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Abstract. The economic consequences of drought episodes
are increasingly important although they are often difficult to
apprehend, in part because of the complexity of the underly-
ing mechanisms. In this article we will study one of the con-
sequences of drought, namely the risk of subsidence (or more
specifically clay-shrinkage-induced subsidence), for which
insurance has been mandatory in France for several decades.
Using data obtained from several insurers, representing about
a quarter of the household insurance market over the past
20 years, we propose some statistical models to predict not
only the frequency but also the intensity of these droughts
for insurers. But even if we use more advanced models than
standard regression-type models (here random forests to cap-
ture non-linearity and cross effects) and all geophysical and
climatic information is available, it is still difficult to predict
the economic cost of subsidence claims.

1 Introduction

Climate change is a challenge for the insurance industry
since risks are increasing in terms of frequency and inten-
sity, as discussed in McCullough (2004), Mills (2007), Char-
pentier (2008) or Schwarze et al. (2011). In this article, we
will see if it is possible to predict for a given year the costs
associated with drought and, more specifically here, clay-
shrinkage-induced subsidence in France.

1.1 Droughts, economic impacts, insurance coverage
and climate change

In a seminal book published 20 years ago, Bradford (2000)
started to address the problem of obtaining a better under-

standing of the connections between drought and climate
change, already suggesting that the frequency and the inten-
sity of such events could increase in the future. And in a more
recent book, Iglesias et al. (2019) provided additional evi-
dence of the influence of climate change on meteorological
droughts in Europe. Ionita and Nagavciuc (2021) studied the
temporal evolution of three drought indexes over 120 years
(the standardised precipitation index, SPI; the standardised
precipitation evapotranspiration index, SPEI; and the self-
calibrated Palmer drought severity index, scPDSI). This up-
dated study regarding the trends and changes in drought fre-
quency in Europe concluded that most of the severe drought
events occurred in the last 2 decades, corresponding to the
time after the publication of Lloyd-Hughes and Saunders
(2002) for example. Similarly, Spinoni et al. (2015, 2017)
(studying more specifically Europe, following their initial
worldwide study in Spinoni et al., 2014) observed that for
both frequency and severity, the evolution towards drier con-
ditions has been more relevant in the last 3 decades over cen-
tral Europe in spring, the Mediterranean area in summer and
eastern Europe in autumn (also using multiple indexes, over
60 years).

Regarding economic impacts, Hagenlocher et al. (2019)
present the outcomes of a systematic literature review, over
the past 20 years, on people-centred drought vulnerability
and risk conceptualisation and assessments. Despite major
advances over the past decades in terms of developing bet-
ter methods and tools for characterising individual compo-
nents of risk, Hagenlocher et al. (2019) mentioned persis-
tent knowledge gaps which need to be confronted in or-
der to advance the understanding of drought risk for peo-
ple and policymakers and move towards a more drought-
resilient society. Naumann et al. (2021) show that (in Europe)
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drought damage, not related to subsidence or building dam-
age but mainly agricultural losses, could strongly increase
with global warming and cause a regional imbalance in fu-
ture drought impacts. They provide some forecasts, under the
assumption of absence of climate action (+4 ◦C in 2100 and
no adaptation): annual drought losses in the European Union
and United Kingdom combined are projected to rise to more
than EUR 65 billion per year compared with EUR 9 billion
per year currently, still “two times larger when expressed to
the relative size of the economy” (expressed as a fraction of
the GDP). Note that this corresponds to the general feeling
of the insurance industry: Bevere and Weigel (2021) suggest
that current drought trends and corresponding economic risks
will be further aggravated under climate change.

But at the same time, Naumann et al. (2015) point out
that related direct and indirect impacts are often difficult to
quantify. A key issue is that the lack of sufficient quanti-
tative impact data makes it complicated to construct a ro-
bust relationship between the severity of drought events
and related damage. Insurance coverage for drought has
been intensively studied when related to agriculture. Igle-
sias et al. (2019) mention some drought insurance schemes
with both indemnity-based mechanisms and drought-index-
based insurance, in Sect. 2.8. Vroege et al. (2019) provide
an overview of index-based insurance in Europe and North
America in the context of droughts, while Bucheli et al.
(2021) focus on Germany. Note that Tsegai and Kaushik
(2019) address the importance of designing insurance prod-
ucts which not only address drought impacts but also min-
imise land degradation. Besides this theoretical work, some
countries provide actual cover for such risks. For example in
Spain, it is possible to insure rain-fed crops against drought,
as discussed in Entidad Estatal de Seguros Agrarios (2012),
but in most countries drought coverage only concerns agri-
cultural (crop) insurance in the same way that frost is covered
(see also Pérez-Blanco et al., 2017).

1.2 From drought to subsidence

In this article we will use data from several insurance compa-
nies in France regarding a very specific drought-related peril,
that is clay-shrinkage-induced subsidence, which causes
damage to buildings. Without buildings to suffer from sub-
sidence, there is no risk of damage. In turn, the risk of
building damage is only part of the wider scope of the eco-
nomic impacts of this (drought-induced) subsidence (as de-
scribe in Kok and Costa, 2021). If clay-shrinkage-induced
subsidence is now a well-known peril (or at least recog-
nised as a major peril; see for instance Doornkamp, 1993,
or Brignall et al., 2002, which assessed the potential ef-
fects of climate change on clay-shrinkage-induced land sub-
sidence), insurance coverage for subsidence is still uncom-
mon. Almost 20 years ago, as indicated in McCullough
(2004), while perils related to earth movement were tradi-
tionally excluded from most property policies, several states

(in the United States of America) added mandated cover-
age for some subsidence-related claims (with several limita-
tions). And recently, Herrera-García et al. (2021) proved that
subsidence permanently reduces aquifer-system storage ca-
pacity, causes earth fissures, damages buildings and civil in-
frastructure, and increases flood susceptibility and risk. From
an insurer’s perspective, Wües et al. (2011) pointed out that
as incidents of soil subsidence increase in frequency and
severity with climate change, there is a need for systematic
management of the risks through a combination of loss pre-
vention and risk transfer initiatives (such as insurance).

In France, subsidence is a phenomenon covered by all pri-
vate property insurance policies, and that enters the scope
of the government-backed French natural catastrophe regime
provided by the Caisse Centrale de Réassurance (CCR). It
is the second-most-important peril in terms of costs that the
system covers (the first being floods; see Charpentier et al.,
2022, for a recent discussion about flood events in France,
in the context of climate change). Subsidence risk is defined
(Ministère de la transition écologique et solidaire, 2016) as
the displacement of the ground surface due to shrinkage and
swelling of clayey soils. It is due mainly to the presence of
clay in the soil, which swells in humid conditions and shrinks
in dry ones and thus creates instabilities in the terrain un-
der constructions causing cracks to appear on the floor and
in the walls which can jeopardise the solidity of the build-
ing. France, having a temperate climate, has saturated clayey
soils, making subsidence predominant during droughts.

