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Abstract. Debris flow is one of the main causes of loss of life
and infrastructure damage in mountainous areas. This hazard
should be recognized in the early stage of land development
planning. According to field investigation and expert experi-
ence, a scientific and effective quantitative susceptibility as-
sessment model was established in Pinggu District of Bei-
jing. This model is based on geographic information system
(GIS) combined with grey relational, data-driven and fuzzy
logic methods. The influence factors, which are divided into
two categories and consistent with the system characteristics
of a debris flow gully, are selected, but also a new important
factor is proposed. The results of the 17 models are verified
using data published by the authority and validated by two
other indexes, as well as area under curve (AUC). Through
the comparison and analysis of the results, we believe that the
streamlining of factors and scientific classification should at-
tract attention from other researchers to optimize a model.
We also propose a good perspective to make better use of the
watershed feature parameters. These parameters fit well with
the watershed units. With full use of insufficient data, scien-
tific calculation and reliable results, the final optimal suscep-
tibility map could potentially help decision makers in deter-
mining regional-scale land use planning and debris flow haz-

ard mitigation. The model has advantages in economically
weak areas with insufficient data in mountainous areas be-
cause of its simplicity, interpretability and engineering use-
fulness.

1 Introduction

Debris flows are processes of rapid transport of water and soil
materials in mountain watersheds, with sudden and destruc-
tive outbreaks (Di et al., 2019). Some debris flows can of-
ten cause devastating disasters and huge losses (Zhang et al.,
2021), seriously threaten the lives and properties of people in
the mountains and the safety of major projects, and restrict
social and economic development (Iverson, 1997; Hungr et
al., 2005; Hu et al., 2011; Takahashi, 2014; Wu et al., 2019).
Mass movements in Beijing range in scale from shallow
slope failures and rockfalls to catastrophic rock avalanches
frequently mobilize to form debris flows, threatening the eco-
logical environment of the mountainous area (Zhong et al.,
2004). Especially in recent years, due to the superposition
of extreme rainstorm weather and human engineering activ-
ities, debris flow events have increased gradually (Z. Li et
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al., 2021). As the capital of China, Beijing also has strong
influence at home and abroad where geological disasters are
widely concerned (Xie et al., 2004; Li et al., 2020b). With
the deepening understanding of debris flow disaster and the
updating of a database, a new and more accurate evaluation
is also very necessary. Therefore, it is of great significance to
establish an accurate and scientific debris flow susceptibility
map.

Through previous studies, it can be summarized that the
current research on debris flow mainly focuses on the fol-
lowing aspects: study on mechanism of debris flow, study
on early warning and prediction of debris flow, study on
numerical simulation of debris flow, and study on debris
flow hazard analysis. Especially studies on debris flow haz-
ard analysis gain the attention of the researchers as soon as
they appear (Dong et al., 2009). Communicating informa-
tion about debris flow hazard analysis is a crucial component
of preparedness and hazard mitigation (Chiou et al., 2015).
Susceptibility assessment, an important part of a hazard as-
sessment of geological processes, is more flexible (Y. Li et
al., 2021). In the early days, the susceptibility assessment
of debris flows was mainly qualitative research using geo-
morphological information (Guzzetti et al., 1999). In 1976,
the United Nations commissioned the International Union
of Engineering Geology to conduct a risk assessment of de-
bris flows, which marked the beginning of research on the
susceptibility assessment of debris flows as an important re-
search direction for disaster prevention and prediction (Li et
al., 2020b). Many methods and techniques have been pro-
posed to evaluate debris flow susceptibility assessment based
on different qualitative and quantitative approaches along
with geo-environmental information (Liu and Wang, 1995),
such as the analytic hierarchy process (Wu et al., 2016), lo-
gistic regression method (Regmi et al., 2013; Conoscenti et
al., 2015), information value (Akbar and Ha, 2011; Melo
et al., 2012), support vector machine (Pourghasemi et al.,
2017), frequency ratio (FR) (Sun et al., 2018), certainty fac-
tor (CF) (Tsangaratos and Ilia, 2015), neural network (Lee
et al., 2003; Liu et al., 2005) and Bayesian network algo-
rithm (Liang et al., 2012; Tien Bui et al., 2012). These meth-
ods have corresponding advantages and limitations for re-
search subjects with different geological conditions. Gener-
ally speaking, it is easier to get satisfactory results by com-
bining and comparing various methods (Meyer et al., 2014;
Di Napoli et al., 2020; Fang et al., 2020). In summary, with
the development of mathematical theory, the susceptibility
assessment of debris flows has been extensively and quanti-
tatively studied, and the research methods have also changed
from single to comprehensive.

The economy in mountainous areas is often limited; we
cannot supervise and verify every basin due to limited funds.
The debris flow susceptibility assessment can give decision
makers a basis for rational allocation of resources and deter-
mine which gullies should be focused on. In other words, the
study plays a link role for other studies. Recently, with the

development of mathematical theory, computer technology
and the application of 3S (remote sensing, geography infor-
mation systems, global positioning systems), the susceptibil-
ity assessment of debris flows has been extensively and quan-
titatively studied (Li et al., 2020a). As research progresses,
debris flows are increasingly seen as an open system. There
are many factors influencing the system, the combination of
factors is nonlinear, and the interactions are chaotic. There-
fore, it is very difficult to find a unified and standard evalua-
tion model. At present, when the information is insufficient,
field investigation and the experience of experts are neces-
sary. However, the experience is often subjective and needs
a lot of professional experience accumulation. It is very im-
portant to express the experience of experts objectively and
understandably to serve decision makers. The application of
fuzzy set theory in geographic information system (GIS) en-
vironments is effective for similar problems (Luo and Dimi-
trakopoulos, 2003; Porwal et al., 2006).

