single-tree detection. We argue that
even though the model is calibrated on a global uniform-
vegetation scenario (Table 7) and the single-tree detection
gives a significantly better overall performance, single-tree
detection is more accurate in assessing shallow-landslide
susceptibility (Tables 8 and 9). Adding to this explanation
is that in these study areas, where slope angle is a highly pre-
dictive factor, even marginal gains in the AUC due to vege-
tation are important and the result of extensive parametriza-
tion. Our analysis is in line with the findings of Roering et al.
(2003), who state that single-tree-based modelling, including
the tree dimensions, has the highest accuracy in the predic-
tion of shallow landslides. Moreover, Vergani et al. (2014)
state that a site-specific estimation of vegetation and root ex-
tent is essential in the correct estimation of root reinforce-
ment.

5.5 Model performance

As pointed out by Corominas et al. (2014), the absolute val-
ues of the AUC are dependent on the characteristics of the
study area. In larger areas, with low overall landslide activity,
the AUC will overestimate the predictive performance. This
most likely explains why the StA study area has a low over-
all AUC compared to Eriz and Trub (Table 8). In particular,
the StA study area shows a higher prevalence of steep slopes.
The Trub and the Eriz study areas both show relatively high
AUC values, indicating high model performance, with very
similar AUC values; this is in agreement with a similar oc-

https://doi.org/10.5194/nhess-22-2611-2022 Nat. Hazards Earth Syst. Sci., 22, 2611–2635, 2022



2628 F. B. van Zadelhoff et al.: Introducing SlideforMAP: a probabilistic finite slope approach

currence of steep and gradual slopes in these areas. Another
explanation for the discrepancy in model performance be-
tween the study areas could be the assumption that all trees
are beech trees. This does not hold equally well for all three
study areas. Based on visual inspection and on elevation, the
mismatch between actual vegetation and this assumption is
probably most pronounced in the StA area, where the domi-
nant tree species appears to be spruce. Though no published
data are available, it can be estimated from the work of Moos
et al. (2016) that the root reinforcement of a spruce forest is
lower than that of a beech forest, but this cannot confirmed
by our parameter analysis at this stage.

A comparison between the shallow-landslide density (Ta-
ble 2) and the calibrated unstable ratio (Table 7) shows mod-
erate consistency. The Eriz and Trub study areas have a low
unstable area corresponding to a low shallow-landslide den-
sity. StA has both a higher landslide density and a higher
unstable ratio. From the consistency in Table 7 and the sen-
sitivity analysis results of Fig. 5, it can be concluded that
the main configuration of the model lies in the parametriza-
tion of the mean soil thickness, the mean cohesion and the
I/T ratio. In addition, the vegetation scenario strongly influ-
ences the model performance and is of high influence on cal-
culated shallow-landslide probability (Table 8). Equifinality
between the parameters in the qualitative sensitivity analy-
sis is likely as it is very common in similar multi-parameter
modelling (Beven and Binley, 1992). However, we believe
the sensitivity as observed in Fig. 5 is valid and a qualita-
tive indicator for important parameters in SlideforMAP. The
calibrated optimal parameter set (Table 7) is still within re-
alistic bounds as are the ranges for the sensitivity analysis.
In addition, the calibrated combination of the mean friction
angle (26–34◦) and mean soil cohesion (1.75–4.29 kPa) is
possible, according to the Appendix, Table A1. Finally, we
would like to add here that the case study dependence of the
model performance measure used is a limitation that typi-
cally occurs for all model performance measures that com-
pare the model behaviour to some reference model (Schaefli
and Gupta, 2007) (the reference model for the AUC is a ran-
dom process). Accordingly, we cannot compare the perfor-
mance of SlideforMAP to other published AUC values de-
spite the fact that values above 0.8 are considered to indicate
good performance (e.g. Xu et al., 2012).

5.6 Comparison to other slope stability models

The main advantage of SlideforMAP compared to other
models is the more realistic approach to implementing root
reinforcement. This includes a spatial distribution in both the
basal and the lateral root reinforcement and a focus on the
second stage of the activation phase in accordance with the
Root Bundle Model as described in Gehring et al. (2019).
Compared to previous slope stability models that include the
effect of root reinforcement, SlideforMAP uses a more real-
istic implementation of root reinforcement based on recent

knowledge of shallow landslides triggering mechanisms and
root reinforcement activation (Schwarz et al., 2012, 2013;
Cohen and Schwarz, 2017). In particular, only part of the
lateral root reinforcement under tension is considered for
the force balance calculation. Moreover, the spatial distribu-
tion of root reinforcement as a function of forest structure
is included. The assumptions made in SlideforMAP allow a
probabilistic calculation at a regional scale that are not pos-
sible with more complex models such as SOSlope (Cohen
and Schwarz, 2017). In comparison to more simple models
based on infinite slope calculations (Pack et al., 1998; Mont-
gomery and Dietrich, 1994; SINMAP, SHALSTAB), Slide-
forMAP considers the effect of lateral root reinforcement on
landslides of different sizes. SINMAP with a homogeneous
root reinforcement is comparable to our global uniform-
vegetation scenario (Table 8). A version of SINMAP with
no root strength is comparable to our no-vegetation scenario.
When no vegetation data are available or complexity is not
desired, these are valid options to assess shallow-landslide
susceptibility in a probabilistic way.