However, the past few years have seen this risk exac-
erbated by the extreme heatwaves and lack of rainfall in
France (see Caisse Centrale de Réassurance, 2020), caus-
ing more and more subsidence claims with little hope of
this tendency stopping given the current climate change con-
text. Indeed, 37 % of the total costs of natural catastrophes
in France between 1982 and 2020 are caused by subsi-
dence, 38 % of which are concentrated over the period 2015–
2019, which represents 15 % of the total time that subsi-
dence coverage has been in place (as discussed in Mission
des Risques Naturels, 2021). Furthermore, Soubeyroux et al.
(2011) show that the frequency and intensity of heatwaves
and droughts will inevitably increase in the coming cen-
tury in continental France and new areas that so far have
been protected from drought will be at risk. Additionally,
the Association Française de l’Assurance (2015) predicts that
the cost of geotechnical droughts will nearly triple in 2040.
More recently, the French Geological Survey (BRGM, Bu-
reau de Recherches Géologiques et Minières) published a
study, Gourdier and Plat (2018), describing extreme histor-
ical subsidence events as well as forecasts using various cli-
mate change scenarios. It found that the first third of the cen-
tury will suffer from unusual droughts in both their intensity
and their spatial expansion: one in three summers between
2020 and 2050 and one in two summers between 2050 and
2080 are to be as extreme as the summer of 2003 in con-
tinental France (the worst subsidence event ever registered
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by the CCR; see Corti et al., 2009, which focused on the
2003 heatwave in France). Looking at the most pessimistic
scenario, a 2003-type event might occur half of the time be-
tween 2020 and 2050. One should recall that in 2003, the
heatwave caused damage due to the shrinking and swelling
of clay, for which compensation (via the natural disaster in-
surance scheme and then via an exceptional compensation
procedure for rejected cases) was estimated at approximately
EUR 1.3 billion in Frécon and Keller (2009), while over the
period 1989–2002, the average annual cost of geotechnical
drought for the natural disaster insurance scheme was more
than 5 times smaller, at EUR 205 million.

Furthermore, subsidence is a risk with a long declaration
period, with on average 80 % of the number of claims de-
clared 2 years after the event. This delay is due to the lengthy
acceptance process of subsidence natural catastrophe decla-
rations, upon which the validity of most claims is dependent.
Although most insurers are reinsured against this peril with
the CCR, the retention rate remains high (50 %); it is thus
necessary for insurers to develop their own view of this risk
in order to estimate their exposure to this growing hazard.
However, the inherent characteristics of subsidence make it
a risk that is complex to model: it has slow kinetics and an
absence of a precise temporal definition, making subsidence
models sparse on the market.

In 2007, plans (called PPRs) for the prevention of differen-
tial settlement risks were prescribed in more than 1500 com-
munes, as mentioned in Ministère de la transition écologique
et solidaire (2016). These plans are addressed in particular
to anyone applying for a building permit and also to owners
of existing buildings. Its objective is to delimit the zones ex-
posed to the phenomenon and, in these zones, to regulate the
occupation of the land. It thus defines, for future construc-
tion projects and, if necessary, for existing buildings (with
certain limits), the mandatory or recommended construction
rules (although also related to the environment near the build-
ing) aimed at reducing the risk of disorders appearing. In ex-
posed sectors, the plan may also require a specific geotech-
nical study to be carried out, in particular prior to any new
project. For the time being, therefore, these plans do not pro-
vide for inconstructability. Among the advice given to min-
imise the risk of the frequency and size of the phenomenon,
there are instructions relating to the realisation of a water-
proof belt around the building, to the distance of vegetation
from the building, to creating a root barrier, to connecting
the water networks to the collective network, to sealing the
buried pipes, to limiting the consequences of a heat source in
the basement or to creating a drainage device. There is also
advice on how to adapt the building so as to counter the phe-
nomenon and thus minimise the damage as much as possible,
essentially by adapting the foundations (adopting a sufficient
depth of anchorage; adapting according to the sensitivity of
the site to the phenomenon; avoiding any dissymmetry in the
depth of anchorage and preferring continuous and reinforced
foundations, concreted to the full height of the excavation),

by making the building structure more rigid (requiring the
implementation of horizontal (top and bottom) and vertical
(corner posts) ties for the connected load-bearing walls) or
by the disassociation of the various structural elements (by
the installation of a rupture joint (elastomer) over the entire
height of the building (including the foundations)).

Bevere and Weigel (2021) mention that since 2016, an-
nual inflation-adjusted insured losses have continuously ex-
ceeded EUR 600 million, with an average annual loss close
to EUR 850 million, which corresponds to around 50 % of
the CatNat premiums (see Sect. 2.1 for more information on
CatNat) collected and makes subsidence possibly one of the
most costly natural risks in France. Overall, a high to medium
clay shrink–swell hazard affects one-fifth of metropolitan
France’s soils and 4 million individual houses, as mentioned
in Antoni et al. (2017). And Soyka (2021) mentioned that this
is not just in France; increased subsidence hazard is gaining
attention in other countries, too (although this article focuses
solely on France).

1.3 Agenda

The purpose of this study is to provide a regression-based
model that will allow us to predict the annual frequency and
severity of subsidence claims to be made, based on market
data and climatic indicators. The model created in this study
bases future predictions on past occurrences; thus a histori-
cal insurance database was necessary to calibrate the models
alongside indicators of the severity of historical events that
could be reproduced into the future. These indicators were
created using climatic and geological data that capture the
specifics of past events and regional information. The cre-
ation of this database and the choice of indicators will be de-
scribed in Sect. 2. Using these historical data, various mod-
els are implemented, chosen to adapt to the particularities of
the data in order to improve the precision of the predictions.
There will be three layers to model the costs of subsidence
claims: (1) a drought event should be officially recognised
(corresponding to a binary model, specificities of the French
insurance scheme will be discussed in the next section); (2) if
there is a drought, the frequency is considered (correspond-
ing to a counting model, classically a Poisson model); (3) for
each claim the severity is studied (corresponding to a cost
model, here a gamma model). As we will see, using so-called
zero-inflated models, the first two models can be considered
simultaneously. Various tree-based models were also tested
in an attempt to obtain more realistic predictions. In Sect. 3,
we will present those models, and we will analyse predictions
obtained about the frequency and more specifically discuss
the geographical component of the prediction errors. And fi-
nally, in Sect. 4, we will present some models to predict total
costs of subsidence events in France and, again, study care-
fully the prediction errors in 2017 and 2018.
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2 Subsidence risk in France and our dataset

A yearly claim and exposure dataset, sourced from several
different French insurers, relative to multi-peril housing in-
surance (multi-risque habitation) for individual houses in
metropolitan France for the period 2001 to 2018, was used
here for the frequency and severity of past events. This
dataset was enriched with additional information based on
geophysical indexes usually used to model droughts.

