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Abstract. A modelling framework for using regional climate
projections to assess flooding hazard has been developed
and applied to the Gwydir River (catchment 26 600 km2 and
floodplain 8100 km2), NSW, Australia. The model frame-
work uses NSW and ACT Regional Climate Modelling ver-
sion 1.5 projections combined with computationally effi-
cient hydrologic and hydraulic models. Although it required
model management and high-performance computing re-
sources, the modelling framework successfully processed 18
regional climate projections into flood projections. Specifi-
cally, a six-member set of climate model combinations sim-
ulating a historical period (1951–2005) and a future period
(2006–2100) under two global emission pathways (RCP4.5
and RP8.5) were used to predict flood depth and speed. In
total, 1470 continuous years were simulated at hourly time
steps. These flood (depth and speed) projections were anal-
ysed to assess the flood hazard changes under future cli-
mate scenarios by estimating changes in the annual proba-
bility of occurrence of a range of flood hazard classes. The
six-member ensemble indicates that the flood hazard in the
Gwydir Valley will decrease in the short, medium and long
term. There are also cases within the ensemble, which in-
cludes increases in all non-safe flood hazard classifications
while decreasing the safe flood hazard classification.

1 Introduction

Climate change potentially includes changes in temperature,
evaporation, rainfall, and their seasonal patterns. Changes in
rainfall patterns translate to changes in flooding extent, dura-
tion, and strength (i.e. flood hazard). Preparing for potential
future changes in flood hazard can require significant lead

times; thus, it is critical to incorporate climate change in-
formation into flood hazard risk assessment and adaptation
planning. One way of investigating the nature of potential
future flooding involves climate model outputs being con-
verted to hydrodynamic outputs (flow depth and speed as a
function of time), but this is not a trivial task and there is
no general agreement on an approach. For example, future
climate-related changes in the fitted distributions to chan-
nel discharge estimates have been evaluated using stochas-
tic methods, water balance modelling and change factors
(Delgado et al., 2014; Hirabayashi et al., 2013; Smith et al.,
2014a). On the other hand, the direct application of climate
model outputs has been discouraged by some (Cloke et al.,
2013; Prudhomme et al., 2010). Nevertheless, some acceler-
ated models for converting discharge into floodplain inun-
dation show promise for converting regional-scale climate
model outputs into continuous flood dynamics for hazard as-
sessment on large and complex floodplains (e.g. Bates et al.,
2010; Falter et al., 2013; Ghimire et al., 2013; Lhomme et
al., 2009).

Assessing the future flood hazard under climate change
directly (i.e. from hazard = depth × speed) at regional or
jurisdictional scales requires the ability to simulate river dis-
charge and floodplain inundation at hourly (or better) time
scales over many decades and across large areas. The nec-
essary computational efficiency can potentially be achieved
by a variety of physics-based approaches including dynamic
wave, partial inertial wave, diffusive wave and kinematic
wave models (e.g. Montanari et al., 2009; Bates et al., 2010;
De Roo et al., 2000; Miller, 1984). These involve simplify-
ing the physics that are simulated together with a reduction
in detail for one or two of the flow dimensions. For example,
the computationally efficient LISFLOOD-FP offers options
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to implement such as dynamic wave, partial inertial wave
or kinematic wave depending on what the environment be-
ing modelled demands (Lhomme et al., 2010; Bates et al.,
2010, 2005). Decisions are therefore required on which phys-
ical processes can safely be ignored in the river environment
of interest. Alternatively, there are computationally efficient
rules-based models that involve a set of rules that mimic con-
tinuity and kinematic limits (e.g. Guidolin et al., 2016). The
best choice of these two model approaches for undertaking
a flood hazard assessment under future climate change op-
timizes the trade-off between model accuracy and compu-
tational effort with obtaining the necessary flood outputs to
calculate hazard.

Performing hazard risk assessments and developing adap-
tation strategies for hazards under future climate change
generally requires regional-scale (or better) climate projec-
tions. This involves refinement of global climate models
through either statistical down-scaling (e.g. Wilby et al.,
1998; Schmidli et al., 2006; Timbal and Jones, 2008) or
dynamical down-scaling (e.g. Laprise, 2008; Giorgi, 2006;
Ekström et al., 2015). The Australian NSW and ACT Re-
gional Climate Model (NARCliM) is one example of this ap-
proach and used dynamical downscaling of a global 50 km
model grid to a regional 10 km model grid (Evans et al.,
2014; Nishant et al., 2021). Climate models represent the
distribution of weather and as such, comparisons between
climate model projections and historical measurements are
possible by comparing their distributions but not by com-
paring specific historical events. Comparing distributions re-
quires a balance between a measurement and model record
long enough for such distributions to be appropriately de-
fined while being short enough to limit non-stationary im-
pacts from the changing climate. For parameters such as
daily temperature or average rainfall, a 20-year period is
suitable given that there are many rainfall events per year
and every day has a maximum temperature (near continu-
ous variable). For parameters with rarer occurrences, such as
floodplain inundation, defining their distribution becomes in-
creasingly more marginal. For example, defining changes in
flood inundation that is exceeded every 100 years using a 20-
year simulation period comes with considerable uncertainty.
However, we may be able to usefully compare relevant mea-
surements and model projections for more frequent events,
such as the annual flood hazard classes.

Recent work investigating projected changes in flood risk
under plausible climate futures includes Shrestha and Loh-
paisankrit (2017) who forced a rainfall runoff model to es-
timate changes in discharges in the streamwise direction,
allowing evaluation of changes in future risk. Moreover,
Janizadeh et al. (2021) trained a machine-learning model to
convert basin geometry and rainfall into risk, which was used
with climate projections to evaluate future risk changes. Fi-
nally, Ryu et al. (2022) analysed adjusted rainfall projections
using flood frequency methods to assess risk changes at the
basin level. The method here seeks to extend these by us-

ing a physics-based model to convert runoff into spatially ex-
plicit water surface levels and speeds across the entire flood-
plain and throughout the entire climate projection period.
This objective overcomes issues around data-poor regions
(i.e. where machine-learning methods are not possible), pro-
vides flood projections at consistent spatial and temporal res-
olutions across the full extents of the model (both streamwise
and cross-stream), and permits application to river systems
with complex hydraulics and discharge patterns (e.g. multi-
ple and parallel channels), which rainfall-runoff models are
unable to reasonably simulate.

The purpose of this paper is to describe the successful
application of a modelling framework developed to convert
climate model projections to hydrodynamic outputs, which
were then used to assess future changes to present-day re-
gional flood hazard. We demonstrate the utility of the ap-
proach by applying it to the Gwydir River, a large valley-
floodplain system located in the northern Murray-Darling
Basin, Australia. After reviewing candidate numerical mod-
els, a new method for driving a hydrological flow-routing
model and the LISFLOOD-FP hydraulic model with climate
projections for rainfall-runoff (or excess rainfall) was applied
using the NARCliM1.5 climate projections, as an example.
Rather than using the climate projections to determine key or
design events for simulation, we simulate river floodplain hy-
draulics for the full climate projection time series. Projected
future regional flood inundation extents and the spatial distri-
bution of flood hazard are presented for two global emission
pathways (RCP4.5 and RCP8.5). Challenges associated with
spatial and temporal sparsity in floodplain inundation and ap-
plying conventional extreme value distributions to evaluate
future flood exceedance probabilities are discussed. These
confound efforts to answer the question – will present-day
flood hazards change under future climate projections? We
provide a new approach to answering that question.