The main objective of this paper is to propose a GIS-based
model. The results of expert experience scoring and site sur-
veys are used as guidance and reference in the modeling pro-
cess. We have tried to apply methods that can indicate the
nonlinearity of the debris flow system. Finally, the modeling
process should respect the laws of geomorphological evolu-
tion and the geological basis. Otherwise, the result will tend
to be simply data fitting (Porwal et al., 2006).

2 Study area

The study area is located to the northeast of Beijing, China
(Fig. 1), with a total area of 948.24 km2. The elevation of
Pinggu is high in the northeast and low in the southwest.
It is surrounded by mountains and accounts for about two-
thirds of the total area on three sides in the southeast and
north. The central and southern parts are alluvial plains. The
area, geologically, is the west extension of the famous Jixian
section, whose bedrock is mainly Middle and Late Protero-
zoic dolomite (Lü et al., 2017). The administrative unit of
Pinggu District is used as the study area boundary, mainly
considering that geological hazards frequently influence hu-
man economic activities, so political factors must be taken
into account. Within the administrative region, inconsistent
decision-making can be effectively avoided.

3 Data and methodology

In this study, the susceptibility assessment of debris flow haz-
ard was based on the drainage basin unit. In such a model, a
hydrological response unit can fully represent the hillside hy-
drological process and will make the results more meaning-
ful (Khan et al., 2013, 2016; Zou et al., 2019). First, drainage
networks were extracted from the ASTER (Advanced Space-
borne Thermal Emission and Reflection Radiometer) digi-
tal elevation model (DEM) by using the ArcGIS ArcHydro
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Figure 1. Study area.

Toolbox, and regions without obvious watershed character-
istics were directly deleted. Then for each drainage basin,
19 controlling and triggering factors divided into two types
were calculated. In addition, since these factors have differ-
ent characteristics, different methods were used to calculate
the fuzzy membership for different type factors. Field inves-
tigation is generally required in geological hazard surveys. If
these data are applied to the model, it can help with the model
building and reduce the time for model training. The weights
derived from the grey relational analysis method used in the
following section (Sect. 3.4.1) are based on the data from the
field investigation. While geology and geomorphology fac-
tors are independent of watershed characteristics, it is suit-
able to use statistical methods to determine the objective
weight. Finally, the debris flow susceptibility index (DFSI)
map was derived by overlaying the factor thematic layers
with the fuzzy logic method. The workflow of debris flow
susceptibility assessment is shown in Fig. 2. First, a DEM
map of the Pinggu area was downloaded. Then, the basin
units were generated from the DEM map using the ArcHydro
tool. The derived results were analyzed, and units that did not
fit the characteristics of the watershed were removed. During
the analysis, the field investigation data and Google images
were referenced. After that, the controlling and triggering
factors for the remaining 135 catchments were counted. For
the fuzzy memberships, watershed characteristic parameters
were determined by grey correlation, and the geological and
geomorphological factors were determined by the frequency
ratio (FR) method and the cosine amplitude method. Finally,
the individual layers were overlaid by fuzzy logic operations
to obtain the final map. As there were different combinations
of factors, 17 results were derived. Three indexes (area under
curve, AUC, accuracy ratio, AR, and resolution ratio, RR)
were used to evaluate advantages and disadvantages of these
results.

3.1 Debris flow basin division and inventory

There are many geological hazard points in mountainous ar-
eas, so it is not realistic to monitor them completely by pro-
fessional teams. According to the monitoring and prevention
staff and the villagers, the detailed field investigation (Fig. 3)
for the evidence collection of debris flows will be carried out
at the reported disaster point, aiming at recording the loose
material, delineating the basin and exploring other important
information on the debris flow gullies. Moreover, field inves-
tigation is also very important for model modification. Then
based on the hydrology module in ArcGIS 10.2, the research
object can be determined. Compared with grid unit and slope
unit, the hydrological response unit for susceptibility of de-
bris flow has greater advantages (Z. Li et al., 2021b; Zou et
al., 2019). Finally, referring to the result of the field investi-
gation and the remote sensing image, 135 basins are divided
after removing the flat and irregular areas (Fig. 4), and of
them 48 basins were investigated in the field, accounting for
36 %.

3.2 Debris flow controlling and triggering factors

The basic requirement for the assessment of debris flows is
that some factors included are easily obtainable, meaning-
ful for susceptibility assessment, and can be used for eval-
uating the need for passive or active debris flow mitigation.
According to previous studies, 19 factors are selected in this
study. The factors are divided into two types (Table 1) be-
cause of their different characteristics. Watershed character-
istic factors (Type A) can be directly quantified once the
basin is determined (Fig. 5). The influence of these param-
eters is bounded by the watershed; geology and geomorphol-
ogy factors (Type B) need to be further processed even if the
watershed is determined. The scope of these parameters is
independent of the watershed boundary.