A hydrological and slope stability model identical to Slide-
forMAP is applied in Montgomery et al. (2000), which is
used to estimate sediment yield resulting from forest clear-
ing. This is comparable to our global uniform-vegetation sce-
nario as well. Their result of a high significance of root re-
inforcement is in line with our findings. Another difference
in the model approach is the assumption of fixed landslide
dimensions, including soil thickness. In addition, the root re-
inforcement is assumed to act around the full perimeter of the
landslide. In its approach, SlideforMAP shares many similar-
ities with PRIMULA, as developed by Cislaghi et al. (2018),
which applies a probabilistic approach and a spatially dis-
tributed root reinforcement as well. The PRIMULA root re-
inforcement is based on a stand-scale approach rather than
single-tree detection though. The AUC values in this paper
are higher, but that could be the result of different character-
istics of the study areas and our parameter optimization by
the qualitative sensitivity analysis. Other differences as com-
pared to PRIMULA are their assumption of lateral root rein-
forcement along the entire landslide perimeter, the inclusion
of lateral soil cohesion simultaneously with lateral root co-
hesion, the assumption of rectangular landslides rather than
elliptical ones and a different landslide surface area distribu-
tion. The model 3DTLE (Hess et al., 2017) is a determinis-
tic landslide susceptibility model with a similar detailed spa-
tially heterogeneous inclusion of root reinforcement. Differ-
ences are their deterministic approach and the assumption of
a simultaneous maximum of tension and compression forces.

5.7 Future research

SlideforMAP uses a relatively simple hydrological module to
estimate soil saturation. The TOPOG approach used could be
improved, and multiple papers have presented simple to more
advanced rewriting of formulas (e.g. Beven and Freer, 2001;
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Blazkova et al., 2002). A common denominator is the inclu-
sion of time dependency since the stationary flow assumption
rarely, if ever, holds in nature. This time dependency is a so-
lution to simulate a different response to a precipitation event
at different locations within a study area. Future work could
also focus on improving the vegetation module by including
different tree species (those that are often used in protection
forest) in the parametrization of lateral root reinforcement
(Eq. 10). For practical application of SlideforMAP we have
not found a specific lower boundary in landslide density that
still generates reliable results. More specific testing on this
would be useful for future application of SlideforMAP. A
comparison between SlideforMAP and SHALSTAB and/or
SINMAP would be interesting. It could validate whether the
uniform-vegetation scenario in SlideforMAP produces simi-
lar results to these models in terms of shallow-landslide prob-
ability. Finally performing a validation over study areas with
a larger shallow-landslide inventory would be a vital proce-
dure to further analyse the SlideforMAP model.

6 Conclusions

In this paper, we present a probabilistic model to assess
shallow-landslide (landslides with a scar thickness < 2 m)
probability. The main motivation to develop yet another
model is to provide a detailed inclusion of the influence
of root reinforcement. Its application is illustrated based on
three mid-elevation case studies from Switzerland, for which
a detailed landslide inventory is available. The model has
a total of 21 parameters, of which 12 are calibrated using
the AUC of the receiver operator curve as a performance
measure to identify the best parameter set among a large
number of sets generated using Latin hypercube sampling.
The AUC maximum values for the three study areas vary
between 0.64 and 0.93 under a single-tree-detection vege-
tation scenario, which reflects an overall good model per-
formance. Our model parameter analysis has shown that
soil thickness, the precipitation intensity / transmissivity ra-
tio and soil cohesion are the key parameters to predict slope
stability in the studied mountainous regions. A major focus
of the presented work was the assessment of the model’s abil-
ity to study scenarios of vegetation distribution. Comparison
of different scenarios ranging from uniform to single-tree-
detection-based vegetation clearly showed that the model
output, in terms of shallow-landslide probability, is sensitive
to the spatial distribution of vegetation. Additionally, in two
of our three study areas, the single-tree-detection scenario
provides significantly (Welch’s t test confidence > 99 %)
higher AUC values. Accordingly, the model is fit for future-
scenario analysis, including for example different protec-
tion forest management scenarios. In fact, a single-tree-scale
model parametrization provides the opportunity to run hypo-
thetical vegetation scenarios reflecting small-scale manage-
ment strategies or disturbances. Future improvements in the

hydrological approach, concerning a more catchment-based
approach to compute the saturation degree, could likely fur-
ther improve the performance of SlideforMAP.
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Appendix A: Appendix

Figure A1. Plot of the probability density of the soil thickness data from the BAFU dataset as used in this paper. The best fit is given of a
normal and a log-normal distribution. The mean square errors are 0.096 and 0.053 for the normal and log-normal fit respectively.

Figure A2. Shallow-landslide slope–soil thickness relationship as used in this research. Box plots are classes with a width of 2.5 slope units.
The red dots are the 95th percentile per class. The red line is the fit of Eq. (7) to the 95th percentiles.
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Table A1. The hybrid table for the soil cohesion and angle of internal friction for the relevant set of USCS soil classes. Values are derived
from laboratory experiments (VSS-Kommission, 1998; Dysli and Rybisar, 1992) and combined in this research to exclude values that seem
unrealistic.

USCS soil class Mean soil cohesion SD soil cohesion Mean friction angle SD friction angle

SM 0 0 34.5 5.0
CL–ML 0.4 1.3 32.7 4.8
GM 0.0 0.0 35.0 5.0
GC–GM 5.0 5.0 33.0 3.0
CL 6.2 11.3 27.1 5.2
OL 2.5 5.0 32.8 2.2
GC 20.0 52.9 31.4 3.6

Data availability. All data used in this research are open
data. The topographical data and the landslide inven-
tory as used in this research are published on Zenodo:
https://doi.org/10.5281/zenodo.6793533 (van Zadelhoff, 2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/nhess-22-2611-2022-supplement.

Author contributions. AA collected the landslide inventory and
made it ready for use. DC and MS developed the basic concept
of SlideforMAP. LD contributed to further development. FBvZ ex-
ecuted further development, the sensitivity analysis and testing.
FBvZ is the main writer. BS, LD, CP, AA and MS revised the text.
CP and MS organized funds.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. The shallow-landslide probability maps generated by
SlideforMAP are a guideline and should be interpreted by an expert
before application.

Publisher’s note: Copernicus Publications remains neutral with
regard to jurisdictional claims in published maps and institutional
affiliations.