2 Methods

The objectives in converting climate model outputs to inun-
dation estimates were: (i) develop a method for manipulat-
ing NARCliM 1.5 hydrological variables for application in
rainfall-runoff routing models that use rainfall minus the wa-
ter that infiltrates the soil and is thus not available for runoff,
(ii) review the literature to identify potential flood models
suited to application over large spatial and temporal scales,
and (iii) identify the most suitable flood model and apply to
a large river valley. To successfully achieve these objectives,
a series of principles were adopted to guide an iterative de-
velopment of the model framework, which was then stress-
tested on the Gwydir River floodplain, New South Wales
(NSW), Australia. These principles, in no particular order
are: (i) use NARCliM 1.5 outputs to force models suitable for
flood inundation estimation; (ii) maximize benefit from inun-
dation estimates by simulating the entire NARCliM 1.5 set
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of projections; (iii) use open datasets, methods, models and
mostly automatic approaches; (iv) design the framework for
implementation on high-performance computing resources;
and (v) the historical period, constrained by measurements,
determines parameter values applied to the forecast period.
The modelling framework that achieves our aim (Fig. 1)
and is consistent with these principles constrains both hydro-
logic and hydraulic models, takes boundary conditions from
climate model outputs, simulates them entirely by break-
ing them into 4-year windows with a 2-month overlap for
warming up the hydraulic model, develops initial conditions
based on low flow conditions, simulated in parallel on high-
performance computing resources and has data management
to limit the file size associated with saving inundation depth
and speed by storing the daily maximum inundated depth
and associated flow speed. The various segments are then
combined (removing the 2-month overlap) and stored in
compressed netCDF files (https://doi.org/10.48610/d7b1654,
Callaghan, 2022). The hydrologic and hydraulic methods
used in this framework are discussed in Sect. 2.1 and 2.2.

2.1 Evaluation of climate model outputs and
hydrological model theory

The NARCliM 1.5 climate model ensemble includes three
global climate models (CCCma-CanESM2, CSIRO-BOM-
ACCESS 1-0 and 1-3) with two regional climate models
(UNSW-WRF360 J and K) resulting in a set of six model
combinations (Nishant et al., 2021). Projections for two
epochs (historical 1951 to 2005 and projections 2006 to
2100) using two global emission pathway scenarios (RCP 4.5
and 8.5) are available, and include hourly variables of precip-
itation and total run off, and bias-corrected daily precipitation
(corrected to observed precipitation distribution; see for ex-
ample Evans et al., 2021). Although NARCliM 1.0 selected
CMIP3 GCMs, NARCliM 1.5 selected CMIP5 GCMs from
the unsampled space within NARCliM 1.0, all with similar
temperature increases but spanning the range of precipitation
changes from no change to moderate decrease to large de-
crease (Nishant et al., 2021).

NARCliM 1.5 was applied by matching, as much as pos-
sible, measured and modelled climate statistics. For catch-
ment runoff, this was done at Gravesend on the Gwydir
River, where the measured distribution of annual maxi-
mum discharge was used to calibrate the hydrologic model.
Gravesend (Fig. 2) is the last gauging station before the con-
version between water level and river discharge becomes sig-
nificantly uncertain (tailwater and inundation feedbacks lead-
ing to significant hysteresis). Each of the historical river dis-
charge projections were calibrated using the measured distri-
bution of annual maximum discharge at Gravesend. The hy-
drologic model used the excess precipitation (excess rainfall)
obtained from NARCliM 1.5 (“total run off” code named
mrro) in the following manner. The bias-corrected daily rain-
fall was used to bias correct daily total run off (or excess daily

rainfall), and this was interpolated onto an hourly timeframe
using the NARCliM 1.5 hourly precipitation for shape. That
is

daily runoff corrected= daily runoff

×
bias corrected daily precipitation

daily precipitation
(1)

and

hourly runoff on day t = daily runoff corrected on day t

×
hourly rainfall on day t∑

day t
hourly rainfal on day t

,

(2)

where the last term in Eq. (2) ranges from zero to unity.
The excess precipitation was routed through catchment

models following the method proposed by Mein et al. (1974),
which is referred to as a ROR-style model with two free pa-
rameters, m and k, that are nominally for discharge shape
and storage, but experience with this model indicates that
their theoretical basis is weak and they are used as free
calibration parameters. The external catchments draining
to the hydraulic model (Fig. 2) come from Gwydir River,
Boggy Creek, Waterloo Creek, Curley Creek, Tycannah
Creek, Mosquito Creek, North Creek and an unnamed wa-
tershed. Each catchment was broken into between five and
13 sub-catchments, yielding an outflow suitable for use in
the hydraulic model. The hydraulic model covers a signifi-
cant area (9621 km2) and consequently, runoff onto the hy-
draulic model is included by associating sub-catchments with
model grid locations. The climate projections have more than
one grid cell within sub-catchments in many places, with
these contributions reduced by the area of each cell from the
climate projection overlaps each sub-catchment, with these
contributions allocated in proportion to the grid cell overlap
on the sub-catchment.

Comparisons with measurements of river discharge at
Gravesend, on a distribution basis, indicated that using NAR-
CliM 1.5 to provide excess rainfall and a ROR-style runoff
routing model with no losses (initial or continuing) leads to
overestimates of frequent events and underestimates of in-
frequent events. This indicates that there is not enough loss
of water volume during lighter rainfall events compared with
heavier rainfall events within NARCliM 1.5. There are many
on-farm water storages not included in the NARCliM 1.5 or
catchment hydrologic models used to this point. To include
them, we extended the hydrology models by adjusting the ex-
cess precipitation before it is used for runoff routing. The ex-
cess precipitation was routed through a storage of maximum
depth hmax, a surface area of fA (where A is the catchment
area) whereas water within that storage was evaporated using
a monthly mean of measured evaporation rates and a usage
rate to model farm use. The storages were initially started at
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Figure 1. Proposed framework for converting climate model outputs to flood model outputs.

Figure 2. Catchments and waterways flowing through the Gwydir Valley with the location within New South Wales (NSW), Australia shown
in the bottom left inserts. Hydraulic model extents shown by colour-shaded area representing ground elevation in metres above mean sea
level (colour bar) with the main source of inflows from the Gwydir River, which has a gauging station at Gravesend (black dot). The 133
watershed boundaries within the hydraulic model and sub-catchments within each waterway are not shown for clarity. The white areas within
the hydraulic model grid are areas surrounded by levees and are unavailable to convey water.
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half full. If the storage does not overflow during a time step,
there will be no excess rainfall. If the storage does overflow,
then there will be excess rainfall, Pr, to yield runoff. Mathe-
matically, if h is the depth of water in the storage, then it will
change by

1hf = (P − (e+ u)f )×1t, (3)

where P is the NARCliM 1.5 excess precipitation, e and u
are evaporation and usage rates and1t is the time increment.
This adjustment was applied as follows:

h(t)f +1hf > hmaxf

{
Pr =

f h+1hf−hmaxf
1t

h(t +1t)f = hmaxf
,

0≤ h(t)f+1hf ≤ hmaxf

{
Pr = 0
h(t +1t)f = h(t)f +1hf

,

h(t)f +1hf < 0
{
Pr = 0
h(t +1t)f = 0 , (4)

and if f = 0, then the model simplifies to Pr = P .

2.2 Selection of hydraulic theory and code

Climate change evaluation at regional scale or larger for
flooding hazard and other applications requires fast and ac-
curate enough flood modelling. This review seeks to identify
hydrodynamic models with proven track records to achieve
this evaluation in a timely manner with limited human re-
sources (automated processes). This assessment is separated
into physics-based models and rules-based models.

Physics-based models typically follow Newton II and in
particular, the shallow water equation or dynamic wave equa-
tion, applied in either one or two horizontal dimensions (e.g.
1D or 2DH), to solve for temporal and spatial variation in
flow depth and speed. There are several well-known approx-
imations of the dynamic wave equation, with kinematic, dif-
fusive and partial inertial-wave (or long-wave) approxima-
tions possibly the best known. All physically based methods
except dynamic wave exclude convective acceleration and
hence, momentum changes required to change flow direc-
tion. Consequently, forces from water-surface gradients re-
quired to get flow through geometry changes (road embank-
ments across a floodplain) is reduced when compared with
including convective acceleration. These terms have been
found to be essential in ocean models where mean water-
level gradients are exceedingly small and flow mass exceed-
ingly large (mean ocean depth is ca. 4 km).