3.3 Fuzzy logic in susceptibility modeling

Fuzzy set theory is proposed by Zadeh (1965). It is an effi-
cient way of expressing the concept of partial set membership
degree. This concept differs from classical binary (0–1 value)
logic. More words with transitional fuzzy descriptions (such
as low, medium and high) are used (Kritikos and Davies,
2015). This fuzzy expression is particularly applicable to ge-
ological hazard classification. In the theory of fuzzy sets, el-
ements have different degrees of membership in the interval
[0, 1]: 1 represents complete membership, and 0 represents
non membership. Ross (1995) showed that fuzzy systems are
useful in two general situations (Kritikos and Davies, 2015).
The method is very consistent with the characteristics of de-
bris flow system, whose predisposing factors are fuzzy in na-
ture and whose mechanism is complex and not fully under-
stood. In the application of the fuzzy logic method, the crit-
ical step is to find the suitable fuzzy membership of factors.
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Figure 2. Workflow of debris flow susceptibility assessment.

Figure 3. Field investigation photos. (a) Loose material, (b) Middle and Late Proterozoic dolomite, (c) colluvium deposit, (d) slope fracture
and (e) channel erosion phenomenon.
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Table 1. Factors for susceptibility assessment.

Factors and description Significance Obtaining ways

Watershed
characteristic
factors (Type A)

A1 The planimetric (projected)
area of the catchment

Geometric parameter; affecting the ac-
cumulative total volume of water and
representing the potential magnitude
(Zhang et al., 2011; Cao et al., 2016;
Chang and Chien, 2007)

Derived from DEM

A2 The curved surface area of
the catchment

Real contact area between rainfall and
basin

Derived from DEM

A3 The surface roughness of
the catchment

Dimensionless parameters, reflecting
the fragmentation degrees of the sur-
face and the ground surface micro-
topography; Wu et al. (2019) believe the
factor can further reflect the ability of
the earth to resist wind erosion

Calculated by A3 = A2/A1

A4 The perimeter of catchment Geometric parameter, controlling the
boundaries of a watershed

Derived from DEM

A5 Form factor Hydrologic parameter, related to the
distribution of flow rate hydrograph
(Chang and Chien, 2007)

Calculated by A5 =
A4

2
√
πA1

A6 The curve length of
the main channel

Importance for the travel distance of
materials and affecting the potential of
erosive agents to dislodge and transport
materials (Gómez and Kavzoglu, 2005)

Derived from DEM

A7 The straight length of
the main channel

Geometric parameter, representing the
change in material source in space

Derived from DEM

A8 Bending coefficient of
the main channel

Affecting the discharge situation of de-
bris flows (Li et al., 2020a; Zhang et al.,
2013)

Calculated by A8 = A6/A7

A9 The gradient of
the main channel

Hydraulic gradient parameter, affecting
water transport capacity

Calculated by A9 = A12/A6

A10 Maximum elevation in the
catchment

Affecting vegetation and bedrock expo-
sure

Derived from DEM

A11 Minimum elevation in the
catchment

Affecting vegetation and bedrock expo-
sure slightly

Derived from DEM

A12 Maximum relative relief in
the catchment

The higher the value ofA12 is, the large
relative relief provides more favorable
terrain conditions for the initiation of
the debris flow source

Calculated byA12 = A10−A11

A13 Basin volume: the volume
above the level of the min-
imum elevation in the basin

Representing the maximum material
source that can be produced in an ideal
state, loose material volume

Derived from DEM

A14 Drainage density Representing the geological structure,
lithology and the degree of rock weath-
ering comprehensively and affecting the
range of lateral erosions and retrogres-
sive (Cao et al., 2016; Zhang et al.,
2011)

The ratio of the total length of
river network lines to A1
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Table 1. Continued.

Factors and description Significance Obtaining ways

Geology and
geomorphology
factors (Type B)

B1 Lithology Affecting the rock mass shear strength
and permeability (Donati and Turrini,
2002)

Derived from 1 : 50000 geolog-
ical maps

B2 Proximity to faults Correlated with slope failures by gen-
erally reducing the strength of the rock
mass (Dramis and Sorriso-Valvo, 1994;
Korup, 2004; Kellogg, 2001; Kritikos
and Davies, 2015)

Derived from 1 : 50000 numer-
ical geological maps

B3 Slope (◦) Correlated with the probability of land-
slide occurrence (Dai and Lee, 2002;
Lee and Choi, 2004; He and Beighley,
2008). The greater the slope, the greater
the vertical component of gravity (Do-
nati and Turrini, 2002) and the higher
the frequency of slope failures (Lee and
Sambath, 2006; Lee and Talib, 2005)

Derived from DEM

B4 Slope aspect Affecting slope instability directly or
indirectly as a result of drying winds,
sunlight, rainfall and vegetation (Dai
and Lee, 2002; Dai et al., 2001)

Derived from DEM

B5 Curvature Affecting slope stability; Lee and
Talib (2005) and Ohlmacher (2007) ar-
gue on how curvature affects slope sta-
bility

Derived from DEM

Note: the geological maps are provided by the Beijing Institute of Geological and Prospecting Engineering, and the digital elevation model (DEM) of the study area is
from the Shuttle Radar Topography Mission (SRTM) DEM with a resolution of 30 m (http://www.gscloud.cn/sources/accessdata/310?pid=302, last access:
25 June 2022).