Our dataset was aggregated at the town level1 with no in-
formation about the particularities of each individual contract
that could influence the claims (such as number of stories,
size, orientation), creating the need for additional informa-
tion about the climatic and geophysical exposure of a given
town. One of the main issues when modelling subsidence is
the absence of a precise temporal and geographical definition
of subsidence events. Thus, to combat this issue, indicators
must be created to grasp the geographical and temporal char-
acteristics of past events.

In Sect. 2.1, after describing briefly the specificity of the
French insurance scheme, we will explain the variables of
interest that we will model afterwards, namely the occur-
rence of a natural disaster (based on official data in France),
the number of houses and buildings claiming a loss, and the
amount of the loss (those last two are based on data from
three important insurance companies in France, with expo-
sure spread throughout the country, representing about 20 %
of the French market). Then, in Sect. 2.2 and 2.3, we will de-
scribe possible explanatory variables (for the occurrence of
a disaster, the percentage of houses claiming a loss and the
severity). And finally, in Sect. 2.4 we discuss the use of other
variables, mainly geophysical information since we want to
predict subsidence and not droughts in general.

2.1 Specificity of the French CatNat system

The French Régime d’Indemnisation des Catastrophes Na-
turelles (also called the “CatNat regime”) was created in
1982 (see Charpentier et al., 2022, for a historical perspec-
tive) although drought damage was added to the (informal)
list of perils in 1989, as explained in (Magnan, 1995) or more
recently (Bidan and Cohignac, 2017). The main idea of the
mechanism is that any property damage insurance contract,
for individuals as well as for companies, includes manda-
tory coverage for natural disasters. The assets concerned are
buildings used for residential or professional purposes and
their furniture; equipment, including livestock and crops; and
finally motor vehicles. These assets are insured by multi-risk
home insurance, multi-risk business insurance and motor ve-
hicle insurance. The contractual guarantees (storm, hail and
snow, fire, etc.) are also very often attached to household and
business contracts. Livestock outside barns and unharvested

1Here, we use here the word “town” to designate a “commune”
(in French) or “municipality”. There are 37 613 towns in metropoli-
tan France (as characterised by their INSEE commune code).

crops, on the other hand, are covered differently. It should be
stressed here that the respective scope of insurable and non-
insurable risks is not defined by law but is established by case
law. Indeed, the natural disaster insurance system is said to
be à péril non dénommé (or unnamed peril) in the sense that
there is no exhaustive list of all risks that are covered. The
effects of natural disasters are legally defined in France as
“uninsurable direct material damage caused by the abnormal
intensity of a natural agent, when the usual measures to be
taken to prevent such damage could not prevent their occur-
rence or could not be taken” (article L.125-1 of the insurance
legal code). In practice (and it will be very important in our
study) the state of natural disaster is established by an inter-
ministerial order signed by the Ministry of the Interior and
the Ministry of Economy and Finance. This order is based on
the opinion of an interministerial commission. This commis-
sion analyses the phenomenon on the basis of scientific re-
ports and thus establishes jurisprudence regarding the thresh-
old of insurability of natural risks. More specifically, in the
context of our study regarding drought, requests for recog-
nition of the state of natural disaster are examined for dam-
age caused by differential land movements due to drought
and soil rehydration. Towns that have been declared a natu-
ral disaster are listed, and associated guaranties are then ap-
plied, for both individual and commercial policyholders, by
(private) insurance companies.

In comparison to other natural catastrophes, subsidence
has certain particularities. From an insurance point of view,
the typical event-based definitions of a natural catastrophe
that is possible for cyclones or avalanches do not apply. In-
deed, subsidence has slow kinetics, making it difficult to de-
termine direct links of causality between the event and the
claims. Damage can be caused long after the dry periods.
However, that link of causality is the very definition of nat-
ural catastrophe recognition which makes the implementa-
tion of different criteria to determine the causality link of the
event essential.

Subsidence was first observed as a major risk in France af-
ter the drought of 1976, which caused important damage to
buildings. After a similar event in 1989, subsidence was in-
tegrated into the French natural catastrophe regime, in the
sense that policyholders can claim a loss via their insur-
ance companies. According to Mission des Risques Naturels
(2019), between 1989 and 2018, more than 11 300 towns re-
quested natural catastrophe recognition for subsidence and
over 9500 were granted it. The natural catastrophe declara-
tions are published on average 18 months post-event, instead
of 50 d post-event for other natural catastrophes, and the du-
ration of an event is on average 50 d for subsidence and 5 d
for other perils (like floods, avalanches or landslides, among
many others). The total cost of subsidence losses reached
EUR 11 billion by mid-2018, which is roughly EUR 16 300
per claim. The number of towns that have had their request
declined has increased since 2003. Overall, the proportion
of acceptance is 61 %; however, just taking years subsequent
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to 2003, the proportion is only 50 %. As mentioned earlier,
this might be explained by the fact that, according to the law,
those events should be caused by “the abnormal intensity of a
natural agent”. Thus, if a town is claiming losses every year,
it ceases to be abnormal, and claims might then be rejected.
Because the subsidence claim system is based on a 25-year
return period threshold (as detailed in Sect. 2.2), towns with
recurring subsidence events would no longer be considered
abnormal and their requests would be declined.

The evolution of the number of natural catastrophes since
1989, which is the year of the oldest natural catastrophe in the
dataset, shows that since the 1990s the number of requests
has been quite variable, however, four years seem to have
been hit abnormally hard: 2003, 2005, 2011 and 2018. Note
finally that Wües et al. (2011) claim that since subsidence
and drought are related to temperature, climate change will
increase the frequency and intensity of drought.

2.2 General considerations regarding drought indexes

There exist many different options in terms of drought in-
dicators to characterise their severity, location, duration and
timing (see Svoboda and Fuchs, 2016, for some exhaustive
descriptions). The impact of droughts can vary, depending
on the specificities of each drought, captured differently by
each indicator. It is thus important to select an indicator with
its application in mind. However, the availability of data also
plays an important role in the selection, as it limits which
indicator can be constructed.

The criteria to characterise the severity of shrinkage–
swelling episodes evolved in 2018, as the old criteria were
outdated and overly technical, making them difficult to in-
terpret and explain to the public; see Ministère de l’intérieur
(2019). The new system is based on two factors:

– Geotechnical factor. This pertains to the presence of
clay at risk of the swell–shrink phenomenon, in place
since 1989. This criterion enables the identification
of soils with a predisposition to the phenomenon of
shrinkage–swelling depending on the degree of humid-
ity. The analysis is based on technical data established
by the Bureau de Recherches Géologiques et Minières
(BRGM); see Ministère de la transition écologique et
solidaire (2016). Areas of low, medium and high risk
are considered to determine whether the communal ter-
ritory covered by sensitive soils (medium- and high-
risk areas) is greater than 3 %. This will be discussed in
Sect. 2.4. However, the intensity of shrinkage–swelling
is due not only to the characteristics of the soil but also
to the weather.