There are too many examples of successful dynamic-
wave application in two dimensions or a combination of one
and two dimensions to list them all; however, the follow-
ing subset (e.g. Montanari et al., 2009; Ahmadisharaf et al.,
2018) highlight methods aimed at accelerating applications
for flood management including graphics processing unit im-
plementations through to careful use of 1D/2DH modelling

(resulting in global-scale continuous simulations). This ap-
proach remains the benchmark theory for flood modelling.

Examples of successfully applied partial inertial wave
models are numerous (e.g. Rajib et al., 2020; Sampson et
al., 2015; Bates et al., 2010) and this approach has a proven
track record of: statistical evaluations, hazard mapping or
Monte Carlo risk evaluations including damage estimations
with velocity and depth contributions (e.g. Hoch et al., 2017;
Neal et al., 2013), large spatial and temporal scale assess-
ments where channels were sub-grid features (O’Loughlin
et al., 2020; Schumann et al., 2013), multi-channel assess-
ments (Altenau et al., 2017), temporal scales from minutes
to years (e.g. O’Loughlin et al., 2020; Neal et al., 2011) and
on to geological scales (Coulthard et al., 2013), coastal storm
surge inundation (Lewis et al., 2011), coastal tidal dynamics
(Skinner et al., 2015), and flooding in urban, rural, remote
and limited data applications (e.g. Amarnath et al., 2015;
Bates et al., 2010; Fewtrell et al., 2011; O’Loughlin et al.,
2020). Although there are notes of caution with this approach
at large scale (Schumann et al., 2012) and other authors ad-
vocating for the diffusive wave (Dottori and Todini, 2013)
over the partial inertial wave, it has the best track record after
the dynamic-wave equation while being exceptionally quick.
The partial inertial-wave equation has a theoretical limit in
that at either high velocity (Froude number exceeding 1) or
low frictional force, the momentum equation becomes un-
stable. This well-known issue has been noted in the recent
literature with respect to LISFLOOD.

The diffusive wave equation has a long track record dating
back to when hydraulic modelling using numerical methods
in two dimensions started in the 1970’s. However, in more re-
cent times where it has been revisited for its light computing
load (e.g. Mason et al., 2009; Apel et al., 2009; De Roo et al.,
2000), it has been the reason for shifting to the partial-inertial
wave equation (Neal et al., 2012), with only one reference
found arguing diffusion over partial inertial wave (Dottori
and Todini, 2013) for accelerated flood assessments. Further,
there is evidence that a diffusive wave does not handle urban
environments (Costabile et al., 2017) but away from these ar-
eas and with enhancements, it is accurate enough (Jamieson
et al., 2012). The diffusive-wave model links forces to motion
exclusively through the friction model whereas the partial
inertia-wave model has a combination of friction and tem-
poral acceleration. This fixed link through the adopted fric-
tion model means that uncertainties in the friction model and
spatial and temporal parameter variations are more signifi-
cant in diffusive-wave estimations. As the earlier engineer-
s/scientists knew, applying diffusive wave theory to subcrit-
ical flow on a two-dimensional horizontal grid is often nu-
merically unstable leading to the checkerboard predictions.
Although some recent authors were seeking to address this
numerical stability issue using careful spatial and temporal
selections and flux gradient limiters, ultimately the decision
to include the additional temporal acceleration (inertial) term
resolved their numerical issues almost entirely. From the bal-
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ance of evidence and theoretical arguments, it is proposed
that the diffusive-wave model is an unacceptable approach
when trading off between accuracy and speed.

The kinematic-wave equation has a long track record in
modelling supercritical flows (Miller, 1984) with more lim-
ited application to subcritical flow modelling of prismatic
channels (Zheng et al., 2020). When the continuity equa-
tion is combined with the kinematic-wave equation, pre-
dictions exclude flow attenuation and actually increase dis-
charge and water surface slopes (Miller, 1984, p. 18). In the
case of prismatic channels, the water depth and discharge
are fixed or Q=Q(h), where Q is discharge (Henderson,
1966, p. 367) and yet numerical models of prismatic chan-
nels rarely achieve this and degrade to Q increasing with
both time (t) and position. Miller (1984, p. 20) further indi-
cates that for a successful kinematic-wave application, ad hoc
modifications in how this equation is solved are required and
then only on the rising limb. Consequently, large errors are
expected when using the kinematic-wave equation in non-
prismatic channel systems. The balance of evidence and the-
oretical arguments indicates that kinematic wave equation is
an unacceptable approach when trading off between accuracy
and speed.

The impact cell method is based on rules around how
floodplains fill with water during flooding either over de-
fences or by defence failure. They use a dynamic-wave equa-
tion one-dimensional model to drive the floodplain filling
and although they appear to be temporal, they are quasi-
steady (Lhomme et al., 2009; Gouldby et al., 2008; Hall et
al., 2003). The major drawback is model development in that
it involves a combination of physical and probabilistic in-
puts, which have no apparent automatic techniques for their
estimation. There is a lack of a track record around estimat-
ing velocities from the water-level gradients that this style of
model predicts.

The cellular automata method is based on a set of rules
that mimic continuity and kinematic limits, which from lim-
ited testing (e.g. Jamali et al., 2019; Guidolin et al., 2016;
Nicholas et al., 2006) is able to simulate urban areas, multi-
channel systems and hydraulic structures within a gridded
domain. Various versions do include storage attenuation.
There is, however, no track record around estimating veloc-
ities from the water-level gradients that this style of model
predicts.

There are other rules-based methods, including rating
curve geographic information system models (e.g. Zheng
et al., 2018; Apel et al., 2008) through to dynamic and
rule-based combined models (Bernini and Franchini, 2013;
Jamieson et al., 2012). These have not been considered as
they exclude flow routing.

The trade-off between accuracy and computational effort
and seeking flood hazard information thereby requiring rea-
sonable flow speed estimates leads to the selection of the
partial inertial-wave equation (LISFLOOD) and the cellu-
lar automata (WCAD2D). These two hydraulic models were

compared in both steady and unsteady tests and evaluated for
speed. Although estimates of flood levels from the two mod-
els were similar, LISFLOOD was found to be 2 to 2.5 times
faster when tested on large floodplains such as the Gwydir
River. This led to the selection of LISFLOOD.

2.3 Implementation of the LISFLOOD hydraulic
model

The LISFLOOD model was limited to the region covering
the Gwydir River Floodplain of 8100 km2. LISFLOOD could
have been applied across the entire catchment, removing the
need for including a hydrology model. Although this may be
useful in particular situations, for the present case study that
would require a LISFLOOD model grid covering 2.8 times
more area, unnecessarily increasing the burden on compu-
tational resources. Consequently, the ROR-style hydrology
model with flow routing provides a trade-off between com-
putational resources and framework complexity.

Surface roughness (using Manning’s n) for the LIS-
FLOOD model developed here was obtained from existing
calibrated hydraulic models for the Gwydir River. There
are three models forming the NSW Department of Plan-
ning and Environment Gwydir River hydraulic model with
1D links (channel links without hydraulic structures) and 2D
grids with resolutions from 20 to 50 m using MIKE FLOOD
(Anonymous, 2015). After balancing resolution with file size
and run times, a 100 m resolution was selected. These three
models were combined to develop the 100 m digital elevation
model (DEM) with extents to enclose Binniguy to Moree,
Moree to Barwon and Thalaba Creek MIKE FLOOD hy-
draulic models (colour-shaded area in Fig. 2). The origin
was set so that the 100 m DEM collocated with every sec-
ond grid point of the Moree to Barwon model. Crest fea-
tures (usually roads, but any feature that could either act as
a weir or a dam that changes discharge distributions) were
extracted out of Binniguy to Moree, Moree to Barwon and
Thalaba Creek DEMs, and put onto the 100 m DEM. This
was achieved in a two-step process: first, a smooth version of
each existing DEM was subtracted from the new 100 m DEM
and differences below 0.2 m removed. The resulting features
showed crests as well as other differences related to water-
ways. The crest features alignments were then determined,
and the crests extracted. Waterways removed from Binniguy
to Moree were put back in using survey DEM, missing areas
were filled in using Shuttle Radar Topography Mission data
and finally, streams were hydraulically connected (Fig. 2).