Fuzzy membership degree is equivalent to the weight in the
expert scoring method, which is calculated by the objective
method rather than given subjectively.

3.4 Fuzzy memberships

3.4.1 Grey relational analysis (GRA) in susceptibility
modeling

GRA is proposed by Deng (1982), and it is an important part
of grey system theory (Wang et al., 2014). Comparing with
mathematical statistics methods which need lots of sample
data, typical probability distribution and large calculations,
GRA is applicable to small sample size with the data whether
regular or not. There will be no inconsistency between quali-
tative analysis and quantitative analysis (Deng, 1988). More-
over, it is to excogitate the leading and potential factors that
affect the development of the system and quantitatively de-
scribe the development and change trend of the system by
studying whether the relative change trend of the grey factor
variables with complex relationship is consistent in the pro-
cess of system development and evolution (Liu et al., 2004).
Thus, grey correlation analysis is introduced to quantify the

correlation between each factor and the evaluation results ac-
cording to field investigation and expert experience. First,
the procedure of GRA is to translate the performance of ev-
ery alternative into a comparability sequence (Lin and Lin,
2002; Kuo et al., 2008; Wei et al., 2017). Therefore, accord-
ing to the technical standard “Specification of geological in-
vestigation for debris flow stabilization (DZ/T0220-2006)”
(Ministry of Natural Resources of the People’s Republic of
China, 2006), published by the China Ministry of Lands and
Resources, the preliminary assessment results of debris flow
susceptibility are obtained, which are used as the reference
sequence of the grey relation method (Table 2). Second, the
grey correlation coefficient of all A factors is calculated by
Eq. (1). Finally, the average grey relational coefficient (the
correlation degree) is calculated by Eq. (2) as the fuzzy mem-
berships (Table 3).

ξi (k)=
min
i

min
k |x0 (k)− xi (k)| + 0.5max

i
max
k |x0 (k)− xi (k)|

|x0 (k)− xi (k)| + 0.5min
i

min
k |x0 (k)− xi (k)|

,

(1)

where ξi(k) is the grey relational coefficient, i = 1, 2, . . . ,
n are the number i of type A factors, k = 1, 2, . . . , n are
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Figure 4. Debris flow basin division and inventory. Note: the data of
debris flow points come from the Beijing Municipal Commission of
Planning and Natural Resources websites (Beijing Municipal Com-
mission of Planning and Natural Resources, 2022).

the number of basins, x0(k) is the reference sequence (ideal
target sequence), and xi(k) is the number i of the Type A
factor sequence.

ri =
1
N

∑n

i=1
ξi(k), (2)

where ri is the correlation degree in the range (0, 1). N is the
total number of basins in Table 2

3.4.2 Data-driven method in susceptibility modeling

Landslide is one of the main fixed sources of debris flow
in mountainous area. Shallow landslides are one of the
most common categories of landslides. They frequently in-
volve large areas and different soils in various climatic
zones (Benda and Dunne, 1987; Selby, 1982; Borrelli et al.,
2014). Great debris flows may result from numerous, small
slope failures that subsequently coalesce (Fairchild, 1987;
Roeloffs, 1996), from flow enlargement due to incorpora-
tion of bed and bank debris (Pierson et al., 1990; Bovis and
Dagg, 1992), or from large, individual landslides that mo-
bilize partially or almost totally (Vallance and Scott, 1997;
Iverson et al., 1997). Debris flows may also scour steep chan-
nels to bedrock and accelerate sediment delivery to down-
stream, lower-gradient channels. The spatial and temporal
distribution of shallow landslides are important controls on
landscape evolution and a major component of both natu-
ral and management-related disturbance regimes in moun-
tain drainage basins (Tsukamoto et al., 1982; Dietrich et al.,

1986; Benda and Dunne, 1987; Crozier et al., 1990). There-
fore, the landslide susceptibility assessment methods can be
used for reference to debris flow susceptibility assessment.

For Type B factors which cannot be characterized by a
specific number, the frequency ratio (FR) method and the
cosine amplitude method can be used to derive their fuzzy
memberships. The FR ratio defined as Eq. (3). Consider-
ing the fuzzy membership must be in the interval [0, 1], the
FR values of the different categories are normalized by the
largest FR value (Lee, 2006; Pradhan, 2010, 2011a, b) within
the same type factor (Table 4) in order to derive the function.

FR=
N(Di)/N(Ci)

N(D)/N(A)
, (3)

where N(Di) is the number of debris flow pixels in the cate-
gory i, N(Ci) is the total number of pixels in the category i,
N(D) is total number of debris flow pixels in the study area,
and N(A) is the total number of pixels in the study area.