Acknowledgements. We thank the STEC (Smarter Targeting of Ero-
sion Control) project by the Ministry of Business, Innovation and
Employment of New Zealand for financial support. In addition
we would like to thank the two anonymous reviewers and David
Milledge, who contributed a community review. Their contribution
greatly improved the quality of this paper.

Financial support. This research has been supported by the Min-
istry of Business, Innovation and Employment, New Zealand (grant
no. C09X1804).

Review statement. This paper was edited by David J. Peres and re-
viewed by Dave Milledge and two anonymous referees.

References

Amishev, D., Basher, L., Phillips, C. J., Hill, S., Marden, M.,
Bloomberg, M., and Moore, J. R.: New forest management
approaches to steep hills, Ministry for Primary Industries,
ISBN 9780478437867, 2014.

Askarinejad, A., Casini, F., Bischof, P., Beck, A., and Spring-
man, S. M.: Rainfall induced instabilities: a field experiment
on a silty sand slope in northern Switzerland, rivista italiana di
geotecnica, 12, 50–71, http://www.associazionegeotecnica.it/rig/
archivio (last access: 20 April 2021), 2012.

Askarinejad, A., Akca, D., and Springman, S. M.: Precursors of in-
stability in a natural slope due to rainfall: a full-scale experiment,
Landslides, 15, 1745–1759, https://doi.org/10.1007/s10346-018-
0994-0, 2018.

Badoux, A., Andres, N., Techel, F., and Hegg, C.: Natural haz-
ard fatalities in Switzerland from 1946 to 2015, Nat. Hazards
Earth Syst. Sci., 16, 2747–2768, https://doi.org/10.5194/nhess-
16-2747-2016, 2016.

Baeza, C. and Corominas, J.: Assessment of shallow landslide sus-
ceptibility by means of multivariate statistical techniques, Earth
Surf. Processes, 26, 1251–1263, https://doi.org/10.1002/esp.263,
2001.

Bárdossy, A.: Calibration of hydrological model parameters for
ungauged catchments, Hydrol. Earth Syst. Sci., 11, 703–710,
https://doi.org/10.5194/hess-11-703-2007, 2007.

Baum, R. L., Savage, W. Z., and Godt, J. W.: TRIGRS – a Fortran
program for transient rainfall infiltration and grid-based regional

https://doi.org/10.5194/nhess-22-2611-2022 Nat. Hazards Earth Syst. Sci., 22, 2611–2635, 2022

https://doi.org/10.5281/zenodo.6793533
https://doi.org/10.5194/nhess-22-2611-2022-supplement
http://www.associazionegeotecnica.it/rig/archivio
http://www.associazionegeotecnica.it/rig/archivio
https://doi.org/10.1007/s10346-018-0994-0
https://doi.org/10.1007/s10346-018-0994-0
https://doi.org/10.5194/nhess-16-2747-2016
https://doi.org/10.5194/nhess-16-2747-2016
https://doi.org/10.1002/esp.263
https://doi.org/10.5194/hess-11-703-2007


2632 F. B. van Zadelhoff et al.: Introducing SlideforMAP: a probabilistic finite slope approach

slope-stability analysis, US geological survey open-file report,
424, 38, https://doi.org/10.3133/ofr02424, 2002.

Beven, K. and Binley, A.: The future of distributed models: Model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–
298, https://doi.org/10.1002/hyp.3360060305, 1992.

Beven, K. and Freer, J.: A dynamic topmodel, Hydrol. Process., 15,
1993–2011, https://doi.org/10.1002/hyp.252, 2001.

Beven, K. J. and Kirkby, M. J.: A physically based, variable con-
tributing area model of basin hydrology, Hydrol. Sci. B., 24, 43–
69, https://doi.org/10.1080/02626667909491834, 1979.

Blazkova, S., Beven, K., Tacheci, P., and Kulasova, A.:
Testing the distributed water table predictions of TOP-
MODEL (allowing for uncertainty in model calibration):
The death of TOPMODEL?, Water Resour. Res., 38, 39-1,
https://doi.org/10.1029/2001wr000912, 2002.

Bodner, G., Leitner, D., and Kaul, H. P.: Coarse and fine root plants
affect pore size distributions differently, Plant Soil, 380, 133–
151, https://doi.org/10.1007/s11104-014-2079-8, 2014.

Bordoni, M., Meisina, C., Valentino, R., Lu, N., Bittelli, M.,
and Chersich, S.: Hydrological factors affecting rainfall-
induced shallow landslides: From the field monitoring to a
simplified slope stability analysis, Eng. Geol., 193, 19–37,
https://doi.org/10.1016/j.enggeo.2015.04.006, 2015.

Borga, M., Dalla Fontana, G., Gregoretti, C., and Marchi, L.: As-
sessment of shallow landsliding by using a physically based
model of hillslope stability, Hydrol. Process., 16, 2833–2851,
https://doi.org/10.1002/hyp.1074, 2002.

Cervi, F., Berti, M., Borgatti, L., Ronchetti, F., Manenti, F., and
Corsini, A.: Comparing predictive capability of statistical and
deterministic methods for landslide susceptibility mapping: A
case study in the northern Apennines (Reggio Emilia Province,
Italy), Landslides, 7, 433–444, https://doi.org/10.1007/s10346-
010-0207-y, 2010.

Chae, B. G., Park, H. J., Catani, F., Simoni, A., and Berti,
M.: Landslide prediction, monitoring and early warning: a
concise review of state-of-the-art, Geosci. J., 21, 1033–1070,
https://doi.org/10.1007/s12303-017-0034-4, 2017.

Cislaghi, A., Rigon, E., Lenzi, M. A., and Bischetti, G. B.:
A probabilistic multidimensional approach to quantify
large wood recruitment from hillslopes in mountainous-
forested catchments, Geomorphology, 306, 108–127,
https://doi.org/10.1016/j.geomorph.2018.01.009, 2018.

Cohen, D. and Schwarz, M.: Tree-root control of shallow landslides,
Earth Surf. Dynam., 5, 451–477, https://doi.org/10.5194/esurf-5-
451-2017, 2017.