The three hydraulic models forming the Gwydir River hy-
draulic model by NSW government was used to constrain
(to previously calibrated hydraulic models) the LISFLOOD
model, using their 2012 calibration runs, performed in MIKE
FLOOD. There are complications in that those NSW gov-
ernment models included 1D elements, had finer resolution
(20 and 50 m) and were separated into three domains, one
run in steady state (southern region) and the other two using
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dynamic simulations with varying simulation periods, com-
pared with the one encompassing LISFLOOD model, which
had a coarser resolution (100 m) and no 1D elements. To ra-
tionalize these comparisons, locations where the NSW gov-
ernment models had reported inundation were used to con-
strain the LISFLOOD model. The first calibration series ran
100 incremental model topographies from largest main chan-
nels possible from survey to no channels, and inflows taken
directly from the NSW government models. The channel ge-
ometry was selected to obtain the best match to these cali-
brated models.

2.4 Climate projection to flood simulations

NARCliM 1.5 includes six historical projections and 12 fu-
ture projections, providing 18 periods for simulation, cover-
ing a total physical time of 1470 years. The historical projec-
tions run from the start of 1951 to the end of 2005, which is
55 years each and a total of 330 years. The future projections
from the start of 2006 to the end of 2100, which is 95 years
each, total 1140 years. Consequently, the total from histor-
ical and future projections is 1470 years. Such simulations
require high-performance resources and careful selection of
outputs and model resolution to ensure that simulations are
obtained within a reasonable timeframe. Within storage re-
sources available, output from LISFLOOD was hourly and
then post-processed to daily information of maximum in-
undation depth and the flow speed at that maximum depth.
This, with several storage techniques to minimize file sizes
(netCDF with compression and finite data resolution), re-
duced required storage from ca. 10 TB to 100 GB. Applica-
tions involving steeper catchments and floodplains may war-
rant storage of hourly rather than daily outputs. To further
enhance model throughput, simulations were broken into 4-
year segments, with an additional 2-month warm-up period
using initial conditions taken from a low-flow simulation de-
veloped from measurements and average evaporation. It was
confirmed that the 2-month warm-up period did not have an
impact on projections by comparing projections from the end
of a segment with the projections (after warm-up) at the start
of the following segment. The model grid was selected after
initial testing of four resolutions of 50, 75, 100 and 150 m.
These tests indicated that simulation times, from finest to
coarsest grids, were 55, 16, 7 and 2.5 d per decade respec-
tively, whereas mean biases from the 50 m resolution were
1, 5 and 12 cm for the 75, 100 and 150 m resolutions grids.
The 100 m grid was a reasonable balance between output
size, simulation speed and model performance for resources
available. That is, a reasonable balance between loss of ac-
curacy of 50 and 75 m resolution when compared with eight-
and two-fold decrease in computational resources. The LIS-
FLOOD version implemented was the latest available at the
time (February 2021), compiled with the 2018 version of In-
tel C++ and ran on CentOS version 7. These simulations

took several weeks using high performance computing re-
sources where between 160 and 480 threads were available.

2.5 Flood hazard classes

The flood hazard classification shown in Fig. 3 (Smith et
al., 2014b) is recommended for use in emergency planning
and management within Australia (Ball et al., 2019) and has
been applied here. The classification has six classes, starting
with the safe classification H1 (generally safe for vehicles,
people and buildings) through to H6 (unsafe for vehicles and
people and all building types considered vulnerable to fail-
ure). In applying these flood hazard classifications, one addi-
tional hazard classification was added to capture flood haz-
ards exceeding the maximum class (H6). Additionally, re-
gions with no inundated areas over the analysis period were
assigned to the safe hazard class H1.

2.6 Bernoulli’s trial to assess flood hazard class
changes

The assessment of climate changes on flood hazard classifi-
cation had to deal with a range of climate model projections
spanning dry through to wet, which have significantly dif-
ferent flood projections and associated flood hazards. Con-
sequently, each flood hazard classification was treated sep-
arately, and assessments were done on an annual basis for
a historical epoch of 1980 to 1999, and projected epochs of
2020–2039 for near-term, 2050–2069 for medium-term and
2080–2099 for long-term comparisons. These future epochs
correspond to those typically used for near, mid and far future
horizons in government planning. The occurrences of each
flood hazard classification are then the number of times it oc-
curs divided by 20, the number of years within these epochs,
which is a maximum likelihood estimate of the occurrence
probability given 20 independent binomial (Bernoulli’s) tri-
als. Once the occurrence probabilities are known for each
epoch in each flood projection, they are averaged or ensem-
bled across the flood projections from the six climate model
combinations before estimating changes between epochs.

3 Results

3.1 Calibration of the hydrologic model

The hydrologic model calibration to annual maximum dis-
charge at Gravesend (Fig. 4) was achieved using the same
m (nominally stream shape, which is expected) and different
kc (channel storages) and the same small catchment storage
parameters (f = 0.0005, hmax = 0.2 m and u= 80 mm d−1)
across the six historical climate projections available in
NARCliM 1.5. Uncertainty remains with the adopted calibra-
tion, which is minimized for inundation hazard assessment
by focusing calibration on rarer events.
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Figure 3. A flood hazard classification scheme from H1 (safe) to H6 (dangerous) recommended for use in Australia. Flood hazard class H7
is additional to the recommended classifications.

3.2 Calibration of the hydraulic model

The hydraulic model, LISFLOOD, was calibrated by vary-
ing the main channel depths until it matched previous mod-
els, MIKE FLOOD, that had been calibrated to historical
floods. The hydraulic model with channel depth at 19 % of
the maximum channel depth had mean flood level differences
of less than 1 mm (Fig. 5, top left panel) while also being
near the lowest standard deviation of flood level difference.
As the LISFLOOD and MIKE FLOOD models had different
resolutions and consequently different ground surface eleva-
tions, comparing depths bring in two changes, one related
to hydraulic performance and another related to ground sur-
face elevation interpolation differences (Fig. 5, bottom left
panel). Alternatively, comparing water surface levels (Fig. 5,
top right panel) removes this ground surface elevation in-
terpolation aspect; however, for models with large vertical
variation (e.g. Gwydir River has 100 m vertical change over
its 167 km length), this vertical variation overpowers water
level differences when plotted. Nevertheless, comparing dif-
ferences in both depth and water surface level together with

an overall water-level difference map (Fig. 5, bottom right
panel), provides a visual assessment of model calibration.

3.3 Flood hazard classification and changes under
RCP 4.5 and RCP 8.5

The occurrence probabilities under both RCP 4.5 and 8.5
(Fig. 6, Table S1) for flood-hazard classification H1 (gen-
erally safe for people, vehicles and buildings) are predicted
to increase whereas higher hazard classifications (generally
dangerous for people, vehicles and buildings) are predicted
to decrease in the long term (comparing 2080–2099 with
1980–1999) for the NARCliM 1.5 ensemble. Within this en-
semble, the H1 occurrence probability changes for RCP 4.5
vary from no change to an increase of 0.3 and for the RCP
8.5 increases from 0.06 to 0.39 (Figs. S1–S6), indicating a
high likelihood of a reduction in flood hazard at the valley
scale. This longer-term assessment outcome does not apply
to the near or medium term (2020–2039 or 2050–2069, Ta-
ble S1). The change expected in the near term is very slight
(increase in H1 by 0.01 to 0.02) but the ensemble includes
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Figure 4. Comparisons between modelled discharge at Gravesend (Fig. 2) with measurements for all global (rows) and regional (columns)
climate model combinations. Model discharges includes additional evaporation via local storages (f = 0.0005, hmax = 0.2 m and u=
80 mm d−1). Hydrology model parameter m= 0.5 for all cases and kc is indicated in each panel. Black lines indicate perfect agreement,
solid coloured lines and corresponding shaded regions are mean and 95 % confidence of measured distribution when resampled to compare
with modelled discharges; different colours indicate different kc.

projections where the H1 occurrence probability is reduced
by 0.09. These decreases in H1 come with increases in H2
through to H4 of between 0.03 to 0.13. The medium-term
comparison period is a transition between the other two, with
RCP 8.5 always increasing H1 and decreasing H2 through to
H4 and RCP 4.5 having both increases and decreases in H1
through to H4 within the ensemble.