The cosine amplitude method (Ross, 1995) is also widely
used (Ercanoglu and Gokceoglu, 2004; Kanungo et al., 2006,
2009; Ercanoglu and Temiz, 2011) to establish relation-
ships among elements of two or more datasets (Kritikos and
Davies, 2015). Assuming that n is the number of data sam-
ples (categories of a factor used in the analysis) represented
as an arrayX = {x1,x2, . . . , xn} and that each of its elements,
xi , is a vector of length m (i.e. the size of the raster image)
and can be expressed asX = {xi1 ,xi2 , . . ., xim}, then each el-
ement of a relation rij results from a pairwise comparison of
a factor category xi with a category of the debris flow distri-
bution layer xj (debris flow or non-debris flow). The mem-
berships can be calculated by Eq. (4):

rij =

∣∣∑m
k=1xikxjk

∣∣√(∑m
k=1x

2
ik

)(∑m
k=1x

2
jk

) . (4)

As an analogy with the study of Kanungo et al. (2006), we
defined the rij value for any given factor category as the ra-
tio of the total number of debris flow pixels in the category to
the square root of the product of the total number of pixels in
that category and the total number of debris flow pixels in the
area. Values of rij close to 1 indicate similarity, whereas val-
ues close to 0 indicate dissimilarity between the two datasets
(Kritikos and Davies, 2015). What is more, every thematic
layer must use the same pixel size to use the method prop-
erly.

3.5 DFSI map

To derive the debris flow susceptibility index (DFSI) map by
overlaying the factor thematic layers using the fuzzy logic
method, the “fuzzified” factors represented by information
layers in raster format with values ranging from 0 to 1 need
to be combined. Compared with the other four fuzzy opera-
tors, fuzzy gamma (Eq. 5) is more suitable for the research
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2246 Y. Zhang et al.: GIS-models with fuzzy logic for susceptibility maps of debris flow

Figure 5. Graphical illustration of some Type A factors. A1 is the planimetric (projected) area of the catchment, A2 is the curved surface
area of the catchment, A4 is the perimeter of the catchment, A6 is the curve length of the main channel, A7 is the straight length of the main
channel, and A13 is basin volume.

Table 2. Quantitative evaluation grade standard table for debris flow susceptibility.

Name g5 g13 g14 g29 g39 g40 g42 g44 g48 g49 g50 g52 g54
Score 59 54 50 63 61 66 55 65 78 69 85 46 70
Name g57 g60 g63 g66 g67 g72 g73 g75 g80 g81 g83 g84 g85
Score 56 63 58 73 62 84 62 67 84 69 80 75 86
Name g86 g87 g88 g90 g91 g92 g94 g98 g99 g101 g102 g105 g106
Score 73 84 60 70 80 84 71 78 61 65 67 65 70
Name g107 g108 g110 g111 g112 g120 g121 g123 g134 – – – –
Score 45 45 69 69 74 62 63 73 56 – – – –

Note: 130≥ score≥ 116, VH; 115≥ score≥ 87, M; 86≥ score≥ 44, L; and 43≥ score≥ 15, N. VH is very high susceptibility, M is moderate
susceptibility, L is low susceptibility, and N is non-debris flow.

(Kritikos and Davies, 2015). To determine the appropriate γ
value, the results of different gamma values were compared
by the greatest distance (Kritikos and Davies, 2015) between
the average DFSI curves of the debris flow locations and
non-debris flow locations (for example, flat pixels) (Fig. 6).
Finally, 0.9 is determined for the γ value because there is
the greatest difference between debris flow and non-debris
flow location areas. In order to illustrate the superiority of
our model through a comparison, 17 results are calculated in
ArcGIS.

µ(x) =
(

1−
∏n

i=1
(1−µi)

)γ
·

(∏n

i=1
µi

)1−γ
, (5)

where µ(x) is the combined membership value, µi is the
fuzzy membership function for the ith map, i = 1,2, . . . , n
are the numbers of thematic layers to be combined, and γ is
a parameter in the range (0, 1).

To find the optimal model, 17 results were compared (Ta-
ble 5). According to the distribution map of potential geolog-
ical hazard points and susceptibility map in Pinggu District
published by the Beijing Municipal Commission of Planning
and Natural Resources (Beijing Municipal Commission of
Planning and Natural Resources, 2022), three indexes are
used to verify the validity and accuracy of the model.

The results of the model are independent of the model it-
self, so the predictive performance of the final map is not
just “the goodness of fit” of the data (Chung et al., 1995; Re-

Figure 6. Effect of γ value on debris flow susceptibility index
(DFSI). Curves d, e and f correspond to debris flow pixels, and
curves a, b and c correspond to non-debris flow area where a de-
bris flow is unlikely. According to curve i, the maximum difference
between the average DFSI values is observed for γ ≈ 0.9.
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Table 3. The fuzzy memberships of Type A factors.

Factor A1 A2 A3 A4 A5 A6 A7
Fuzzy membership 0.77 0.77 0.63 0.6 0.54 0.55 0.67
Factor A8 A9 A10 A11 A12 A13 A14
Fuzzy membership 0.71 0.55 0.55 0.59 0.61 0.79 0.54

Table 4. Factor categories and their fuzzy membership degrees.