– Meteorological criterion. This is defined as a hydro-
meteorological variable giving the level of moisture in
superficial soils (1 m of depth) at an 8 km precision
level. This variable establishes the moisture of the soil
for each season at a communal level called the soil wa-

ter index (SWI), which varies between 0 and 1, where
0 is a very dry soil and 1 is a very wet soil. A mois-
ture indicator is calculated for every month, based on
the average of the indicator of that month and the 2 pre-
vious months. This will be discussed in Sect. 2.2. For
example, the indicator for July is fixed using the mean
of the indexes for May, June and July, thus considering
the slow kinetics of the drought phenomenon that can
appear over a few months.

To determine whether a drought episode is considered
abnormal, the SWI established for a given month is com-
pared to the indicators for that same month over the previous
50 years. It is considered abnormal if the indicator presents a
return period greater than or equal to 25 years, as explained
in Ministère de l’intérieur (2019). It should be stressed here
that this return period is defined locally and not nationally.
If one of the months of a season meets the above criteria in
a specific area, then the whole season is eligible for a natu-
ral catastrophe declaration for the entire town. If the natural
catastrophe criteria are met and the interministerial commis-
sion declares a subsidence natural catastrophe for the town
if the claims are in direct connection with the event and the
goods were insured with a property and casualty insurance
policy, then the effects will be covered by standard insurance
policies. The presence of a threshold set at a 25-year return
period indicates that over time if a commune is regularly hit
by extreme droughts, those events will be less and less likely
to be declared natural catastrophes as they will lose their ex-
ceptional character.

However, over the years, the subsidence criteria have been
changed and updated many times to consider the new kinds
of droughts that have arisen. The first main modification was
in 2000, when a criterion based on the hydrological assess-
ment of the soil was added to the criterion assessing the pres-
ence of clay in the soil, which was the sole criterion before.
However, 2003 was hit by an extreme and unusual drought
limited only to summer, which was not captured by the cri-
terion in place. Indeed, the use of the criterion in place at
the time would have led to most of the towns requesting a
declaration being refused. Thus, a new criterion was created
specifically for 2003. In 2004, the criteria were updated once
again to consider droughts like that of 2003. However, in
2009 a new indicator was applied based on three seasonal soil
water indexes (SWIs) (winter, spring and summer) as well as
the presence of clay in the soils. Finally, in 2018 the SWI cri-
teria were updated to simplify the thresholds and create four
seasonal indicators as presented previously and the map of
shrinkage and swelling of clay exposure was also updated.

2.3 Drought indexes used as covariates

These indicators can be classed into three big families: the
first are meteorological indicators, of which the most com-
mon amongst drought-related studies are the standardised
precipitation index (SPI), the Palmer drought severity index
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(PDSI), and the standardised precipitation and evapotranspi-
ration index (SPEI). These indexes are based on precipitation
data, as well as temperature and available water content for
the two last ones. The SPI is the most widely used because it
requires few data (only monthly precipitation is needed) and
is comparable in all climate regimes (see Kchouk et al., 2022,
for a recent review of drought indexes). However, those in-
dexes do not capture drought through soil moisture, whereas
other indexes such as agricultural and soil moisture indica-
tors do. Some common indicators from that family are the
normalised difference vegetation index (NDVI), the leaf area
index (LAI) and the soil water storage (SWS), which require
more complex data such as spectral reflectance, leaf and
ground area, soil type, and available water content. Finally,
the last smaller family of indicators comprises hydrological
indexes, some examples of which are the streamflow drought
index (SDI), standardised runoff index (SRI) and the stan-
dardised soil water index (SSWI) – which is used by Météo-
France to characterise droughts and is applied in the charac-
terisation of soil dryness and climate change in Soubeyroux
et al. (2012) – which require streamflow values, runoff infor-
mation or soil water data.

Only a small portion of the above indicators could be con-
sidered given the limited data available. Indeed, the data used
were the monthly average water content, the monthly aver-
age soil temperature and the monthly average daily precipita-
tion at a 9 km grid resolution globally, from the ERA5-Land
monthly database (Climate Change Service Climate Data
Store, 2020), between January 1981 and July 2020. There-
fore, only the SSWI and SPI were selected as they only re-
quire soil water content and precipitation respectively and are
simple to implement. Note that this SSWI, recently discussed
in Torelló-Sentelles and Franzke (2022), was inspired by Hao
and AghaKouchak (2014) and Farahmand and AghaKouchak
(2015).

The use of precipitation data alone is the greatest strength
of the SPI as it makes it very easy to use and calculate. The
ability to be calculated over multiple timescales also allows
the SPI to have a wide scope. There are many articles re-
lated to the SPI available in the scientific literature, which
gives novice users a wealth of resources they can count on
for help. Unfortunately, with precipitation as the only input,
SPI is deficient when it comes to taking into account the tem-
perature component, which is important for the overall water
balance and water use of a region. This drawback can make
it more difficult to compare events with similar SPI values,
as highlighted in Svoboda and Fuchs (2016).

Similarly, the sole use of soil moisture makes the SSWI a
simple indicator to use but also a deficient one. However, as
pointed out in Soubeyroux et al. (2012), the SPI and SSWI
are complementary: although they do have similarities, they
show some great differences. For example, they show that the
droughts of 2003 are not linked to an extreme precipitation
deficit: those droughts could not be detected through the SPI
but could be using the SSWI. In order to add an extra layer

of detail to better characterise droughts, a third indicator was
created, based on the soil temperature available, inspired by
the same methodology as the SPI. In the rest of this article, it
will be referred to as the standardised soil temperature index
(SSTI).

To obtain indexes that are comparable all over France, the
data must be transformed. Indeed, in its raw state, a dry pe-
riod is difficult to distinguish amongst a simply dry climate:
the same magnitude of low precipitation in areas with very
dry climates will have a very different impact on the soil and
on subsidence claims than in wet climates. The SPI method-
ology of McKee et al. (1993) allows the creation of nor-
malised indicators (see also Guttman, 1998, for a historical
discussion). It is calculated using 3-month cumulative pre-
cipitation probabilities by calibrating a gamma distribution
to the data, which is then transformed into a standard normal
distribution. Thus, it allows the quantification of the seasonal
deviation of precipitation compared to the historical mean.
A 3-month step was chosen as it reflects short-term – and
medium-term – drought conditions and provides a seasonal
estimation.

In order to obtain indexes with the available data men-
tioned previously, the same methodology – which is the SPI
computation methodology – was applied to the monthly av-
erage soil wetness, the monthly average soil temperature
and the monthly average daily precipitation separately, thus
yielding the 3-month SPI, SSWI and SSTI.