4 Discussion

The increases in H1 occurrence coupled with decreases in
H2–H4 (Fig. 6, Table S1 and Figs. S1–S6) indicates that
flood hazard is decreasing in the long term under projected
climate changes (all cases in the ensemble and both RCP
4.5 and 8.5) in the region modelled (Fig. 2). The near-term
changes are more uncertain as there are cases in the ensem-
ble that both increase and decrease flood hazard (Table S1).
Comparing the near, medium and long-term, RCP 8.5 shows
a more certain decrease in flood hazard compared with RCP
4.5; however, in both scenarios, the most likely outcome is a

decrease in flood hazard, with all members of the ensemble
forecasting this.

The inference that flood hazard is decreasing in this re-
gion with projected climate change comes with several key
limitations. Hydrology models were calibrated to best rep-
resent infrequent events across the historical period. Con-
sequently, these models overestimate the catchment runoff
from frequent events by different amounts for each member
of the ensemble (Fig. 4). These differences come from the
climate models themselves, where the rainfall runoff is es-
timated using different approaches, leading to different out-
comes across the one historical period. That is, the distribu-
tion of runoff of each member of the ensemble for the histori-
cal period, in the absence of epistemic uncertainty, should be
similar. Although these distributions are different and con-
sequently, add to the uncertainty of inundation depth and
speed projections, both are used to assess flood hazards. The
hydraulic model, which was constrained reasonably given
the differences between resolution and modelling approaches
(Fig. 5), is less of an issue than hydrologic uncertainty. How-
ever, there are still differences between estimates (Fig. 5)
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Figure 5. Gwydir River hydraulic model (LISFLOOD) calibration to existing MIKE FLOOD hydraulic models by NSW Environment &
Heritage. (a) Selection of schematized channel depth (zero means no channels and 100 % means largest main channels possible from survey)
with the black lines showing selected channel depth. (b) A comparison between flood levels across the entire model (blue dots) with perfect
fit (black line). (c) A comparison between flood depth across the entire model. (d) Difference map between models.

from various flood projections that may lead to different con-
clusions spatially. Finally, when estimating changes in flood
hazard, this would usually involve estimates of flood hazard
under extreme conditions. However, the assessment provided
used an alternative method for reasons discussed in the fol-
lowing paragraphs.

Conventional extreme value analysis for flood hazard as-
sessments involves establishing a link between flow dis-
charges and exceedance probabilities. This relationship can
then be used to assign exceedance probabilities either to his-
torical events or synthetic events that represent historical
events, which are simulated, and the spatially varied maxi-
mum flood hazard obtained. This approach would work for
systems that are driven by one major inflow and have flooded
areas that are relatively small compared with the rainfall sys-
tems that excite flooding. However, the floodplain being as-
sessed has a large catchment area compared with the spa-
tial size of rainfall events and although it has one major in-
flow, there are several others, and those combined with the
floodplain itself, make breaking continuous simulations into
a series of events where the probability is constant across the
floodplain-inundated area a subjective (or arbitrary) assess-
ment.

Another issue in using conventional extreme value analy-
sis for flood hazard assessments is the balance between the
projection period and the ability to establish reasonable ex-
treme value estimates. For example, one can do a simple nu-

merical experiment in which the two distributions are con-
structed with a fixed increase in all extremes (simplest case),
and then draw one sample; the estimated extreme values, ob-
tained from fitting to this sample, can be both an increase
and a decrease compared with that assumed and this is due
to sampling error when the analysis period is shorter than
the extreme value return period being estimated. To robustly
estimate an extreme value, using a one-off sample, the anal-
ysis period usually needs to be many times its return period
(rule-of-thumb, 10 or more). Without this, the sampling er-
ror overwhelms any changes and thus any changes that are
within the confidence limits are statistically insignificant.

The final issue in using conventional extreme value anal-
ysis comes from the differences in inundation extents and
frequency across the climate model projections that span dry
through to wet conditions. This led to significant areas that
were inundated in the wettest projections that remained dry
in the driest projection. Consequently, the members within
the ensemble would vary spatially, making uncertainties dif-
ficult to understand and communicate.

Applying extreme value theory to individual grid inunda-
tion flood hazard (i.e. linking exceedance probability directly
to flood hazard, after applying either block maxima or the
peak-over-threshold approach to independent and identical
distributed events to determine extreme events), as opposed
to the conventional method of linking probabilities through
event peak discharge, means that the number of extreme
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Figure 6. Gwydir Valley flood hazard historical (1980–1999) classification occurrences and their changes under RCP 4.5 and RCP 8.5
(2080–2099) for the NARCliM 1.5 ensemble. The mean of occurrence probability changes, δ, shown in each panel. For brevity, flood hazard
historical classifications H5 to H7 are not shown as they are limited to within river and creek channels.

events changes from many events along deep watercourses
to approaching zero near the edge of maximum inundation.
This variation in the number of extreme events led to reason-
ably consistent spatial projections along deep watercourses
to inconsistent spatial projections across the floodplain where
the number of extreme events approaches zero at the edge of
inundation. These spatially inconsistent projections were ob-
tained for a range of extreme-value approaches and fitting
methods. Furthermore, near the edge of maximum inunda-
tion, the extreme value models themselves broke down as
the number of events approached zero, the net result being
very limited consistency in linking exceedance probabilities
to flood hazard across the floodplains, particularly near the
edge of maximum inundation.

Our approach (Sect. 2.5 and 2.6), where we estimate
changes in the annual probability of the occurrence of flood
hazard classes overcomes issues with conventional and grid-
based extreme value analysis.

5 Summary

A modelling framework for estimating projected flood haz-
ards from regional climate model projections has been pre-
sented, including a different approach to assessing flood
hazard changes. The modelling framework was applied to
Gwydir River (Australia) using New South Wales and Aus-
tralian Capital Territory Regional Climate Modelling version
1.5 projections with computationally efficient hydrologic and
hydraulic models. This included six historical and 12 future
regional climate projections occupying the plausible future
climate space with similar temperature and drier conditions.
This included 6 historical and 12 future regional climate pro-
jections occupying the plausible future climate space with
warmer temperature and drier conditions than in the history.
The simulations were continuous and totalled 1470 years,
requiring high-performance computing resources for timely
completion. The climate projections included spatially var-
ied rainfall runoff, allowing the implementation of a hydro-
logical modelling approach that only required flow routing,
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as soil dynamics were included in the regional climate mod-
els. The hydrology model was constrained by measured dis-
tributions of runoff. The hydraulic modelling approach was
selected after an extensive evaluation and testing phase of
modelling types with proven track records of computational
efficiency, leading to the selection of the partial inertial-wave
equation as implemented in LISFLOOD over the other fam-
ily of efficient approaches under the cellular automata um-
brella. This hydraulic model was constrained by modifying
the main channel geometry until it matched more detailed
and calibrated hydraulic models using the dynamic wave
equation. The simulations resulted in spatially varied daily
maximum flow depth and flow speeds at those depths across
the 18 regional climate projections, allowing flood hazard as-
sessments.

Changes in flooding hazard were assessed by estimating
changes in the annual probability of occurrence of a range of
flood hazard classes, with the first class, H1, being a safe
class and all other classes having various levels of flood-
ing hazard. This approach was taken to overcome several
barriers in using conventional flood hazard assessment tech-
niques where flooding hazards are estimated at various ex-
treme values. These barriers included a variable number of
hazard events across the floodplain, the ability to determine
an extreme value where the underlying processes are chang-
ing, through to regional climate projections ranging from
dry to wet, leading to significant differences in inundation
extents. Changes in annual probability of occurrence in the
long term are consistent, across the ensemble for both RCP
4.5 and 8.5, indicating a reduction of flooding hazard across
Gwydir River region modelled for the climate futures eval-
uated. This was demonstrated as an increased probability of
occurrence of the safe class (H1) and decreased probability in
all the unsafe classes. The outcomes are more mixed in the
near term, with the ensemble indicating minor decreases in
flooding hazard albeit with ensemble members having both
increases and decreases. The medium-term projections are
transitional between the near and long term; however, there
remain ensemble members with an increased flooding haz-
ard.