Factor Factor Number of Number of Number of Number of Frequency ratio Normalized rij Comprehensive
class pixels pixels % pixels classified pixels classified (FR) frequency ratio (FRR)

as debris flows as debris flow % ratio

Lithology Quaternary sediments, unconsolidated 7 562 017 0.320 48 190 0.017 0.026 0.021 0.091 0.002
clastic sediments
Coarse-grained sediments 1 148 321 0.049 21 741 0.008 0.076 0.063 0.061 0.004
Medium-grained sediments 259 619 0.011 12 013 0.004 0.186 0.154 0.045 0.007
Fine-grained sediments 754 655 0.032 76 380 0.027 0.407 0.337 0.114 0.038
High-grade metamorphics 986 435 0.042 154 332 0.055 0.629 0.522 0.162 0.085
Granitoids 725 651 0.031 140 936 0.050 0.781 0.648 0.155 0.100
Mafic extrusive 75 495 0.003 16 398 0.006 0.873 0.724 0.053 0.038
Terrigenous clastic rock 3 289 458 0.139 986 495 0.352 1.205 1.000 0.41 0.410
Limestones 8 804 379 0.373 1 343 754 0.480 0.614 0.509 0.478 0.243

Proximity to faults (m) < 100 1 057 209 0.045 231 016 0.083 0.878 1.000 0.198 0.198
100–500 3 778 095 0.160 774 566 0.277 0.824 0.938 0.363 0.341
500–1000 3 894 600 0.165 716 963 0.256 0.740 0.842 0.349 0.294
1000–2000 5 707 265 0.241 760 699 0.272 0.536 0.610 0.36 0.220
2000–3000 2 749 240 0.116 246 925 0.088 0.361 0.411 0.205 0.084
> 3000 6 421 103 0.272 69 382 0.025 0.043 0.049 0.109 0.005

Slope (◦) 0-5 9 674 508 0.410 153 889 0.055 0.064 0.056 0.162 0.009
5–10 2 815 606 0.119 383 198 0.137 0.547 0.480 0.255 0.123
10–15 2 955 913 0.125 521 040 0.186 0.709 0.622 0.298 0.185
15–20 2 879 704 0.122 570 515 0.204 0.797 0.699 0.312 0.218
20–25 2 432 724 0.103 498 303 0.178 0.824 0.723 0.291 0.210
25–30 1 620 325 0.069 350 686 0.125 0.870 0.764 0.244 0.187
30–35 837 185 0.035 209 574 0.075 1.007 0.883 0.189 0.167
35–40 294 141 0.012 82 000 0.029 1.121 0.983 0.118 0.116
40–45 77 038 0.003 21 133 0.008 1.103 0.968 0.06 0.058
> 45 30 091 0.001 8529 0.003 1.140 1.000 0.038 0.038

Slope aspect Flat 380 875 0.016 463 0.000 0.005 0.005 0.009 0.000
North 2 370 048 0.100 296 900 0.106 1.006 1.000 0.318 0.111
Northeast 2 193 998 0.093 279 917 0.100 0.513 0.510 0.218 0.092
East 2 873 308 0.122 295 555 0.106 0.414 0.411 0.224 0.111
Southeast 3 122 267 0.132 353 489 0.126 0.455 0.453 0.245 0.108
South 3 219 111 0.136 354 420 0.127 0.443 0.440 0.246 0.133
Southwest 3 144 353 0.133 400 064 0.143 0.512 0.509 0.261 0.135
West 3 525 895 0.149 436 381 0.156 0.498 0.495 0.273 0.140
Northwest 2 787 380 0.118 381 679 0.136 0.551 0.547 0.255 0.318

Curvature Concave 490 900 0.021 109 157 0.039 0.893 1.000 0.136 0.136
Less concave 2 037 602 0.269 394 583 0.141 0.778 0.871 0.259 0.226
Flat 18 364 429 15.992 1 769 210 0.631 0.387 0.433 0.549 0.238
Less convex 2 202 019 8.482 416 142 0.149 0.759 0.850 0.266 0.226
Convex 522 285 0.692 112 740 0.040 0.867 0.971 0.139 0.135

mondo et al., 2003). A relatively reliable technique for quan-
titatively assessing how good a model is is the construction
of validation or success rate curves (Chung and Fabbri, 1999;
van Westen et al., 2003; Remondo et al., 2003; Frattini et al.,
2010) based on a comparison between the spatial distribu-
tion of debris flows and modeled debris flow susceptibility.
The curves illustrate the debris flow recorded in the area with
respect to susceptibility values also expressed as cumulative
percentages of the total area. The area under the curve (AUC)
defines the success rate (Marjanović et al., 2011). Generally,
AUC values above 0.7 indicate model performance can be
acceptable, while below 0.7, the performance is considered
poor (Kritikos and Davies, 2015).

Although AUC is an effective evaluation method, the re-
sults are not comprehensive as mathematical features for se-
lecting the best measurement model because of insufficient
data for validation. In order to ensure the objectivity of the
results, we can only effectively use the recorded debris flow
gully as positive and the others as negative. Thus, a two-
category test is proposed to verify the model in this paper.
First, the DFSI map of each model is divided into two cate-
gories by the natural breaks (Jenks) method (Fig. 7). Then the
accuracy ratio (AR) is defined as the frequency of the num-
ber of debris flows both classified by model and simultane-
ously recorded on site to the number of debris flows recorded
on site. The resolution ratio (RR) is defined as the number of
debris flows classified by model and simultaneously recorded
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Table 5. Predictive performance of different models.