Cohen, D., Lehmann, P., and Or, D.: Fiber bundle model
for multiscale modeling of hydromechanical trigger-
ing of shallow landslides, Water Resour. Res., 45, 1–20,
https://doi.org/10.1029/2009WR007889, 2009.

Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J. P.,
Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O.,
Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S.,
Tofani, V., Hervás, J., and Smith, J. T.: Recommendations for the
quantitative analysis of landslide risk, B. Eng. Geol. Environ.,
73, 209–263, https://doi.org/10.1007/s10064-013-0538-8, 2014.

Day, R. W.: State of the art: Limit equilibrium and finite-
element analysis of slopes, J. Geotech. Geoenviron., 123, 894,
https://doi.org/10.1061/(ASCE)1090-0241(1997)123:9(894),
1997.

Dazio, E. P. R., Conedera, M., and Schwarz, M.: Impact of different
chestnut coppice managements on root reinforcement and shal-
low landslide susceptibility, Forest Ecol. Manag., 417, 63–76,
https://doi.org/10.1016/j.foreco.2018.02.031, 2018.

Dietrich, W. E. and Montgomery, D. R.: SHALSTAB: a dig-
ital terrainmodel for mapping shallow landslide potential.,
Tech. rep., NCASI (NationalCouncil of the Paper Industry
for Air and Stream Improvement),http://calm.geo.berkeley.edu/
geomorph/shalstab/index.htm (last access: 25 August 2021),
1998.

D’Odorico, P. and Fagherazzi, S.: A probabilistic model
of rainfall-triggered shallow landslides in hollows:
A long-term analysis, Water Resour. Res., 39, 1–14,
https://doi.org/10.1029/2002WR001595, 2003.

Dorren, L.: FINT – Find individual trees, User manual, ecorisQ
paper, 5 p., https://www.ecorisq.org/, (last access: 10 December
2017), 2017.

Dorren, L. and Sandri, A.: Landslide risk mapping for the entire
Swiss national road network, Proceedings of the International
Conference “Landslide Processes”, 6–7 February 2009, 2009.

Dysli, M. and Rybisar, J.: Statistique sur les caractéristiques des sols
suisses- Statistische Behandlung der Kennwerte der Schweizer
Boeden, Bundesamt fuer Strassenbau, Institut Francais des Sci-
ences et Technologies des Transports, de l’Aménagement et des
Réseaux (IFSTTAR), 128 p., accession no. 01233497, 1992.

Eysn, L., Hollaus, M., Lindberg, E., Berger, F., Monnet, J. M.,
Dalponte, M., Kobal, M., Pellegrini, M., Lingua, E., Mongus, D.,
and Pfeifer, N.: A benchmark of lidar-based single tree detection
methods using heterogeneous forest data from the Alpine Space,
Forests, 6, 1721–1747, https://doi.org/10.3390/f6051721, 2015.

Fawcett, T.: An introduction to ROC analysis, Pattern Recogn. Lett.,
27, 861–874, https://doi.org/10.1016/j.patrec.2005.10.010, 2006.

Feng, S., Liu, H. W., and Ng, C. W.: Analytical analysis
of the mechanical and hydrological effects of vegetation
on shallow slope stability, Comput. Geotech., 118, 103335,
https://doi.org/10.1016/j.compgeo.2019.103335, 2020.

Freeze, R. A. and Cherry, J. A.: Groundwater, No. 629.1 F7,
ISBN 0133653129, 1979.

Frei, C., Isotta, F., and Schwanbeck, J.: Mean Precipitation 1981–
2010, in: Hydrological Atlas of Switzerland, Geographisches In-
stitut der Universität Bern, https://hydromaps.ch/#de/8/46.830/
8.190/bl_hds--b01_b0100_rnormy8110v1_0$0/NULL, last ac-
cess: 26 October 2020.

Gehring, E., Conedera, M., Maringer, J., Giadrossich, F., Guastini,
E., and Schwarz, M.: Shallow landslide disposition in burnt Eu-
ropean beech (Fagus sylvatica L.) forests, Scientific Reports, 9,
1–11, https://doi.org/10.1038/s41598-019-45073-7, 2019.

Giadrossich, F., Schwarz, M., Marden, M., Marrosu, R., and
Phillips, C.: Minimum representative root distribution sampling
for calculating slope stability in pinus radiata D.Don plan-
tations in New Zealand, New Zeal. J. For. Sci., 50, 1–12,
https://doi.org/10.33494/nzjfs502020x68x, 2020.

González-Ollauri, A. and Mickovski, S. B.: Integrated Model for the
Hydro-Mechanical Effects of Vegetation Against Shallow Land-
slides, EQA – International Journal of Environmental Quality,
13, 37–59, https://doi.org/10.6092/issn.2281-4485/4535, 2014.

Grabs, T., Seibert, J., Bishop, K., and Laudon, H.: Modeling spa-
tial patterns of saturated areas: A comparison of the topographic

Nat. Hazards Earth Syst. Sci., 22, 2611–2635, 2022 https://doi.org/10.5194/nhess-22-2611-2022