Data availability. Simulation data are stored at the University
of Queensland Data Collection and are freely available at
https://doi.org/10.48610/d7b1654 (Callaghan, 2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/nhess-22-2459-2022-supplement.

Author contributions. DPC led methodology, software develop-
ment, model validations and visualization, and formal analysis with
substantive contributions in each of these by MGH. MGH led con-
ceptualization, resources (climate model forcing), project adminis-

tration and project funding acquisition. DPC and MGH contributed
to writing, original draft preparation, reviewing and editing.

Competing interests. The contact author has declared that neither
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The high-performance computing was sup-
ported by Queensland Cyber Infrastructure Foundation and The
University of Queensland. The support from Matthew Riley and
Tim Pritchard in initiating the project is greatly appreciated.

Financial support. This research has been supported by the New
South Wales Government (grant no. 4500812695).

Review statement. This paper was edited by Brunella Bonaccorso
and reviewed by Jesper Neilsen and one anonymous referee.

References

Ahmadisharaf, E., Kalyanapu, A. J., and Bates, P. D.: A probabilis-
tic framework for floodplain mapping using hydrological model-
ing and unsteady hydraulic modeling, Hydrol. Sci. J., 63, 1759–
1775, https://doi.org/10.1080/02626667.2018.1525615, 2018.

Altenau, E. H., Pavelsky, T. M., Bates, P. D., and Neal, J. C.:
The effects of spatial resolution and dimensionality on modeling
regional-scale hydraulics in a multichannel river, Water Resour.
Res., 53, 1683–1701, https://doi.org/10.1002/2016wr019396,
2017.

Amarnath, G., Umer, Y. M., Alahacoon, N., and Inada, Y.: Mod-
elling the flood-risk extent using LISFLOOD-FP in a complex
watershed: case study of Mundeni Aru River Basin, Sri Lanka,
Proc. IAHS, 370, 131–138, https://doi.org/10.5194/piahs-370-
131-2015, 2015.

Anonymous: Rural floodplain management plans: Back-
ground document to the floodplain management plan
for the Gwydir Valley Floodplain, NSW Department
of Primary Industries: Water, ISBN 978-1-74256-821-8,
https://www.industry.nsw.gov.au/__data/assets/pdf_file/0018/
146052/gwydir-fmp-background-document.pdf (last access: 1
July 2021), 2015.

Apel, H., Merz, B., and Thieken, A. H.: Quantifica-
tion of uncertainties in flood risk assessments, Interna-
tional Journal of River Basin Management, 6, 149–162,
https://doi.org/10.1080/15715124.2008.9635344, 2008.

Apel, H., Aronica, G. T., Kreibich, H., and Thieken, A. H.: Flood
risk analyses-how detailed do we need to be?, Nat. Hazards, 49,
79–98, https://doi.org/10.1007/s11069-008-9277-8, 2009.

Nat. Hazards Earth Syst. Sci., 22, 2459–2472, 2022 https://doi.org/10.5194/nhess-22-2459-2022

https://doi.org/10.48610/d7b1654
https://doi.org/10.5194/nhess-22-2459-2022-supplement
https://doi.org/10.1080/02626667.2018.1525615
https://doi.org/10.1002/2016wr019396
https://doi.org/10.5194/piahs-370-131-2015
https://doi.org/10.5194/piahs-370-131-2015
https://www.industry.nsw.gov.au/__data/assets/pdf_file/0018/146052/gwydir-fmp-background-document.pdf
https://www.industry.nsw.gov.au/__data/assets/pdf_file/0018/146052/gwydir-fmp-background-document.pdf
https://doi.org/10.1080/15715124.2008.9635344
https://doi.org/10.1007/s11069-008-9277-8


D. P. Callaghan and M. G. Hughes: Assessing flood hazard changes using climate model forcing 2471

Ball, J., Babister, M., Nathan, R., Weeks, W., Weinmann, E., Retal-
lick, M., and Testoni, I.: Australian Rainfall and Runoff: A Guide
to Flood Estimation, http://www.arr-software.org/arrdocs.html
(last access: 26 July 2022), 2019.

Bates, P. D., Dawson, R. J., Hall, J. W., Matthew, S. H.
F., Nicholls, R. J., Wicks, J., and Hassan, M.: Simpli-
fied two-dimensional numerical modelling of coastal flood-
ing and example applications, Coast. Eng., 52, 793–810,
https://doi.org/10.1016/j.coastaleng.2005.06.001, 2005.

Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial
formulation of the shallow water equations for efficient two-
dimensional flood inundation modelling, J. Hydrol., 387, 33–45,
https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010.

Bernini, A. and Franchini, M.: A Rapid Model for Delimit-
ing Flooded Areas, Water Resour. Manag., 27, 3825–3846,
https://doi.org/10.1007/s11269-013-0383-3, 2013.

Callaghan, D.: Gwydir River hydraulic model results using regional
climate projections, The University of Queensland Data Collec-
tion [data set], https://doi.org/10.48610/d7b1654, 2022.

Cloke, H. L., Wetterhall, F., He, Y., Freer, J. E., and Pappen-
berger, F.: Modelling climate impact on floods with ensemble
climate projections, Q. J. Roy. Meteorol. Soc., 139, 282–297,
https://doi.org/10.1002/qj.1998, 2013.

Costabile, P., Costanzo, C., and Macchione, F.: Performances
and limitations of the diffusive approximation of the 2-
d shallow water equations for flood simulation in ur-
ban and rural areas, Appl. Numer. Math., 116, 141–156,
https://doi.org/10.1016/j.apnum.2016.07.003, 2017.

Coulthard, T. J., Neal, J. C., Bates, P. D., Ramirez, J., de Almeida,
G. A. M., and Hancock, G. R.: Integrating the LISFLOOD-FP
2D hydrodynamic model with the CAESAR model: implications
for modelling landscape evolution, Earth Surf. Proc. Land., 38,
1897–1906, https://doi.org/10.1002/esp.3478, 2013.

Delgado, J. M., Merz, B., and Apel, H.: Projecting flood
hazard under climate change: an alternative approach to
model chains, Nat. Hazards Earth Syst. Sci., 14, 1579–1589,
https://doi.org/10.5194/nhess-14-1579-2014, 2014.

De Roo, A. P. J., Wesseling, C. G., and Van Deursen,
W. P. A.: Physically based river basin modelling
within a GIS: the LISFLOOD model, Hydrol. Pro-
cess., 14, 1981–1992, https://doi.org/10.1002/1099-
1085(20000815/30)14:11/12<1981::Aid-hyp49>3.0.Co;2-f,
2000.

Dottori, F. and Todini, E.: Testing a simple 2D hydraulic model
in an urban flood experiment, Hydrol. Process., 27, 1301–1320,
https://doi.org/10.1002/hyp.9370, 2013.

Ekström, M., Grose, M. R., and Whetton, P. H.: An appraisal of
downscaling methods used in climate change research, WIREs
Climate Change, 6, 301–319, https://doi.org/10.1002/wcc.339,
2015.

Evans, J. P., Ji, F., Lee, C., Smith, P., Argüeso, D., and Fita,
L.: Design of a regional climate modelling projection ensem-
ble experiment – NARCliM, Geosci. Model Dev., 7, 621–629,
https://doi.org/10.5194/gmd-7-621-2014, 2014.

Evans, J. P., Di Virgilio, G., Hirsch, A. L., Hoffmann, P., Reme-
dio, A. R., Ji, F., Rockel, B., and Coppola, E.: The CORDEX-
Australasia ensemble: evaluation and future projections, Clim.
Dynam., 57, 1385–1401, https://doi.org/10.1007/s00382-020-
05459-0, 2021.

Falter, D., Vorogushyn, S., Lhomme, J., Apel, H., Gouldby,
B., and Merz, B.: Hydraulic model evaluation for large-
scale flood risk assessments, Hydrol. Process., 27, 1331–1340,
https://doi.org/10.1002/hyp.9553, 2013.