Result and description AUC Two-category test Performance index
Accuracy ratio Resolution ratio (centesimal grade)

(AR) (RR)

A factors only or B factors only R1 B factors with rij 0.460 – – –
R2 B factors with FR 0.687 – – –
R3 B factors with FRR 0.602 – – –
R4 All A factors 0.786 0.304 0.700 83
R5 Selected A factors 0.760 0.391 0.750 94

All factors as a single thematic layer R6 All A factors and B factors with rij 0.776 0.261 0.667 74
R7 All A factors and B factors with FR 0.779 0.283 0.684 78
R8 All A factors and B factors with FRR 0.753 0.326 0.600 76
R9 Selected A factors and B factors with rij 0.746 0.348 0.727 86
R10 Selected A factors and B factors with FR 0.761 0.348 0.727 87
R11 Selected A factors and B factors with FRR 0.740 0.348 0.727 85

A factors combined into one thematic layer, R12 All A factors and B factors with rij 0.708 0.500 0.511 82
B factor combined into another thematic layer R13 All A factors and B factors with FR 0.753 0.848 0.394 99

R14 All A factors and B factors with FRR 0.711 0.870 0.404 96
R15 Selected A factors and B factors with rij 0.726 0.348 0.667 80
R16 Selected A factors and B factors with FR 0.768 0.739 0.442 100
R17 Selected A factors and B factors with FRR 0.740 0.457 0.600 88

Note: selected A factors with fuzzy membership more than 0.6; FRR represents the product of FR and rij ; performance index is normalized by the largest FR value.

on site to the total number of debris flows classified by the
model (in red color). Take R4, for example; there are in total
135 basins in the research area but only 46 records of debris
flows (Fig. 3). In the results of two categories by the natural
breaks (Jenks) method, 20 basins are divided into debris flow,
while there are only 14 debris flows among them. Then 14 di-
vided by 46 is AR, and 14 divided by 20 is RR.

The higher the two values are, the better the susceptibility
map is. Finally, the performance of models (P value) can be
obtained by Eq. (6). AUC values less than 0.6 are directly
eliminated. Comparing the results of the rest of the mod-
els, the result of R16 is optimal, and the results of the DFSI
map are in good agreement with those of field investigation
(Fig. 8).

P = AUC+
√
(AR ·RR) (6)

4 Results and discussion

Through the modeling process, relatively satisfactory results
are obtained in this paper. The predictive performance of the
output debris flow susceptibility maps, obtained from 17 dif-
ferent models, is verified by comparing them with maps pub-
lished by relevant authorities. By comparing the results, the
following results are discussed.

Firstly, comparing R1, R2, R3, R4 and R5, it can be con-
cluded that the model based on field investigation and expert
experience is more effective than data driven directly when
the information is insufficient. This is mainly because when
the basin area reaches a certain size, it is no longer controlled
by one or several factors but becomes a complex system. It is
not only the factors that affect the system, but also the system
will react to each factor. Geomorphic evolution is basically

the result of the interaction of the endogenic and exogenic
geological processes. A geological period can be regarded as
the beginning of one endogenic geological process to the next
one. In the early stage of the geological period, endogenic
geological processes play a major role, and in the later rela-
tively stable period, exogenic geological processes will take
on more important parts. In this large cycle, a small cycle of
energy accumulation and release occurs in the basin contin-
uously, which leads to extremely complex system changes.
In addition, there is a contradiction between the scale of ge-
ological evolution and the scale of engineering activities. So
limited information can be obtained under these conditions,
which leads to the unreliability of data-driven evaluation.
Therefore, in the current period, field investigation and ex-
pert experience are fundamental.

Secondly, by comparing R4 and R5, R6 and R9, R7 and
R10,R8 andR11,R12 andR15,R13 andR16, andR14 andR17,
it can be concluded that the accuracy and resolution of the
model can be improved by simplifying the factors, which will
eliminate the ones with weak correlation and independence.
In practical applications, even if the susceptibility map is ob-
tained, the classification of the susceptibility degree is still
a very difficult problem because everyone’s subjective defi-
nition of “susceptibility degree” is different. By simplifying
the factors, the main ones can be selected, which magnifies
the differences between basins, so the boundaries between
different susceptibility degrees are more obvious.

Thirdly, by comparing R6 and R12, R7 and R13, R8 and
R14, R9 and R15, R10 and R16, and R11 and R17, it can
be concluded that the appropriate classification of factors is
helpful to optimize the susceptibility assessment model be-
cause the properties of the factors divided into one category
are relatively consistent, as well as the impact on the debris
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Figure 7. Results of two categories by natural breaks (Jenks) method.

flow system. We can also infer that the nonlinear combina-
tion characteristics between different types are stronger and
scientific classification can improve the performance of the
model.

Fourthly, comparing R12 and R13, as well as R15 and R16,
it can be concluded that the frequency ratio method is bet-
ter than the cosine amplitude method in the study. Different
from the study of Kritikos and Davies (2015), the watershed
unit rather than the grid unit is used, which indicates that the
former has a wide range of applications, while the latter has
a disadvantage of strict conditions.

Based on the results of the above four analyses, the most
optimal model should have the features of being based on ex-
pert experience, using selected factors, classifying factors be-
fore using them and using the frequency ratio method. Then
the model R16 is selected according to the features, which
is well in accordance with theoretical method performance
score, and gets fine mutual verification.