https://doi.org/10.3133/ofr02424
https://doi.org/10.1002/hyp.3360060305
https://doi.org/10.1002/hyp.252
https://doi.org/10.1080/02626667909491834
https://doi.org/10.1029/2001wr000912
https://doi.org/10.1007/s11104-014-2079-8
https://doi.org/10.1016/j.enggeo.2015.04.006
https://doi.org/10.1002/hyp.1074
https://doi.org/10.1007/s10346-010-0207-y
https://doi.org/10.1007/s10346-010-0207-y
https://doi.org/10.1007/s12303-017-0034-4
https://doi.org/10.1016/j.geomorph.2018.01.009
https://doi.org/10.5194/esurf-5-451-2017
https://doi.org/10.5194/esurf-5-451-2017
https://doi.org/10.1029/2009WR007889
https://doi.org/10.1007/s10064-013-0538-8
https://doi.org/10.1061/(ASCE)1090-0241(1997)123:9(894)
https://doi.org/10.1016/j.foreco.2018.02.031
http://calm.geo.berkeley.edu/geomorph/shalstab/index.htm
http://calm.geo.berkeley.edu/geomorph/shalstab/index.htm
https://doi.org/10.1029/2002WR001595
https://www.ecorisq.org/
https://doi.org/10.3390/f6051721
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.compgeo.2019.103335
https://hydromaps.ch/#de/8/46.830/8.190/bl_hds--b01_b0100_rnormy8110v1_0$0/NULL
https://hydromaps.ch/#de/8/46.830/8.190/bl_hds--b01_b0100_rnormy8110v1_0$0/NULL
https://doi.org/10.1038/s41598-019-45073-7
https://doi.org/10.33494/nzjfs502020x68x
https://doi.org/10.6092/issn.2281-4485/4535


F. B. van Zadelhoff et al.: Introducing SlideforMAP: a probabilistic finite slope approach 2633

wetness index and a dynamic distributed model, J. Hydrol., 373,
15–23, https://doi.org/10.1016/j.jhydrol.2009.03.031, 2009.

Greenway, D. R.: Vegetation and slope stability, Slope stability:
Geotechnical Engineering And Geomorphology, edited by: An-
derson, M. G. and Richards, K. S., Chichester, West Sussex, Wi-
ley, 1987, 187–230, US201302688028, 1987.

Griffiths, D. V., Huang, J., and Fenton, G. A.: Influence of
Spatial Variability on Slope Reliability Using 2-D Ran-
dom Fields, J. Geotech. Geoenviron., 135, 1367–1378,
https://doi.org/10.1061/(asce)gt.1943-5606.0000099, 2009.

HADES: https://hydrologischeratlas.ch/downloads/01/content/
Text_Tafel24.de.pdf (last access: 30 September 2020), 2020.

Hawley, J. and Dymond, J.: How much do trees reduce landsliding?,
J. Soil Water Conserv., 43, 495–498, 1988.

Hess, D. M., Leshchinsky, B. A., Bunn, M., Benjamin Ma-
son, H., and Olsen, M. J.: A simplified three-dimensional
shallow landslide susceptibility framework considering
topography and seismicity, Landslides, 14, 1677–1697,
https://doi.org/10.1007/s10346-017-0810-2, 2017.

Iida, T.: A stochastic hydro-geomorphological model for shal-
low landsliding due to rainstorm, Catena, 34, 293–313,
https://doi.org/10.1016/S0341-8162(98)00093-9, 1999.

Iverson, R. M.: Landslide triggering by rain in-
filtration, Water Resour. Res., 36, 1897–1910,
https://doi.org/10.1029/2000WR900090, 2000.

Jensen, H., Lang, H., and Rinderknecht, J.: Extreme Punktregen
unterschiedlicher Dauer und Wiederkehrperioden 1901–1970,
Tafel 2.4, in: Hydrologischer Atlas der Schweiz, Geographisches
Institut der Universität Bern, https://hydromaps.ch/#de/8/46.830/
8.190/bl_hds--b04_b0401_precip_60m_2a_0_5v2_0$4/NULL,
(last access: 31 January 2020), 1997.

Johnson, N. L. and Kotz, S.: Continuous univariate distributions,
Houghton Mifflin, Boston, 1, 70018030, https://books.google.ch/
books?id=-wPvAAAAMAAJ (last access: 20 February 2021),
1970.

Kirkby, M.: Hydrograph modelling strategies, 69–90, in: Pro-
cesses in Physical and Human Geography, edited by: Peel, R.,
Chisholm, M., and Haggert, P., Heineman, London, 69–90, 1975.

Kjekstad, O. and Highland, L.: Economic and Social Impacts of
Landslides, in: Landslides – Disaster Risk Reduction, edited by:
Sassa, K. and Canuti, P., Springer, Berlin, Heidelberg, 573–587,
https://doi.org/10.1007/978-3-540-69970-5_30, 2009.

Korpela, I., Dahlin, B., Schäfer, H., Bruun, E., Haapaniemi, F.,
Honkasalo, J., Ilvesniemi, S., Kuutti, V., Linkosalmi, M., Mus-
tonen, J., Salo, M., Suomi, O., and Virtanen, H.: Single-tree for-
est inventory using lidar and aerial images for 3D treetop posi-
tioning, species recognition, height and crown width estimation,
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, 36, 227–233, 2007.

Lehmann, P., Gambazzi, F., Suski, B., Baron, L., Askarine-
jad, A., Springman, S. M., Holliger, K., and Or, D.: Evo-
lution of soil wetting patterns preceding a hydrologically
induced landslide inferred from electrical resistivity survey
and point measurements of volumetric water content and
pore water pressure, Water Resour. Res., 49, 7992–8004,
https://doi.org/10.1002/2013WR014560, 2013.

Leonarduzzi, E., Molnar, P., and McArdell, B. W.: Predictive per-
formance of rainfall thresholds for shallow landslides in Switzer-

land from gridded daily data, Water Resour. Res., 53, 6612–6625,
https://doi.org/10.1002/2017WR021044, 2017.

Li, W. C., Lee, L. M., Cai, H., Li, H. J., Dai, F. C., and Wang, M. L.:
Combined roles of saturated permeability and rainfall character-
istics on surficial failure of homogeneous soil slope, Eng. Geol.
153, 105–113, https://doi.org/10.1016/j.enggeo.2012.11.017,
2013.

Malamud, B., Turcotte, D., Guzzetti, F., and Reichenbach, P.: Land-
slide inventories and their statistical properties, Earth Surf. Pro-
cesses, 29, 687–711, https://doi.org/10.1002/esp.1064, 2004.