Fewtrell, T. J., Duncan, A., Sampson, C. C., Neal, J. C., and Bates, P.
D.: Benchmarking urban flood models of varying complexity and
scale using high resolution terrestrial LiDAR data, Phys. Chem.
Earth, 36, 281–291, https://doi.org/10.1016/j.pce.2010.12.011,
2011.

Ghimire, B., Chen, A. S., Guidolin, M., Keedwell, E. C., Djordjevic,
S., and Savic, D. A.: Formulation of a fast 2D urban pluvial flood
model using a cellular automata approach, J. Hydroinform., 15,
676–686, https://doi.org/10.2166/hydro.2012.245, 2013.

Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33,
L08707, https://doi.org/10.1029/2006GL025734, 2006.

Gouldby, B., Sayers, P., Mulet-Marti, J., Hassan, M.,
and Benwell, D.: A methodology for regional-scale
flood risk assessment, Proceedings of the Institution
of Civil Engineers-Water Management, 161, 169–182,
https://doi.org/10.1680/wama.2008.161.3.169, 2008.

Guidolin, M., Chen, A. S., Ghimire, B., Keedwell, E. C., Djordjevic,
S., and Savic, D. A.: A weighted cellular automata 2D inundation
model for rapid flood analysis, Environ. Model. Softw., 84, 378–
394, https://doi.org/10.1016/j.envsoft.2016.07.008, 2016.

Hall, J. W., Dawson, R. J., Sayers, P. B., Rosu, C., Chat-
terton, J. B., and Deakin, R.: A methodology for national-
scale flood risk assessment, Proceedings of the Institution of
Civil Engineers-Water and Maritime Engineering, 156, 235–247,
https://doi.org/10.1680/wame.2003.156.3.235, 2003.

Henderson, F. M.: Open channel flow, Macmillan series in civil en-
gineering, Macmillan, New York, 522 pp., ISBN 0023535105,
1966.

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Ya-
mazaki, D., Watanabe, S., Kim, H., and Kanae, S.: Global
flood risk under climate change, Nat. Clim. Chang., 3, 816–821,
https://doi.org/10.1038/nclimate1911, 2013.

Hoch, J. M., Neal, J. C., Baart, F., van Beek, R., Winsemius, H.
C., Bates, P. D., and Bierkens, M. F. P.: GLOFRIM v1.0 –
A globally applicable computational framework for integrated
hydrological–hydrodynamic modelling, Geosci. Model Dev., 10,
3913–3929, https://doi.org/10.5194/gmd-10-3913-2017, 2017.

Jamali, B., Bach, P. M., Cunningham, L., and Deletic, A.: A Cellular
Automata Fast Flood Evaluation (CA-ffe) Model, Water Resour.
Res., 55, 4936–4953, https://doi.org/10.1029/2018wr023679,
2019.

Jamieson, S. R., Lhomme, J., Wright, G., and Gouldby, B.: A highly
efficient 2D flood model with sub-element topography, Proceed-
ings of the Institution of Civil Engineers-Water Management,
165, 581–595, https://doi.org/10.1680/wama.12.00021, 2012.

Janizadeh, S., Chandra Pal, S., Saha, A., Chowdhuri, I., Ahmadi, K.,
Mirzaei, S., Mosavi, A. H., and Tiefenbacher, J. P.: Mapping the
spatial and temporal variability of flood hazard affected by cli-
mate and land-use changes in the future, J. Environ. Manag., 298,
113551, https://doi.org/10.1016/j.jenvman.2021.113551, 2021.

Laprise, R.: Regional climate modelling, J. Comput. Phys., 227,
3641–3666, https://doi.org/10.1016/j.jcp.2006.10.024, 2008.

Lewis, M., Horsburgh, K., Bates, P., and Smith, R.: Quantifying the
Uncertainty in Future Coastal Flood Risk Estimates for the UK,

https://doi.org/10.5194/nhess-22-2459-2022 Nat. Hazards Earth Syst. Sci., 22, 2459–2472, 2022

http://www.arr-software.org/arrdocs.html
https://doi.org/10.1016/j.coastaleng.2005.06.001
https://doi.org/10.1016/j.jhydrol.2010.03.027
https://doi.org/10.1007/s11269-013-0383-3
https://doi.org/10.48610/d7b1654
https://doi.org/10.1002/qj.1998
https://doi.org/10.1016/j.apnum.2016.07.003
https://doi.org/10.1002/esp.3478
https://doi.org/10.5194/nhess-14-1579-2014
https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<1981::Aid-hyp49>3.0.Co;2-f
https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<1981::Aid-hyp49>3.0.Co;2-f
https://doi.org/10.1002/hyp.9370
https://doi.org/10.1002/wcc.339
https://doi.org/10.5194/gmd-7-621-2014
https://doi.org/10.1007/s00382-020-05459-0
https://doi.org/10.1007/s00382-020-05459-0
https://doi.org/10.1002/hyp.9553
https://doi.org/10.1016/j.pce.2010.12.011
https://doi.org/10.2166/hydro.2012.245
https://doi.org/10.1029/2006GL025734
https://doi.org/10.1680/wama.2008.161.3.169
https://doi.org/10.1016/j.envsoft.2016.07.008
https://doi.org/10.1680/wame.2003.156.3.235
https://doi.org/10.1038/nclimate1911
https://doi.org/10.5194/gmd-10-3913-2017
https://doi.org/10.1029/2018wr023679
https://doi.org/10.1680/wama.12.00021
https://doi.org/10.1016/j.jenvman.2021.113551
https://doi.org/10.1016/j.jcp.2006.10.024


2472 D. P. Callaghan and M. G. Hughes: Assessing flood hazard changes using climate model forcing

J. Coast. Res., 27, 870–881, https://doi.org/10.2112/jcoastres-d-
10-00147.1, 2011.

Lhomme, J., Sayers, P., Gouldby, B., Samuels, P., Wills, M., and
Mulet-Marti, J.: Recent development and application of a rapid 5
flood spreading method, in: Flood Risk Management: Research
and Practice (CD-ROM), edited by: Samuels, P., Huntington, S.,
Allsop, W., and Harrop, J., Taylor & Francis Group, London,
ISBN 978-0-415-48507-4, 2009.

Lhomme, J., Gutierrez-Andres, J., Weisgerber, A., Davison, M.,
Mulet-Marti, J., Cooper, A., and Gouldby, B.: Testing a new
two-dimensional flood modelling system: analytical tests and
application to a flood event, J. Flood Risk Manag., 3, 33–51,
https://doi.org/10.1111/j.1753-318X.2009.01053.x, 2010.

Mason, D. C., Bates, P. D., and Amico, J. T. D.: Cal-
ibration of uncertain flood inundation models using re-
motely sensed water levels, J. Hydrol., 368, 224–236,
https://doi.org/10.1016/j.jhydrol.2009.02.034, 2009.

Mein, R. G., Laurenson, E. M., and McMahon, T. A.: Simple non-
linear model for flood estimation, Journal of the Hydraulics Di-
vision, Proceedings of the American Society of Civil Engineers,
100, 1507–1518, 1974.

Miller, J. E.: Basic Concepts of Kinematic-Wave Models, U. S. Ge-
ological Survey, Washington, USA, 36, 1984.

Montanari, M., Hostache, R., Matgen, P., Schumann, G., Pfister,
L., and Hoffmann, L.: Calibration and sequential updating of
a coupled hydrologic-hydraulic model using remote sensing-
derived water stages, Hydrol. Earth Syst. Sci., 13, 367–380,
https://doi.org/10.5194/hess-13-367-2009, 2009.

Neal, J., Schumann, G., Fewtrell, T., Budimir, M., Bates, P.,
and Mason, D.: Evaluating a new LISFLOOD-FP formulation
with data from the summer 2007 floods in Tewkesbury, UK,
J. Flood Risk Manag., 4, 88–95, https://doi.org/10.1111/j.1753-
318X.2011.01093.x, 2011.