The aim of this study is to predict claims at a yearly
timescale, creating the need for a yearly indicator. The 12-
month sliding SSWI, SPI and SSTI were not chosen as they
would not capture the seasonality of droughts. Instead, to
obtain yearly indicators, the extremes are taken over the 4-
yearly seasonal indicators, with the following formulas2:

ESSWIz,t =min
s∈S

(
SSWIs,z,t

)
, (1)

ESSTIz,t =max
s∈S

(
SSTIs,z,t

)
, (2)

ESPIz,t =min
s∈S

(
SPIs,z,t

)
, (3)

where S denotes the set of seasons – S = {spring, summer,
autumn, winter}, t ∈ {1981, 1982, . . . , 2020} and z denotes
the given location. The ESPI is the extreme standardised pre-
cipitation index; the ESSTI is the extreme standardised soil
temperature index; the ESSWI is the extreme standardised
soil water index. This methodology – to our knowledge –
has not been applied in the past for the creation of the soil
temperature and precipitation indexes in the context of sub-
sidence claim prediction.

2Here, we use either the minimum or the maximum, depending
on whether drought events are related to either low or high values
of seasonal indexes.
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Figure 1. Indicators for 2018, with SSWI (standardised soil water index), SPI (standardised precipitation index) and SSTI (standardised soil
temperature index) from left to right.

2.4 Other spatial explanatory variables

The concentration and presence of clay in the topsoil play
an important role in the occurrence of subsidence as they
are caused by the shrinkage and swelling of these particular
kinds of soil. Thus, to express the risk of an area, a map was
obtained from the Land Use/Cover Area frame Survey (LU-
CAS) database published by the European Soil Data Cen-
tre (2015), which collects harmonised data about the state
of land use and cover over the European Union. This map
gives the concentration of clay in the topsoils (soils at 0–
20 cm depth) and is available at a 500 m grid resolution over
the European Union.

The soil clay concentration was then aggregated by town,
keeping the highest concentration of clay in the town, which
gives the maps in Fig. 2. Other aggregation functions were
considered (such as the average), but they were less predic-
tive than the maximum. This map shows that the areas with
the highest clay concentrations appear to be in the north-east
of France, in Charente-Maritime (west), around Toulouse
(south-west) and along the Mediterranean Sea (south-east).

Finally, a binary categorical variable, which takes the
value 1 if the town has historically made a request for a
natural catastrophe declaration and 0 otherwise, was sourced
from CCR’s historical data, Caisse Centrale de Réassurance
(2020). The risk map obtained is visible in Fig. 2, as it was
in 2018.

These variables were then aggregated to the exposure
dataset. Thus, the calibration dataset was composed for each
claim year of the INSEE code of the town (from the official
classification, which can be seen as the equivalent of the ZIP
code used in the USA), the year of the claim, the number of
claims, the cost of claims (in EUR), the number of policies,
the total sums insured (in EUR), the clay concentration in the
soil, the ESPI, the ESSTI, the ESSWI and Cat (the binary cat-
egorical variable giving the occurrence of a historical natural

catastrophe declaration request, prior to the year of study).
All the models calibrated are based on those five variables
mentioned above.

3 Model calibration for the frequency

At a regional scale, Corti et al. (2009, 2011) pointed out that
it is possible to use simulations to obtain a good represen-
tation of the regions affected by drought-induced soil sub-
sidence, but substantial differences between simulated and
observed damage in some regions remain. In this section, we
will describe a simple spatio-temporal model for resilience
to model either the frequency or the intensity of such events
(on a yearly basis). Regression-type models will be consid-
ered as in Blauhut et al. (2016). The main difference is that
the interest was to model occurrence, and a logistic regres-
sion was sufficient. Here, since we focus on frequency and
intensity, some Poisson-type regression models will we con-
sidered first and then some gamma models for the severity,
to predict the economic cost of subsidence. In Sect. 3.3 we
will present regression-based models that we will extend in
Sect. 3.4 to ensemble models, namely with bagging of re-
gression trees, as suggested in Breiman (1996), to take into
account some possible non-linearity as well as cross effects.
And in Sect. 3.5, we will study more carefully the errors. But
before this, we need to introduce some criteria to select an
appropriate model.

3.1 Model selection criteria

Various validation performance measures are used to com-
pare the different models. They are chosen to optimise the
model selection based on the qualities that are desired from
the model; i.e. they have a good capacity to predict the cor-
rect number of claims in the right areas and the ability to not
predict claims where there are none historically, all the while
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Figure 2. Topsoil clay concentration (left) and historical natural catastrophes accepted requests (right). Those two variables will be used for
our predictive model.

keeping the simplest possible model. The following perfor-
mance measures are thus used:

– The Akaike information criterion (AIC) and Bayesian
information criterion (BIC) were applied, which use
maximum-likelihood and penalise models with too
many variables and too many variables with respect to
the number of observations respectively. These criteria
are only used for the parametric regression models.

– Root mean square error (RMSE) – or simply the sum of
the squares of errors, which penalises greatly extreme
errors, i.e. extreme deviations in predictions – is used.
This will be used for costs and not counts.

3.2 Cross-validation method

In order to assess the predictive power of the calibrated mod-
els, cross-validation was used. The main goal of the models
is to predict accurately the number of claims per town on
a yearly basis; thus a yearly cross-validation that is derived
from the basic cross-validation principle will be used.

The idea of cross-validation is related to in-sample against
out-of-sample testing. In a nutshell, the model is fitted on a
subset of the data, and validation is computed on observa-
tions that were left out. This approach is interesting to assess
how the results of some statistical analysis will generalise
to form an “independent” dataset. Note that it is possible to
remove one single observation and to validate the model on
that one observation – this is the “leave-one-out” approach
– or to split the original dataset into k subgroups, to remove
one subgroup to fit a model and make predictions based on
that specific subgroup, and rotate – this is the “k-fold cross-
validation” approach. In the case of spatio-temporal data, two
approaches can be used:

– Use some regions as subgroups, and then use a spatial k-
fold approach (as in Pohjankukka et al., 2017) where the
model is fitted on k− 1 regions, and validation is based
using a metric on the error in the region that was left out
– it can be the sum of the squares of the difference or
any metric discussed in the previous section.

– Use cross-validation in time, but because of particular
properties of the time dimension, cross-validation is per-
formed by removing the future from the analysis (as in
Bergmeir et al., 2018). At time t , we use observations
up to time t to fit a model and then obtain a prediction
for time t + 1. In some sense, it is a classical leave-one-
out procedure, except that we cannot use observations
after time t+1 to obtain a prediction at time t+1. This
approach is used in this study.

3.3 Regression-based models

A first attempt at modelling the yearly number of claims was
made using generalised linear models (GLMs) with Pois-
son, binomial and negative-binomial distributions, which are
the most adapted to the calibration data (based on counts).
These models offer a simple and interpretable approach to
modelling data by assuming that the response variable Y =
(Yz,t ) ∈ Rn×T is generated by a given distribution and that its
mean is linked to the q explanatory variables X = (Xz,t ) ∈
X n×T (where classically X = Rq ), through a link function.
In this model, we have n spatial locations (the number of
towns), T dates (the number of years), and q possible ex-
planatory variables.