Masi, E. B., Segoni, S., and Tofani, V.: Root reinforcement in slope
stability models: A review, Geosciences (Switzerland), 11, 212,
https://doi.org/10.3390/geosciences11050212, 2021.

McKay, M. D., Beckman, R. J., and Conover, W. J.: Comparison of
three methods for selecting values of input variables in the analy-
sis of output from a computer code, Technometrics, 21, 239–245,
https://doi.org/10.1080/00401706.1979.10489755, 1979.

Menk, J., Dorren, L., Heinzel, J., Marty, M., and Huber, M.: Eval-
uation automatischer Einzelbaumerkennung aus luftgestützten
Laserscanning-Daten, Schweizerische Zeitschrift fur Forstwe-
sen, 168, 151–159, https://doi.org/10.3188/szf.2017.0151, 2017.

Metz, C. E.: Basic principles of ROC analysis, Semin. Nucl. Med.,
8, 283–298, https://doi.org/10.1016/S0001-2998(78)80014-2,
1978.

Montgomery, D. R. and Dietrich, W. E.: A physically based model
for the topographic control on shallow landsliding, Water Re-
sour. Res., 30, 1153–1171, https://doi.org/10.1029/93WR02979,
1994.

Montgomery, D. R. and Dietrich, W. E.: Reply to com-
ment by Richard M. Iverson on “piezometric response in
shallow bedrock at cb1: implications for runoff genera-
tion and landsliding”, Water Resour. Res., 40, W03802,
https://doi.org/10.1029/2003WR002815, 2004.

Montgomery, D. R., Schmidt, K. M., Greenberg, H. M.,
and Dietrich, W. E.: Forest clearing and regional lands-
liding, Geology, 28, 311–314, https://doi.org/10.1130/0091-
7613(2000)28<311:FCARL>2.0.CO;2, 2000.

Montgomery, D. R., Dietrich, W. E., and Heffner, J. T.: Piezo-
metric response in shallow bedrock at CB1: Implications for
runoff generation and landsliding, Water Resour. Res., 38, 1274,
https://doi.org/10.1029/2002wr001429, 2002.

Montrasio, L. and Valentino, R.: A model for triggering mecha-
nisms of shallow landslides, Nat. Hazards Earth Syst. Sci., 8,
1149–1159, https://doi.org/10.5194/nhess-8-1149-2008, 2008.

Montrasio, L., Valentino, R., and Losi, G. L.: Towards a real-time
susceptibility assessment of rainfall-induced shallow landslides
on a regional scale, Nat. Hazards Earth Syst. Sci., 11, 1927–1947,
https://doi.org/10.5194/nhess-11-1927-2011, 2011.

Moos, C., Bebi, P., Graf, F., Mattli, J., Rickli, C., and Schwarz, M.:
How does forest structure affect root reinforcement and suscep-
tibility to shallow landslides?, Earth Surf. Process., 41, 951–960,
https://doi.org/10.1002/esp.3887, 2016.

Mosley, M. P.: Subsurface flow velocities through selected for-
est soils, South Island, New Zealand, J. Hydrol., 55, 65–92,
https://doi.org/10.1016/0022-1694(82)90121-4, 1982.

Munich RE: Relevant hydrological events worldwide 1980–2018,
Münchener Rückversicherungs-Gesellschaft, NatCatService,
https://www.munichre.com/en/solutions/for-industry-clients/
natcatservice.html, last access: 2 July 2020.

https://doi.org/10.5194/nhess-22-2611-2022 Nat. Hazards Earth Syst. Sci., 22, 2611–2635, 2022

https://doi.org/10.1016/j.jhydrol.2009.03.031
https://doi.org/10.1061/(asce)gt.1943-5606.0000099
https://hydrologischeratlas.ch/downloads/01/content/Text_Tafel24.de.pdf
https://hydrologischeratlas.ch/downloads/01/content/Text_Tafel24.de.pdf
https://doi.org/10.1007/s10346-017-0810-2
https://doi.org/10.1016/S0341-8162(98)00093-9
https://doi.org/10.1029/2000WR900090
https://hydromaps.ch/#de/8/46.830/8.190/bl_hds--b04_b0401_precip_60m_2a_0_5v2_0$4/NULL
https://hydromaps.ch/#de/8/46.830/8.190/bl_hds--b04_b0401_precip_60m_2a_0_5v2_0$4/NULL
https://books.google.ch/books?id=-wPvAAAAMAAJ
https://books.google.ch/books?id=-wPvAAAAMAAJ
https://doi.org/10.1007/978-3-540-69970-5_30
https://doi.org/10.1002/2013WR014560
https://doi.org/10.1002/2017WR021044
https://doi.org/10.1016/j.enggeo.2012.11.017
https://doi.org/10.1002/esp.1064
https://doi.org/10.3390/geosciences11050212
https://doi.org/10.1080/00401706.1979.10489755
https://doi.org/10.3188/szf.2017.0151
https://doi.org/10.1016/S0001-2998(78)80014-2
https://doi.org/10.1029/93WR02979
https://doi.org/10.1029/2003WR002815
https://doi.org/10.1130/0091-7613(2000)28<311:FCARL>2.0.CO;2
https://doi.org/10.1130/0091-7613(2000)28<311:FCARL>2.0.CO;2
https://doi.org/10.1029/2002wr001429
https://doi.org/10.5194/nhess-8-1149-2008
https://doi.org/10.5194/nhess-11-1927-2011
https://doi.org/10.1002/esp.3887
https://doi.org/10.1016/0022-1694(82)90121-4
https://www.munichre.com/en/solutions/for-industry-clients/natcatservice.html
https://www.munichre.com/en/solutions/for-industry-clients/natcatservice.html


2634 F. B. van Zadelhoff et al.: Introducing SlideforMAP: a probabilistic finite slope approach

O’Callaghan, J. and Mark, D.: The Extraction of Drainage Net-
works from Digital Elevation Data, Comput. Vision Grap., 28,
323–344, https://doi.org/10.1016/0734-189X(89)90053-4, 1984.