There is also the selection of factors to discuss, which is
still a very complex dilemma. Although 19 factors selected
cannot fully evaluate the character of a basin, it is necessary
to consider that they are easily and relatively accurately ob-
tainable for each basin. This will facilitate a wide range of ap-
plications. Moreover, rainfall and total amount of loose ma-
terial source are also very important influencing factors. But
according to the Beijing hydrological manual, the rainfall
change in the study area is not obvious, so it is excluded in

the model. The total amount of loose material source cannot
be obtained for the watershed without on-site investigation,
so calculations are impossible. In fact, we indirectly consider
the influence of natural loose material source by evaluating
geological conditions but cannot consider the impact of hu-
man activities. As for the factors describing debris flow mag-
nitude, usually several channels have the recorded data.

The scientific and systematic principle of model building
is another challenge. To correctly classify the factors, it is
necessary to grasp the characteristics of the formation, move-
ment and accumulation of debris flow. Therefore, the classi-
fication should comprehensively consider the development
background (geology, geomorphology, climate, hydrology,
soil, vegetation, human activities and other factors). What
the practical principle refers to is that the study should not
only fully obtain scientific and accurate results but also make
the professional results be understood by decision makers.
Although the susceptibility grade and susceptibility value of
each watershed are obtained, the results are relatively effec-
tive in this study area. In addition, with the development of
technology and theory, we should replace some traditional
factors which are not easy to quantify with more precise
quantitative factors to improve the efficiency and accuracy
of evaluation, such as surface roughness instead of drainage
density.

We would like to further discuss the results derived from
Table 3. It can be seen from the results that the occurrence
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Figure 8. Debris flow susceptibility maps. Note: AUC results of R1–R4 below 0.7 are not shown. VH represents very high susceptibility
area, H represents high susceptibility area, M represents moderate susceptibility area, L represents low susceptibility area, and VL represents
very low susceptibility area.

of debris flow is highly correlated with basin volume, basin
area and main gully bending coefficient with fuzzy member-
ship above 0.7 in the Beijing area. Rainfall in the study area is
abundant to induce the debris flow. Loose sources and sinks
in the total volume of the catchment become more important.
The watershed area determines the total volume of the catch-
ment. For the same rainfall, generally, the larger the area is,
the larger the catchment is. The bending coefficient reflects

the replenishment sources along the channel. The greater the
coefficient is, the slower the flow is. Then loose source along
the channel has more time to replenish. Basin volume char-
acterizes the maximum amount of loose material that can be
supplied. These three features reflect the development char-
acteristics of debris flow in the study area. It also provides
ideas for disaster prevention and mitigation.
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Finally, we should consider decision making under un-
certainty because the debris flow phenomenon is extremely
complex. The classification of geologists (high, moderate
and low) is ambiguous for decision makers. It is more ben-
eficial for them to use mathematically rigorous definitions.
Considering that geological conditions tend to vary greatly
from region to region, it is not appropriate to define a fixed
limit. The Jenks method (chosen in this paper) can be used
to classify sensitivity maps according to the characteristics
of the data. We can also further process the data according
to the needs of decision makers, such as identifying 10 % of
the watersheds in the entire region as high risk. However,
the applicability of the model to extreme rainfall and seismic
conditions is not considered.

5 Conclusion

In this study, a new combination model for debris flow sus-
ceptibility based on GIS was developed in Pinggu. The ob-
jective and motivation of this study are to demonstrate a sim-
ple, extensible and convenient analytical model for the debris
flow prediction. Three methods are selected in the model,
each with their own advantages. GRA has great advantages in
the case of fewer samples, the data-driven method is mainly
used to reduce subjectivity, and fuzzy logic is fitted to solve
nonlinear problems with fuzzy classification. The output op-
timal debris flow susceptibility maps demonstrated satisfac-
tory performance with the relative higher susceptibility val-
ues corresponding to AUC= 0.768. The predictive perfor-
mance of the susceptibility maps and the spatial correla-
tion of debris flow gully with H and VH susceptibility with
recorded debris flows illustrate that the assessment at re-
gional scale using the proposed method is feasible. Com-
pared with the previous results (Li et al., 2020b) based on
grid units, the evaluation results are basically the same, but
the model is more targeted at debris flow disasters for deci-
sion makers. Moreover, considering that the meaning of the
factors used is clear and the data are easy to obtain, these
conditions mentioned enable the model to be widely applied.
In addition, a new factor (basin) is proposed in our study,
which contributes greater weight – up to 0.79. From our 17
results by comparing the control variables, we suggest that
other scholars should pay more attention to the classification
and streamlining of factors, whose potential value to improve
model accuracy has been indicated. It was also found that the
watershed characteristic parameters can better reflect the ad-
vantages of the watershed unit, but further development is
needed.

In short, an effort has been made to develop a cost- and
time-efficient debris flow susceptibility assessment model.
The model has an acceptable degree of accuracy for regional-
scale planning and helps to make susceptibility and risk maps
more accessible to individuals and local authorities. The
GIS-based methods and modern data availability especially

through online databases are significantly beneficial to this
aim. However, a challenge remains in producing results with
practical accuracy for the scale of planning using available
resources. Previous studies highlight that the effectiveness of
the final map depends on the quality of input data. Updating
and improving existing debris flow catalogues and invento-
ries are crucial for the development of reliable susceptibility
and risk assessment methods.
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