If we want to model the number of houses claiming a loss
in a given location, the Poisson GLM is defined as Yz,t ∼
P(Ez,t · λz,t ), for a location z and a year t , where Ez,t is the
exposure (the number of contracts in the town) and λz,t is the
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yearly intensity, per house:

λz,t = exp
[
β0+β1x1,z,t + . . .+βkxq,z,t

]
, (4)

where xj,z,t ’s are features used for modelling, such as the
ESSWI or the ESSTI. The prediction, performed at year
t + 1 ∈ {2001, . . .,2019} based on a calibration set of years
{2001, . . ., t}, is

t N̂z,t+1 = Ex,t+1 · t λ̂x,t+1 (5)

and is based on estimator β̂ t obtained on the training dataset
with observations of years {2001, . . ., t}, using maximum-
likelihood techniques, and

t λ̂z,t+1 = exp
[
β̂0,t + β̂1,tx1,z,t+1+ . . .+ β̂k,txq,z,t+1

]
, (6)

where geophysics covariates xj,z,t+1 are known. In Table 1
several sets of parameter estimates β̂ t are given (with t vary-
ing from 2008 until 2018).

From Table 1, we can see that the model is rather stable
over time, which is an interesting feature from a modeller’s
perspective: if we predict more claims due to subsidence in
time, this is mainly due to the underlying factors than to the
change in the impact of each variable. It can be mentioned
that β̂3,t (associate with clay) is significantly increasing (with
a p value of 2 %).

This Poisson model is rather classical for model counts,
and it is said to be an equi-dispersed model, in the sense that
the variance of Y is equal to the average value. This model
can be extended in two directions.

– First we have the binomial model, where Yz,t ∼

B(Ez,t ,pz,t ), where Ez,t is the exposure and pz,t is the
probability that, for a given year t and location z, a claim
is made for a single house, and the prediction for pz,t+1
is

t p̂z,t+1 =

exp
(
β̂0,t + β̂1,tx1,x,t+1+ . . .

+β̂k,txq,x,t+1
)

1+ exp
(
β̂0,t + β̂1,tx1,x,t+1+ . . .

+β̂k,txq,x,t+1
) . (7)

In that case, we have an under-dispersed model in the
sense that by construction we must have Var[Yz,t ]<
E[Yz,t ].

– Second we have the negative-binomial (NB) model,
where Yz,t ∼ NB(Ez,t ,pz,t ), in which Ez,t is the expo-
sure and pz,t is the probability, with standard notations
for the negative-binomial probability function. In that
case, we have an over-dispersed model in the sense that
Var[Yz,t ]> E[Yz,t ].

Calibrating the GLMs and averaging the indicators over the
years spanning from 2001 to 2018 and using the yearly cross-
validation method, the results on the left of Table 2 were ob-
tained. This table shows that the negative-binomial model has
the lowest AIC and BIC.

In order to better consider the characteristics of the claim
data, zero-inflated models were tested using Poisson and
negative-binomial distributions. In these models the joint use
of logistic and count regression allows the integration of the
over-representation of non-events in the data. More formally,
in zero-inflated models, given a location and a time (z, t),
we assume that there is a probability of having zero claims.
In our context, this could mean that the town has not been
recognised as hit by a drought event. The occurrence of a
drought is modelled with a logistic model with probability
pz,t here. Then, if there is a drought event, the number of
claims is driven by some specific distribution (Poisson, bino-
mial or negative binomial), as introduced by Lambert (1992).
If we consider a Poisson regression, this means that

P(Yz,t = 0)= pz,t + (1−pz,t )e−λz,t ·Ez,t (8)

(the second part comes from the fact there could be a drought,
but the number of counts of claims is null) and

P(Yz,t = y)= (1−pz,t )
[λz,t ·Ez,t ]

ye−λz,t ·Ez,t

y!
, (9)

where y = {1,2,3, . . .} and λz,t and pz,t are related to co-
variates through expressions as in Eqs. (4) and (7) respec-
tively. Note that such models can easily be estimated with
standard statistical packages. The results of the zero-inflated
models are visible on the right of Table 2. It shows that the
zero-inflated negative-binomial model is better than the zero-
inflated Poisson model.

Figure 3 shows the yearly predictions for the zero-inflated
models, alongside the previously tested GLMs.3

When looking at the yearly total predictions compared to
reality, as observed in Fig. 3, all the GLM predictions are
very similar apart from the negative-binomial model, which
overpredicts (massively) in 2018; however they all overesti-
mate claims in 2018 and underestimate the number of claims
in 2003, 2011, 2016 and 2017. This graph shows that the
predictions closest to the reality line are for the negative-
binomial zero-inflated model. That model also has the best
metrics when comparing them to those of the GLMs. Thus,
zero-inflated models appear to provide a better fit than the
GLMs.

This section showed that the zero-inflated models, in par-
ticular the negative-binomial zero-inflated model, outper-
formed the GLMs in terms of the number of claims and
model selection criteria. In the next section, we will see the
alternatives to regression-type models that can be considered
since the “linear model” assumption might be rather strong
here.

3.4 Tree-based models

Tree-based models are popular models for data analysis and
prediction and offer an alternative to the previous paramet-

3For purposes of confidentiality, the total number of claims per
year is withheld, but the proportions on the y axis are valid.
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Table 1. Evolution of the parameters in the regression (Poisson regression). Numbers in brackets are the standard deviations of the parameters.
Note that two ESPI parameters are not significant here (95% level).

Year t 2008 2010 2012 2014 2016 2018

Intercept β̂0,t −13.668 −13.460 −13.522 −13.735 −13.932 −14.357
(0.074) (0.071) (0.062) (0.06) (0.059) (0.049)

ESSTI β̂1,t 1.522 1.420 1.511 1.494 1.539 1.661
(0.017) (0.015) (0.013) (0.013) (0.013) (0.012)

ESSWI β̂2,t −0.711 −0.700 −0.601 −0.709 −0.750 −0.707
(0.011) (0.011) (0.009) (0.009) (0.009) (0.008)

Clay β̂3,t 0.021 0.020 0.024 0.025 0.025 0.035
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Cat β̂4,t 3.924 3.950 3.957 3.957 4.003 3.902
(0.056) (0.055) (0.049) (0.048) (0.047) (0.038)

ESPI β̂5,t −0.046 −0.010 0.016 0.074 0.127 −0.048
(0.013) (0.011) (0.009) (0.009) (0.009) (0.007)

Figure 3. Yearly predictions for the zero-inflated models and GLMs.

Table 2. Quality measures for the different GLM distributions.

Zero-inflated

Binomial Poisson NB Poisson NB

AIC 115 051 114 189 100 491 71 154 54 375
BIC 115 113 114 252 100 564 71 259 54 510

ric models. Popularised by Breiman et al. (1983), regression
trees produce simple and easily interpretable split rules.