Neal, J., Villanueva, I., Wright, N., Willis, T., Fewtrell, T.,
and Bates, P.: How much physical complexity is needed to
model flood inundation?, Hydrol. Process., 26, 2264–2282,
https://doi.org/10.1002/hyp.8339, 2012.

Neal, J., Keef, C., Bates, P., Beven, K., and Leedal, D.: Probabilistic
flood risk mapping including spatial dependence, Hydrol. Pro-
cess., 27, 1349–1363, https://doi.org/10.1002/hyp.9572, 2013.

Nicholas, A. P., Thomas, R., and Quine, T. A.: Cellular modelling
of braided river form and process, in: Braided Rivers: Process,
Deposits, Ecology and Management, edited by: Smith, G. H. S.,
Best, J. L., Bristow, C. S., and Petts, G. E., Special Publications
of the International Association of Sedimentologists, 137–151,
https://doi.org/10.1002/9781444304374.ch6, 2006.

Nishant, N., Evans, J. P., Di Virgilio, G., Downes, S. M.,
Ji, F., Cheung, K. K. W., Tam, E., Miller, J., Beyer, K.,
and Riley, M. L.: Introducing NARCliM1.5: Evaluating the
Performance of Regional Climate Projections for Southeast
Australia for 1950–2100, Earth’s Future, 9, e2020EF001833,
https://doi.org/10.1029/2020EF001833, 2021.

O’Loughlin, F. E., Neal, J., Schumann, G. J. P., Beighley,
E., and Bates, P. D.: A LISFLOOD-FP hydraulic model of
the middle reach of the Congo, J. Hydrol., 580, 124203,
https://doi.org/10.1016/j.jhydrol.2019.124203, 2020.

Prudhomme, C., Wilby, R. L., Crooks, S., Kay, A. L., and Rey-
nard, N. S.: Scenario-neutral approach to climate change im-

pact studies: Application to flood risk, J. Hydrol., 390, 198–209,
https://doi.org/10.1016/j.jhydrol.2010.06.043, 2010.

Rajib, A., Liu, Z., Merwade, V., Tavakoly, A. A., and Follum, M. L.:
Towards a large-scale locally relevant flood inundation model-
ing framework using SWAT and LISFLOOD-FP, J. Hydrol., 581,
124406, https://doi.org/10.1016/j.jhydrol.2019.124406, 2020.

Ryu, J.-H., Kim, J.-E., Lee, J.-Y., Kwon, H.-H., and Kim, T.-W.:
Estimating Optimal Design Frequency and Future Hydrological
Risk in Local River Basins According to RCP Scenarios, Water,
14, 945, https://doi.org/10.3390/w14060945, 2022.

Sampson, C. C., Smith, A. M., Bates, P. B., Neal, J. C.,
Alfieri, L., and Freer, J. E.: A high-resolution global
flood hazard model, Water Resour. Res., 51, 7358–7381,
https://doi.org/10.1002/2015wr016954, 2015.

Schmidli, J., Frei, C., and Vidale, P. L.: Downscaling from
GCM precipitation: a benchmark for dynamical and statis-
tical downscaling methods, Int. J. Climatol., 26, 679–689,
https://doi.org/10.1002/joc.1287, 2006.

Schumann, G. J. P., Neal, J. C., and Bates, P. D.: Global scale simu-
lation of flood plain inundation with low resolution space-borne
data, in: Remote Sensing and Hydrology, edited by: Neale, C. M.
U., and Cosh, M. H., IAHS Publication, 464–467, 2012.

Schumann, G. J. P., Neal, J. C., Voisin, N., Andreadis,
K. M., Pappenberger, F., Phanthuwongpakdee, N., Hall, A.
C., and Bates, P. D.: A first large-scale flood inunda-
tion forecasting model, Water Resour. Res., 49, 6248–6257,
https://doi.org/10.1002/wrcr.20521, 2013.

Shrestha, S. and Lohpaisankrit, W.: Flood hazard assessment un-
der climate change scenarios in the Yang River Basin, Thailand,
International Journal of Sustainable Built Environment, 6, 285–
298, https://doi.org/10.1016/j.ijsbe.2016.09.006, 2017.

Skinner, C. J., Coulthard, T. J., Parsons, D. R., Ramirez, J. A.,
Mullen, L., and Manson, S.: Simulating tidal and storm surge
hydraulics with a simple 2D inertia based model, in the Hum-
ber Estuary, U.K, Estuar. Coast. Shelf Sci., 155, 126–136,
https://doi.org/10.1016/j.ecss.2015.01.019, 2015.

Smith, A., Bates, P., Freer, J., and Wetterhall, F.: Inves-
tigating the application of climate models in flood pro-
jection across the UK, Hydrol. Process., 28, 2810–2823,
https://doi.org/10.1002/hyp.9815, 2014a.

Smith, G. P., Davey, E. K., and Cox, R. J.: Flood Hazard, Water Re-
search Laboratory, The University of New South Wales, Sydney,
AustraliaWRL Technical Report 2014/07, 59, 2014b.

Timbal, B. and Jones, D. A.: Future projections of winter rainfall
in southeast Australia using a statistical downscaling technique,
Climatic Change, 86, 165–187, https://doi.org/10.1007/s10584-
007-9279-7, 2008.

Wilby, R. L., Wigley, T. M. L., Conway, D., Jones, P. D.,
Hewitson, B. C., Main, J., and Wilks, D. S.: Statistical
downscaling of general circulation model output: A com-
parison of methods, Water Resour. Res., 34, 2995–3008,
https://doi.org/10.1029/98WR02577, 1998.

Zheng, H., Huang, E., and Luo, M.: Applicability of Kinematic
Wave Model for Flood Routing under Unsteady Inflow, Water,
12, 2528, https://doi.org/10.3390/w12092528, 2020.

Zheng, X., Maidment, D. R., Tarboton, D. G., Liu, Y. Y., and Pas-
salacqua, P.: GeoFlood: Large-Scale Flood Inundation Mapping
Based on High-Resolution Terrain Analysis, Water Resour. Res.,
54, 10013–10033, https://doi.org/10.1029/2018wr023457, 2018.

Nat. Hazards Earth Syst. Sci., 22, 2459–2472, 2022 https://doi.org/10.5194/nhess-22-2459-2022

https://doi.org/10.2112/jcoastres-d-10-00147.1
https://doi.org/10.2112/jcoastres-d-10-00147.1
https://doi.org/10.1111/j.1753-318X.2009.01053.x
https://doi.org/10.1016/j.jhydrol.2009.02.034
https://doi.org/10.5194/hess-13-367-2009
https://doi.org/10.1111/j.1753-318X.2011.01093.x
https://doi.org/10.1111/j.1753-318X.2011.01093.x
https://doi.org/10.1002/hyp.8339
https://doi.org/10.1002/hyp.9572
https://doi.org/10.1002/9781444304374.ch6
https://doi.org/10.1029/2020EF001833
https://doi.org/10.1016/j.jhydrol.2019.124203
https://doi.org/10.1016/j.jhydrol.2010.06.043
https://doi.org/10.1016/j.jhydrol.2019.124406
https://doi.org/10.3390/w14060945
https://doi.org/10.1002/2015wr016954
https://doi.org/10.1002/joc.1287
https://doi.org/10.1002/wrcr.20521
https://doi.org/10.1016/j.ijsbe.2016.09.006
https://doi.org/10.1016/j.ecss.2015.01.019
https://doi.org/10.1002/hyp.9815
https://doi.org/10.1007/s10584-007-9279-7
https://doi.org/10.1007/s10584-007-9279-7
https://doi.org/10.1029/98WR02577
https://doi.org/10.3390/w12092528
https://doi.org/10.1029/2018wr023457

	Abstract
	Introduction
	Methods
	Evaluation of climate model outputs and hydrological model theory
	Selection of hydraulic theory and code
	Implementation of the LISFLOOD hydraulic model
	Climate projection to flood simulations
	Flood hazard classes
	Bernoulli's trial to assess flood hazard class changes

	Results
	Calibration of the hydrologic model
	Calibration of the hydraulic model
	Flood hazard classification and changes under RCP 4.5 and RCP 8.5

	Discussion
	Summary
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