O’Loughlin, E. M.: Prediction of Surface Saturation Zones in Natu-
ral catchments by Topographic Analysis, Water Resour. Res., 22,
794–804, 1986.

Pack, R. T., Tarboton, D. G., and Goodwin, C. N.: The SINMAP
Approach to Terrain Stability Mapping, in: 8th Congress of the
International Association of Engineering Geology, Vancouver,
British Columbia, Canada, 21–25 September 1998, edited by:
Moore, D. and Hungr, O., Vol. 2: Engineering Geology And Nat-
ural Hazards, A A Balkema, 1157–1166, 1998.

Park, H. J., Lee, J. H., and Woo, I.: Assessment of rainfall-
induced shallow landslide susceptibility using a GIS-
based probabilistic approach, Eng. Geol., 161, 1–15,
https://doi.org/10.1016/j.enggeo.2013.04.011, 2013.

Prancevic, J. P., Lamb, M. P., McArdell, B. W., Rickli, C., and
Kirchner, J. W.: Decreasing Landslide Erosion on Steeper Slopes
in Soil-Mantled Landscapes, Geophys. Res. Lett., 47, 1–9,
https://doi.org/10.1029/2020GL087505, 2020.

Price, B., Gomez, A., Mathys, L., Gardi, O., Schellenberger, A.,
Ginzler, C., and Thürig, E.: Tree biomass in the Swiss land-
scape: nationwide modelling for improved accounting for for-
est and non-forest trees, Environ. Monit. Assess., 189, 1–14,
https://doi.org/10.1007/s10661-017-5816-7, 2017.

Reinhold, S., Medicus, G., Fellin, W., and Zangerl, C.: The influ-
ence of deforestation on slope (In-) stability, Austrian J. Earth
Sci., 102, 90–99, https://doi.org/10.1139/t01-031, 2009.

Rickli, C. and Graf, F.: Effects of forests on shallow landslides
– case studies in Switzerland, Forest Snow and Landscape Re-
search, 44, 33–44, 2009.

Rickli, C., Graf, F., Bebi, P., Bast, A., Loupt, B., and McArdell,
B.: Schützt der Wald vor Rutschungen? Hinweise aus der WSL-
Rutschungsdatenbank, Schweizerische Zeitschrift fur Forstwe-
sen, 170, 310–317, https://doi.org/10.3188/szf.2019.0310, 2019.

Roering, J., Schmidt, K. M., Stock, J. D., Dietrich, W. E., and Mont-
gomery, D. R.: Shallow landsliding, root reinforcement, and the
spatial distribution of trees in the Oregon Coast Range, Can.
Geotech. J., 40, 237–253, 2003.

Salvatici, T., Tofani, V., Rossi, G., D’Ambrosio, M., Tacconi Ste-
fanelli, C., Masi, E. B., Rosi, A., Pazzi, V., Vannocci, P., Petrolo,
M., Catani, F., Ratto, S., Stevenin, H., and Casagli, N.: Applica-
tion of a physically based model to forecast shallow landslides at
a regional scale, Nat. Hazards Earth Syst. Sci., 18, 1919–1935,
https://doi.org/10.5194/nhess-18-1919-2018, 2018.

Schaefli, B. and Gupta, H.: Do Nash values have value, Hydrol. Pro-
cess., 21, 2075–2080, https://doi.org/10.1002/hyp.6825, 2007.

Schmidt, K. M., Roering, J. J., Stock, J. D., Dietrich, W. E.,
Montgomery, D. R., and Schaub, T.: The variability of root
cohesion as an influence on shallow landslide susceptibility
in the Oregon Coast Range, Can. Geotech. J., 38, 995–1024,
https://doi.org/10.1139/cgj-38-5-995, 2001.

Schwarz, M., Preti, F., Giadrossich, F., Lehmann, P., and Or,
D.: Quantifying the role of vegetation in slope stability:
A case study in Tuscany (Italy), Ecol. Eng., 36, 285–291,
https://doi.org/10.1016/j.ecoleng.2009.06.014, 2010.

Schwarz, M., Cohen, D., and Or, D.: Spatial characterization of root
reinforcement at stand scale: theory and case study, Geomorphol-
ogy, 171, 190–200, 2012.

Schwarz, M., Giadrossich, F., and Cohen, D.: Modeling root rein-
forcement using a root-failure Weibull survival function, Hydrol.
Earth Syst. Sci., 17, 4367–4377, https://doi.org/10.5194/hess-17-
4367-2013, 2013.

Schwarz, M., Rist, A., Cohen, D., Giadrossich, F., Egorov, P., Büt-
tner, D., Stolz, M., and Thormann, J. J.: Root reinforcement of
soils under compression, J. Geophys. Res.-Earth, 120, 2103–
2120, https://doi.org/10.1002/2015JF003632, 2015.

Sidle, R. C.: A Theoretical Model of the Effects of Timber harvest-
ing on Slope Stability, Water Resour. Res., 28, 1897–1910, 1992.

Swiss Re Institute: Natural catastrophes and man-made disasters in
2018: “secondary” perils on the frontline, Sigma, 2, 1–36, 2019.

Swisstopo: SWISSIMAGE, Luftbilder Level 2 (25 cm) Wabern:
Bern, 2014–2016, Bundesamt für Landestopografie swisstopo,
Wabern, 2017.

Swisstopo: SwissALTI3D Das hoch auf-gelöste Terrainmodell der
Schweiz, LIDAR based Digital Terrain Model, Bundesamt für
Landestopografie swisstopo, Wabern, 2018.

Swisstopo: Switzerland forest cover map; https://www.swisstopo.
admin.ch/de/geodata/landscape/tlm3d.html (last access: 29
September 2015), 2020.