– A regression tree is such that

t Ŷz,t+1 =

L∑
`=1

ω̂`,t1(xz,t+1 ∈ L`), (10)

where {L1, . . .,LL} is a partition of X and Lj ’s are
called leaves. In a tree with two leaves, {L1,L2}, there is

a variable j such that L1 is the half-space of X charac-
terised by xj,t ≤ s while L2 is characterised by xj,t > s
for a threshold s. For the “classical” regression tree, the
split is based on the squared loss function, in the sense
that we select s to maximise the between variance or,
equivalently, minimise the within variance. It is pos-
sible to extend this approach by using, instead of the
squares of residuals (corresponding to the squared loss
function), the opposite of the log likelihood of the data.
This can be performed using the rpart R package (see
Breiman et al., 1983, for further details on regression
trees).

If trees are simple to interpret, they are usually rather un-
stable: when fitting a tree on a subset of observations, it is
common to obtain different splitting variables and therefore
different trees. The idea of bagging (as defined in Breiman,
1996) is to use a bootstrap procedure to create samples (re-
sampling the observations with replacement) and then ag-
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gregate predictions. In the case where the number of covari-
ates is not too large, this is also called random forests, from
Breiman (2001).

Two tree-based models are tested here in order to attempt
to improve the previous predictions:

– A classical random forest (RF),

t Ŷz,t+1 =
1
m

∑i=1
t
Ŷ
(i)
z,t+1,

where t Ŷ
(i)
z,t+1 =

Li∑
`=1

ω̂
(i)
`,t1

(
xz,t+1 ∈ L(i)`

)
, (11)

is tested, where each tree – corresponding here to dif-
ferent i’s – is computed using a squared loss func-
tion, on different bootstrap samples (obtained by re-
sampling n observations, with replacement, out of
the initial n ones). This can be performed using the
randomForest R package.

– A Poisson random forest (RFP) which considers count
data, with the aim of better capturing the distribution of
the data, is used. Poisson random forests are a modified
version of Breiman’s random forest, allowing the use of
count data with different observation exposures. This is
done by modifying the splitting criterion so that it max-
imises the decrease in the Poisson deviance. An offset
has also been introduced to accommodate for different
exposures. This random forest was calibrated using the
rfPoisson function available in the rfCountData
package in R.

These random forests were all tuned in order to obtain the
optimal number of trees, number of variables tested at each
split and maximum number of nodes. However, the tuning
was limited given the length of the tuning process, which
may reduce the quality of the models.

Figure 4 shows the total yearly predictions for each tree-
based model alongside the zero-inflated negative-binomial
model and the real claims. It shows that the closest predic-
tions to the real observations (the solid line) seem to be those
of the zero-inflated model and the Poisson random forest, al-
though all models but the zero-inflated model underestimate
2011 and 2016. With our cross-validation approach, we have
poor results for early years (only data from 2002 were used to
derive a model for 2003). The standard random forest over-
predicts 2018. Thus, the zero-inflated model and the Poisson
random forest appear to have the best predictions.

In this section, two different random forests were pre-
sented; however, the one with the best results is the Poisson
random forest, which rendered similar results to the negative-
binomial zero-inflated model. The complex calibration pro-
cess and the unclear influence and importance of the vari-
ables on the output of the Poisson random forest make it a
less attractive choice of model compared to the zero-inflated

regression, which has a clear variable influence and a sim-
ple prediction formula. One can thus wonder whether such a
loss in interpretability is worth such a small gain in terms of
predictions.

3.5 Mapping the predictions

In order to improve the predictions and only predict the ac-
tually impacted areas, a methodology was developed to opti-
mise the removal of all the very low claim predictions. This
methodology was applied to both the zero-inflated model and
the Poisson random forest. The total predictions changed lit-
tle, and the geographical distribution of both models’ predic-
tions are observable for 2018 in Fig. 5.

In 2018, both models have more or less the same claim
distribution, with large numbers of claims along the Mediter-
ranean, in the north and in Pays de la Loire. However, the
distribution is slightly different when looking at the centre
of France. Indeed, the random forest seems to predict more
claims in that area than the zero-inflated negative-binomial
model. Comparing these results with the real claims for 2018,
it can be seen that the historical claims are nearly exclusively
concentrated in the centre of France with a few claims along
the Atlantic and Mediterranean coast and in the north-east
of France. Thus, both models seem to overpredict the claims
around the coasts of France and – slightly for the Poisson ran-
dom forest and vastly for the zero-inflated negative-binomial
model – underpredict them in the centre of France. How-
ever, it can be noted that the overpredicted areas do mostly
fall within areas that have non-recognised natural catastro-
phe declarations, which could mean that the area was hit but
not compensated and thus that the models have difficulty as-
sessing the difference between areas that will be recognised
as natural catastrophes or not. The same conclusion can be
made when looking at the predictions for 2017, visible in
Fig. 6.

In these maps, the predicted claims do appear to be in the
correct areas in the south and south-west of France for both
models; however, there are overpredictions in the east, centre
and north of France, which also appear to be areas with non-
accepted natural catastrophe declarations. Both models seem
to predict not only the correct areas but also additional zones
that often are areas that have had natural catastrophe decla-
rations refused, which means that those areas were impacted
by subsidence but not sufficiently to enter the scope of the
natural catastrophe regime. Indeed, as the acceptance criteria
changed frequently between 2001 and 2018, the models can-
not capture the natural catastrophe aspect of a claim seeing
as one that may have been acceptable in 2017 may no longer
be today. Both models predict more or less the same geo-
graphical distribution of claims, posing the question of the
usefulness and practicality of using a complex model such
as the Poisson random forest compared to the zero-inflated
negative-binomial model.
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Figure 4. Comparison of yearly predictions for the tree-based models, with zero-inflated negative binomial (ZINB), classical RF and RFP.

Figure 5. Observed and predicted number of claims for 2018, with, from left to right, Poisson random forest and zero-inflated claims (on
top) and observed claims and recognised ones (below).
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Figure 6. Observed and predicted number of claims for 2017, with, from left to right, Poisson random forest and zero-inflated claims (on
top) and observed claims and recognised ones (below).

Another option that would permit the classification of the
predicted claims into accepted and refused natural catastro-
phe categories would be to use the map of shrinkage and
swelling of clay risk (Georisques, 2020), published by the
French Geological Survey (BRGM). This map categorises
the exposure of a given point of France using four categories:
not at risk, low risk, average risk and high risk. The accep-
tance of a natural catastrophe declaration in France is feasible
if more than 3 % of the surface of a town is in a zone with av-
erage or high risk. Thus, if the predicted claims map and the
risk map, aggregated by town, were overlapped, the classi-
fication of the predicted claims would be possible between
potentially accepted and most likely refused natural catastro-
phe declaration.

4 Cost predictions

In the previous section, we saw different models used to pre-
dict frequency (the number of claims per town). Here we con-
sider a gamma model for the average cost per claim, leading
us towards a compound model for the total cost per town, as
introduced in Adelson (1966) and used for example in hy-
drology in Revfeim (1984) or Svensson et al. (2017) or for
droughts in Khaliq et al. (2011).
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4.1 Modelling average and total economic costs

For a given location z and year t , the total cost (from the
insurer’s perspective) is a compound sum, in the sense that

Yz,t =

Nz,t∑
i=1

Zi,x,t =

{
Z1,x,t + . . .+ZNz,t ,x,t if Nz,t > 0
0 if Nz,t = 0,

(12)

with a random sum of random costs. Here Nz,t is the fre-
quency, modelled in the previous section, and Zi,x,t ’s are in-
dividual economic losses per house. It is possible to consider
here a Tweedie GLM, as introduced in Jørgensen (1997), cor-
responding to a compound Poisson model, with gamma av-
erage cost. Nevertheless this is only a subclass of the general
compound models. Note that Tweedie models are related to
a power parameter since they are characterised by the re-
lationship E[Y ] = Var[Y ]γ . If γ = 1, Y is proportional to a
Poisson distribution (average costs are non-random), while
γ = 2 means that Y is proportional to a gamma distribution
(frequency is non-random). For inference, we used γ = 1.5,
which corresponds to the lowest AIC. For the corresponding
Tweedie model, the SSTI and SSWI, as well as clay and Cat
covariates, were used.

Although the model is interesting, it is less flexible than
having two separate models – one for the frequency and one
for the average cost at location z, for year t , written

Yz,t =Nz,t ·Zx,t , (13)

where (as before) Nz,t is the frequency, as modelled in the
previous section, and the average cost (per house) is mod-
elled using our data, aggregated at the town level, Zx,t . The
prediction is then

t Ŷz,t+1 = t N̂z,t+1 · t Ẑz,t+1 . (14)

The results of these methods are rather similar. Figure 7
shows the total yearly predictions for the Tweedie model and
the average-cost-of-claims method using the GLM and both
the zero-inflated and the Poisson random forest models, pre-
viously calibrated.

Figure 7 shows that the Tweedie model makes predictions
that are similar to the previous cost of claims predictions;
however this model overestimates less in the year 2018 and
(clearly) overestimates more in the years 2007 and 2012.
On the other hand, the years 2003, 2011 and 2016 are still
severely underestimated by the three predictions, although
less so by the Tweedie model.

4.2 Mapping the predictions

As in Sect. 3.5, it is possible to visualise the prediction and
to map 2016Ŷz,2017 and 2017Ŷz,2018, as seen in Fig. 8. As ex-
pected, if we are not able to predict correctly the frequency,
the cost is overestimated. Overall (as we can see in Fig. 7),
in 2017, we obtained a good prediction in France, but we

can observe some spatial differences. Most of the comments
made in Sect. 3.5 remain valid, and clearly, predicting the
economics losses in a specific area is not a simple task.

In this study, we considered forecasting claims for past
data based on time t + 1 up to time t and climatic variables
for time t + 1. Therefore, it is not possible to forecast claims
in the future since we would have to obtain forecasts of fu-
ture climate datasets for all three climatic indicators (ESSTI,
ESSWI and ESPI) using the soil wetness, soil temperature
and precipitation data in different RCP (Representative
Concentration Pathway) scenarios and use these new fu-
ture climate indicators to estimate the impact of climate
change on future claims in each scenario. Furthermore,
one must keep in mind that the results would be based on
today’s legal environment and would not take into account
any evolution in the way subsidence claims are covered.
This methodology would also be flawed by the generally
larger granularity of future climate data, which renders
the estimation less precise (e.g. CMIP5 future climate
data (https://cds.climate.copernicus.eu/cdsapp#!/dataset/
projections-cmip5-monthly-single-levels?tab=overview,
last access: July 2020), which have lower resolution
compared to ERA5-Land data used in this study).

5 Conclusions

The increase in the number and severity of subsidence claims
in the past years has created a need for insurers to improve
their grasp of the knowledge of this risk. However, the im-
plementation of subsidence models is time-consuming and
requires detailed data. This study proposed a method for ap-
proaching the costs and frequency of claims due to subsi-
dence based on historical data. This was applied through two
main components: the development of new drought indica-
tors using open data and the use of parametric and tree-based
models to model this risk. Modelling subsidence requires the
integration of meteorological and geological indicators to as-
certain the factors predisposing a policy to subsidence. With-
out this information, the inherent risk to which a dwelling is
exposed cannot be perceived. For this reason, geological and
meteorological data were obtained from open datasets. These
data were paired with insurance exposure and claim data to
obtain a complete dataset used to calibrate the models. How-
ever, the data available were only at a communal-mesh scale,
making the results less precise. Indeed, subsidence is a very
localised risk whose modelling would benefit from policy-
level data.

Overall, the methods enable the predictions of an estimate
of the number of claims, the cost of claims and their geo-
graphical distributions. Although they sometimes lack pre-
cision, the models give a good indication of the severity of
a given year. The uncertainty in the predictions may be ex-
plained by the non-homogeneous data on which the models
were calibrated. Indeed, the natural catastrophe declaration
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Figure 7. Total yearly cost predictions in France, with a ZINB model+ gamma costs, RFP model+ gamma costs and a Tweedie model
(Poisson+ gamma costs).

Figure 8. Observed and predicted average cost of claims in 2017 (top). Observed and predicted average cost of claims in 2018 (bottom).
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criteria evolved many times over the calibration period, ren-
dering the historical data biased. The predictions would also
have benefited from data at a finer mesh scale to take into ac-
count the individual particularities of each policy such as the
presence of trees close to the construction, the slope of the
terrain or the orientation of the slope. Finally, more precise
temporal definition of the events could have been used if the
claims were available at a monthly scale rather than yearly. In
that case, seasonal indicators could have been created, rather
than yearly ones, to capture more precisely the timescale of
an event.

This study has allowed for the creation and implementa-
tion of new drought indicators for a subsidence claim model
which performs well, considering the limitations induced
by the lack of information and precision of the calibration
dataset. The created model provides a better understanding
of the phenomenon and allows other subsidence exposure
evaluations to be challenged, which will improve an insur-
ance company’s management of this risk, given the lack of
available subsidence models on the market. This methodol-
ogy could be improved in the future by using policy-level
data with a more accurate temporal definition of the claims
in order to better apply the created indicators. The frame-
work of this study is also in itself interesting and could be
repurposed for other applications. Indeed, the studied models
could be extended to other claim prediction problematics, for
other types of peril for example, which are often confronted
with similar issues of over-representation of non-recognised
events.

Code and data availability. Code is available at https://github.com/
freakonometrics/subsidence/ (Charpentier, 2022a). The data used
for the calibration in this study are based on datasets that are
the property of private insurers in France and therefore cannot be
shared; however a sample of the data will be provided in the Zen-
odo project folder (https://doi.org/10.5281/zenodo.6863730, Char-
pentier, 2022b).
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