Torres, R., Dietrich, W. E., Montgomery, D. R., Anderson, S. P.,
and Loague, K.: Unsaturated zone processes and the hydrologic
response of a steep, unchanneled catchment, Water Resour. Res.,
34, 1865–1879, https://doi.org/10.1029/98WR01140, 1998.

van Zadelhoff, F. B., Albaba, A., Cohen, D., Philips, C., Schae-
fli, B., Dorren, L., and Schwarz, M.: Introducing SlideforMAP;
a probabilistic finite slope approach for modelling shallow
landslide probability in forested situations, Zenodo [data set],
https://doi.org/10.5281/zenodo.6793533, 2022.

Varnes, D. J.: Slope Movement Types and Processes, Special
Report, 176, 11–33, https://doi.org/10.1016/j.mser.2018.11.001,
1978.

Vergani, C., Schwarz, M., Cohen, D., Thormann, J., and Bischetti,
G.: Effects of root tensile force and diameter distribution vari-
ability on root reinforcement in the Swiss and Italian Alps, Can.
J. Forest Res., 44, 1426–1440, https://doi.org/10.1139/cjfr-2014-
0095, 2014.

VSS-Kommission: Schweizer Norm, 670 010b, Tech. rep.,
Schweizer Norm, Characteristic Coefficients of soils, Associa-
tion of Swiss Road and Traffic Engineers, 670 010b, 1998.

Weiler, M. and Naef, F.: An experimental tracer study of the role
of macropores in infiltration in grassland soils, Hydrol. Process.,
17, 477–493, https://doi.org/10.1002/hyp.1136, 2003.

Welch, B. L.: The generalisation of student’s problems when several
different population variances are involved, Biometrika, 34, 28–
35, https://doi.org/10.1093/biomet/34.1-2.28, 1947.

Wiekenkamp, I., Huisman, J. A., Bogena, H. R., Lin, H. S., and
Vereecken, H.: Spatial and temporal occurrence of preferential
flow in a forested headwater catchment, J. Hydrol., 534, 139–
149, https://doi.org/10.1016/j.jhydrol.2015.12.050, 2016.

Wu, T., McKinnel, W. P., and Swanston, D. N.: Strength of tree roots
and landslides on Prince of Wales Island, Alaska, Can. Geotech.
J., 16.1, 19–33, 1978.

Xu, C., Xu, X., Dai, F., and Saraf, A. K.: Comparison of
different models for susceptibility mapping of earthquake
triggered landslides related with the 2008 Wenchuan
earthquake in China, Comput. Geosci., 46, 317–329,
https://doi.org/10.1016/j.cageo.2012.01.002, 2012.

Nat. Hazards Earth Syst. Sci., 22, 2611–2635, 2022 https://doi.org/10.5194/nhess-22-2611-2022

https://doi.org/10.1016/0734-189X(89)90053-4
https://doi.org/10.1016/j.enggeo.2013.04.011
https://doi.org/10.1029/2020GL087505
https://doi.org/10.1007/s10661-017-5816-7
https://doi.org/10.1139/t01-031
https://doi.org/10.3188/szf.2019.0310
https://doi.org/10.5194/nhess-18-1919-2018
https://doi.org/10.1002/hyp.6825
https://doi.org/10.1139/cgj-38-5-995
https://doi.org/10.1016/j.ecoleng.2009.06.014
https://doi.org/10.5194/hess-17-4367-2013
https://doi.org/10.5194/hess-17-4367-2013
https://doi.org/10.1002/2015JF003632
https://www.swisstopo.admin.ch/de/geodata/landscape/tlm3d.html
https://www.swisstopo.admin.ch/de/geodata/landscape/tlm3d.html
https://doi.org/10.1029/98WR01140
https://doi.org/10.5281/zenodo.6793533
https://doi.org/10.1016/j.mser.2018.11.001
https://doi.org/10.1139/cjfr-2014-0095
https://doi.org/10.1139/cjfr-2014-0095
https://doi.org/10.1002/hyp.1136
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1016/j.jhydrol.2015.12.050
https://doi.org/10.1016/j.cageo.2012.01.002


F. B. van Zadelhoff et al.: Introducing SlideforMAP: a probabilistic finite slope approach 2635

Zevenbergen, L. and Thorne, C.: Quantitative analysis of land sur-
face topography, Earth Surf. Proc. Land., 12, 47–56, 1987.

Zhang, S., Zhao, L., Delgado-Tellez, R., and Bao, H.: A physics-
based probabilistic forecasting model for rainfall-induced shal-
low landslides at regional scale, Nat. Hazards Earth Syst. Sci.,
18, 969–982, https://doi.org/10.5194/nhess-18-969-2018, 2018.

Zhu, H., Zhang, L. M., Xiao, T., and Li, X. Y.: Enhance-
ment of slope stability by vegetation considering uncer-
tainties in root distribution, Comput. Geotech., 85, 84–89,
https://doi.org/10.1016/j.compgeo.2016.12.027, 2017.

https://doi.org/10.5194/nhess-22-2611-2022 Nat. Hazards Earth Syst. Sci., 22, 2611–2635, 2022

https://doi.org/10.5194/nhess-18-969-2018
https://doi.org/10.1016/j.compgeo.2016.12.027

	Abstract
	Introduction
	Methods – SlideforMAP
	Probabilistic modelling concept
	Stability estimation
	Placement and extent
	Soil parameters
	Mechanical effects of vegetation
	Hydrology
	Model initialization
	Landslide probability computation

	Data
	Study areas
	Input data
	Landslide inventory
	Model calibration and sensitivity analysis
	Model performance evaluation
	Parameter sampling and qualitative sensitivity
	Vegetation parameter scenario analysis


	Results
	Sensitivity analysis
	Model calibration
	Mechanical effects of vegetation

	Discussion
	Soil parameters
	Hydrological parameters
	Vegetation
	Implementation of the mechanical effects of vegetation
	Model performance
	Comparison to other slope stability models
	Future research

	Conclusions
	Appendix A: Appendix
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

